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ABSTRACT
The problem of dynamic, three-dimensional magnetic reconnection is considered. Analytic ““ fan

current ÏÏ solutions are derived by superposing plane-wave disturbances on magnetic X-point equilibria.
The localization of the wave produces a strong current sheet containing the neutral point. It is shown
that the classical rate of resistive dissipation in the sheet, namely represents the slowest pos-Wg D g1@2,
sible energy-loss rate for the disturbance. The conditions required for fast coronal reconnection are then
discussed. It is pointed out that signiÐcant ““ Ñare-like ÏÏ energy release may be possible under physically
realizable conditions. Moreover, the small length scales associated with the current sheet widths of order
*x D g1@2 suggest that conditions are probably collisionless close to the neutral point. It is argued that
our results are consistent with magnetic reconnection simulations that display ““ stalling ÏÏ of the merging
rate at small plasma resistivities.
Subject headings : MHD È plasmas È Sun: Ñares È Sun: magnetic Ðelds

1. INTRODUCTION

Magnetic energy release by reconnection mechanisms has
been intensively studied over the last 30 years. Early two-
dimensional studies of quasi-steady magnetic merging have
highlighted the key role played by near-singular current
layers in resistive dissipation (Syrovatskii 1971 ; Parker
1979). Current sheets accumulate magnetic energy at null
points in the plasma, and provide sites for strong magnetic
energy release (Forbes & Priest 1987 ; Biskamp 1994 ;
McClymont & Craig 1996a). Recent exact reconnection
solutions, however, suggest that current sheets are associ-
ated mainly with three-dimensional ““ fan current ÏÏ recon-
nection (Craig & Fabling 1996). Other reconnection
solutions require quasi-cylindrical ““ spine ÏÏ currents that
develop along the exhaust axis of the Ñuid (see Galsgaard,
Rickard, & Reddy 1996). Magnetic merging may also
involve multiple nullsÈas in separator reconnection (e.g.,

et al. 1996).De� moulin
Yet a major difficulty for any reconnection model is

achieving a fast energy dissipation rate in the low-resistivity
plasma typical of the solar corona. Despite the development
of exact spine and fan solutions, the ability of any reconnec-
tion mechanism to explain the massive, explosive magnetic
collapse of the solar Ñare remains questionable. In a recent
paper, Craig, Fabling, & Watson (1997) point out that fan
geometries are more favorable than spine geometries for
producing Ñarelike energy release. They argue that all Ñux
pileup solutionsÈand these seem to be the only exact
models with the potential for fast energy releaseÈmust
eventually stall at some level determined by the plasma
resistivity g. When this is taken into account, the spine
energy release saturates long before reaching Ñare levels.
Admittedly, the arguments of Craig et al. (1997) are limited
to steady state solutions and mention only brieÑy e†ects
that are likely to be of considerable importance in the Ñare
context, for instance, the breakdown of classical collisional
resistivity. They do suggest, however, that the saturated
output of fan reconnection may be sufficient to power

modest Ñares, even when collisional resistivities are
assumed.

Fan current reconnection is illustrated schematically in
Figure 1. Magnetic shear waves, with motions in the hori-
zontal plane, parallel to the propagate vertically in““ fan,ÏÏ
the direction of the The waves converge on the fan““ spine.ÏÏ
plane where they produce an intense current sheet. This
leads to strong ohmic dissipation and reconnection of the
sheared Ðeld across the fan plane. Sufficient ampliÐcation of
the currents to achieve ““ fast ÏÏ reconnection (i.e., a rate that
does not fall o† as resistivity is decreased) in general
requires the waves to be ““ driven ÏÏ toward the fan by a
strong ““ external ÏÏ Ñow Ðeld. Although this Ñow is imposed
a priori on the system considered here, it is a natural conse-
quence of magnetic collapse driven by instability of the
coronal Ðeld or by emerging Ñux. The Ñow is ““ external ÏÏ
only because our model of the dynamics of the reconnection
region has ““ open ÏÏ boundaries and so does not encompass
the entire system. Ñuid motions driven by externalAlfve� nic
magnetic forces are, in fact, required for all forms of quasi-
steady merging (Craig & Rickard 1994 ; Priest & Titov
1996). That is, Ñuid cannot advect across magnetic
separatrices if the Ñow Ðeld is sub-Alfve� nic.

