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Abstract— This paper presents an efficient algorithm to
detect control-loops in large finite-state systems. The proposed
algorithm exploits the modular structure present in many
models of practical relevance, and often successfully avoids the
explicit synchronous composition of subsystems and thereby
the state explosion problem. Experimental results show that
the method can be used to verify industrial applications of
considerable complexity.

I. INTRODUCTION

Supervisory control theory is centred on the setting of
a supervisor or controller interacting with a plant, which
typically represents a technical system to be controlled.
The theory provides fundamental results about the existence
of supervisors, and algorithms that automatically synthesise
supervisors satisfying certain properties [1], [2].

Ever more controllers are implemented in software, either
running on dedicated programmable logic circuits (PLC)
or on multi-purpose computers, so it is highly desirable
to construct control software from models that have been
obtained using supervisory control theory. However, tradi-
tional supervisory control is situated on a higher level of
abstraction and does not provide all the details needed to
actually implement a controller for physical devices. It has
been recognised by several researchers [3]–[5] that, in order
to implement a controller, its behaviour needs to satisfy
additional properties that are not covered by traditional
supervisory control theory.

One of these properties is the absence of control-loops [6],
[7]. In many technical applications, a set of control actions
can be identified. These correspond to commands generated
by the controller and sent to the physical device or plant to
achieve the desired behaviour. A system is control-loop free,
if the controller never tries to generate an infinite sequence of
control actions in response to any finite input from the plant.
Clearly, this is a very desirable property of most controllers
implemented in software.

This paper proposes an efficient algorithm to check
whether a complex system is control-loop free. The pro-
posed algorithm, which is based on results from [7], is an
adaptation of a very efficient algorithm [8] to check safety
properties of discrete event systems. The method exploits the
modular structure of discrete event system models to identify
and check subsystems, such that the results of checking the
subsystems can give conclusions about the properties of the
entire system. Counterexamples are used for guidance, to
augment these subsystems if needed.

Existing model checking techniques for CTL [9] can also
be used to check whether a system is control-loop free,
and, using symbolic representations [10], have been used
successfully to verify models of considerable complexity.
Abstractions [11] can enhance the performance of these
algorithms. This paper proposes an alternative approach that
exploits the modular structure present in most discrete event
models, which can be combined with and further enhance
the existing methods.

In the following, section II presents a motivating example
to clarify the need for control-loop detection. Section III
gives the notations and definitions used throughout the rest
of the paper. The problem of checking for control-loops is
defined in section IV, where a basic algorithm is given.
Then, section V presents the results underlying the modular
control-loop detection algorithm that is the centre of this
paper. Section VI describes the algorithm, and section VII
lists experimental results. Finally, section VIII adds some
concluding remarks.

II. DOSING TANK EXAMPLE

This section illustrates the idea of checking for control-
loops using the example of a dosing unit in a chemical batch
plant, used to supply a defined amount of liquid material to
a subsequent process. It consists of a tank, an inlet valve,
an outlet valve, and two sensors to check the filling level of
the tank. The following is a simplified version of a system
introduced in [12].

The two sensors, S1 at the bottom and S2 at the top of the
tank, can either be on or off, indicating whether the tank has
reached the corresponding filling level. Their state changes
are modelled as events s1 on, s1 off, s2 on, and s2 off.
The user can request the process of filling and emptying the
tank to be started (req start), or suspended (req stop). To
meet these requests, the controller has to open or close the
inlet and the outlet valves appropriately, using control actions
open in, close in, open out, and close out.

The possible behaviour of this plant is modelled by the
automata sensors, requests, in, and out in fig. 1. A controller
has been designed using additional automata to constrain
the behaviour of the plant and satisfy certain requirements.
Automaton no flow ensures that liquid never flows through
the tank, i.e., that the two valves are never open at the
same time. Automaton req spec guarantees that discharging
or filling of the tank can only start when a request is
present, i.e., after req start has occurred. Finally, to provide
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Fig. 1. Automata for dosing tank example.
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Fig. 2. Additional specifications for dosing tank example.

the correct amount of liquid to the subsequent process, the
tank must always be completely filled, i.e., until sensor S2
goes on, before discharging can start (empty spec), and
completely emptied before filling can start (fill spec).

