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ABSTRACT
The problems of incompressible, planar, magnetic annihilation and reconnection are discussed. We

Ðrst emphasize that steady-state reconnection solutions can be constructed from annihilation models
involving harmonic velocity Ðelds. We show, however, that the only harmonic velocity proÐle capable of
supporting inviscid magnetic annihilation is the traditional stagnation point Ñow /\ [axy. The impli-
cation is that further steady-state planar reconnection models derived from annihilation solutions are
impossible. We go on to show that certain classes of nonharmonic stream functions allow reconnection
solutions to be developed, once the constraint of time independence is relaxed. In particular, we con-
struct an exact reconnection model based on cellular inÑows into a periodic assemblage of magnetic
X-points.
Subject headings : MHD È plasmas

1. INTRODUCTION

Although magnetic reconnection theory in three dimen-
sions is not well developed, the view is often advanced that
two-dimensional planar reconnection is quite well under-
stood. This optimism is often supported by schematic mag-
netic merging diagrams that illustrate how magnetic
reconnection is expected to occur in rather idealized geome-
tries. There is no doubt that such models provide useful
heuristics, say, in the interpretation of data, but a number of
controversial problems remain These prob-(Biskamp 1994).
lems can be expected to recur in more complicated three-
dimensional reconnection models.

What are the main problems associated with traditional
reconnection models based on incompressible merging at
symmetric four-lobe neutral points? In the Ðrst place, the
““ magnetic slingshot ÏÏ that ejects plasma from the sheet can
only be very weak. This follows from the fact that the
separatrices of the Ðeld cannot meet in a traditional
X-point ; rather, they osculate to form a quasiÈone-
dimensional sheet in the vicinity of the null &(Priest
Cowley 1975 ; Biskamp 1994).

Another difficulty resides in the amplitude of the Ñow
Ðeld. If the Ñow Ðeld is sub-Alfve� nic, then plasma is unable
to advect across the magnetic separatrices & Rickard(Craig

This means that ““ reconnection ÏÏ in the conventional1994).
sense cannot occur ; the best that can be achievedÈgiven
that the current density has to remain constant on each Ðeld
lineÈis stationary fronts of enhanced di†usion extending
from the neutral point to the outer boundaries of the Ðeld.
The ohmic dissipation rate can still be fast & Henton(Craig

but the transfer of Ñux between adjacent lobes of the1994),
X-point is overruled.

More generally, et al. have formalized thePriest (1994)
problem of steady, sub-Alfve� nic merging in terms of an
““ antireconnection theorem ÏÏ valid for plasmas of arbitrary
compressibility. They point out that reconnection can occur
only if account is taken of Ðnite Ñuid viscosity or nonlin-
earity. We note that exact magnetic reconnection solutions
that include the e†ect of viscosity are available in both two
and three dimensions, and their reconnection rates are
found to be essentially independent of the Ñuid viscosity
level & Craig However, these solutions are(Fabling 1996).
reconnective, not because they include viscosity, but

because they break the Ñow/Ðeld symmetries invoked in the
standard models & Fabling(Craig 1996).

In this paper we try to construct reconnection solutions
using the superposition methods of & HentonCraig (1995)
and Watson & Craig Following Watson,(1997a, 1997b).
Priest, & Craig (1998), we term models generated in this
manner ““ reconnective di†usion ÏÏ solutions, because mag-
netic Ñux is transported across some separatrices by mass
transfer and across others by ohmic di†usion. The steady-
state MHD equations are introduced in The basis of our° 2.
approach, as discussed in is to derive reconnection° 3,
models by breaking the symmetry of simple annihilation
solutions. In we focus on harmonic Ñow solutions,° 4
because they are the only type of Ñows that can support
steady-state reconnective di†usion solutions based on the
superposition method. We show, using an antireconnection
theorem, that simple harmonic Ñows cannot directly
support reconnective solutions (i.e., before superposition).
More surprisingly, we demonstrate that general harmonic
Ñows do not even support simple annihilation solutions. It
follows that the superposition method is inapplicable except
in the case of the stagnation point Ñow ¿\ a([x, y) (Craig
& Henton In we point out that nonharmonic1995). ° 5
Ñows can be used to develop reconnective di†usion solu-
tions provided the assumption of steady-state merging is
relaxed. In particular, we develop a dynamic reconnection
solution based on the periodic inÑow model ¿\ a[[sin
(kx), k cos (kx)y].