The aim of the present paper is to review fan reconnec-
tion models within a dynamic, three-dimensional frame-
work. Our starting point is the observation that all current
sheet solutions can be viewed as the superposition of tran-
sient, nonlinear, plane-wave disturbances on three-
dimensional magnetic X-points (Craig & Fabling 1998).
These disturbances concentrate in the vicinity of the neutral
point and eventually form current sheets that dissipate the
accumulated magnetic energy. We demonstrate, for
example, how steady state models can be understood as a
relaxation of transient wave solutions and show how analy-
tic scaling laws can be derived for the dependence of the
ohmic dissipation rate on the plasma resistivity g. We go on
to discuss the energy dissipation characteristics of ““ fast ÏÏ
solutions, given the likelihood of collisionless conditions
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FIG. 1.ÈSchematic representation of a three-dimensional null point, showing the horizontal ““ fan ÏÏ and vertical A current sheet is formed when““ spine.ÏÏ
vertically propagating waves converge in the fan plane.

near the neutral point.
In ° 2 we introduce the governing MHD equations and

brieÑy review the geometry of X-type magnetic equilibria.
Section 3 formulates the reconnection solution in terms of
plane-wave disturbances impacting on the X-point. These
solutions are interpreted in ° 4, where a quantitative esti-
mate is made of the saturated energy release under realistic
coronal conditions. Our conclusions are presented in ° 5.

2. TIME-DEPENDENT RECONNECTION EQUATIONS

2.1. Momentum and Induction Equations
We consider the nondimensional momentum and induc-

tion equations for an incompressible inviscid plasma. An
open geometry is assumed in which mass and energy can
enter and leave the reconnection region. The reconnection
volume is taken to be a cube with [1 ¹ x, y, z¹ ]1.

The governing MHD equations are written in the form

Lx

Lt
] (¿ Æ $)x[(x Æ $)¿\ (B Æ $)J [ (J Æ $)B , (2.1)

LB
Lt

] (¿ Æ $)B [ (B Æ $)¿\ g+2B , (2.2)

where the magnetic and velocity Ðelds satisfy

$ Æ B \ 0 , $ Æ ¿\ 0 , (2.3)

and the current density and Ñuid vorticity are given by

J \ $ Â B , x\ + Â ¿ . (2.4)

The only energy sink for the system is provided by the
resistive term. The collisional resistivity g is very smallÈin
our dimensionless units it is an inverse Lundquist number
of order 10~14. Thus resistive dissipation can be signiÐcant
only in localized regions of high current density. It follows
that any MHD mechanism signiÐcant for reconnection
must incorporate a natural, dynamic collapse to small
length scales. This collapse in turn may lead to a break-
down of the Ñuid approximation, as discussed in ° 4.

2.2. Magnetic X-Point Equilibria
Reconnection is generally associated with null points in

the magnetic Ðeld. We consider an isolated null and expand
the magnetic Ðeld in the neighborhood of the point r \ r0(say) according to

B
i
(r0] dr) \ B

i
(r0) ] B

i,j(r0)dx
j
, (2.5)
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where is an element of the Jacobian matrix LB/Lr. TheB
i,jconstraint $ Æ B \ 0 then implies the trace condition
Obviously, the current density at namely,B

i,i\ 0. x0 ,

J
i
\ v

ijk
B
k,j , (2.6)

vanishes identically only in the case of symmetric Con-B
k,j .versely, nonsymmetric components in signal the pres-B

k,jence of nonpotential nulls.
Now let locate the null point of the Ðeld. Ther0\ 0

simplest null of interest has the potential form

P(r)\ [[xxü ] iyyü ] (1[ i)zzü ] , (2.7)

where i deÐnes the degree of anisotropy of the Ðeld. More
general nulls require three extra parameters, specifying the
antisymmetric components of (see e.g., Parnell 1996).B

k,jHowever, if force-free conditions J Â B \ 0 are imposed,
then two further constraints are introduced. In this case the
null is described by only two free parameters.

Returning to the potential (eq. [2.7]), we note that the
choice o i o\ 1 assigns a special role to the x-axis. This
forms a separatrix Ðeld lineÈthe spine curveÈinto the null.
The remaining separatrix lines are outgoing and form the
““ fan ÏÏ in the plane x \ 0. The special case corre-i \ 12sponds to rotational symmetry about the x-axis. The null
degenerates to a planar X-point by taking either i \ 0 or
i \ 1.

Finally, we mention that P can also be interpreted as a
global velocity Ðeld for the plasma. Since we are allowing
material to enter and leave the reconnection region, we
must account for the possibility of background equilibrium
Ñows. Identifying P as a velocity Ðeld, we see that material
washed in along the spine is ejected through the outÑow
surfaces o y o\ 1 and o z o\ 1. In what follows we shall
assume that the inÑow surfaces x \ ^1 are physically
equivalent and consider only the region of positive x.

2.3. X-Point Disturbance Fields
To develop reconnection solutions we superpose some

transient magnetic disturbance Ðeld Q onto the background
potential (eq. [2.7]). In fan current reconnection, the dis-
turbance Ðeld is represented by plane waves propagating
along the spine axis, speciÐcally

Q
F
\ Q(x, t), Q Æ xü \ 0 . (2.8)

This form distorts the spine of the background Ðeld and
leads to strong currents localized in the fan x \ 0. An alter-
nate form, namely,

Q
S
\ Q(y, z, t)xü , (2.9)

leads to dynamic spine current reconnection, in which
quasi-cylindrical currents are aligned to the spine axis. The
equations for time-dependent spine reconnection can be
found in Craig & Fabling (1998) ; they will not be con-
sidered here.

