
Modular Nonblocking Verification Using Conflict Equivalence

Hugo Flordal
Department of Signals and Systems

Chalmers University of Technology, Gothenburg, Sweden
flordal@chalmers.se

Robi Malik
Department of Computer Science

University of Waikato, Hamilton, New Zealand
robi@cs.waikato.ac.nz

Abstract— This paper proposes a modular approach to ver-
ifying whether a large discrete event system is nonconflict-
ing. The new approach avoids computing the synchronous
product of a large set of finite-state machines. Instead, the
synchronous product is computed gradually, and intermediate
results are simplified using conflict-preserving abstractions
based on process-algebraic results about fair testing. Heuristics
are used to choose between different possible abstractions.
Experimental results show that the method is applicable to
finite-state machine models of industrial scale and brings
considerable improvements in performance over other methods.

I. I NTRODUCTION

Supervisory control theoryfor discrete event systems [1],
[2] is a general framework for the design of supervisors for
reactive systems. Given a model of the physically possible
behaviour of the system to be controlled, theplant, and a
specificationof the desired system behaviour, the framework
provides methods and algorithms to obtain asupervisor
that ensures that the specification is always fulfilled. Two
properties are commonly expected from such a supervisor:
it should becontrollable and nonblocking. Controllability
typically captures safety requirements, while nonblocking is
a special kind of liveness property.

Since supervisory control is used for complex, safety-
critical systems, it is crucial to verify automatically that
the supervisor satisfies the required properties. Yet, all basic
algorithms for verification suffer greatly from the so-called
state-space explosion problem. The problem is caused by
explicitly describing the system’s state space in amonolithic
fashion. Typically, the model of the system, including the
supervisor, ismodular, and this feature can be exploited to
perform verification more efficiently. For controllability, ef-
ficient solutions are presented in [3], [4], while nonblocking
has long remained a challenge.

To enable modular reasoning about nonblocking, it is
convenient to have a means of expressing equivalence be-
tween automata in this respect. Such an equivalence,conflict
equivalence, was presented in [5]. Essentially, two automata
are conflict equivalent if they show the same behaviour with
respect to conflicts together with any other automaton.

This paper proposes a set of reduction procedures that
can simplify finite-state automata in a way that preserves
conflict equivalence. Using these reductions, the authors
have implemented an algorithm for determining whether
large models of discrete events systems are nonblocking in

the DES software toolSupremica [?]. After introducing
the required notation in section II, this paper explains the
reduction procedures for conflict equivalence in section III.
Afterwards, section IV describes the algorithm, and section V
discusses the experimental results on a set of complex ex-
amples. Finally, section VI gives some concluding remarks.

II. PRELIMINARIES

A. Events and Languages

Event sequences and languages are a simple means to de-
scribe discrete event system behaviours. Their basic building
blocks areevents, which are taken from a finitealphabet.
In addition, two special events are also used, thesilent
eventτ and thetermination eventω. These are never included
in an alphabetΣ unless mentioned explicitly. For this,
Στ = Σ ∪ {τ} andΣτ,ω = Σ ∪ {τ, ω} are used.

Σ∗ denotes the set of all finitestrings of the form
σ1σ2 · · ·σn of events fromΣ, including theempty stringε.
A subsetL ⊆ Σ∗ is called alanguage. Thecatenationof two
stringss, t ∈ Σ∗ is written asst. Languages and alphabets
can also be catenated,LΣ = { sσ | s ∈ L, σ ∈ Σ }.

B. Nondeterministic Automata

System behaviours are modelled using finite-state au-
tomata. Typically, system models are deterministic, but ab-
straction during the verification process may result in non-
determinism.

Definition 1: A (nondeterministic)finite-state automaton
is a 5-tupleG = 〈Q,Σ,→ , Qi, Qm〉 whereQ is a finite set
of states, Σ is a finite set ofevents, → ⊆ Q×Στ ×Q is the
state transition relation, Qi ⊆ Q is the (nonempty) set of
initial states, andQm ⊆ Q is the set ofmarked states. �

The transition relation is written in infix notationp
σ→ q,

and is extended to strings inΣ∗
τ by letting

p
ε→ p for all p ∈ Q ; (1)

p
sσ→ q if p

s→ r andr
σ→ q for somer ∈ Q . (2)

For state setsQ1, Q2 ⊆ Q, the notationQ1
s→ Q2 denotes

the existence ofq1 ∈ Q1 and q2 ∈ Q2 such thatq1
s→ q2.

Furthermore,p → q denotes the existence of a strings ∈
Σ∗

τ such thatp
s→ q, and p

s→ denotes the existence of a
stateq such thatp

s→ q. A stateq is calledreachablein an
automatonG if Qi → q; if this holds for all q ∈ Q, G is
calledaccessible. If G is not accessible, it can easily be made

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Research Commons@Waikato

https://core.ac.uk/display/29195374?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


so by removing all states that are not reachable. Therefore,
in the following all automata are assumed to be accessible.