2. MHD EQUATIONS

The equations that govern the behavior of a steady-state,
magnetized plasma with velocity magnetic Ðeld B, density¿,
o, electric Ðeld E, and gas pressure p can be written in the
following nondimensional form:

o(¿ Æ $)¿ \ [$p ] ($ Â B) Â B , (1)

E ] ¿] B \ gJ , (2)

$ Æ B \ 0 , (3)

$ Æ (o¿) \ 0 , (4)

where g is the dimensionless resistivity, and J \ $ Â B is
the current density. The resistivity, g, need not be assumed
constant and may be taken as a function of the state of the
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plasma; in particular, we might consider plasmas where the
resistivity is enhanced by current driven instabilities. The
resistivity is, however, very small : its magnitude is the
inverse Lundquist number, of order 10~12 for the solar
corona.

If the system we are considering is two-dimensional, then
the magnetic Ðeld B may be expressed in the form
B \ $ Â Mt(x, y) The gas pressure can then be removedzü N.
from equations by taking the curl of the momentum(1)È(4),
equation, to give

$ Â Mo(¿ Æ $)¿N\ [[+2t, t]zü , (5)

¿ Æ $t\ E] g+2t , (6)

$ Æ (o¿) \ 0 , (7)

where E is the z-component of a constant electric Ðeld E \
and [ f, g] (here subscripts denote partialEzü , \ f

x
g
y
[ f

y
g
xdi†erentiation).

If we consider a constant-density, incompressible plasma,
then we may make further simpliÐcations by setting the
plasma density o \ 1 and writing The¿\ $ Â M/(x, y)zü N.
governing equations, written in terms of the new variables /
and t, now reduce to

[+2/, /]\ [+2t, t] , (8)

[t, /]\ E] g+2t . (9)

The relative simplicity of this system makes it possible to
construct exact models for magnetic annihilation and
reconnection.

3. EXACT ANNIHILATION AND RECONNECTION

SOLUTIONS

The annihilation of antiparallel magnetic Ðelds in incom-
pressible plasmas (e.g., & Priest can beSonnerup 1975)
described by equations and by assuming that the Ñux(8) (9)
function t(x, y) is a function of only one variable, i.e.,
t\ t(x) & Henton Substituting this form for(Craig 1995).
t into equations and shows that [+2/, /]\ 0 and(8) (9) /

yis a function of x only. These constraints admit three pos-

sible forms for the stream function, namely,

/\ [axy , [a sin (kx)y, a sinh (kx)y (10)

The three resulting solutions for t all represent the steady-
state annihilation of magnetic Ðeld in the vicinity of a Ñow
stagnation point located at the origin.

& Henton went on to show that in certainCraig (1995)
cases annihilation solutions may be modiÐed via a suitable
superposition of / and t to give reconnection solutions.
For the superposition to yield exact solutions, we require /
to be a harmonic function, i.e., +2/\ 0. This implies
/\ [axy is the only one of the three annihilation solu-
tions outlined above that can be converted to a reconnec-
tive di†usion solution in this manner. The other Ñow
proÐles lead to approximate ““ quasi-steady ÏÏ solutions using
the methods of & Craig However, if theWatson (1997a).
constraint of time independence is relaxed (as discussed in

these Ñow proÐles can be used to construct dynamic° 5)
reconnective di†usion solutions.