Although fan and spine disturbances are mathematically
convenientÈthey satisfy the straight Ðeld line condition
(Q Æ $)Q \ 0Èother forms of disturbance Ðeld can yield
much physical insight. In particular, Hassam (1995),
Hassam & Lambert (1996) and Craig & McClymont (1997)
have considered the behavior of isolated wave packets in
the vicinity of magnetic nulls. It is found that only modes
which strongly focus toward the null, that is, compressional

modes, are consistent with fast dissipation : shearAlfve� n

modes, unless within a very small capture cross section, exit
the reconnection region before signiÐcant ohmic dissipation
can occur. Indeed, when working in open geometries, the
identiÐcation of fast ohmic decay can be obscured by shear-
ing wave motions that carry energy out of the source
volume (Craig & McClymont 1997 ; Craig & Fabling 1998).
In such cases the strength of the current layer (see ° 3.2)
provides a reliable indicator for fast ohmic release.

2.4. Equations of Fan Current Reconnection
Let us suppose the fan displacement Ðeld Q(x, t) is

aligned to some preferred direction, say the y-axis. This
involves no lack of generality, since the degree of anisotropy
of the background Ðeld P can still be chosen arbitrarily. We
therefore assume the forms

¿\ aP(r) ] V (x, t)yü , B \ bP(r) ] Y (x, t)yü , (2.10)

where a and b are positive constants of order unity, and the
displacement Ðelds V (x, t) and Y (x, t) are taken as odd
functions of x. Under these conditions, the momentum and
induction equations reduce to

V
t
\ a(xV

x
[ iV ) [ b(xY

x
[ iY ) , (2.11)

Y
t
\ a(xY

x
] iY ) [ b(xV

x
] iV ) ] gY

xx
. (2.12)

The momentum equation has been integrated by parts and
the constant of integration set to zero by virtue of the
oddness of the disturbance Ðelds.

By taking i \ 0 or i \ 1 we can derive all the dynamic
planar solutions published so far in the literature. We refer
to the merging as ““ driven ÏÏ if the potential Ñow Ðeld a [ 0 is
present. Thus when i \ 1 the diverging Ñow Ðeld is aligned
with the wave Ðeld Y (x, t) and the Ðeld is stretched andyü
ampliÐed ; when i \ 0 the wave Ðeld is perpendicular to the
background Ñow, and so the Ðeld lines are advected incom-
pressibly without magniÐcation (see Fig. 2). We obtain the
planar shear wave solutions of Bulanov, Shasharina, &
Pegararo (1990) and the perpendicular shear wave solutions
of McClymont & Craig (1996b) by setting a \ 0 and taking
i \ 1 and i \ 0, respectively. The driven annihilation
mode of Clark (1964) corresponds to the choice b \ V \ 0,
i \ 1. To obtain the quasi-steady solution of Craig &
Henton (1995) we take i \ 1 and set the time derivatives to
zero.

2.5. T he Plasma Pressure
To recover the plasma pressure we must uncurl the

momentum equation. The result is

p(r, t) \ p0(t) [ 12(a2P2] Y 2) [ biyY , (2.13)

where P\ o P(r) o and Y \ Y (x, t). This expression is inter-
preted in terms of dynamic fan current solutions in ° 3.1 and
° 3.2 below.

For the present, we note a difficulty with planar models of
fast magnetic mergingÈthese require huge pressures in the
reconnection region to sustain the dissipation rate (see
McClymont & Craig 1996b ; Inverarity & Priest 1996). Spe-
ciÐcally, fast dissipation is associated with ““ Ñux pileup ÏÏ
current sheets in which the disturbance Ðeld amplitude
builds up monotonically with reductions in the plasma re-
sistivity decreases. The increasing hydromagnetic pressure
is then reÑected by the term Y 2/2, which becomes increas-
ingly large as g ] 0.
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FIG. 2.ÈSchematic representation of ““ Ñux pileup ÏÏ in response to dif-
ferent background Ñows. On the left, the background Ñow for i \ 0
advects the magnetic Ðeld incompressibly and does not stretch the Ðeld
lines. In the middle, isotropic divergence of the Ñow for i \ 1/2 provides
the minimum stretching and Ðeld ampliÐcation necessary for fast dissi-
pation. On the right, maximum stretching of the Ðeld lines is obtained for
i \ 1.

