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Abstract— This paper proposes a modular approach to ver- the DES software tooBupremica [?]. After introducing
ifying whether a large discrete event system is nonconflict- the required notation in section Il, this paper explains the
ing. The new approach avoids computing the synchronous yaqction procedures for conflict equivalence in section 11,
product of a large set of finite-state machines. Instead, the - . - .
synchronous product is computed gradually, and intermediate A_fterwards, section I\_/ describes the algorithm, and section V
results are simplified using conflict-preserving abstractions discusses the experimental results on a set of complex ex-

based on process-algebraic results about fair testing. Heuristics amples. Finally, section VI gives some concluding remarks.
are used to choose between different possible abstractions.

Experimental results show that the method is applicable to Il. PRELIMINARIES

finite-state machine models of industrial scale and brings

considerable improvements in performance over other methods. A- Events and Languages
Event sequences and languages are a simple means to de-
scribe discrete event system behaviours. Their basic building

I. INTRODUCTION . o
i ) blocks areevents which are taken from a finitalphabet
Supervisory control theorfor discrete event systems [1], In addition, two special events are also used, sflent

[2] is_a general fram_ework for the design of SPF’E‘“"SOVS _foéventr and thetermination even. These are never included
reactive systems. Given a model of the physically possm\ﬂ an alphabetX: unless mentioned explicitly. For this,
behaviour of the system to be controlled, thiant, and a — > U{r} ands, ., = SU{r,w} are used

specificatiorof the desired system behaviour, the framework .. denotes the set of all finitestrings of the form
provides methods and algorithms to obtainsapervisor 0109 - -0y, Of events froms, including theempty stringe.

that ensures that the specification is always fulfilled. Twg subsetC C ¥ is called danguage Thecatenationof two

properties are commonly expected frqm such a Sup_erViS%rfrinQSS,t € ¥* is written asst. Languages and alphabets
it should becontrollable and nonblocking Controllability can also be catenatedy = {so | s € £,0 € 3.

typically captures safety requirements, while nonblocking is
a special kind of liveness property. B. Nondeterministic Automata

Since supervisory control is used for complex, safety- System behaviours are modelled using finite-state au-

critical systems, i.t i_s crucial to verify aut(_)matically thatt.omata. Typically, system models are deterministic, but ab-
the supervisor satisfies the required properties. Yet, all basg action during the verification process may result in non-
algorithms for verification suffer greatly from the SO'Ca”eddeterminism

statg-?c,pace ex_pl_05|on probleﬁﬁ,he problem IS causgd_ by Definition 1: A (nondeterministic)finite-state automaton
explicitly describing the system’s state space imanolithic is a 5-tupleG = (Q, %, —, Qi, Q™) whereQ is a finite set
fashion_. Typically, the mode_l of the system, includi_ng themc states 3 is a fini'ée éet (’)fev’entsﬂ COx%, xQis the
supervisor, ismodular, and this feature can be exploited 0gtate transition relation Q' C Q is the (nonempty) set of
perform verification more efficiently. For controllability, ef- =

ficient soluti ted in 131, 141 whil blocki initial states andQ™ C @ is the set ofmarked states W
iclent solutions are presented in [3], [4], while nonblocking The transition relation is written in infix notation = ¢,
has long remained a challenge.

; . .. .and is extended to strings M* by lettin
To enable modular reasoning about nonblocking, it is gs i, by 9

convenient to have a means of expressing equivalence be- p =,  forallpeQ ; Q)
tween automata in this respect. Such an equivalerard]ict
equivalencewas presented in [5]. Essentially, two automata
are conflict equivalent if they show the same behaviour witFor state set€);, Q. C @, the notationQ; > Q. denotes
respect to conflicts together with any other automaton.  the existence ofy; € Q; and¢; € Q. such thatg, = ¢,.
This paper proposes a set of reduction procedures thatirthermore,p — ¢ denotes the existence of a stringe
can simplify finite-state automata in a way that preserves* such thatp > ¢, andp - denotes the existence of a
conflict equivalence. Using these reductions, the authossateq such thatp = ¢. A stateq is calledreachablein an
have implemented an algorithm for determining whetheautomatonG if Q¢ — g¢; if this holds for allg € Q, G is
large models of discrete events systems are nonblocking ¢galledaccessiblelf G is not accessible, it can easily be made