The exact steady-state solution is given by

/* \ /] jt\ [axy [ jEx2
2g 1F2

A
1,

3
2

, 2, [k2x2
B

,

(11)

t* \ j/] t\ [jaxy [Ex2
2g 1F2

A
1,

3
2

, 2, [k2x2
B

,

(12)

where / and t are the annihilation solution, /* and t* are
the reconnection solution, b, c, z) is a generalized1F2(a,
hypergeometric function & Oldham and(Spanier 1987),
k2\ (1 [ j2)a/2g.

The transition from annihilation to reconnective di†u-
sion solution is summarized in It is clear thatFigure 1.
breaking the Ñow symmetry of the annihilation solution
allows curved Ðeld lines to reconnect across the neutral
point. Note that the momentum brackets are nonvanishing
in the reconnection solution, i.e., [+2/*, /*]\ [+2t*, t*]

In fact, according to the theorem discussed below,D 0.

FIG. 1.ÈDiagram comparing the planar annihilation (left) and reconnection (right) solutions (dotted lines, streamlines ; solid lines, magnetic Ðeld-lines).
Note that in the superposed reconnection solution the symmetry about the x-axis is broken. Parameters are a \ 1, g \ 0.01, and E\ 0.05 for the annihilation
model, with j \ 0.75 for the reconnection model.
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reconnection is impossible if the momentum brackets
vanish identically.

4. HARMONIC FLOW SOLUTIONS

4.1. Introduction
The previous discussion shows that steady-state recon-

nective di†usion solutions can be developed from annihi-
lation solutions by an appropriate superposition of the
velocity and magnetic Ðelds. For the construction to be
exact, we require that the harmonic condition +2/\ 0 is
satisÐed. Before attempting to Ðnd annihilation solutions,
let us Ðrst establish that harmonic Ñow models cannot
directly support reconnection solutions.

4.2. T he Antireconnection T heorem
Using equations and it is possible to determine(5) (6),

certain conditions under which reconnection cannot occur.
Antireconnection results of this type have already been
developed for sub-Alfve� nic Ñows by & RickardCraig (1994)
and et al. The form developed below gener-Priest (1994).
alizes previous results by taking account of Ðnite amplitude
Ñows. The central requirement is that [+2t, t]\ 0, so that
the Ñow does not necessarily have to be sub-Alfve� nic ; it just
has to satisfy The crucial point is that if$] Mo(¿ Æ $)¿N\ 0.
[+2t, t]\ 0 and J \ [+2t is continuous, then we require
J to be a function of t ; i.e., the current density must be
constant on a Ðeld line.

THEOREM : Steady two-dimensional reconnection is impossi-
ble for plasmas in which the bracket [+2t, t] vanishes, at
least provided the plasma contains only isolated null points of
the Ðeld and the resistivity is only a function of the current
density, g \ g(J).

Proof. The bracket [+2t, t] can vanish identically only if
+2t\ [J(t). In this case the induction mayequation (2)
be rewritten in the form

¿ Â B \ [g6 (t)J(t) [ E]zü \ f (t)zü , (13)

where g6 (t)\ g[J(t)].
Let t\ 0 label the separatrices of the Ðeld, as deÐned by

the totality of Ðeld lines threading the null point. Since
vanishes at the null, we must have f (0)\ 0. However,¿ Â B

since f (t) must remain constant along all Ðeld lines, ¿ Â B
must also vanish along the lines t\ 0. If we consider Ðelds
with only isolated null points, then at an arbitrary point
along a separatrix As must vanish, our onlyB D 0. ¿ Â B
choices are that is parallel to B or In either case it is¿ ¿\ 0.
clear that there is no motion across the separatrix and that
reconnection is impossible. Q.E.D.

Note that the argument fails if B vanishes along a line
(which by deÐnition must also be a Ðeld line), as the condi-
tion no longer places any restrictions on A¿ Â B \ 0 ¿.
second point is that the antireconnection theorem is valid
independent of the compressibility of the plasma, at least
provided [+2t, t]\ 0.

As a simple application, we note that incompressible
reconnection driven by a harmonic velocity Ðeld cannot
occur, for in this case the antireconnection theorem can be
rigorously applied :

+2/\ 0 F [+2/, /]\ [+2t, t]\ 0 .