This problem only arises, as we shall see, when the
merging is driven by a strong background Ñow. Undriven
shear waves (Bulanov et al. 1990 ; McClymont & Craig
1996b) do not su†er this difficulty, but neither do they
produce fast dissipation. (See also the compressible dis-
cussion of Hassam & Lambert 1996). In other words, the
ohmic dissipation rate

Wg \ g
P

J2dV 4 gSJ2T ; (2.14)

is slow: it scales as a positive power of g, speciÐcally Wg D
g1@2. In contrast, fast-mode solutions show that Y builds up
as g~1@2, consistent with superfast dissipation Wg D g~1@2
and the pressure scaling (Craig & McCly-p0D Y 2D g~1
mont 1997). Since such huge hydromagnetic pressures are
unrealizable in the solar atmosphere, we must conclude that
the buildup of the magnetic Ðeld eventually saturates in any
realistic fast-merging solution (Craig et al. 1997). The impli-
cations of this result are discussed in ° 4.4.

3. DYNAMIC FAN CURRENT SOLUTIONS

3.1. Wave Properties of the Solution
We are interested in the case where some global initial

disturbance Q \ Y (x, 0) is superposed on the equilibriumyü
X-point. Resistive dissipation will remain negligible until
the disturbance has localized to some small length scale
determined by g.

The initial advection phase can be investigated by setting
g \ 0 and introducing the comoving coordinates

q\ t , m \ xeat . (3.1)

Eliminating V (x, t) from equation (2.12) yields a Klein-
Gordon equation for Y (x, t), namely,

Yqq\ b2Yss] i2(a2[ b2)Y , s \ ln m . (3.2)

This wave equation holds for any linear combination of Y
and V and generalizes the planar form (i \ 1) derived by
Craig & McClymont (1997).

As Craig & Fabling (1998) have emphasized, the wave
properties of the fan reconnection problem can be likened
to the one-dimensional, forced oscillations of an elastic
medium. The Ðrst term in b2 accounts for magnetic shear
waves and reÑects the restoring forces in the medium. In
fact, the wave equation has two characteristics, namely
CB\ ln m ^ bq, or in real space,

C` \ xe~(a`b)t , C~\ xe~(a~b)t (3.3)

(see also Craig & McClymont 1997). The net e†ect is to split
an initial wave packet into two components. One com-
ponent propagates rapidly inward, but the other can do so
only if a [ b, that is, if the driving is sufficiently strong.
Since inward-pointing characteristics converge toward each
other, initial gradients in the Ðeld become magniÐed,
producing strong current densities. Conversely, the current
density weakens in any pulse which is outward propagating.

Aside from the localization of the wave envelope for
a [ b, there remains the possibility of direct growth in the
Ðeld amplitude, due to the last (forcing) term in equation
(3.2). A necessary condition for growth is clearly

i2(a2[ b2) [ 0 . (3.4)

Growth requires plus the Ðeld localization conditioni D 0,
a [ b.

Is equation (3.4) sufficient for growth? Taking an isolated
Fourier mode for the solution yields

Y
F
(m, q) \ elqBik ln m , l(k) \ Ja2i2 [ b2(i2] k2) ,

(3.5)

where k is the wavenumber. Since the space domain in the
s \ ln m variable is noncompact, a global initial disturbance
suggests that we choose a very small wavenumber, that is

More physically, the wave domain corresponds tok5 > 1.
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the real space interval *x ¹ x ¹ 1, where *x is the width of
the current layer. This suggests that we should choose
k o ln *x o^ 1 to ensure a global disturbance in the wave
domain. As shown below, current sheet widths are so small
that equation (3.4) is e†ectively sufficient for growth.

3.2. Annihilation of Straight Field L ines
The case b \ 0 provides a degenerate case of the previous

theory. The absence of the background X-point Ðeld means
that wave modes arising through magnetic tension are
eliminated. In this case there is no inherent localization of
the Ðeld, so the merging has to be driven by a background
Ñow. Since straight Ðeld lines are advected by the Ñow
toward the fan plane x \ 0, we obtain the dynamic gener-
alization of the Sonnerup & Priest (1975) steady state anni-
hilation model.

Suppose we consider the annihilation problem as a
simple prototype for reconnective merging. We are inter-
ested in predicting the width of the current layer, the
strength of the current sheet, and the scaling of the ohmic
dissipation rate with g.

Setting b \ 0 in equations (2.11) and (2.12) shows that the
magnetic and velocity Ðelds completely decouple. In terms
of the comoving coordinates (eq. [3.1]), the advective solu-
tion for the Ñow is simply

V (m, q)\ V0(m)e~iaq . (3.6)

This Ñow, being parallel to the Ðeld lines, is nonessential.
The solution for the Ðeld, namely,

Y (m, q)\ Y0(m)eiaq , b \ g \ 0 , (3.7)

shows that for ia nonvanishing, the Ðeld is strongly ampli-
Ðed as it approaches the neutral line. This magniÐcation, as
illustrated schematically in Figure 2, is a manifestation of
the stretching of a Ñuid line element by the background
Ñow. Note that the product Y V is conserved throughout
the advection phase.