For brevity,p
s⇒ q, with s = σ1σ2 . . . σn, is introduced to

denote the existence of a stringt ∈ τ∗σ1τ
∗σ2τ

∗ · · · τ∗σnτ∗

such thatp
t→ q. That is,

s→ denotes a path withexactlythe
events ins while

s⇒ denotes a path with an arbitrary number
of τ shuffled with the events ins. Moreover,G is said to
accepta strings ∈ Σ∗ if Qi s⇒, and for a stateq ∈ Q, the
set ofactive eventsis defined asΣ(q) = {σ ∈ Σ | q σ⇒}.

Automata use the setQm of marked states to indicate the
possibility of successful termination. In order to translate
this into an event-based representation, every automaton is
assumed to have a terminal state⊥ ∈ Q\Qm, which has no
outgoing transitions, and the transition relation is extended
to a relation→ ⊆ Q× Στ,ω ×Q by adding transitions

qm ω→ ⊥ for each qm ∈ Qm . (3)

This construction makes it possible to represent termination
by means of the termination eventω only which, if it occurs,
is always the last event of any execution.

Definition 2: An automatonG = 〈Q,Σ,→ , Qi, Qm〉 is
deterministicif Qi is a singleton,p

σ→ q1 andp
σ→ q2 always

implies q1 = q2, and→ contains noτ -transitions. �
When two automata are running in parallel, lock-step

synchronisation in the style of [6] is used.
Definition 3: Let G1 = 〈Q1,Σ1,→1 , Qi

1, Q
m
1 〉 andG2 =

〈Q2,Σ2,→2 , Qi
2, Q

m
2 〉 be two automata. Thesynchronous

compositionof G1 andG2 is

G1‖G2 = 〈Q1×Q2,Σ1∪Σ2,→ , Qi
1×Qi

2, Q
m
1 ×Qm

2 〉 (4)

where

(p, q) σ→ (p′, q′) if σ∈ (Σ1∩Σ2) ∪ {ω}, p
σ→1 p′, q

σ→2 q′ ;
(p, q) σ→ (p′, q) if σ∈ (Σ1\Σ2) ∪ {τ}, p

σ→1 p′ ;
(p, q) σ→ (p, q′) if σ∈ (Σ2\Σ1) ∪ {τ}, q

σ→2 q′ . �

In synchronous composition, shared events (andω) must
be executed by all automata synchronously, while other
events (includingτ ) are executed independently.

Hiding is the act of transforming an eventσ into a silent
τ event. This is a simple way of abstraction that in general
introduces nondeterminism.

Definition 4: Let G = 〈Q,Σ,→ , Qi, Qm〉 and Υ ⊆ Σ.
The result ofhidingΥ from G, writtenG\Υ, is the automaton
obtained fromG by replacing each transitionp

υ→ q with
υ ∈ Υ by p

τ→ q, and removing the events inΥ from Σ. �

C. Conflicts

In supervisory control theory, an important property for an
automaton is to be able to, from all reachable states, reach
some marked state. If an automaton satisfies this property it
is callednonblocking, otherwiseblocking. When more than
one automaton is involved, it also is common to use the terms
nonconflictingandconflicting, respectively.

Definition 5: An automatonG = 〈Q,Σ,→ , Qi, Qm〉 is
nonblockingif, for every stateq ∈ Q and every strings ∈ Σ∗

such thatQi s⇒ q, there exists a stringt ∈ Σ∗ such thatq
tω⇒.

Two automataG1 and G2 are nonconflictingif G1 ‖ G2 is
nonblocking. �

To enable reasoning about conflicts in a modular way, a
notion of conflict equivalenceof automata has been devel-
oped in [5]. The main results are recalled in the following.
According to process-algebraic testing theory, two automata
are considered as equivalent if they both respond in the same
way to all tests of a certain type [7]. Forconflict equivalence,
a test is an arbitrary automaton, and theresponseis the
observation whether the test composed with the automaton
in question is nonblocking or not.

Definition 6: Two automataG1 and G2 are said to be
conflict equivalent, G1 'conf G2, if, for any testT , G1 ‖ T
is nonblocking if and only ifG2 ‖ T is nonblocking. �

The properties of conflict equivalence are studied in [5]:
it suffices to consider deterministic tests in definition 6,
and conflict equivalence is a congruence with respect to
synchronous composition and hiding. Furthermore, the fol-
lowing algebraic characterisation is given.

Definition 7: Let G be an automaton with alphabetΣ and
let s ∈ Σ∗. A languageC ⊆ Σ∗ω is called a non-
conflicting completionfor s in G, if for every testT =
〈Q,Σ,→ , Qi, Qm〉 such thatG andT are nonconflicting and
Qi s⇒ q, there exists a completiont ∈ C such thatq

t⇒. �
Definition 8: The nonconflicting completion semanticsof

an automatonG is

CC(G) = { (s, C) ∈ Σ∗×P(Σ∗ω) | C is a nonconflicting
completion fors in G } . �

The interpretation of a pair(s, C) in the nonconflicting
completion semantics is that a test acceptings mustaccept at
least one of the completions inC afters to be nonconflicting
with the automaton. The following result from [5] states
that two automata are conflict equivalent if and only if their
nonconflicting completion semantics coincide.