pZyq if p>randr > g forsomere@ . (2)
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so by removing all states that are not reachable. ThereforByo automata’; and G, are nonconflictingif G, || G is
in the following all automata are assumed to be accessibl@onblocking. |
For brevity,p = ¢, with s = 5105 ... 0,,, is introduced to To enable reasoning about conflicts in a modular way, a
denote the existence of a stringe 7*o17*07* - - - 7*0,,7*  notion of conflict equivalencef automata has been devel-
such thatp N g. That is,= denotes a path witexactlythe oped in [5]. The main results are recalled in the following.
events ins while = denotes a path with an arbitrary numberAccording to process-algebraic testing theory, two automata
of 7 shuffled with the events iB. Moreover,G is said to are considered as equivalent if they both respond in the same
accepta strings € * if Q' =, and for a state € , the way to all tests of a certain type [7]. Foonflict equivalence
set ofactive eventss defined asi(¢) = {oc € X |¢ 3} a testis an arbitrary automaton, and tlresponseis the
Automata use the s&™ of marked states to indicate the observation whether the test composed with the automaton
possibility of successful termination. In order to translatén question is nonblocking or not.
this into an event-based representation, every automaton isDefinition 6: Two automataG; and G, are said to be
assumed to have a terminal states Q \ Q™, which has no conflict equivalentGy ~on¢ G, if, for any testT’, Gy || T
outgoing transitions, and the transition relation is extended nonblocking if and only ifG, || T is nonblocking. W

to a relation— C @ x X, ,, x @ by adding transitions The properties of conflict equivalence are studied in [5]:
o m . it suffices to consider deterministic tests in definition 6,
¢" — L foreach ¢" <@ () and conflict equivalence is a congruence with respect to

This construction makes it possible to represent terminatigiy"chronous composition and hiding. Furthermore, the fol-

by means of the termination eventonly which, if it occurs, 10Wing algebraic characterisation is given.
is always the last event of any execution. Definition 7: Let G be an automaton with alphabgtand

Definition 2: An automatonG = (Q,, —,Q, Q™) is let s € A Iapguagec_ C E.]*w is called anon-
deterministicf (' is a singletonp % ¢ andp % ¢» always conflicting completionfor s in G, if for every testT =

implies ¢1 = o, and— contains nor-transitions. m <Q ¥, —, Q% Q™) such thatG andT are nonconflicting and
When two automata are running in parallel, lock-stef2’ = ¢, there exists a completionc C such that SO
Synchr0n|sat|0n in the Sty|e of [6] is used. Definition 8: The nonconfllctlng Completlon semantio$

Definition 3: Let G; = (Q1,%1, —1,Q%, Q") andG, =  an automatortz is
(Q2,%2,—2,Q%,Q%") be two automata. Theynchronous CC(G) = {(s,C) € ¥* x P(X*w) | C is a nonconflicting
compositionof G; and G5 is completion fors in G } . u

G1]|Gy = <Q1XQ2a21U22’*7Q3XQ§’QT><Q?> (4) The interpretation of a paifs,C) in the nonconflicting
completion semantics is that a test acceptimyustaccept at

where least one of the completions (hafter s to be nonconflicting
(p,q) = (0 ') if o€ (Z1NDe) U{w}, p %19/, ¢ 2 ¢/;  With the automaton. The following result from [5] states
(p,q) > (0, q) if oe (21\S2)U{r}, p 217 that two .au'tomata are .confllct qulvaleqt |f and only if their
(p,q) % (p,q) if o€ (E\E)ULTY, ¢ Zo . - nonconflicting completion semantics coincide.