Indeed, any Ðnite amplitude incompressible Ñow for
which +2/\ [u(/), where u(/) can be any function of /,

must obey the antireconnection theorem. By contrast, in
sub-Alfve� nic applications & Henton et(Craig 1994 ; Priest
al. the vanishing of the momentum brackets is only1994)
approximately achieved.

One consequence of these results is the impossibility of
constructing reconnection solutions for the simple stagna-
tion point Ñow model /\ [axy. This result is apparently
nontrivial : witness the kinematic reconnection models of

based on stagnation point Ñow! However, ifParker (1973)
we recall that a pure annihilation solution is possible in
which t\ t(x), we can still develop a reconnection model
using the superposition argument of & CraigWatson

This superposition breaks the symmetry of the(1997a).
stagnation point Ñow Ðeld and leads directly to the &Craig
Henton solution (11), discussed in(1995) ° 3.

4.3. A Scheme for Constructing Reconnection Solutions
Although the antireconnection theorem overrules recon-

nection models based on harmonic Ñow proÐles, the possi-
bility of constructing annihilation solutions remains open.
Suppose we take some harmonic Ñow Ðeld using the con-
struction where z\ x ] iy and is a/\ Re (a

n
zn), a

ncomplex normalization constant, and use this to develop an
annihilation solution t. We can now invoke the super-
position /* \ /] jt, t* \ t] j/ to develop a full
reconnective di†usion solution & Craig(Watson 1997a).
We know this construction leads to an exact reconnection
solution for the n \ 2 Ñow Ðeld, /\ [axy, so we might
expect success for the higher order harmonic Ñow Ðelds.
The arguments given below, however, show that a consis-
tent annihilation model can only be constructed in the case
of the traditional stagnation point Ñow.

4.4. Can Harmonic Flows Support Magnetic Annihilation?
It is well known that the advection of a Ñuid line element

provides an exact description of the magnetic Ðeld evolu-
tion in the absence of resistive e†ects. For an incompressible
plasma, the identiÐcation of B with a Ñuid line element is
formalized by the Cauchy solution & Sneyd(Craig 1990).
Thus a Ñow Ðeld that stretches the line element has the
e†ect of increasing the amplitude of the advected magnetic
Ðeld. The stretching Ñows of the various stagnation point
models are thus associated with dramatic Ñux pile-up in the
vicinity of the outÑow separatrices.

shows the hypothetical accumulation of the ÐeldFigure 2
about the outÑow separatrices in the case of n \ 2, n \ 3,
and n \ 4 harmonic solutions. We are imagining hereÈas
the symmetry demandsÈthat the e†ects of the plasma resis-
tivity are localized to narrow strips of intense current
overlying the outÑow separatrices. As indicated in the dia-
grams, the development of the current layer can be antici-
pated by the stretching associated with a localized blob of
plasma advected by the inÑow.

The problem is that while the n \ 2 annihilation
““model ÏÏ drawn in is physically realizable, theFigure 2a
higher n ““ models ÏÏ have an inherent contradiction. Con-
sider the n \ 4 model shown in From the anti-Figure 2c.
reconnection theorem we know that the current must have
the constant value along the separatrices. On theJ \E/g6 (0)
y \ 0 separatrix, the contribution to J \ [+2t must come
entirely from because t is constant in the x-directiont

yy
,

(along the separatrix). However, the converse must be true
along the x \ 0 separatrix ; i.e., the only contribution to J
must come from It follows that t must containt

xx
.
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FIG. 2.ÈSchematic diagram showing the accumulation of magnetic Ðeld in the vicinity of outÑow separatrices in the case of n \ 2 (left), n \ 3 (middle), and
n \ 4 (right) harmonic Ñows. In an ideal plasma, a blob of Ñuid and the magnetic Ðeld embedded within it are advected toward the outÑow separatrices and
continually stretched. This stretching of the plasma leads to the build-up of the magnetic Ðeld. If resistivity is included in the model, the continual build-up of
the Ðeld eventually saturates, leading to the formation of resistive current layers aligned with the outÑow separatrices.

unphysical discontinuities close to the origin unless E\ 0.
But if E\ 0 we obtain the physically uninteresting solution,
t\ k/, corresponding to Ñow along the Ðeld lines. Even
more simply, at least for n \ 4, the vanishing of E follows by
taking a 5 point Ðnite di†erence approximation for +2t at
the origin. Since all grid points lie on the separatrices t\ 0,
+2t\ 0 trivially vanishes.