Theorem 1 (from [5]):Let G1 and G2 be two automata.
ThenG1 'conf G2 if and only if CC(G1) = CC(G2). �

Given an automatonG, in general there is no unique
minimal automaton that is conflict equivalent toG. For
example, Fig. 1 shows three automataG1, G2, andG3 that
are all conflict equivalent and minimal, both in the number of
states and in the number of transitions, but not isomorphic.

To see that these automata are conflict equivalent, note
that CC(G1) = CC(G2) = CC(G3) = {(ε, ααα∗ω),
(α, αα∗ω), (αβ, ω), (ααα∗, α∗ω), (ααβ∗, β∗ω)}, if only
the minimal nonconflicting completions are given and with
a slight abuse of notation since the first element of every
pair really should be a string. By Theorem 1, these three
automata are all conflict equivalent.

To see that each of the three automata is minimal in
the number of states, another result from [5] is needed:for
nonblocking automata, conflict equivalence implies failures
equivalence [6]. Therefore, any automaton that is conflict
equivalent to G1, e.g., must also be failures equivalent
to G1. The failure pairs ofG1 are (ε, {β, ω}), (α, {β, ω}),
(ααα∗, {β}), (ααβ∗, {α}), and (αβ, {α, β}), where only
maximal refusals have been given—all subsets of these are



G1

b

a

a

ba

a

a

5

1 2

3 4

0 G2

b

a

a

ba

a

a

5

1 2

3 4

0 G3

t

b

a

a

ba

a

5

1 2

3 4

0

Fig. 1. Example of the nonuniqueness of minimal conflict equivalent systems.

also refusals. For two automata to be failures equivalent they
must possess exactly the same failures. Then there must be at
least one distinct state per maximal refusal set. By examining
the failures, four different maximal refusal sets are found:
{β, ω}, {β}, {α}, and{α, β}. However, four states are not
enough to produce the failures above. The existence of a
refusal set forαβ suggests that after acceptingα, despite
the refusal set{β, ω}, the automaton must also have a state
acceptingβ. This indicates that apart from a state refusing
{β, ω}, there must also be a state with maximal refusal
set either∅ or {ω}. Moreover, if there is only one state
representing the refusal set{β, ω}, then there must be a
selfloop onα in the initial state. This, however, would require
{β, ω} to be a refusal set also ofαα which it is not. This
proves that there must be at least six states in an automaton
that is conflict equivalent to the automata in Fig. 1.

D. Equivalence Relations

An equivalence relationis a binary relation that is re-
flexive, symmetric and transitive. Given an equivalence rela-
tion∼ on a setQ, the equivalence class ofq ∈ Q with respect
to ∼, denoted[q], is defined as[q] = { q′ ∈ Q | q′ ∼ q }.

An equivalence relation on a setQ partitionsQ into the set
of its equivalence classesQ/∼ = { [q] | q ∈ Q }. For subsets
Q′ of Q, Q′/∼ may cover more thanQ′. The following
definition is standard.

Definition 9: Let G = 〈Q,Σ,→ , Qi, Qm〉 be an automa-
ton and let∼ ⊆ Q × Q be an equivalence relation. The
abstractionG/∼ of G with with respect to∼ is

G/∼ = 〈Q/∼ ,Σ,→ /∼ , Qi/∼ , Qm/∼〉 (5)

where→ /∼ = { [p] σ→ [q] | p σ→ q }. �
It follows immediately from this definition that every path

in the original automaton also occurs in its abstract version.
Lemma 1:Let G = 〈Q, Σ,→ , Qi, Qm〉 be an automaton

and let∼ ⊆ Q × Q be an equivalence relation. For every
path

q0
σ1→ q1

σ2→ . . .
σn→ qn (6)

in G it holds that

[q0]
σ1→ [q1]

σ2→ . . .
σn→ [qn] (7)

in G/∼. �
Conversely, it cannot be guaranteed that a path in the

abstract automaton also occurs in the original automaton.
This is only the case if additional conditions are satisfied.

Definition 10: Let G = 〈Q,Σ,→ , Qi, Qm〉 be an au-
tomaton. The binary relation∼inc ⊆ Q×Q is defined such
that q ∼inc q′ if

Qi ε⇒ q ⇐⇒ Qi ε⇒ q′ ;
∀p ∈ Q , ∀σ ∈ Σ : p

σ⇒ q ⇐⇒ p
σ⇒ q′ . �

∼inc can be shown to be an equivalence relation. This
relation equates states that in some sense are always reached
in the same way. This additional requirement suffices to
establish a converse of Lemma 1.