Theorem 1 (from [5]):Let G; and G2 be two automata.
In synchronous composition, shared events (@pdnust ThenG; ~c.ur G if and only if CC(G,) = CC(Gs). O
be executed by all automata synchronously, while other Given an automator, in general there is no unique
events (includingr) are executed independently. minimal automaton that is conflict equivalent t@. For
Hiding is the act of transforming an eveatinto a silent example, Fig. 1 shows three autométa, G, and G5 that
7 event. This is a simple way of abstraction that in generadre all conflict equivalent and minimal, both in the number of
introduces nondeterminism. states and in the number of transitions, but not isomorphic.
Definition 4: Let G = (Q,%,—,Q", Q™) and Y C X. To see that these automata are conflict equivalent, note
The result ohiding Y from G, written G\Y, is the automaton that CC(G;) = CC(G2) = CC(G3) = {(&, aaa*w),
obtained fromG' by replacing each transitiop - ¢ with  (a, aa*w), (af,w), (aao*, a*w), (aaB*,F*w)}, if only
v € Y by p = ¢, and removing the events ifi from >. B  the minimal nonconflicting completions are given and with
. a slight abuse of notation since the first element of every
C. Conflicts pair really should be a string. By Theorem 1, these three
In supervisory control theory, an important property for arautomata are all conflict equivalent.
automaton is to be able to, from all reachable states, reachTo see that each of the three automata is minimal in
some marked state. If an automaton satisfies this propertytife number of states, another result from [5] is needed:
is callednonblocking otherwiseblocking When more than nonblocking automataconflict equivalence implies failures
one automaton is involved, it also is common to use the termgjuivalence [6]. Therefore, any automaton that is conflict
nonconflictingand conflicting respectively. _ equivalent to Gy, e.g., must also be failures equivalent
Definition 5: An automatonG = (Q,¥,—,Q*,Q™) is  to G;. The failure pairs ofG; are (¢,{3,w}), (o, {3,w}),
nonblockingf, for every state; € @ and every string € X*  (aaa*, {8}), (aaf*, {a}), and (a3, {a, 3}), where only
such that)? = ¢, there exists a stringe ©* such thay % maximal refusals have been given—all subsets of these are
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Fig. 1. Example of the nonuniqueness of minimal conflict equivalent systems.

also refusals. For two automata to be failures equivalent they Definition 10: Let G = (Q, %, —, Q% Q™) be an au-
must possess exactly the same failures. Then there must bécsthaton. The binary relatior;,. C @ x @ is defined such
least one distinct state per maximal refusal set. By examinintbat g ~i,,. ¢’ if

the failures, four different maximal refusal sets are found:
{B,w}, {B}, {a}, and{«, 3}. However, four states are not
enough to produce the failures above. The existence of a
refusal set fora3 suggests that after accepting despite ~inc Can be shown to be an equivalence relation. This
the refusal se{3,w}, the automaton must also have a stateelation equates states that in some sense are always reached
acceptingg. This indicates that apart from a state refusingn the same way. This additional requirement suffices to
{B,w}, there must also be a state with maximal refusatstablish a converse of Lemma 1.

set either) or {w}. Moreover, if there is only one state Lemma 2:LetG = (Q,%, —,Q%, Q™) be an automaton,
representing the refusal séf5,w}, then there must be a and let~ C @Q x @ be an equivalence relation such that
selfloop ona in the initial state. This, however, would require~ C ~y,.. Then, for every path

{B,w} to be a refusal set also @fa: which it is not. This

QS>q = Q=>¢;
VpeQ , Voelip>qg < p>¢ . |

~ 01 ~ O¢ On ~
proves that there must be at least six states in an automaton ©=0= - F e (8)
that is conflict equivalent to the automata in Fig. 1. in G/ ~ there exist stateg; € ¢;, fori =0,...,n, such that
D. Equivalence Relations w3aB3.. By, 9)
An equivalence relatioris a binary relation that is re- ;, ~ 0O

flexive, symmetric and transitive. Given an equivalence rela- THe proof (by induction om) is left out for lack of space.
tion ~ on a set), the equivalence class gfe @ with respect