A similar argument, invoking local coordinates tangent
and normal to the separatrices, may be used to overrule
viable annihilation solutions for any harmonic ÑowED 0
Ðeld in which multiple outÑow separatrices intersect at a
nonzero angle. In fact, the argument only fails for the n \ 2
case, which possesses a single strip of current. Therefore we
must abandon all notions of developing annihilation solu-
tions for higher order harmonic Ñow Ðelds.

In summary, the absence of annihilation solutions for
n [ 2 means that the superposition method cannot be used
to generate any two-dimensional steady-state reconnective
di†usion models beyond that of & HentonCraig (1995).
While more general three-dimensional superposed solu-
tions are still possible (see Watson & Craig 1997a, 1997b),
the physical implication of our present results is that Ñow
proÐles involving strong symmetries cannot support pure
magnetic annihilation models.

5. DYNAMIC RECONNECTION SOLUTIONS

5.1. Introduction
We now demonstrate that annihilation solutions based

on nonharmonic Ñows can be used to develop reconnection
solutions. To do this we must generalize to time-dependent
reconnection.

Suppose, for deÐniteness, we invoke the periodic annihi-
lation Ñow Ðeld /\ [a sin (kx)y of as a basisequation (10)
for a dynamic reconnection model. Any reconnection solu-
tion must satisfy the time-dependent system

Lu
Lt

] [u, /]\ [J, t] , (14)

Lt
Lt

] [t, /]\ g+2t , (15)

where J \ [+2t, and we have introduced the Ñuid vor-
ticity u\ [+2/. If we take the forms

/\ [a sin (kx)y ] f (x, t) , (16)

t\ [j(t)a sin (kx)y ] g(x, t) , (17)

we Ðnd that the induction equation implies

j(t) \ j0 exp ([gk2t) ,

where is a constant. The momentum and induction equa-j0tions now govern the evolution of the nonlinear disturbance
Ðelds f and g via

f
xt

\ a sin (kx)[ f
xx

[ jg
xx

][ ak cos (kx)[ f
x
[ jg

x
] , (18)

g
t
\ a sin (kx)[g

x
[ jf

x
]] gg

xx
. (19)

These equations generally require a numerical solution. A
special case occurs when j \ 0. This corresponds to a time-
dependent annihilation solution in which f can be taken to
vanish identically. Steady-state solutions based on Ñows of
this form are closely related to the cellular Ñow patterns
discussed by et al. however, their steady-Jardine (1992) ;
state model includes viscosity, which we have not included
in our treatment of the problem.

5.2. A Dynamic Solution for an Assemblage of X-Points
Let us summarize the main properties of the reconnection

solution based on equations and above. We shall(16) (17)
not go into detail, since the solution can be understood in
much the same way as the dynamic, harmonic Ñow solu-
tions of & McClymont and the fully three-Craig (1997)
dimensional model of & Fabling The centralCraig (1998).
requirement for fast reconnection is that the background
Ñow is strong enough to localize the magnetic Ðeld dis-
turbance and drive Ñux pile-up sheets. This requires o j o\ 1.
The new feature of the present model is the cellular recon-
nection structure. This involves current sheets supported by
plasma inÑows into alternate stagnation points of the Ñow.