Lemma 2:Let G = 〈Q,Σ,→ , Qi, Qm〉 be an automaton,
and let∼ ⊆ Q × Q be an equivalence relation such that
∼ ⊆ ∼inc. Then, for every path

q̃0
σ1⇒ q̃1

σ2⇒ . . .
σn⇒ q̃n (8)

in G/∼ there exist statesqi ∈ q̃i, for i = 0, . . . , n, such that

q0
σ1⇒ q1

σ2⇒ . . .
σn⇒ qn (9)

in G. �
The proof (by induction onn) is left out for lack of space.

III. R EDUCTION RULES

To exploit the conflict equivalence concept for verifica-
tion purposes, a method for obtaining a simplified, conflict
equivalent representation of a given automaton is needed. No
algorithm is known that, given a nondeterministic automaton,
produces a smallest possible conflict equivalent automaton,
neither with respect to the number of states nor transitions.
Such minimality is not necessary for the purpose of verifica-
tion. Instead it is preferred from a usable reduction algorithm
to reduce the number of states and transitions as much as
possible without requiring too much computational effort.
This section discusses some possible methods.

A. Observation Equivalence

Observation equivalence, or weak bisimulation[9], is a
strong equivalence of nondeterministic automata that consid-
ers only states with the same structure of future behaviour
as equivalent.

Definition 11: An equivalence relation∼ is said to be a
weak bisimulationif p ∼ q implies that for anys ∈ Σ∗

if p
s⇒ p′ then∃q′ such thatq

s⇒ q′ andp′ ∼ q′ ;
if q

s⇒ q′ then∃p′ such thatp
s⇒ p′ andp′ ∼ q′ .

Two automataG1 andG2 are observation equivalent if there
exists a weak bisimulation∼ such that for each initial stateq1



of G1 there exists an initial stateq2 of G2 such thatq1 ∼ q2,
and vice versa. �

It is established in [5] that observation equivalent automata
are also conflict equivalent. Thus, it is possible to use existing
algorithms [10]–[12] for observation equivalence straight
away for minimisation with respect to conflict equivalence.
This alone gives a significant reduction of the state space.

The authors’ implementation for this reduction method is
based on [11]. This algorithm is a generalised version of
the algorithm in [10] and is claimed to have computational
complexityO(m log n), wherem is the number of transitions
andn is the number of states. However, since the algorithm
in [11] is designed for bisimulation equivalence, the automa-
ton has to be augmented so that for allσ ∈ Σ, p

σ⇒ q always
implies p

σ→ q. Thusm may be very large—in the order of
n2k wherek is the number of events in the alphabet.

B. Conflict Equivalence Preserving Reductions

While algorithms for observation equivalence are well-
established, they only achieve a limited amount of reduction.
There are many cases where two automata are conflict
equivalent but not observation equivalent. Therefore, the
authors have worked out a set ofreduction rulesthat can be
used to reduce the state space of an automaton preserving
conflict equivalence. These rules are applied locally to a few
states of an automaton with particular structure and can be
applied repeatedly to any matching parts of an automaton.

The following rules try to identifyconflict equivalent
states in an automaton, i.e., states that represent future
behaviours that cannot be distinguished by conflict equiva-
lence. Such conflict equivalent states can be merged without
affecting possible conflicts with other components.

1) Active Events Rule:Two states that are equivalent with
respect to∼inc and have the same active events are conflict
equivalent.

G

bb

b

a a

21

3

0 G′

b

b

a

0

3

1 .2

Fig. 2. Example of application of the Active Events Rule.

Example 1: In Fig. 2, states1 and2 in G have incoming
transitions from0 associated withα and from1 associated
with β, which establishes∼inc. Furthermore, they both have
the same active event,β. Thus, the Active Events Rule can
be applied, states1 and2 are conflict equivalent and can be
collapsed into a single state1.2 as shown inG′. �

Theorem 2:Let G = 〈Q,Σ,→ , Qi, Qm〉 be an automa-
ton, and let∼ ⊆ Q×Q be an equivalence relation such that
∼ ⊆ ∼inc and for allp, q ∈ Q such thatp ∼ q it holds that
Σ(p) = Σ(q). ThenG 'conf G/∼. �

Proof: It suffices to show for any deterministic testT
that, if T ‖G is nonblocking, so isT ‖G/∼, and vice versa.

(⇒) Assume thatT ‖ G is nonblocking. Lets ∈ Σ∗ be
a string accepted byT such thatQi/∼ s⇒ q̃ in G/∼. By
Lemma 2, there existsq ∈ Q such thatq ∈ q̃ and Qi s⇒ q
in G. SinceT ‖ G is nonblocking there existst ∈ Σ∗ such
that stω is accepted byT andq

tω⇒ in G. By Lemma 1, this
implies q̃ = [q] tω⇒ in G/∼. Since this holds for all reachable
states inG/∼, it follows that T ‖G/∼ is nonblocking.