to ~, denoted(q], is defined adq] = {¢' € Q | ¢ ~ ¢ }. Ill. REDUCTION RULES
An equivalence relation on a s@tpartitionsQ into the set  To exploit the conflict equivalence concept for verifica-
of its equivalence class&g/ ~ = { [q] | ¢ € Q }. For subsets tion purposes, a method for obtaining a simplified, conflict
Q' of Q, Q"/~ may cover more tha’. The following equivalent representation of a given automaton is needed. No
definition is standard. _ algorithm is known that, given a nondeterministic automaton,
Definition 9: Let G = (Q, %, —,Q",Q™) be an automa- produces a smallest possible conflict equivalent automaton,
ton and let~ C @ x @ be an equivalence relation. The neither with respect to the number of states nor transitions.
abstractionG;/ ~ of G with with respect to~ is Such minimality is not necessary for the purpose of verifica-
_ i m tion. Instead it is preferred from a usable reduction algorithm
Gl = (@~ 2= [0, QY Q7 ) ©®) to reduce the number of states and transitions as much as
where— /~ = {[p] Z[q] |p = q}-. B possible without requiring too much computational effort.
It follows immediately from this definition that every path This section discusses some possible methods.
in the original automaton also occurs in its abstract versio& Observation Equivalence
Lemma 1l:Let G = (@, %, —,Q", @™) be an automaton "™
and let~ C Q x Q be an equivalence relation. For every Observation equivalengceor weak bisimulation[9], is a

path strong equivalence of nondeterministic automata that consid-
w3aB... g, (6) ers only states with the same structure of future behaviour
as equivalent.
in G it holds that Definition 11: An equivalence relation- is said to be a
0] 2 (] B3 ... %3 [qn] @) weak bisimulationif p ~ ¢ implies that for anys € ¥*
in G/ ~. O if p=p’ then3q’ such thaty = ¢ andp’ ~ ¢ ;

. el S
Conversely, it cannot be guaranteed that a path in the if ¢ = ¢ then3p’ such thap = p’ andp’ ~ ¢" .

abstract automaton also occurs in the original automatomyo automatas; and G- are observation equivalent if there
This is onIy the case if additional conditions are satisfied. exists a weak bisimulation such that for each initial statg



of GGy there exists an initial statg of G such thaty; ~ ¢o, (=) Assume thatl" | G is nonblocking. Lets € ¥* be
and vice versa. B a string accepted b such thatQ’/~ = G in G/~. By

It is established in [5] that observation equivalent automataemma 2, there existg € @ such thaty € ¢ andQ* = ¢
are also conflict equivalent. Thus, it is possible to use existing G. SinceT || G is nonblocking there exists € ¥* such
algorithms [10]-[12] for observation equivalence straighthat stw is accepted by” andg £ in G. By Lemma 1, this
away for minimisation with respect to conflict equivalencejmpliesj = [q] £ in G/ ~. Since this holds for all reachable
This alone gives a significant reduction of the state spacestates inG'/ ~, it follows thatT || G/ ~ is nonblocking.

The authors’ implementation for this reduction method is () AssumeT || G/ ~ is nonblocking. Lets € &* be a

based on [11]. This algorithm is a generalised version %ftring accepted by such thatQ’ = ¢ in G. By Lemma 1,
the algorithm in [10] and is claimed to have computationak ho|ds thatQ?/ ~ = [q] in G/ ~. Then, sincel’ || G/ ~ is

complexityO(mlog n), wherem is the number of transitions nonblocking, there existse =* such thatg] % and stw is

andn is the number of states. However, since the algorithrg ;
. . : - . i ccepted byl". By Lemma 2, there existg € [¢] such that
in [11] is designed for bisimulation equivalence, the automa-, wp JI'. By % € ld]

H / _ !
ton has to be augmented so that foral 3, p % ¢ always £~ N G Note thatg ~ ¢’ and thereforesi(g) = (g 2
- o . Thus, the first event ofw, sayo, is active in bothy andq’.
impliesp — ¢. Thusm may be very large—in the order of

n?k wherek is the number of events in the alphabet. Also, o is acce!oted byl after s Smce It is _the ﬂrstgevent
of t. If o = w, it follows that ¢ =. Otherwise letg = p.