The question is whether a controller can be constructed
that opens and closes the valves appropriately to yield the
behaviour of the dosing unit as obtained when synchronising
all the automata in fig. 1. A check for control-loops shows
that this is not feasible. The automata can execute the trace

req start open in close in open in close in . . . (1)

where the inlet valve is opened and closed indefinitely. While
such behaviour does not violate the requirements given so far,
it is very undesirable when executed by an actual controller.

To avoid this problem, additional specifications as shown
in fig. 2 can be used to constrain the model further: the
inlet valve can only be opened if the tank is empty and
closed if the tank is full, and the outlet valve can only be
opened if the tank is full and closed if the tank is empty.
With the additional two automata, the model can be proven
to be control-loop free.

III. NOTATION AND PRELIMINARIES

Event sequences and languages are a simple means to
describe discrete system behaviours. Their basic building
blocks are events, which are taken from a finite alphabet Σ.
Then, Σ+ denotes the set of all finite strings of the form
σ1σ2 · · ·σk of events from Σ, not including the empty
string ε. To include it, Σ∗ = Σ+∪{ε} is used. The catenation
of two strings s, t ∈ Σ∗ is written as st. A string t ∈ Σ∗ is
called a prefix of s ∈ Σ∗, written t v s, if s = tu for some
u ∈ Σ∗.

A language over Σ is any subset L ⊆ Σ∗. The prefix-
closure L of L ⊆ Σ∗ is the set of all prefixes of strings
in L,

L = { t ∈ Σ∗ | t v s for some s ∈ L} . (2)

If L = L, then L is called prefix-closed.
Automata are used as a simple means of language rep-

resentation. A (finite-state) automaton is a 4-tuple A =
(Σ, Q,∆, J) where Σ is an alphabet of events, Q is a finite
set of states, ∆ ⊆ Q×Σ×Q is the state transition relation,
and J ⊆ Q is the set of initial states.

A path in A is an alternating sequence of states and events

π = q0

σ1−→ · · ·
σn−→ qn , (3)

where (qi, σi+1, qi+1) ∈ ∆ for all 0 ≤ i < n. State q0 is
called its origin and state qn its end. L(π) = σ1 · · ·σn is the
label of path π. A state q ∈ Q is reachable in A if there exists
a path with origin p ∈ J and end q. A path q

σ
→ q is called

a selfloop, and if it exists, event σ is said to be selflooped
in q. To simplify the graphical representation of automata
(fig. 1), events selflooped in all states of an automaton are
not shown.

The language accepted by the automaton A is

L(A) = {L(π) | π is a path in A with origin in J } .
(4)

Two automata over the same alphabet can be combined
to a new automaton by means of the synchronous prod-
uct operation [13]. The synchronous product of automata
A = (Σ, QA,∆A, JA) and B = (Σ, QB ,∆B , JB) is the
automaton

A ‖ B = (Σ, QA × QB ,∆, JA × JB) , (5)

where

∆ = { ((p1, q1), σ, (p2, q2)) |
(p1, σ, p2) ∈ ∆A, (q1, σ, q2) ∈ ∆B } .

(6)

Note that L(A ‖ B) = L(A) ∩ L(B) [1].



IV. TERMINATION AND LOOPS

The concept of control-loops relies on a set of control
actions, represented by a subset Ξ ⊆ Σ of the event alphabet.
Control actions are understood to be commands caused by a
controller, and it is usually desired that the sequence of such
commands terminates after a finite number of steps.

This requirement is now introduced under the name of Ξ-
termination, and it is shown that it corresponds to the absence
of Ξ-loops in an automaton. The latter problem can be dealt
with using standard graph-theoretic algorithms.

Definition 1: Let L ⊆ Σ∗ be a prefix-closed language,
and let Ξ ⊆ Σ. Then L is Ξ-terminating if for all s ∈ L
there exists n ∈ N such that st ∈ L with |t| ≥ n implies
t /∈ Ξ∗.