In the presence of resistivity, the Ñow solution (eq. [3.6])
remains valid, but the Ðeld evolution is modiÐed according
to

Yq \ iaY ] ge2aqYmm , (3.8)

an equation which is easily solved using transform methods
(Clark 1964). For our purposes, it is enough to consider the
behavior of an isolated Fourier pulse

Y (m, q)\ A(q) sin (k0 m) , (3.9)

where is arbitrary. The wavenumber shouldA(0)\A0 k0be order unity to ensure a global initial disturbance. The
Ðeld amplitude satisÐes

Aq
A

\ ia [ gk02e2aq (3.10)

which reduces to the exponential growth of the wave solu-
tion (3.7) for g \ 0. However, for Ðnite resistivity the growth
saturates when which occurs at timeAq \ 0,

T \ 1
2a

ln
ia
g

(3.11)

on taking By this time the point m \ 1 on the wavek0 ^ 1.
proÐle has reached the onset of the di†usion layer
x \ me~aT \ *x D g1@2, and the Ðeld has attained the
amplitude Y D g~i@2. It follows that the current density and

annihilation rate scale according to

J D g~(1`i)@2 , Wg^ gJ2*x D g1@2~i . (3.12)

Thus any solution with i º 1/2 is fast. The scaling of the
plasma pressure

p0D 12Y 2D g~i (3.13)

shows that the i \ 1/2 axisymmetric solution o†ers the
weakest pressure buildup consistent with fast dissipation.
This scaling is a considerable improvement on the fast
planar model p0D g~1.

3.3. Driven Fast Reconnection
Let us now attempt to construct scaling laws for the case

of driven reconnection. We assume and the localiza-i D 0
tion condition a [ b, which provide necessary conditions
for growth of the Ðeld. In contrast to the annihilation of
straight Ðeld lines, we cannot assume that V (x, t) always
decays with time. Indeed, we know that in quasi-steady
merging V ] bY (x)/a, where

Y (x) 4 Y0
x
k

M
Ai ] 1

2
,
3
2

,
[ x2
2k
B

, k \ ga
a2[ b2 ,

(3.14)

and M is the Kummer function (Craig et al. 1997). Thus V is
typically as expected for reconnection solutionsAlfve� nic,
(see ° 1). The dynamic problem is further complicated by the
fact that there are two characteristics for the wave solution
(eq. [3.2]). How do these Ðt into the dynamic reconnection
model?

Suppose we introduce (Craig & Fabling 1998)

F(x, t) \ V (x, t) [ b
a

Y (x, t) ; (3.15)

to measure departures from the quasi-steady solution. Then
equations (2.11) and (2.12) give

F
t
[ a`xF

x
\ [ia~F[ b

a
a~(xY

x
] iY )[ b

a
gY

xx

(3.16)

and

Y
t
[ a~xY

x
\ ia~Y [ b(xF

x
] iF) ] gY

xx
, (3.17)

where

a`\ a2] b2
a

, a~\ a2[ b2
a

.

We see that in the case where b ^ a there are disparate
timescales for the advection of F(x, t) and Y (x, t). These
mimic the fast and slow characteristics of the general wave
equation (3.2). In particular, the limit b ] a, corresponding
to a~] 2(a [ b), involves very slow localization of the Ðeld.

For our present purposes it is sufficient to consider equa-
tions (3.16) and (3.17) in the case of slow Ðeld localization. A
more detailed exposition, with numerical examples, given
by Craig & Fabling (1997) shows that the essential argu-
ment can be extended to more general situations. If we
suppose that V (x, t) \ 0 initially, we must have F(x, 0) 4

at the beginning of the advectionF0(x) \[bY (x, 0)/a
phase. The evolution of F is essentially unhindered by gra-
dients in the Ðeld since, for a~ sufficiently small, the Ðeld
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cannot advect signiÐcantly. It follows that

F(x, t)^ F0(m`)e~ia~t , m`\ xea`t , (3.18)

and so the rapid localization of F(x, t) is accompanied by a
weak decay.

Consider now the Ðeld equation (3.17). The evolution
occurs on the slow characteristic, so by the time Y (x, t) can
advect signiÐcantly, F(x, t) has localized to the origin. It
follows that

Y (x, t)^ Y0(m~)eia~t , m~\ xea~t , (3.19)

describes the growth of the Ðeld. This growth will saturate
when becomes comparable to From thisgY

xx
Y
t
.

conditionÈor the Fourier mode analysis of ° 3.2Èwe
obtain the localization timescale

T ^
1

2a~ ln
ia~
g

. (3.20)

Thus at the time t ^ T , a current sheet has developed with
the scalings

*x D g1@2 , J D g~(1`i)@2 , Wg D g1@2~i . (3.21)

It follows that fan reconnection leads to fast dissipation
only if i º 1/2.