(⇐) AssumeT ‖ G/∼ is nonblocking. Lets ∈ Σ∗ be a
string accepted byT such thatQi s⇒ q in G. By Lemma 1,
it holds thatQi/∼ s⇒ [q] in G/∼. Then, sinceT ‖G/∼ is
nonblocking, there existst ∈ Σ∗ such that[q] tω⇒ andstω is
accepted byT . By Lemma 2, there existsq′ ∈ [q] such that
q′

tω⇒ in G. Note thatq ∼ q′ and thereforeΣ(q) = Σ(q′).
Thus, the first event oftω, sayσ, is active in bothq andq′.
Also, σ is accepted byT after s since it is the first event
of t. If σ = ω, it follows that q

ω⇒. Otherwise letq
σ⇒ p.

From Lemma 1 it follows that[q] σ⇒ [p] in G/∼. Now, since
T ‖G/∼ is nonblocking there exists stringu ∈ Σ∗ such that
[p] uω⇒ andsσuω is accepted byT . By Lemma 2, there exists
p′ ∈ [p] such thatp′ uω⇒ in G. Now, sincep ∼ p′, by (10),
q

σ⇒ p implies thatq
σ⇒ p′, which means that there is a path

Qi s⇒ q
σ⇒ p′ uω⇒ in G. Since this holds for all reachable

states inG, it is clear thatT ‖G is nonblocking. �
2) Silent Continuation Rule:Two states that are equiva-

lent with respect to∼inc and from whichstablestates, i.e.,
states without outgoingτ transitions, can be reached via a
nonemptysequence ofτ transitions, are conflict equivalent.

G

ba

tba

t

32

10 G′

ba

t

b
a

32

0 .1

Fig. 3. Example of application of the Silent Continuation Rule.

Example 2: In Fig. 3, states0 and1 in G are both “initial”
since they both can be reached silently from the initial state0.
This is enough to satisfy∼inc in this case since neither state
is reachable by any event other thanτ . Moreover, both states
can, by executing at least one silent transition, reach state3,
which has no outgoingτ transitions. Thus, by the Silent
Continuation Rule, states0 and1 in G are conflict equivalent
and can be collapsed into state0.1 as shown inG′. �

Theorem 3:Let G = 〈Q,Σ,→ , Qi, Qm〉 be an automa-
ton, and let∼ ⊆ Q×Q be an equivalence relation such that
∼ ⊆ ∼inc, and for allp, q ∈ Q such thatp ∼ q it holds that
eitherp = q or there exist stable statesp′, q′ ∈ Q such that
p

τ⇒ p′ andq
τ⇒ q′. ThenG 'conf G/∼. �

Proof: It suffices to show for any deterministic testT
that, if T ‖G is nonblocking, so isT ‖G/∼, and vice versa.

(⇒) Same as in the proof for Theorem 2.
(⇐) Assume thatT ‖G/∼ is nonblocking. Lets ∈ Σ∗ be

a string accepted byT such thatQi s⇒ q in G. By Lemma 1
it holds thatQi/∼ s⇒ [q] in G/∼. Consider two cases.

(1) [q] = {q}. SinceT ‖ G/∼ is nonblocking, from[q]
there exists a stringt ∈ Σ∗ such thatstω is accepted byT



and [q] tω⇒ in G/∼. By Lemma 2 and sinceq is the only
state in[q], this meansq

tω⇒ in G.
(2) [q] 6= {q}, i.e., there are at least two statesq1, q2 ∈ [q].

Thenq1 ∼ q2 for q1 6= q2, so forq ∈ [q] there exists a stable
statep such thatq

τ⇒ p. By Lemma 1, this implies[q] τ⇒ [p].
Sincep has no outgoingτ -transitions, it is not∼-equivalent
to any other state and thus[p] = {p}. That is, from every
case (2) situation, a case (1) situation can be reached.�

3) Certain Conflicts Rule:In an automatonG, all statesq
such thatQi s→ q and(s, ∅) ∈ CC(G) can be replaced by a
single blocking state that has no outgoing transitions.

This method has been introduced in [8], where a proof
for its soundness can be found. Stringss ∈ Σ∗ such that
(s, ∅) ∈ CC(G) are calledcertain conflictsof G, because it
is known that any testT running in parallel withG that can
accept such a strings must be conflicting withG.

G

b

3

b
b

b

a

a

54

21

0 G′

3

b

a

a

21

0

Fig. 4. Example of application of the Certain Conflicts Rule.

Example 3: In Fig. 4, since the stringββ may lead to the
blocking state5, any test that is to avoid blocking must avoid
acceptingββ. In this case, this implies that already after
accepting justβ, the automaton reaches a certain conflicts
situation. ThereforeG 'conf G′. �

IV. M ODULAR NONBLOCKING VERIFICATION

This section describes a method to check whether a large
system of automataG1, G2, . . . , Gn is conflicting or not.
Instead of building the synchronous product

G1 ‖G2 ‖ · · · ‖Gn , (10)

conflict equivalent reductions can be used to replace an au-
tomatonGi by a simpler versionG′

i. As long asGi 'conf G′
i

it readily follows from Def. 6 that the simplified system
is nonblocking if and only if the original is. In this way,
all automata for which conflict equivalent reductions are
possible can be replaced before any synchronous product is
computed. Since the state space of the synchronous product
grows exponentially, even small savings in the number of
states at this early stage can have considerable impact later.