For a Ξ-terminating language, there is no infinite sequence
consisting of events contained in Ξ only. Then, assuming that
only events contained in Ξ occur, the system will eventually
stabilise, i.e., it will reach a state in which only events not
contained in Ξ are possible.

Definition 2: Let A = (Σ, Q,∆, J) be an automaton, and
let Ξ ⊆ Σ. A path π in A is called a Ξ-path if L(π) ∈ Ξ∗.
A Ξ-loop is a Ξ-path of length at least one with the same
origin and end. A Ξ-loop is reachable in A if its origin is
reachable in A. If A does not contain any reachable Ξ-loop,
A is called Ξ-loop free.

Proposition 1: Let A = (Σ, Q,∆, J) be an automaton,
and let Ξ ⊆ Σ. A is Ξ-loop free if and only if L(A) is Ξ-
terminating.

Proof: (Only If) Assume L(A) is not Ξ-terminating.
Then there exists s ∈ L(A) such that, for each n ∈ N, there
exists t ∈ Ξ∗ such that |t| ≥ n and st ∈ L(A). In particular,
there exists t ∈ Ξ∗ such that |t| > |Q| and st ∈ L(A).
Since st ∈ L(A), there exists a path q0

σ1−→ · · ·
σn−→ qn

with q0 ∈ J and σ1 · · ·σn = st. Since |t| > |Q| there
exists |s| ≤ i < k ≤ n such that qi = qk. Therefore the
subpath qi

σi+1

−→ · · ·
σk−→ qk is a reachable Ξ-loop in A.

(If) Assume A is not Ξ-loop free. Let π be a reachable
Ξ-loop in A with origin q ∈ Q. Since π is reachable, there
exists a path π′ in A with end q. Let s = L(π′) and t =
L(π). Note that |t| ≥ 1. Then for each k ∈ N it holds that
stk ∈ L(A), tk ∈ Ξ∗, and |tk| ≥ k. This shows that L(A)
is not Ξ-terminating.

Ξ-loops can be identified by finding strongly Ξ-connected
components and selfloops labelled with events contained
in Ξ. In order to define the concept of strongly Ξ-connected
components, a relation over states is defined: two states are
strongly Ξ-connected if they can mutually be reached by
means of events contained in Ξ.

Definition 3: Let A = (Σ, Q,∆, J) be an automaton, and
let Ξ ⊆ Σ. Two states p, q ∈ Q are strongly Ξ-connected
in A, written p ↔Ξ q, if there exist a Ξ-path with origin p
and end q and another Ξ-path with origin q and end p.

It can easily be shown that this relation is an equivalence
relation. Its equivalence classes are called strongly Ξ-con-
nected components. Such an equivalence class contains states
where each state can be reached by means of Ξ-paths from
all other states in the equivalence class.

Definition 4: Let A = (Σ, Q,∆, J) be an automaton,
and let Ξ ⊆ Σ. The equivalence classes of ↔Ξ are called
the strongly Ξ-connected components of A. A strongly Ξ-
connected component is said to be reachable in A, if it
contains a state that is reachable in A.

The next result states that, if an automaton has a strongly
Ξ-connected component with more than one state, then there
exists a Ξ-loop in the automaton.

Proposition 2: Let A = (Σ, Q,∆, J) be an automaton,
and let Ξ ⊆ Σ. If there exist p, q ∈ Q such that p↔Ξ q and
p 6= q, then there exists a Ξ-loop in A.

Proof: Since p↔Ξ q, there exist two Ξ-paths, one with
origin p and end q and another with origin q and end p. By
concatenating these two paths, a Ξ-loop in A is obtained.

If a strongly Ξ-connected component is reachable, then
each of its states is reachable. Therefore, the loop constructed
in proposition 2 is also reachable. Thus, if there exists a
reachable strongly Ξ-connected component in an automaton,
then the automaton cannot be Ξ-loop free.

Iterative Ξ-pairs are counterexamples, which can be pro-
vided when an automaton is not Ξ-loop free. An iterative
Ξ-pair consists of two strings, where the second string can
be iterated while staying within the behaviour of the system.