Suppose, for example, that we take some long-
wavelength, periodic initial disturbance for the magnetic
Ðeld, say g(x, 0) Provided that o j o\ 1, the dis-\ g0(x).
turbance will localize about the stagnation points of the
Ñow associated with inÑow in the x-direction (i.e., at alter-
nate stagnation points). This localization occurs over a
timescale governed by the strength a of the background
Ñow Ðeld. The disturbance can then drive strong current
sheets, leading to rapid ohmic di†usion.

shows a typical solution at the time of maximumFigure 3
current in the sheet. By this time the current layer has col-
lapsed to the width *x P g1@2 and the current density has
achieved the level J P g~1. These scalings are consistent
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FIG. 3.ÈStreamlines and Ðeld lines for a dynamic reconnection solution at the time of maximum current. There is a periodic assemblage of X-points, but
current sheets form only at neutral points associated with material inÑow. Parameters are a \ 1, g \ 0.003, and k \ n, withj0\ 0.5, g0(x)\ sin (nx).

with fast ohmic dissipation & Henton &(Craig 1995 ; Craig
Fabling 1996).

Indeed, we can go a long way toward understanding this
solution by comparing its scalings with those calculated by

& Fabling for dynamic reconnection at anCraig (1998)
isolated three-dimensional X-point. Craig & FablingÏs
model can be made two-dimensional by setting their
parameter i equal to unity. We can then compare numeri-
cally generated scalings for the present model : see Figures

and with their derived scalings for the current4a 4b,
maximum and the time to current maximum

JmaxP g~1 , Tmax^
1

2a~ ln
Aa~

g
B

, a~^ ak(1[ j02) .

(20)

Although their theory cannot strictly be applied to sinus-
oidal Ñow proÐles, we expect the underlying arguments to
remain valid. In fact, the scalings obtained by &Craig
Fabling should remain valid for any Ñow proÐle that(1998)
approximates stagnation point Ñow in the vicinity of the

neutral point. This is certainly true of the present sinusoidal
Ñow model, at least provided k remains O(1).

There is, however, a caveat to the interpretation of these
results. Although, for o j o\ 1, the resistive release is for-
mally fastÈindependent of any positive power of the
resistivityÈvery large ““ external ÏÏ hydromagnetic pressures
are required to sustain the merging. This is a recurring
difficulty in all Ñux pile-up annihilation and reconnection
solutions : it means that Ñux pile-up cannot be sustained
indeÐnitely with reductions in the plasma resistivity. In
practice, the amplitude of the disturbance must be limited
to maintain realistic hydromagnetic pressures. Without
going into the details of the Ñux saturation amplitude, we
note that the problem is considerably eased when the solu-
tion is extrapolated to three dimensions (see Fabling,Craig,
& Watson 1997).

Finally, we mention that, although we have only demon-
strated one time-dependent reconnection solution, there
exist more general planar solutions based on fully two-
dimensional current structures. We are currently investigat-
ing these solutions. In fact, in a subsequent paper we will

FIG. 4.ÈL eft : Plot of vs. (g) for three simulations of eqs. with a \ 1, k \ n, (asterisks), (diamonds), andlog10 (Jmax) log10 (16)È(17), j0\ 0 j0\ 0.25 j0\ 0.5
(triangles) and the initial condition The slope of the dotted line represents the theoretical 1/g scaling. Right : Plot of (the time taken tog0(x) \ sin (nx). Tmaxreach current maximum) vs. (g) for the same runs as in the sleft panel. The agreement with the theory of & Fabling is surprisingly good.log10 Craig (1998)
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show that more general solutions can be constructed that
include both the e†ects of time dependence and viscosity.

6. CONCLUSIONS

We have shown that it is difficult to construct analytical
steady-state, planar reconnection solutions by invoking
highly symmetric Ñow topologies. In the Ðrst place, the anti-
reconnection theorem shows that harmonic Ñow Ðelds
cannot support any form of steady reconnection. This leaves
open the possibility that reconnection solutions can still be
developed from annihilation models supported by harmo-
nic Ñows. We have shown, however, that even annihilation
solutions are incompatible with harmonic Ñows that
possess too much symmetry. To quantify ““ too much,ÏÏ we
note that the four-lobe structure of the n \ 2 stagnation
point Ñow solution /\ [axy is the most that can be
achieved for an exact annihilation solution. This Ñow sym-
metry must again be broken if the annihilation model is to
be converted into a fully reconnective solution &(Craig
Henton 1995).