When no more reductions are possible, the synchronous
product is computed stepwise and with intermediate reduc-
tions. That is, first a subset of the automata in the system are
replaced by their synchronous productH. Typically at this
stage, there will be some setΥ of events that arelocal—used
only by H and by no other automaton in the system. If
so, these events can be hidden and the automatonH \ Υ
replacesH. Finally, an attempt to simplify this intermediate
result is made before composing a new set of automata.

Eventually, this procedure simplifies the system to a single
automaton which does not share any events with other
components. Therefore, all events can be hidden from this
final automaton and it can be simplified in such a way that it
is trivial to determine whether it is blocking or nonblocking.
Due to the congruence results for conflict equivalence [5],
the final automaton is guaranteed to be nonblocking if and
only if the original system (10) is nonblocking. Clearly, if
some intermediate automaton turns out to have no marked
states then verification is also done—the end result cannot
have any marked states either, so the system is blocking.

The above method leaves many choices for the order in
which the automata are composed and simplified. It is not
immediately clear how good performance can be achieved,
but a reasonable strategy is to attempt to compose automata
that will yield as many local events as possible. In some
cases, the best strategy may be to construct small subsystems
first, while in other cases it may be better to add automata
one by one to a single growing subsystem.

For evaluation, a number of different heuristics have been
examined. They all follow the same two-step approach to
select which automata to compose. In the first step, some
candidate sets of automata are computed to be used in the
next step. This to avoid considering all combinations. The
following heuristics are implemented for the first step.

minT. Candidates are all automata pairs containing the au-
tomaton with the fewest transitions.

maxS. Candidates are all automata pairs containing the
automaton with the most states.

mustL. For each event there is a candidate which is the set
of automata using that particular event.

The second step tries to identify the best candidate. The
implemented heuristics attempt to keep the number of states
after synchronous composition, hiding and simplification
as small as possible. A prediction is made based on the
assumption that a large number of shared (orcommon) events
leads to a small synchronous product, and that a large number
of local events (that can be hidden) is likely to yield many
opportunities to apply the reduction procedures.

maxL. Choose the candidate with the highest proportion of
local events.

maxC. Choose the candidate with the highest proportion of
common events.

minS. Choose the candidate for which the product of the
number of states in the automata is smallest.

In both steps, if one heuristic fails to distinguish two top
candidates, another heuristic is used to make a decision. The
order of priority in this regard is the order in which they
are presented above per default, but with a particular chosen
heuristic placed first in different experiments.

V. EXPERIMENTAL RESULTS

The algorithm has been implemented in the DES software
tool Supremica [?] and tested on a number of examples
found in the literature. The examples include complex indus-
trial models and case studies taken from various application



areas such as manufacturing systems, communication proto-
cols, and automotive body-electronics. In addition, a few very
large examples with regular structure have been analysed. In
the following, all examples considered are listed, followed
by an evaluation of the experimental data.

A. Industrial Models

The following list shows the industrial examples analysed,
together with the names of corresponding automata models,
also referred to in Table I.

Car Central Locking System. A large DES model of the
central locking system of a BMW car, taken from
the KORSYS project.verriegel3 , verriegel3b ,
verriegel4 , verriegel4b .

Automated Guided Vehicle Coordination. Based on the
Petri net model in [13, page 119]. To make the ex-
ample more interesting, there is also a variant with an
additional zone added at the input station, which makes
the system blocking.AGV, AGVb.

Production Cell for Mounting Frames. A model of a pro-
duction cell in a metal-processing plant [14].fzelle .

Flexible Production Cell. Another production cell, based
on [15]. ftechnik , ftechnik nocoll .

Intertwined Product Cycles. Two types of products are
produced using two machines. The products must move
between the machines twice and in opposite direc-
tions [16]. IPC .

Simple/Parallel Manufacturing System. Two highly mod-
ular models of manufacturing systems [17].SMS, PMS.

Train testbed. A model of a toy railroad system [18].
tbed .

Car Window Control System A model of the behaviour of
some parts of the electronics in a car [19].big bmw.

Atelier Inter- établissement de Productique.A very com-
plex model of an automated manufacturing system [17].
AIP .

B. Parameterised Models

In addition, some models of more academic flavour have
been analysed. They are instantiations of a number of identi-
cal subsystems connected to each other in a structured way.
Due to their regular structure, these models can easily be
scaled up to arbitrary size.

Since the subsystems are loosely connected, the state
spaces of these models are enormous—truly exponential in
the number of subsystems—whereas the “real” complexity of
the problem is small since the problem essentially is the same
for any number of instantiations. However, the verification
algorithm does not exploit symmetry or the fact that it is
solving a large number of identical problems: each subsystem
is treated as if it was unique.

Dining Philosophers. This is the classical deadlocking (and
blocking) example, here with a large number of philoso-
phers.256philo , 512philo , 1024philo .