Definition 5: Let A = (Σ, Q,∆, J) be an automaton, and
let Ξ ⊆ Σ. The pair (s, t) ∈ Σ∗ × Ξ+ is an iterative Ξ-pair
in A if stn ∈ L(A) for all n ∈ N.

If there exists a reachable Ξ-loop π in an automaton, then
there exists an iterative Ξ-pair in this automaton. This can be
seen as follows. Since π is reachable, there exists a path π′

to the origin of π. Then (L(π′),L(π)) is an iterative Ξ-pair
in the automaton. The first string shows how a loop can be
reached. The second string describes the loop. This provides
illustrative information why a system is not Ξ-loop free.

The results given so far suggest an algorithm to check
an automaton for Ξ-loops. Given an automaton A =
(Σ, Q,∆, J) and a set of control actions Ξ ⊆ Σ, there are
only two possible ways how a Ξ-loop can exist.

(i) There is a reachable state q ∈ Q and a control action
ξ ∈ Ξ such that (q, ξ, q) ∈ ∆. Then q

ξ
→ q is a

reachable Ξ-loop in A.
(ii) There exists a reachable strongly Ξ-connected compo-

nent of A consisting of at least two states p, q ∈ Q.
Then there exist Ξ-paths from p to q and from q to p,
i.e., A contains a reachable Ξ-loop.

If neither of these two conditions is satisfied, then A is
Ξ-loop free. This can be shown as follows. If A contains a
reachable Ξ-loop, it is either a selfloop, and thus condition (i)
is satisfied, or the loop contains at least two different states.
Then these states are in the same strongly Ξ-connected
component and condition (ii) is satisfied. Therefore, A cannot
have a reachable Ξ-loop.

Thus, to check an automaton for Ξ loops, it suffices to
check for the existence of selfloops and for the existence of
reachable strongly Ξ-connected components with more than
one state. Efficient algorithms [14], [15] can be used to find
strongly connected components in a directed graph in linear
complexity (with respect to the number of nodes and edges).



V. EXPLOITING MODULARITY

The results of the previous section provide good al-
gorithms to check whether a single automaton is Ξ-loop
free. However, practical systems are composed of several
automata, and then their synchronous composition needs to
be computed first, which can quickly lead to intractably large
automata. This section shows that synchronous composition
can often be avoided by exploiting the modular structure of
the system.

The most important result is that it suffices to find a Ξ-loop
free subsystem to show that the whole system is Ξ-loop free.
Therefore, if a Ξ-loop free subsystem can be found, there is
no more need to compute any larger synchronous product.

Proposition 3: Let A1 and A2 be automata over the
alphabet Σ, and let Ξ ⊆ Σ. If A1 is Ξ-loop free then A1‖A2

is also Ξ-loop free.
Proof: Assume that A1 ‖ A2 is not Ξ-loop free. Then

L(A1 ‖ A2) is not Ξ-terminating, that is, there exists s ∈
L(A1 ‖ A2) ⊆ L(A1) such that for all n ∈ N there exists
tn ∈ Ξ∗ such that |tn| ≥ n and stn ∈ L(A1 ‖A2) ⊆ L(A1).
But then L(A1) is not Ξ-terminating. This proves that A1 is
not Ξ-loop free if A1 ‖ A2 is not Ξ-loop free.

It is also possible to prove that a system is not Ξ-loop
free without constructing its entire state space. Assume a
counterexample, i.e., an iterative Ξ-pair has been found for a
subsystem. If this counterexample is accepted by all automata
constituting the whole system, then it is a counterexample
for the entire system, i.e., the system is not Ξ-loop free.

Proposition 4: Let A1 and A2 be automata over the
alphabet Σ, and let Ξ ⊆ Σ. Every iterative Ξ-pair in both
A1 and A2 also is an iterative Ξ-pair in A1 ‖ A2.

Proof: Let A = A1 ‖ A2, and let (s, t) be an iterative
Ξ-pair in A1 and A2. Then t ∈ Ξ+, stn ∈ L(A1), and
stn ∈ L(A2) for each n ∈ N. This implies stn ∈ L(A1) ∩
L(A2) = L(A). Thus, (s, t) is an iterative Ξ-pair in A.