In summary, the reconnection problem has yielded
current sheets with the same scaling characteristics as the
annihilation solution (eq. [3.12]), at least under the condi-
tion of strong driving, a [ b. However, the current sheet
develops on the slow characteristic C~ according to the
timescale (eq. [3.20]). Evidently the rapidly localizing C`
characteristic is associated with the initial ““ equalization ÏÏ of
the magnetic and velocity disturbance Ðelds.

4. APPLICATIONS TO CORONAL ENERGY RELEASE

4.1. Introduction
We have seen that current sheets naturally develop when

plane-wave disturbances are superposed on three-
dimensional magnetic X-points. Fixed inÑow speeds (cf. Lit-
vinenko & Craig 1998) imply that the width of the sheet is
universalÈ*x D g1@2Èbut whether the dissipation rate is
fast depends on the strength and orientation of the back-
ground Ðeld. Either way, we note that the classical Sweet-
Parker rate, namely is formally the slowest thatWg D g1@2,
can be achieved with the present solutions.

In fact, there are two major, related difficulties with inter-
preting the present analysis. The Ðrst relates to the probable
breakdown of the classical resistivity, the second to the
potentially huge hydromagnetic pressures required to
sustain fast reconnection (see Jardine & Allen 1998 ; Litvin-
enko & Craig 1998). To provide context for these problems,
we Ðrst review coronal constraints on magnetic energy
release models.

4.2. Energy Release Constraints for Coronal Flares
It is generally believed that the magnetic Ðeld in the low

corona contains more than enough energy to supply a Ñare.
In fact, to maintain global constraintsÈhelicity, for
exampleÈthe bulk of the global coronal Ðeld should prob-
ably be kept intact. This can be naturally achieved by wave
mechanisms which provide relatively minor distortions of
the ambient Ðeld outside the current layer. It is not achieved
by magnetic annihilation solutions that destroy the entire
Ðeld !

To be more concrete, consider a ““ stressed ÏÏ coronal Ðeld
of strength G, occupying the volumeB

c
\ 100 V

c
\ L

c
3,

where cm. A reduction of just 1 G yields anL
c
\ 109.5

output comparable to a modest Ñare, namely, 2.5] 1029
ergs. To explain a Ñare, this energy must be released rapidly,
on an timescale. An speed of cmAlfve� nic Alfve� n v

A
\ 108.5

s~1, corresponding to a plasma of number density of 1010
cm~3, leads to a timescale s. This isq

A
\ L

c
/v

A
\ 10

roughly 10 times smaller than the typical Ñare release time
of 102 s, which yields a Ñare releaserate of 2.5] 1027
ergs s~1.

Let us calibrate in units of the global magnetic energyWgdivided by the time This unit is 1030SB
c
2/(8n)T Alfve� n q

A
.

ergs s~1, and so we must have if the targetWg ^ 2.5] 10~3
rate of 2.5 ] 1027 erg s~1 is to be met.

4.3. T he Collisional Resistivity
To apply fan solutions to the energy release problem, we

need to assume a value for the dimensionless resistivity g. In
our units the coronal resistivity is

g
c
4

qA
q
D

, q
D

\ 10~13T
c
3@2L

c
2 s , (4.1)

where is the ohmic di†usion time of Spitzer (1962).q
DTaking K givesT
c
\ 106

q
D

^ 1015 s , g
c
\ 10~14 . (4.2)

This implies fan current sheets of thickness

*x
c
\ g

c
1@2L

c
^ 102.5 cm , (4.3)

which is considerably smaller than the coronal mean free
path

j
c
^ 2 ] 104 T

c
2

g
c

^ 2 ] 106 cm . (4.4)

The above parameters suggest that a collisional resis-
tivity is unlikely to be universally valid, at least for coronal
plasmas. Since independent estimates suggest that the clas-
sical resistivity may be enhanced by a factor of around 105.5
under noncollisional conditions (Parker 1979 ; Forbes
1996), it may be valid to assume the anomalous value

g \ g
a
^ 10~8.5 . (4.5)

Are we justiÐed in assuming a collisionless resistivity? In
our solutions a magnetic wave sweeps inward and localizes
in the vicinity of the neutral point. Fluid comoving with the
wave will be collisional, since the wave Ðeld is strong and
particles are constrained to the gyroradius, typically a few
centimetres for electrons in a 102 G Ðeld. However, because
the background X-point Ðeld weakens linearly as x ] 0, the
plasma trapped between the wave head and the neutral
point can become collisionless when the wave is within ofj

cthe origin. Even so, the current sheet is likely to be collision-
less only in a quasi-cylindrical region surrounding the spine.
Well away from the spine the particles will be constrained
to the gyroradius of the ““ background ÏÏ coronal Ðeld in the
fan. Only if this Ðeld is negligible can we anticipate a truly
collisionless sheetÈand then only if the enhanced tem-
peratures in the sheet make comparable toj

c
L
c
.