Arbiter. A model of a tree arbiter used to control access to a
shared resource [20]. It can be parameterised for a vary-

ing number of users.256arbiter , 512arbiter ,
1024arbiter .

Transfer line. Example from [21], with a parameterised
number of serially connected cells.128transfer ,
256transfer , 512transfer .

C. Evaluation

The results of all experiments can be found in Table I.
The table shows the approximate size of the state space of
the problems, the largest number of states encountered in
a single automaton during verification and also the largest
number of transitions, the time for the verification, and the
result. Furthermore, the table shows the number of times the
state space could be reduced (by one state) with the help
of a certain rule. The “Other” column represents conflict
equivalence rules not presented in this paper, and “OES”
and “OET” represent observation equivalent reductions of
states and transitions, respectively. The last columns tell
which heuristics was used in the experiment. The heuristics
minT and maxL have been used unless their performance
was much worse than some other heuristic.

All experiments were conducted on a standard desktop
PC with a 2.67 GHz processor and 512 MB of RAM. Most
systems can be checked for nonblocking in a few seconds,
without constructing automata with more than a few thou-
sand states and transitions. For the parameterised models, the
time and memory consumption grows linearly in the number
of subsystems. These results clearly show that modular
verification successfully avoids state-space explosion to a
great extent.

For most examples, observation equivalence minimisation
gives the most significant reduction. In particular, it is
interesting to see that in the exampleSMS none of the
conflict equivalence rules can be applied, while for the
closely related examplePMSthe trend is the opposite. For
examples that come in both a blocking and nonblocking
variant, the blocking variant often verifies much faster. This
is due to early termination when an intermediate result has
no marked states.

Regarding the instantiated examples, the time consumption
and the size of the intermediates suggests that the computa-
tional complexity is close to linear. The small intermediate
models indicate that essentially the same problem is solved
over and over a number of times that is linear in the number
of automata. In the philosopher examples, the heuristic
minT /maxL fails to find this symmetry which is why another
strategy has been used. Presumably, a closer look at this
example may reveal another reduction rule.

VI. CONCLUSIONS

A new method to check for large modular discrete event
systems whether they are nonblocking has been presented.
The method tries to reduce automata as much as possible
before synchronous composition is computed. Experimental
results show that the method can cope extremely well with
very large industrial examples and brings considerable im-
provements over standard state-exploration algorithms.



TABLE I

EXPERIMENTAL RESULTS FOR NONBLOCKING VERIFICATION.

Example Size Max Time Block Reduction Heuristic
Name Aut States Trans AE SC CC Other OES OET Step 1 Step 2

AGV 16 2.6 · 107 413 1272 0.50s false 39 19 0 131 91 1316 minT maxL
AGVb 17 2.3 · 107 255 778 0.35s true 41 36 236 71 21 695 minT maxL
verriegel3 53 9.7 · 108 1239 5261 3.4s false 88 80 0 115 581 2153 minT maxL
verriegel3b 52 1.3 · 109 11 46 0.12s true 0 0 3 1 2 8 minT maxL
verriegel4 65 4.5 · 1010 1897 8353 5.0s false 130 125 0 201 963 3754 minT maxL
verriegel4b 64 6.3 · 1010 11 46 0.13s true 0 0 3 1 2 8 minT maxL
big bmw 31 3.1 · 107 187 1474 0.91s false 0 0 0 0 246 172 minT maxL
SMS 11 312 17 22 0.24s false 0 0 0 0 30 3 minT maxL
PMS 38 5.7 · 106 85 382 0.39s false 18 8 0 63 6 470 minT maxL
IPC 12 20592 256 985 0.41s true 26 17 65 39 165 608 minT maxL
ftechnik 36 1.2 · 108 66 698 0.92s true 4 11 78 2 173 117 minT maxL
ftechnik nocoll 42 1.2 · 108 135 2434 0.35s true 10 15 129 4 97 91 mustL minS
tbed 84 13680 1800 9313 12s true 0 6 2219 43 1018 457 mustL minS
fzelle 67 3.0 · 1011 810 3169 5.4s false 106 176 4 280 847 3500 mustL minS
AIP 117 1.0 · 109 1050 4200 6.2s false 135 150 10 159 1090 4296 mustL minS

256philo 512 5.4 · 10168 35 86 6.6s true 512 1 0 1535 3548 9769 maxS maxL
512philo 1024 2.9 · 10337 35 86 17s true 1024 1 0 3071 7132 19599 maxS maxL
1024philo 2048 8.5 · 10674 35 86 41s true 2048 1 0 6143 14300 39260 maxS maxL
128transfer 640 1.6 · 10231 24 67 5.7s false 381 3 0 894 254 2055 minT maxL
256transfer 1280 2.4 · 10462 24 67 29s false 765 3 0 1790 510 4103 minT maxL
512transfer 2560 5.8 · 10924 24 67 3.3m false 1533 3 0 3582 1022 8199 minT maxL
128arbiter 637 3.9 · 10158 318 941 14s false 1205 1273 1482 1478 6226 6985 minT maxL
256arbiter 1277 3.8 · 10684 318 941 32s false 2420 2593 3083 2987 13097 14243 minT maxL
512arbiter 2557 5.7 · 104539 318 941 69s false 4848 5217 6211 5998 26581 28671 minT maxL

There are several ways that the modular algorithm can
be improved. Different heuristics and alternative reduction
methods need to be studied. The result of the simplification
also depends on the order in which the reduction rules are
applied. In all the experiments conducted this order has been
the same but clearly this is something to consider for further
improving the performance of the algorithm.