Propositions 3 and 4 can be combined to a strategy to
construct subsystems iteratively. Assume a system

A = A1 ‖ · · · ‖ An (7)

is to be checked for Ξ-loops, and some subsystem Ai of A
has already been identified. If Ai is Ξ-loop free, then the
entire system A is known to be Ξ-loop free by proposition 3.
If Ai is not Ξ-loop free, there exists an iterative Ξ-pair
demonstrating that Ai is not Ξ-loop free. If this also is an
iterative Ξ-pair in all other components A1, . . . , An of A,
then the entire system A is not Ξ-loop free by proposition 4.
Otherwise, there is an automaton Aj that does not accept the
iterative Ξ-pair, and this automaton is a good candidate to
augment the subsystem Ai and consider Ai ‖ Aj in a next
step.

Example 1: Consider the automata in fig. 1, with the set
of control events

Ξ = {open in, close in, open out, close out} . (8)

The subsystem req spec is not Ξ-loop free as shown by the
iterative Ξ-pair (req start, open in). This is not an itera-
tive Ξ-pair in automaton no flow, so proposition 4 cannot
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Fig. 3. The synchronous composition out ‖ empty spec’.

yet be applied. Therefore, the larger subsystem req spec ‖
no flow is considered. This yields the new iterative Ξ-pair
(req start, open in close in), which is accepted by all other
automata and therefore is a counterexample for the model.

This method can be improved further. The set Ξ of control
events can be reduced by removing events that are known
not to be contained in any Ξ-loop of the system. Consider
an event ξ ∈ Ξ and a subsystem such that ξ is not contained
in any Ξ-loop of this subsystem. Then the event ξ cannot
occur in a Ξ-loop of the entire system since each Ξ-loop in
the synchronous product must also be a Ξ-loop in each of the
automata constituting the synchronous product. Therefore, it
suffices to check whether the system is (Ξ \ {ξ})-loop free,
which is simpler than checking whether it is Ξ-loop free.

Proposition 5: Let A1 and A2 be automata over the
alphabet Σ, and let Ξ ⊆ Σ. Furthermore, let ξ ∈ Ξ such that
ξ /∈ L(π) for each reachable Ξ-loop π of A1. Then A1 ‖A2

is Ξ-loop free if and only if A1 ‖A2 is (Ξ \ {ξ})-loop free.
Proof: Let A = A1 ‖ A2 and Ξ′ = Ξ \ {ξ}.

(Only If) Assume that A is not Ξ′-loop free. Then there
exists a reachable Ξ′-loop in A. This is also a reachable
Ξ-loop in A, i.e., A is not Ξ-loop free.

(If) Assume that A is not Ξ-loop free, i.e., there exists a
reachable Ξ-loop

π = (p0, q0)
ξ1
−→ · · ·

ξn

−→ (pn, qn) (9)

in A = A1 ‖ A2. Then

π1 = p0

ξ1
−→ · · ·

ξn

−→ pn (10)

is a reachable Ξ-loop in A1. By assumption, ξ /∈ L(π1) =
L(π), i.e., L(π) ∈ (Ξ′)∗. Hence, A is not Ξ′-loop free.

Example 2: Consider the extended model of the introduc-
tory example given by the automata in fig. 1 and fig. 2. The
system can be shown to be Ξ-loop free as follows. Consider
the synchronous product of automata out and empty spec’,
shown in fig. 3. This automaton contains Ξ-loops, but none
of them contains the events open out or close out. By
proposition 5, these two events can be removed from Ξ, i.e.,
it is sufficient to check for {open in, close in}-loops. The
same argument can be applied to the remaining two events
when considering the synchronous product of automata in
and fill spec’. Thereby Ξ is reduced to the empty set, already
proving that the entire system is control-loop free.



VI. A MODULAR ALGORITHM

The results from the previous section can be combined in
different ways to obtain algorithms to find control loops in
modular systems. The method proposed in this paper uses
ideas from [8]. Given a modular system

A = A1 ‖ · · · ‖ An , (11)

to be checked, it tries to construct a Ξ-loop free subsystem
of A incrementally, including more automata as needed.