These complications make it extremely difficult to form a
coherent picture of coronal fan reconnection. Obviously,
the dynamics of the current sheet energy release could be
considerably a†ected. With this in mind, we assess the
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plausibility of the model by determining an ““ e†ective ÏÏ
coronal resistivity based on meeting the energy release con-
straints of ° 4.2 above.

4.4. T he Saturated Energy Flux
Let us estimate the saturated energy dissipation based on

an e†ective coronal resistivity For deÐniteness, weg \ g
e
.

concentrate on the i ^ 1/2 solutions, which give, at least
formally, the slowest fast reconnection rates (eq. 3.3). We
must limit the wave amplitude on the inÑow boundary
x \ 1 to maintain physically realistic values of the Ñux
pileup Ðeld in the sheet, in the manner discussed by Craig et
al. (1997) and Watson & Craig (1997a, 1997b). Although it
is possible to obtain an optimum scaling by simultaneously
saturating the dynamic and magnetic pressures in the
reconnection region (see Litvinenko & Craig 1998), we shall
not consider this reÐnement here. SpeciÐcally, we assume
that the sheet Ðeld satisÐes which (being normal-Y

s
¹ 10,

ized to G) corresponds to driving the merging by,B
c
\ 100

at most, a 103 G external Ðeld. Hydromagnetic pressures 10
times greater than this sheet pressure are certainly available
in the lower solar atmosphere (B¹ 3000 G), and we know
that pressure enhancements, by factors of 100 or more, are
required in Ñaring loops (Feldman 1996).

Taking a quasi-steady approximation for the Ðeld (eq.
3.14) gives the saturated output rate (Craig et al. 1997),

Wge ^ g
e
1@2Y

s
2 , (4.6)

and the total energy released

S12Y
s
2T ^ g

e
1@2Y

s
2T

D
(g

e
; i) , (4.7)

where, based on the a \ 1 asymptotics of equation (3.14),

T
D

(g ; i)^
1

2

q

r

s

t

t

1

3
]

1

2
ln

1

g
if i \ 1/2 ;

1

3
]

1

(1[ 2i)
(gi~1@2[ 1) otherwise .

The expression for reinforces the fact that the decay isT
Dfast for i º 1/2 but becomes slow as i is further reduced. In

particular, as i ] 0 we approach the Sweet-Parker result
T
D

D g~1@2.
We now equate with our target release rate ofWge2.5] 10~3. For this givesY

s
\ 10

g
e
^ 6 ] 10~10 , (4.8)

a value which satisÐes For i \ 1/2 this corre-g
c
\ g

e
\ g

a
.

sponds to washing in a displacement Ðeld of just 6 G
through the inÑow boundary. The total energy released is
then which translates to 1.5] 1029S12Y

s
2T ^ 1.5 ] 10~2,

ergs over times.T
D

^ 1/4 o ln g
e
o^ 5.5 Alfve� n

How do these values change as i is varied? Note that as i
is reduced, a larger disturbance Ðeld is washed through the
inÑow boundary : this is because we have constrained the
peak Ðeld and the Ðeld falls o† behind the wave headY

s
,

increasingly slowly, as Y D x~i, as i is reduced (see Fig. 2).
It follows that the increased decay time as i ] 0 reÑects the
increasing energy in the outer wave Ðeld rather than a
slowing of the ohmic dissipation rate in the sheet. Even a
formally slow rate, corresponding to i \ 0.4, may still
provide an acceptable dissipation time. In this case over
5 ] 1029 ergs are released in just under 20 times.Alfve� n

Returning to the e†ective resistivity (eq. [4.8]), we note
that although is 5 times smaller than it is based on theg

e
g
a
,

assumption that the dissipation occurs uniformly over a
sheet of area however, as discussed in ° 4.3, it is likelyL

c
2 ;

that the sheet is collisionless over only a small fraction of
this area in the region surrounding the neutral point. The
e†ects of a hybrid resistivity on the dynamics of the energy
release are as yet unknown.

What happens if we adopt the collisional resistivity (eq.
[4.2]) ? In this case, the energy release target can be achieved
only with sheet Ðelds exceeding 104 G. Since these are con-
siderably larger than sunspot Ðelds at the base of the solar
atmosphere, we can e†ectively overrule a purely collisional
mechanism. Conversely, by taking the anomalous value (eq.
[4.5]), the Ðeld at the sheet can be reduced to approximately
650 G and still meet the target release rate.

