Online and offline heuristics for inferring hierarchies of repetitions in sequences

Craig G. Nevill-Manning*and Ian H. Witten**

*Department of Computer Science, Rutgers University, USA; nevill@cs.rutgers.edu

**Department of Computer Science, Waikato University, Hamilton, New Zealand; ihw@uwaikato.ac.nz

Abstract. Hierarchical dictionary-based compression schemes form a grammar for a text by replacing each repeated
string with a production rule. While such schemes usually operate online, making a replacement as soon as repetition
is detected, offline operation permits greater freedom in choosing the order of replacement. In this paper, we compare
the online method with three offline heuristics for selecting the next substring to replace: longest string first, most
common string first, and the string that minimizes the size of the grammar locally. Surprisingly, two of the offline
techniques, like the online method, run in time linear in the size of the input. We evaluate each technique on artificial
and natural sequences. In general, the locally-most-compressive heuristic performs best, followed by most frequent,
the online technique, and, lagging by some distance, the longest-first technique.

Key Words. dictionary compression, hierarchical compression, grammar inference

1 Introduction

Compression can be gained by taking advantage of any struc-
ture that can be inferred from an input sequence. Most text
compression techniques can be placed in one of two class-
es: symbolwise methods where the structure that is inferred
is a set of conditional probability distributions, and dictionary
methods where the structure is a set of substrings and com-
pression is achieved by replacing fragments of text by an in-
dex into a dictionary. This paper adopts the latter approach,
but extends it to dictionaries that have non-trivial hierarchi-
cal structure. The result is a decomposition of the input string
into what is, in effect, a parse tree. The process of coding
such a hierarchy is relatively routine (e.g. Cameron, 1988)—
although it can become tricky when done adaptively. Rather
than reviewing coding schemes for hierarchies, this paper s-
tudies algorithms that infer hierarchical structure from an in-
put string.

Dictionary-based compression methods capitalize on repeti-
tions. In simplest form, this involves replacing subsequent
occurrences of a substring with references to the first instance.
There are several constraints that may affect this process, the
most important for our purposes being online vs offline, fre-
quency vs length, and hierarchical vs flat representations.

“Online” algorithms process the input stream in a single pass,
and begin to emit compressed output long before they have
seen all the input. Historically, virtually all compression algo-
rithms have been online, because main memory has until re-
cently been the principal limiting factor on large-scale appli-
cation of string processing algorithms for compression. How-
ever, hardware developments have begun to relax this con-
straint. Offline algorithms can examine the input in a more
considered fashion, and this raises the question of whether to
seek frequent repetitions or long repetitions—or some interme-
diate combination of frequency and length. Finally, repetitive
structure that is sought in the input may be flat or hierarchi-
cal; in the latter case it may be a general hierarchy or restrict-
ed to a more trivial tail-recursive one.

This paper brings together recently-developed regimes for in-
ferring hierarchies of repetitions in sequences and compares
them on a level footing. We are concerned mainly with algo-
rithms that operate in time that is linear in the length of the
input sequence. This is a severe restriction: apart from stan-
dard compression algorithms that produce non-hierarchical
structure (e.g. Ziv and Lempel, 1977) and tail-recursive hier-
archical structure (e.g. Ziv and Lempel, 1978), no linear-time
algorithms were known for detecting hierarchical repetition
in sequences until recently.

But there are now three linear-time algorithms: an online
method that infers a hierarchy of repetitions (Nevill-Manning
and Witten, 1997); one that gives preference to frequency
by introducing a rewrite rule for the most frequent pair of
adjacent symbols first, continuing with the next most fre-
quent and so on (Larsson and Moffat, 1999); and one that
gives preference to length by replacing the longest repeti-
tion first (Bentley and Mcllroy, 1999). Although a straightfor-
ward multi-pass implementation of the third algorithm does
not operate in linear time, a suffix tree version has recent-
ly been developed that does (Nevill-Manning and Farach-
Colton, in preparation). A compromise between the extremes
of preferring frequency to length and vice versa is to prefer
rules that remove the greatest number of symbols from the
string, maximizing the product of frequency and length of
the substring—though whether linear-time algorithms exist
for this is still open.

This paper surveys these methods for hierarchy generation
and compares their effectiveness in generating small hierar-
chies on artificial and natural strings. Section 2 briefly re-
views non-hierarchical dictionary compression. Section 3 dis-
cusses the hierarchical representation and considers how to
define the size of grammars. Section 4 describes SEQUITUR,
an on-line technique, and reviews some salient properties:
linear-time operation and convergence to the entropy of the
source. Then it introduces the three off-line heuristics that
will be studied. Section 5 discusses a simple, uniform, im-
plementation of the techniques that was used for the experi-
ments. Section 6 evaluates the four methods, through smal-

1 illustrative artificial examples, on samples of English text,
and on large artificially-generated strings. Detecting hierar-
chical structures of repetitions is useful in contexts other than
data compression, and Section 7 describes three rather differ-
ent applications of hierarchical inference: hot subpath identi-
fication for program optimization, text-to-speech conversion,
and phrase hierarchies for browsing large text collections.