Moreover, it is conceivable to use a coarser equivalence:
the very general conflict equivalence used here considersall
possible contexts, better reduction is possible if more aspects
of the current contextof the system under verification can
be taken into account.

REFERENCES

[1] P. J. G. Ramadge and W. M. Wonham, “The control of discrete event
systems,”Proc. IEEE, vol. 77, no. 1, pp. 81–98, Jan. 1989.

[2] C. G. Cassandras and S. Lafortune,Introduction to Discrete Event
Systems. Kluwer, Sept. 1999.

[3] K. Åkesson, H. Flordal, and M. Fabian, “Exploiting modularity for
synthesis and verification of supervisors,” inProc. of the 15th Triennial
World Congress of the International Federation of Automatic Control,
Barcelona, Spain, July 2002.

[4] B. A. Brandin, R. Malik, and P. Malik, “Incremental verification
and synthesis of discrete-event systems guided by counter-examples,”
IEEE Trans. Contr. Syst. Technol., vol. 12, no. 3, pp. 387–401, May
2004.

[5] R. Malik, D. Streader, and S. Reeves, “Fair testing revisited: A
process-algebraic characterisation of conflicts,” inProc. 2nd Int. Symp.
Automated Technology for Verification and Analysis, ATVA 2004, ser.
LNCS, F. Wang, Ed., vol. 3299. Taipei, Taiwan: Springer, 2004, pp.
120–134.

[6] C. A. R. Hoare,Communicating Sequential Processes. Prentice-Hall,
1985.

[7] R. D. Nicola and M. C. B. Hennessy, “Testing equivalences for
processes,”Theoretical Comput. Sci., vol. 34, no. 1–2, pp. 83–133,
1984.

[8] R. Malik, “On the set of certain conflicts of a given language,” inProc.
7th Int. Workshop on Discrete Event Systems, WODES ’04, Reims,
France, Sept. 2004, pp. 277–282.

[9] R. Milner, Communication and Concurrency. Prentice-Hall, 1989.
[10] R. Paige and R. E. Tarjan, “Three partition refinement algorithms,”

SIAM J. Comput., vol. 16, no. 6, pp. 973–989, 1987.
[11] S. Westin, “Fast decision of strong bisimulation equivalence using

partition refinement,” Licentiate thesis, Dept. of Computer Sciences,
Chalmers University of Technology, 1989.

[12] J. Eloranta, “Minimizing the number of transitions with respect to
observation equivalence,”BIT, vol. 31, no. 4, pp. 576–590, 1991.

[13] J. O. Moody and P. J. Antsaklis,Supervisory Control of Discrete Event
Systems Using Petri Nets. Kluwer Academic Publishers, 1998.

[14] C. Lewerentz and T. Lindner,Formal Development of Reactive
Systems—Case Study Production Cell, ser. LNCS. Springer, 1995,
vol. 891, pp. 7–19.

[15] A. Lötzbeyer and R. M̈uhlfeld, “Task description of a
flexible production cell with real time properties,” FZI,
Karlsruhe, Germany, Tech. Rep., 1996. [Online]. Available:
http://www.fzi.de/divisions/prost/projects/korsys/korsys.html

[16] F. Lin and W. M. Wonham, “Decentralized control and coordination of
discrete-event systems with partial observation,”IEEE Trans. Automat.
Contr., vol. 35, no. 12, pp. 1330–1337, Dec. 1990.

[17] R. J. Leduc, “Hierarchical interface-based supervisory control,” Ph.D.
dissertation, Dept. of Electrical and Computer Engineering, University
of Toronto, Canada, 2002.

[18] ——, “PLC implementation of a DES supervisor for a manufacturing
testbed: An implementation perspective,” Master’s thesis, University
of Toronto, Dept. of Computer and Electrical Engineering, Toronto,
Canada, 1996.

[19] P. Malik, “From supervisory control to nonblocking controllers for
discrete event systems,” Ph.D. dissertation, Dept. of Computer Science,
University of Kaiserslautern, Kaiserslautern, 2003.

[20] E. M. Clarke, D. E. Long, and K. L. McMillan, “Compositional model
checking,” inProceedings of the Fourth Annual Symposium on Logic
in computer science. Piscataway, NJ, USA: IEEE Press, 1989, pp.
353–362.

[21] W. M. Wonham, “Notes on control of discrete event systems,” Dept.
of Electrical and Computer Engineering, University of Toronto, Tech.
Rep., 1999.