B. Conflict Equivalence Preserving Reductions From Lemma 1 it follows thafg] = [p] in G/ ~. Now, since

While algorithms for observation equivalence are wellZ’ || G/~ is nonblocking there exists stringe X* such that
established, they only achieve a limited amount of reductiori] £ andsouw is accepted by". By Lemma 2, there exists
There are many cases where two automata are confligt € [p] such thatp’ = in G. Now, sincep ~ p/, by (10),
equivalent but not observation equivalent. Therefore, the=- p implies thatg = p/, which means that there is a path
authors have worked out a setrefduction rulesthat can be @° = ¢ = p’ = in G. Since this holds for all reachable
used to reduce the state space of an automaton preserviigtes inG, it is clear that7' || G is nonblocking. u
conflict equivalence. These rules are applied locally to a few 2) Silent Continuation RuleTwo states that are equiva-
states of an automaton with particular structure and can #gnt with respect tov;,. and from whichstablestates, i.e.,
applied repeatedly to any matching parts of an automatonStates without outgoing transitions, can be reached via a

The following rules try to identifyconflict equivalent nonemptysequence of transitions, are conflict equivalent.

statesin an automaton, i.e., states that represent future

behaviours that cannot be distinguished by conflict equiva- G \ Ogt, ;‘1 G 9,:1\

lence. Such conflict equivalent states can be merged without Tt

affecting possible conflicts with other components. a t E \
1) Active Events RuleTwo states that are equivalent with I

respect to~;,. and have the same active events are conflict a | _ ) b "3 al _ 5 b (‘3

equivalent. _ - . I
Fig. 3. Example of application of the Silent Continuation Rule.

G 9 0 G a : : -—
LY 0 Example 2:In Fig. 3, state$) and1 in G are both “initial”
la since they both can be reached silently from the initial siate
N This is enough to satisfy;,,. in this case since neither state

5 v is reachable by any event other tharMoreover, both states
b can, by executing at least one silent transition, reach 8tate
i which has no outgoing- transitions. Thus, by the Silent
8 Continuation Rule, statésandl in G are conflict equivalent
Fig. 2. Example of application of the Active Events Rule. and can be collapsed into staid as shown inG’. ]
Theorem 3:Let G = (Q, %, —,Q", Q™) be an automa-
Example 1:In Fig. 2, stated and2 in G have incoming ton, and let~ C ) x Q be an equivalence relation such that
transitions from0 associated withh and from1 associated ~ C ~j.., and for allp, ¢ € Q such thatp ~ ¢ it holds that
with 3, which establishes-;,.. Furthermore, they both have eitherp = ¢ or there exist stable states ¢’ € @ such that
the same active evens. Thus, the Active Events Rule canp = p’ andq = ¢'. ThenG ~ont G/ ~. O
be applied, states and2 are conflict equivalent and can be Proof: It suffices to show for any deterministic test
collapsed into a single state2 as shown inG’. B that, if T'|| G is nonblocking, so i9"|| G/ ~, and vice versa.
Theorem 2:Let G = (Q, %, —,Q%, Q™) be an automa- (=) Same as in the proof for Theorem 2.
ton, and let~ C Q x Q be an equivalence relation such that (<) Assume thaf’|| G/ ~ is nonblocking. Lets € ¥* be
~ C ~ine and for allp,q € Q such thatp ~ ¢ it holds that a string accepted by such thatQ? = ¢ in G. By Lemma 1
Y(p) = Z(q). ThenG ~cont G/ ~. O it holds thatQ?/ ~ = [¢] in G/ ~. Consider two cases.
Proof: It suffices to show for any deterministic teBt (1) [g] = {q}. SinceT || G/~ is nonblocking, from[q]
that, if T'|| G is nonblocking, so if’|| G/ ~, and vice versa. there exists a string € £* such thatstw is accepted by’