2 Standard dictionary-based techniques

Two classes of data compression schemes that encompass
most popular practical compression programs both derive
from seminal work by Ziv and Lempel in the mid-70s: we call
these LZ77 and LZ78 schemes. The basic idea of the former
class is to replace substrings of the input string with pointers
to earlier occurrences of the same substring (Ziv and Lempel,
1977). The basic idea of the latter class is to build a dictio-
nary of phrases that occur in the input string, and replace all
phrases by references to dictionary entries, forming each new
phrase by adding a single terminal symbol to an existing dic-
tionary entry (Ziv and Lempel, 1978). (There are variants that
build long dictionary entries faster by concatenating two dic-
tionary entries to form a new one; see Miller and Wegman,
1985.)

Whereas the structure produced by LZ77 is flat, the dictio-
nary generated by LZ78 is hierarchical: each entry (excep-
t for the first few) points to another entry that is one char-
acter shorter. The hierarchy of repetitions is a simple one:
embedding can only occur on the left, producing a structure
that is in effect tail-recursive. Although LZ77 produces a flat
encoding, its pointers can denote substrings in the original
sequence that overlap; LZ78, on the other hand, parses the
string into non-overlapping segments. In this paper we con-
centrate on non-overlapping hierarchical representations. A
hierarchical decomposition of the input string is useful for
many applications other than data compression, including
keyphrase extraction, full-phrase browsing, computing doc-
ument similarity, plagiarism detection, and sequence under-
standing.

Unlike LZ78, the hierarchies we generate are general ones. A
key difference from the schemes we present is that the LZ78
dictionary is formed speculatively: most dictionary entries
are never used. This results in unused code space. In con-
trast, we describe techniques that use every dictionary el-
ement. This incurs a coding overhead of specifying which
substrings belong in the dictionary, which is unnecessary for
LZ78 since it places every qualifying substring into the dic-
tionary.

3 Representing and evaluating hierarchical dictionaries

In order to represent a sequence in which repetitions have
been identified, we use a rewriting system that resembles
a context-free grammar but lacks both recursion and alter-
native expansions of a given non-terminal. That is, a non-
terminal heads at most one rule (no alternative expansions),
and does not appear within the body of a rule it heads (no re-
cursion). This implies that the rewriting system can produce
only one sequence: it is not a generalization of the sequence,
it is simply a re-representation of it. We will nevertheless re-
fer to the rewriting system as a “grammar.” Generally, such

grammars involve fewer symbols than the original sequence:
they eliminate repetition and are therefore an ideal basis for
compression. Moreover, the rewrite rules can also be used for
a number of other interesting applications, as we will see.

We are interested in comparing the size of grammars—that
is, phrase hierarchies—produced by different methods on the
same string. The size should reflect both the number of rules
in the grammar, and the number of symbols on the right-
hand side of the rules. Although these quantities are easy
to compute, it is not clear how to combine them into an over-
all measure. One possibility is to use a partial order: if one
grammar is smaller than another on both counts, it is mani-
festly superior in terms of size. In some applications it is also
desirable to minimize the number of symbols that appear in
the top-level string, since these reflect unstructured elements
that cannot be absorbed into any rule.

Perhaps the best way of comparing the overall size of gram-
mars would be to come up with an adaptive compression
scheme and use their compressed size. However, this would
divert us into areas of grammar coding, whereas we want to
focus on different ways of constructing grammars. Moreover,
while compression may be a reliable measure for large gram-
mars, particular coding decisions would introduce significant
bias for small grammars.

Consequently, to provide a definite and simple measure for
comparison purposes, we define the size of a grammar as
the number of rules plus the number of symbols on their
right-hand sides. Note that the labeling of the rule heads
is completely arbitrary; it need only be consistent with non-
terminals in the rule bodies. By convention, we number or
letter non-terminals consecutively, so that rule heads can be
recreated if the rules are transmitted in a given order. Sum-
ming the number of rules and the number of right-hand-
side symbols effectively adds a count of one for each rule,
which corresponds to a terminator character (or, equivalent-
ly, a length indicator) for each rule. The grammar can cer-
tainly be represented in this number of symbols: left open,
of course, is the size of each individual symbol. Although
terminal symbols are chosen from a predetermined alphabet,
the number of non-terminals grows with the grammar. Treat-
ing all symbols as equivalent is a convenient simplification
which is good enough to allow us to derive interesting and
revealing results.