We have demonstrated, however, that the range of admis-
sible Ñow Ðelds can be extended by considering time-
dependent reconnection models. In particular, global Ñows
of the generic form /\ [aeikxy now form a basis for
dynamic reconnection solutions (with a and k complex

constants). A concrete reconnection example was con-
structed in These solutions can model reconnection in a° 5.
periodic assemblage of X-points, such as occurs, for
example, in the coalescence instability & Welter(Biskamp

& Craig1980 ; Rickard 1993).
A positive aspect of the present solutions is their natural

““ extrapolation ÏÏ into three dimensions. It is well known
that the eigenstructure of three-dimensional null points
involves ““ spine ÏÏ curves and ““ fan ÏÏ surfaces (e.g., &Priest
Titov along which disturbance currents tend to accu-1996),
mulate & Titov This structure makes it(Rickard 1996).
difficult to extrapolate any planar model that maintains a
strict parity between the magnetic separatricesÈfor there is
no asymmetry to determine which separatrix plane should
collapse to the spine. Notably, in the present reconnection
solutions, no parity is maintained between the two
separatrix planes : one is associated with the transfer of
magnetic Ñux by advection, the other by resistive di†usion.
In fact, it is the current separatrix of the planar model that
becomes the fan in the extension to three-dimensional
merging et al.(Craig 1997).

The authors wish to thank Richard Fabling for helpful
discussions. P. G. W. acknowledges the Ðnancial support of
a NZ FRST Postdoctoral Fellowship.

REFERENCES
D. 1994, Phys. Rep., 237,Biskamp, 181
D., & Welter, H. 1980, Phys. Rev. Lett., 44,Biskamp, 1069

I. J. D., & Fabling, R. B. 1996, AJ, 462,Craig, 969
1998, Phys. Plasmas, 5,ÈÈÈ. 635

I. J. D., Fabling, R. B., & Watson, P.G. 1997, AJ, 485,Craig, 383
I. J. D., & Henton, S. M. 1994, AJ, 434,Craig, 192
1995, AJ, 450,ÈÈÈ. 280

I. J. D., & McClymont, A. N. 1997, AJ, 481,Craig, 996
I. J. D., & Rickard, G. J. 1994, A&A, 287,Craig, 261
I. J. D., & Sneyd, A. D. 1990, AJ, 357,Craig, 653

R. B., & Craig, I. J. D. 1996, Phys. Plasmas, 3,Fabling, 2243
M., Allen, H. R., Grundy, R. E., & Priest, E. R. 1992, J. Geophys.Jardine,

Res., 97, 4199
E. N. 1973, J. Plasma Phys., 9,Parker, 49

E. R., & Cowley, S. W. H. 1975, J. Plasma Phys., 14,Priest, 271
E. R., & Titov, V. S. 1996, Philos. Trans. R. Soc. London, A, 354,Priest,

2951
E. R., Titov, V. S., Vekstein, G. E., & Rickard, G. J. 1994, J.Priest,

Geophys. Res., 99, 21467
G. J., & Craig, I. J. D. 1993, Phys. Fluids B, 5,Rickard, 956
G. J., & Titov, V.S. 1996, AJ, 472,Rickard, 840

B. U. & Priest, E. R. 1975, J. Plasma Phys., 14,Sonnerup, O� ., 283
J., & Oldham, K. B. 1987, An Atlas of Functions (New York :Spanier,

Hemisphere)
P. G., & Craig, I. J. D. 1997a, Phys. Plasmas, 4,Watson, 101
1997b, Phys. Plasmas, 4,ÈÈÈ. 110
P. G., Priest, E. R., & Craig, I. J. D. 1998, Geophys. Astrophys.Watson,

Fluid Dyn., in press