and [q] % in G/ ~. By Lemma 2 and since is the only Eventually, this procedure simplifies the system to a single
state in[g], this means; £ in G. automaton which does not share any events with other
() [q] # {q}, i.e., there are at least two statgsq, € [¢]. components. Therefore, all events can be hidden from this
Theng, ~ ¢ for q1 # ¢z, so forq € [q] there exists a stable final automaton and it can be simplified in such a way that it
statep such that; = p. By Lemma 1, this impliegg] = [p].  Is trivial to determine whether it is blocking or nonblocking.
Sincep has no outgoing-transitions, it is not--equivalent Due to the congruence results for conflict equivalence [5],
to any other state and thdg] = {p}. That is, from every the final automaton is guaranteed to be nonblocking if and
case (2) situation, a case (1) situation can be reachell ~ only if the original system (10) is nonblocking. Clearly, if
3) Certain Conflicts Rulein an automatortz, all statesy some intermediate automaton turns out to have no marked
such thatQ? > ¢ and (s, () € CC(G) can be replaced by a states then verification is also done—the end result cannot
single blocking state that has no outgoing transitions. have any marked states either, so the system is blocking.
This method has been introduced in [8], where a proof The above method leaves many choices for the order in
for its soundness can be found. Stringss ¥* such that which the automata are composed and simplified. It is not
(s,0) € CC(G) are calledcertain conflictsof G, because it immediately clear how good performance can be achieved,
is known that any test’ running in parallel withG that can but @ reasonable strategy is to attempt to compose automata

accept such a string must be conflicting withG. that will yield as many local events as possible. In some
cases, the best strategy may be to construct small subsystems
G a0 G’ ) first, while in other cases it may be better to add automata
s one by one to a single growing subsystem.
a &: a. \: For evaluation, a number of different heuristics have been
1.2 2 1.2 L2 examined. They all follow the same two-step approach to

select which automata to compose. In the first step, some
candidate sets of automata are computed to be used in the
‘ " next step. This to avoid considering all combinations. The
: 5 s _ following heuristics are implemented for the first step.
Fig. 4. Example of application of the Certain Conflicts Rule. i+ - candidates are all automata pairs containing the au-
tomaton with the fewest transitions.
maxS. Candidates are all automata pairs containing the

Example 3:In Fig. 4, since the string3 may lead to the
blocking states, any test that is to avoid blocking must avoid ;
automaton with the most states.

accept!ngﬁ_ﬂ. In this case, this implies that alre_zady afFermustL. For each event there is a candidate which is the set
accepting justs, the automaton reaches a certain conflicts : .
of automata using that particular event.

situation. Therefor&s ~.onr G'. ) ] ) )
The second step tries to identify the best candidate. The

IV. MODULAR NONBLOCKING VERIFICATION implemented heuristics attempt to keep the number of states
This section describes a method to check whether a largf€r synchronous composition, hiding and simplification
system of automatdi;,Gs,...,G, is conflicting or not. &S small as possible. A prediction is made based on the
Instead of building the synchronous product assumption that a large number of shareccanmon events
leads to a small synchronous product, and that a large number
G| Gal || Gn (10)  of local events (that can be hidden) is likely to yield many

. . . opportunities to apply the reduction procedures.
conflict equivalent reductions can be used to replace an au[-)p bRl P

tomatonG; by a simpler versioii?,. As long as; ~eont & maxL. Choose the candidate with the highest proportion of
it readily follows from Def. 6 that the simplified system local events. , _ . .
is nonblocking if and only if the original is. In this way, maxC. Choose the candidate with the highest proportion of

all automata for which conflict equivalent reductions are = Common events. _
possible can be replaced before any synchronous product™nS- Choose the candidate for which the product of the
computed. Since the state space of the synchronous product NUMber of states in the automata is smallest.
grows exponentially, even small savings in the number df both steps, if one heuristic fails to distinguish two top
states at this early stage can have considerable impact lagandidates, another heuristic is used to make a decision. The
When no more reductions are possible, the synchronog@gder of priority in this regard is the order in which they
product is computed stepwise and with intermediate redugre presented above per default, but with a particular chosen
tions. That is, first a subset of the automata in the system dneuristic placed first in different experiments.
replaced by their synchronous produét Typically at this
stage, there will be some s§tof events that arecal—used
only by H and by no other automaton in the system. If The algorithm has been implemented in the DES software
so, these events can be hidden and the autom&tonY  tool Supremica [?] and tested on a number of examples
replacest. Finally, an attempt to simplify this intermediate found in the literature. The examples include complex indus-
result is made before composing a new set of automata. trial models and case studies taken from various application