4.5. Stalling in Magnetic Reconnection Simulations
A key feature of the fan reconnection solutions is that the

wave amplitude on the boundary can be chosen to provide
a signiÐcant energy release while satisfying the ““ external ÏÏ
constraint of a plausible hydromagnetic pressure. Waves of
too large an amplitude cannot be dissipated rapidly, for
these produce pressures in the reconnection region that
cannot be sustained by the external hydromagnetic forces
available to drive the merging. In other words, the recon-
nection ““ stalls ÏÏ when the external hydromagnetic pressure
is exceeded by the magnetic pressure built up in the sheet.

As far as we are aware, this interpretation is borne out by
all self-consistent merging computations carried out at suffi-
ciently low resistivities. Biskamp & Welter (1980) provide
anecdotal evidence in the case of the coelescence instability,
as do DeLuca & Craig (1992) for an incompressible, two
dimensional simulation in fully periodic geometry. Notably,
Henton (1996) has revisited the DeLuca & Craig (1992)
computation using various levels of compressibility.
Henton Ðnds that the merging stalls when the pressure of
the Ñux pileup sheet becomes comparable to the magnetic
pressure on the boundary (see Craig, Henton, & Rickard
1993). Even pressureless perturbed X-points show a satura-
tion of Ñux pileup (McClymont & Craig 1996a). In this case
however, the reconnection rate remains fast by virtue of an
acceleration in the thinning of the sheet width, *x ] g, as
opposed to the customary g1@2 dependency, at least for non-
optimized inÑow speeds (see Litvinenko & Craig 1998). This
behavior highlights a key result : that fast reconnection
without Ñux pileup requires a much stronger collapse to
small length scales, namely *x D g. To our knowledge there
is no self-consistent model, incorporating Ðnite gas pres-
sure, of such an extreme collapse.

5. CONCLUSIONS

We have considered dynamic models for fan current
reconnection in three space dimensions. We have shown
that solutions can be constructed by superposing global,
plane wave disturbances on background X-point equilibria.
The initial evolution of the disturbance is governed by the
Klein-Gordon wave equation and meets a central require-
ment of any plausible reconnection modelÈit provides a
rapid collapse to small length scales. In fact, a universal
feature of all our fan solutions is the development of current
sheets of width *x D g1@2 overlying the magnetic neutral
point.

To provide fast reconnection, however, requires Ñux
pileup in the current layer. If the Ñux pileup is weak, only
modest enhancements over the classical slow rate Wg D g1@2
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can be achieved. We have noted that Ñux pileup current
layers seem a natural outcome of self-consistent magnetic
reconnection simulations (e.g., Biskamp 1994), and even
plasma laboratory experiments (Syrovatskii 1981). In the
present wave solutions, Ñux pileup requires a sufficiently
strong, suitably oriented, background velocity Ðeld. Such
Ñows imply large hydromagnetic pressures throughout the
reconnection region. Although the pressure buildup is con-
siderably eased in fully three-dimensional solutions, the
reconnection must eventually saturate, depending on the
level of the resistivity and the amplitude of the wave Ðeld on
the inÑow boundary. That is, the reconnection stalls when-
ever the pressure in the sheet exceeds the external hydro-
magnetic pressure available to drive the merging.

Given that stalling appears as a natural outcome of Ñux
pileup solutions, we have estimated the ““ saturated ÏÏ output
power of fan reconnection models. This is achieved by limit-
ing the pressure at the neutral point to hydromagnetic pres-
sures realizable within the solar atmosphere. The conditions
we adopt, equivalent to a global pressure enhancement of 2
orders of magnitude in the Ñare, seem within the current
observational constraints (see Feldman 1996). Aside from
the pressure in the sheet, the saturated output depends only
on the plasma resistivity g. One complication is the likeli-

hood of collisionless conditions near the center of the sheet.
Based on collisional conditions, we predict current sheet
widths of *x ^ 102.5 cm, well below the mean free path of
the plasma Even so, given an appreciable(j

c
^ 104*x).

background Ðeld in the fanÈas required for merging curved
Ðeld linesÈthe current sheet is unlikely to be collisionless
over its entire area.

Faced with these difficulties we have estimated an
““ e†ective ÏÏ resistivity based on satisfying the output
requirements of a typical coronal Ñare. The saturated power
estimate provides an e†ective resistivity g

e
D 6 ] 10~10,

which is bracketed by the collisional resistivity g
c
\ 10~14

and the plausible anomalous value (see ° 4.4).g
a
\ 10~8.5

Such estimates are not deÐnitive, but they do suggest that
Ñarelike energy release lies within the compass of fan recon-
nection models. By contrast, fan models based on col-
lisional coronal resistivities appear to be e†ectively
overruled. Aside from the theoretical implausibility of sheet
widths approaching 1 m, the collisional model with g

c
\

10~14 evidently requires pressures in the sheet well beyond
those available in even the strongest sunspot Ðelds.

This work was supported by grant ATM 96-19441.
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