But first, all automata Ai are checked for Ξ-loops individ-
ually. Typically, none of them is Ξ-loop free by themselves
because of implicit selfloops. Yet, by proposition 5, this first
pass can identify events that cannot occur in any Ξ-loop and
thereby considerably reduce the set Ξ of control actions.

Then the construction of subsystems of A begins. Starting
from the empty subsystem, which accepts Σ∗ and therefore
is never loop-free, new automata are added until a result is
obtained. Assume a subsystem

A′ = Ai1 ‖ · · · ‖ Aim
(12)

has been constructed. If A′ is Ξ-loop free, then the entire
system A is Ξ-loop free by proposition 3. Otherwise an
iterative Ξ-pair can be constructed. If this counterexample
is an iterative Ξ-pair for all automata in A, then the en-
tire system A has a Ξ-loop by proposition 4. Otherwise,
some automaton does not accept the counterexample. The
algorithm chooses one of the automata Aj not accepting the
counterexample, and analyses the larger subsystem

A′′ = A′ ‖ Aj (13)

in the next step. In addition, the set of control events occur-
ring in all Ξ-loops of A′ is identified to apply proposition 5
and replace Ξ by a smaller set when analysing A′′.

Given a counterexample, the above algorithm looks for
automata not accepting the particular counterexample to
include one or more of these automata in the next analysis
attempt. Performance may depend on which automaton is
chosen. A number of heuristics for selecting automata not
accepting a counterexample of interest have been proposed
in [8] and are listed below. They have all been implemented
and tested on the industrial examples of section VII.

• All. Use all automata not accepting the counterexample.
• EarlyNotAccept. Use the automaton rejecting the coun-

terexample as early as possible, i.e., the automaton
accepting as little as possible of the counterexample.

• LateNotAccept. Use the automaton rejecting the coun-
terexample as late as possible.

• MaxCommonEvents. Use the automaton with the most
events in common with the system considered so far.
An automaton sharing many events with the system
considered is likely to interact more closely with it, and
is therefore more likely to contribute to the analysis.

• MaxCommonUncontr. Use the automaton with the
most non-control events in common with the system
considered so far. This is similar to MaxCommon-
Events, but more tuned to the control-loop check.

• MinEvents. Use the automaton with the fewest events,
in an attempt to use the simplest automata and construct
the smallest possible synchronous product.

• MinNewEvents. Use the automaton adding the fewest
events to the system considered. This is similar to
MaxCommonEvents, which looks for an automaton
interacting closely with the system considered.

• MinStates. Use the automaton with the fewest states.
Similar to the MinEvents heuristic, this is an attempt
to construct a small synchronous product.

• MinTransitions. Use the automaton with the fewest
transitions.

• One. Use the first automaton found not to accept the
counterexample.

• RelMaxCommonEvents. Use the automaton with the
maximum ratio of shared events with the system con-
sidered to the number of used events. This is similar to
MaxCommonEvents, but tries to avoid adding com-
plex automata using many events, but sharing few events
with the system considered.

VII. EXPERIMENTAL RESULTS

The proposed algorithm has been tested with a set of
industrial examples and case studies previously used in [8].
All examples considered are listed below, together with the
corresponding automata models, also referred to in table I.

• Case study production cell I [16]: fzelle.
• Case study production cell II [17]: ftechnik.
• PROFIsafe field bus protocol [18]–[20]: profisafe i4,

profisafe o4.
• AIP automated manufacturing system [21]–[23]: rhone-

alps, rhone tough.
• Train testbed [24]: tbed uncont, tbed ctct, tbed valid.
• Central locking system (KORSYS project): verriegel4.
These models have been checked for control-loops, using

the proposed algorithm and each of the heuristics mentioned
in section VI. All tests were performed on a standard PC
with a 1.4 GHz processor and 256 MB of RAM. The results
are shown in table I.

The first two columns list the model name and the number
of automata for each model. The subsequent column pairs
list for each heuristic and all examples the maximum number
of automata composed and the total number of states con-
structed. The examples above the horizontal line in the table
body are control-loop free, whereas the examples below do
not satisfy this property.