V. EXPERIMENTAL RESULTS



areas such as manufacturing systems, communication proto- ing number of users256arbiter , 512arbiter
cols, and automotive body-electronics. In addition, a few very ~ 1024arbiter

large examples with regular structure have been analysed. Transfer line. Example from [21], with a parameterised
the following, all examples considered are listed, followed  number of serially connected celld28transfer
by an evaluation of the experimental data. 256transfer , 512transfer

A. Industrial Models C. Evaluation

The following list shows the industrial examples analysed, The results of all experiments can be found in Table .
together with the names of corresponding automata models}€ table shows the approximate size of the state space of
also referred to in Table I. the problems, the largest number of states encountered in
Car Central Locking System. A large DES model of the a single automqtgn during 'verlflcat|on anq.alsg the largest

central locking system of a BMW car, taken fromnumber of transitions, the time for the verification, gnd the
the KORSYS project. verriegel3 verrie’geISb result. Furthermore, the table shows the number (_)f times the
verriegeld verriegeldb ' ' state space could be reduced (by one state) with the help
Automated Guidec;I Vehicle Coordination. Based on the of a certain rule. The “Other” co!umn_ represents conflict
Petri net model in [13, page 119]. To make the eX_equwalence rules not presente_d in th!s paper, and' “OES”
' i and “OET” represent observation equivalent reductions of

ample more interesting, there is also a variant with an o .

» ; . . States and transitions, respectively. The last columns tell
additional zone added at the input station, which m"Jlkev‘f‘/hich heuristics was used in the experiment. The heuristics
the system blockingAG\, AGVh P .

Production Cell for Mounting Frames. A model of a pro- minT and maxL have been used unless their performance

- . . was much worse than some other heuristic.
duction cell in a metal-processing plant [14elle All experiments were conducted on a standard deskto
Flexible Production Cell. Another production cell, based P P

on [15]. fechnik . ftechnik _nocoll PC with a 2.67 GHz processor and 512 MB of RAM. Most

. systems can be checked for nonblocking in a few seconds,
Intertwined Product Cycles. Two types of products are °. : .
. . without constructing automata with more than a few thou-
produced using two machines. The products must move . )
. ) . : .~ sand states and transitions. For the parameterised models, the
between the machines twice and in opposite direc: . . .
ime and memory consumption grows linearly in the number

tions [16].IPC.
. . . of subsystems. These results clearly show that modular
Simple/Parallel Manufacturing System. Two highly mod- e . .
verification successfully avoids state-space explosion to a

ular models of manufacturing systems [13MS PMS great extent,

Tralntggztt.)ed. A model of a toy railroad system [18]. _For most examp_les: _observation .equivalence.minimis_at?on
Car Window Control System A model of the behaviour of ?r:;/eersési?neg Toossfeslgtﬂgltc?:t tggdgigz]&saiﬁguﬁr’tﬁte 1S
Some pafts OT the electronics in a car [16ig _bmw conflict equivalence rules can be applied, while for the
Atelier Inter- établissement de Productique.A very com- losely related exampleMSthe trend is the opposite. For
plex model of an automated manufacturing system [17gxamples that come in both a blocking and nonblbcking
AlP. variant, the blocking variant often verifies much faster. This
is due to early termination when an intermediate result has
N ) no marked states.

In addition, some models of more academic flavour have Regarding the instantiated examples, the time consumption
been analysed. They are instantiations of a number of idenfjg the size of the intermediates suggests that the computa-
cal subsystems connected to each other in a structured Wayna| complexity is close to linear. The small intermediate
Due to their regular structure, these models can easily Bgodels indicate that essentially the same problem is solved
scaled up to arbitrary size. over and over a number of times that is linear in the number

Since the subsystems are loosely connected, the st@fe automata. In the philosopher examples, the heuristic
spaces of these models are enormous—truly exponential #inT /maxL fails to find this symmetry which is why another
the number of subsystems—whereas the “real” complexity @frategy has been used. Presumably, a closer look at this
the problem is small since the problem essentially is the sara@ample may reveal another reduction rule.
for any number of instantiations. However, the verification
algorithm does not exploit symmetry or the fact that it is VI. CONCLUSIONS

solving a large number of identical problems: each subsystema new method to check for large modular discrete event
is treated as if it was unique. systems whether they are nonblocking has been presented.
Dining Philosophers. This is the classical deadlocking (andThe method tries to reduce automata as much as possible
blocking) example, here with a large number of philosobefore synchronous composition is computed. Experimental
phers.256philo , 512philo , 1024philo . results show that the method can cope extremely well with
Arbiter. A model of a tree arbiter used to control access to wery large industrial examples and brings considerable im-
shared resource [20]. It can be parameterised for a vargrovements over standard state-exploration algorithms.

B. Parameterised Models



TABLE |

EXPERIMENTAL RESULTS FOR NONBLOCKING VERIFICATION

Example Size Max Time | Block Reduction Heuristic
Name Aut States Trans AE SC CC Other OES OET | Step 1 Step 2
AGV 16 2.6-107 413 1272 | 0.50s | false 39 19 0 131 91 1316 minT maxL
AGVb 17 2.3-107 255 778 0.35s | true 41 36 236 71 21  695| minT maxL
verriegel3 53 9.7 - 108 1239 5261 | 3.4s | false 88 80 0 115 581 2153 minT maxL
verriegel3b 52 1.3-10° 11 46 0.12s | true 0 0 3 1 2 8 minT maxL
verriegel4 65 4.5.10%0 1897 8353 | 5.0s | false | 130 125 0 201 963 3754 minT maxL
verriegel4b 64 6.3-1010 11 46 | 0.13s| true 0o 0 3 1 2 8 minT maxL
big _bmw 31 3.1-107 187 1474 | 0.91s| false 0 0 0 0 246 172 | minT maxL
SMS 11 312 17 22 0.24s | false 0 0 0 0 30 3 minT maxL
PMS 38 5.7-108 85 382 | 0.39s| false 18 8 0 63 6 470 | minT maxL
IPC 12 20592 256 985 | 0.41s| true 26 17 65 39 165 608| minT maxL
ftechnik 36 1.2-108 66 698 | 0.92s| true 4 11 78 2 173 117 | minT maxL
ftechnik  _nocoll 42 1.2-108 135 2434 | 0.35s | true 10 15 129 4 97 91 | mustL minS
tbed 84 13680 1800 9313 | 12s true 0 6 2219 43 1018 457 | mustL minS
fzelle 67 3.0- 101 810 3169 | 54s | false | 106 176 4 280 847 3500 mustL minS
AIP 117 1.0-10° 1050 4200 | 6.2s | false | 135 150 10 159 1090 4296 mustL minS
256philo 512 | 5.4-10168 35 86 6.6s true 512 1 0 1535 3548 9769 maxS maxL
512philo 1024 | 2.9-10337 35 86 17s true 1024 1 0 3071 7132 19599 maxS maxL
1024philo 2048 | 8.5-10674 35 86 41s true | 2048 1 0 6143 14300 39260 maxS maxL
128transfer 640 | 1.6-10%31 24 67 57s | false | 381 3 0 894 254 2055 minT maxL
256transfer 1280 | 2.4-10%62 24 67 29s | false | 765 3 0 1790 510 4103 minT maxL
512transfer 2560 | 5.8-109%4 24 67 33m | false | 1533 3 0 3582 1022 8199 minT maxL
128arbiter 637 3.9.10158 318 941 14s false | 1205 1273 1482 1478 6226 6985 minT maxL
256arbiter 1277 | 3.8-10684 318 941 32s false | 2420 2593 3083 2987 13097 14243 minT maxL
512arbiter 2557 | 5.7-10%4539 318 941 69s false | 4848 5217 6211 5998 26581 28671 minT maxL

There are several ways that the modular algorithm cans]
be improved. Different heuristics and alternative reduction
methods need to be studied. The result of the simplificatior[ag]
also depends on the order in which the reduction rules are]

applied. In all the experiments conducted this order has been
the same but clearly this is something to consider for furth

11
1]

improving the performance of the algorithm.

Moreover, it is conceivable to use a coarser equivalenc?]
the very general conflict equivalence used here consalers 13
possible contextdbetter reduction is possible if more aspects
of the current contexbf the system under verification can [14]
be taken into account.

(1]

(2]

(3]

(4]

(5]

(6]
(7]

[15]
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