In spite of the complexity of the models, they all could
be shown to be control-loop free or not, requiring not more
than a few seconds of CPU time for each run.

All control-loop free examples could be verified easily,
never considering more than a single automaton at a time.
This becomes possible by the initial step of the algorithm,
which identifies the loop events of each automaton in-
dividually. Using proposition 5, it is always possible to
reduce the set of possible loop events to the empty set,
completely avoiding synchronous composition. The exam-
ples that contain control-loops are only slightly harder to



TABLE I

EXPERIMENTAL DATA FROM INDUSTRIAL EXAMPLES

Model All Early Late MaxCommon MaxCommon Min Min Min Min One RelMax
NotAccept NotAccept Events Uncontr Events NewEvents States Transitions Common

Name Aut Aut States Aut States Aut States Aut States Aut States Aut States Aut States Aut States Aut States Aut States Aut States

profisafe i4 75 1 267 1 267 1 267 1 267 1 267 1 267 1 267 1 267 1 267 1 267 1 267
profisafe o4 84 1 292 1 292 1 292 1 292 1 292 1 292 1 292 1 292 1 292 1 292 1 292
rhone tough 61 1 318 1 318 1 318 1 318 1 318 1 318 1 318 1 318 1 318 1 318 1 318
tbed ctct 84 1 507 1 507 1 507 1 507 1 507 1 507 1 507 1 507 1 507 1 507 1 507
tbed uncont 58 1 421 1 421 1 421 1 421 1 421 1 421 1 421 1 421 1 421 1 421 1 421
tbed valid 84 1 468 1 468 1 468 1 468 1 468 1 468 1 468 1 468 1 468 1 468 1 468
verriegel4 65 1 726 1 726 1 726 1 726 1 726 1 726 1 726 1 726 1 726 1 726 1 726
ftechnik 36 4 2927 4 3053 4 3053 4 3136 4 3136 4 3053 4 3053 4 3053 4 3053 4 3053 4 3136
fzelle 67 3 830 2 834 2 834 2 834 2 834 2 834 2 834 2 834 2 834 2 834 2 830
rhone alps 35 2 247 2 247 2 247 2 247 2 247 2 247 2 247 2 247 2 247 2 247 2 247

check: their faults are not so conspicuous that they can be
found considering only one automaton. All results are largely
independent of the heuristics for the selection of automata
based on counterexamples.

These examples suggest that models of practical systems
are typically well-structured in a way that makes modular
verification easy. Control-loops can be detected automatically
very quickly, making this property an excellent candidate
to be implemented as a push-button feature in development
tools that support engineers in the design of reactive systems.

VIII. CONCLUSIONS

An efficient algorithm to check a finite-state system for
control-loops has been presented. This algorithm can avoid
explicit state exploration of the entire system state space
by exploiting the modularity common in many practical
applications. Experimental results show that the new method
can quickly verify several examples of industrial scale.

The proposed algorithm can be extended and enhanced
in many ways. In the future, the authors would like to
experiment with different heuristics for the selection of
automata, and to investigate more elaborate reasoning. With
the possibility to reduce the set of possible loop events, it is
not required to keep increasing the subsystem being checked.
It may be more efficient to restart with smaller systems when
the set of loop events has been reduced.
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[18] R. Malik and R. Mühlfeld, “A case study in verification of UML
statecharts: the PROFIsafe protocol,” J. Universal Computer Science,
vol. 9, no. 2, pp. 138–151, Feb. 2003.

[19] ——, “Testing the PROFIsafe protocol using automatically generated
test cases based on a formally verified model,” Siemens AG, Corporate
Technology, Software and Engineering 1, Munich, Germany, Tech.
Rep., 2002.

[20] Profibus Nutzerorganisation e. V., “PROFIsafe—profile for safety tech-
nology, version 1.12,” 2002.

[21] B. Brandin and F. Charbonnier, “The supervisory control of the
automated manufacturing system of the AIP,” in Proc. Rensselaer’s
4th Int. Conf. Computer Integrated Manufacturing and Automation
Technology, Troy, NY, USA, 1994, pp. 319–324.

[22] F. Charbonnier, “Commande par supervision des systèmes à
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