Rather than dealing with both a sequence and a set of rewrite
rules, we transform the sequence into a grammar rule as a
first step, and then proceed by processing the grammar alone.
The transformation is trivial: the string abcdbc becomes the
grammar S — abcdbc. The fundamental operation on the
grammar is rule creation. This involves creating a new head
and body, and replacing all instances of the body in the rest
of the grammar with the head. For example, adding a new
rule A — bcd to the grammar S — abcdebedfbed results in

S — aAeAfA
A — bed

Suppose that a substring of length W occurs N times in the
input. Creating a new rule for this substring involves replac-
ing W N symbols in the input by one rule of length W, and NV
non-terminals that indicate where in the sequence the sub-

string occurs. According to our convention, the rule costs
W + 1 symbols, so the overall saving is WN — (W + 1+ N),
or

W —1)(N -1) —2. 1)

We will evaluate different tradeoffs using this calculation as
our fundamental measure of compression.

4 Online vs Offline

Compression schemes generally operate online. They pro-
cess the input stream in a single pass, and begin to emit com-
pressed output before they have seen all of the input. This al-
lows them to operate on arbitrary inputs within a fixed mem-
ory bound. However, current memory sizes are beginning
to render such restrictions unnecessary: practical consider-
ations of disk fragmentation and backup tend to constrain
disk files within a reasonable maximum limit, and it is by no
means unknown for a machine to have enough main memory
to hold the largest of files. This permits offline operation.

4.1 Online techniques

Online operation severely restricts the opportunities for de-
tecting repetitions, for there is no alternative to detecting rep-
etitions in a greedy left-to-right manner. It may be possible to
postpone decision-making by retaining a buffer of recent his-
tory and using this to improve the quality of the rules gener-
ated, but at some point the input must be processed greedily
and a commitment made to a particular decomposition—that
is inherent in the nature of (single-pass) online processing.

SEQUITUR is an algorithm that creates a hierarchical dic-
tionary for a given string in a greedy left-to-right fashion
(Nevill-Manning and Witten, 1997). It builds a hierarchy of
phrases by forming a new rule out of existing pairs of symbol-
s, including non-terminal symbols. Rules that become non-
productive—in that they do not yield a net space saving—
can be deleted, and their head replaced by the symbols that
comprise the right-hand side of the deleted rules. This allows
rules that concatenate more than two symbols to be formed.
For example, the string abcdbcabedbe gives rise to the grammar

S+ AA
A — aBdB
B — be

4.1.1 Linear-time operation Surprisingly, SEQUITUR oper-
ates in time that is linear in the size of the input (Nevill-
Manning and Witten, 1998). We present here a new simpli-
fied proof due to Richard Ladner (private communication).
This proof also contains an explanation of how the algorithm
works.

SEQUITUR operates by reading in a new symbol and process-
ing it by appending it to the top-level string and then exam-
ining the last two symbols of that string. It then applies zero
or more of the following three transformations until none ap-
plies anywhere in the grammar. It then repeats the cycle by
reading in a new symbol.

At any given point in time, the algorithm has reached a par-
ticular point in the input string, and has generated a certain
set of rules. Let r be one less than the number of rules, and

s the sum of the number of symbols on the right-hand side
of all these rules. Recall that the top-level string S, which
represents the input read so far, forms one of the rules in the
grammar; it begins with a null right-hand side. Initially, r
and s are zero.

Here are the three transformations. Only the first two can
occur when a new symbol is first processed; the third can only
fire if one or more of the others has been applied in this cycle.

1. The digram comprising the last two symbols matches an
existing rule in the grammar. Substitute the head of that
rule for the digram. s decreases by one; r remains the
same.

2. The digram comprising the last two symbols occurs else-
where on the right-hand side of a rule. Create a new rule
for it and substitute the head for both its occurrences. r
increases by one; s remains the same (it increases by t-
wo on account of the new rule, and decreases by two on
account of the two substitutions).

3. A rule exists whose head occurs only once in the right-
hand sides of all rules. Eliminate this rule, substituting
its body for the head. r decreases by one; s decreases by
one too (the single occurrence of the rule’s head disap-
pears).

To show that this algorithm operates in linear time, we will
demonstrate that the total number of rules applied cannot ex-
ceed 2n, where n is the number of input symbols. Consider
the quantity ¢ = s — /2.

q is initially 0

q is never negative because r < s

g increases by 1 for each input symbol processed

g decreases by at least 1/2 for each rule applied (the first
transformation decreases it by 1, the second by 1/2, and
the third by 1/2).

Since ¢ increases by 1 for each input symbol processed and
decreases by at least 1/2 for each rule applied, the number of
rules applied is at most twice the number of input symbols.
This completes the proof.

412 Convergence to entropy An important question for
compression algorithms is whether they are “universal” for
the class of stationary information sources over a finite al-
phabet. Universal codes are guaranteed to converge to the
entropy of the source in the limit, as more symbols from
the source are observed. Many statistically-based compres-
sion methods restrict the maximum length of the context that
is taken into account when encoding the upcoming symbol;
they are not universal algorithms because they cannot cap-
ture correlations that exceed that pre-set maximum length.
The LZ77 and LZ78 algorithms are well known to be uni-
versal, but converge so slowly that they are roundly outper-
formed by limited-context statistical prediction methods on
input sequences of any conceivable practical length.

The SEQUITUR algorithm that we have described, like the LZ
methods, does not suffer from predefined limits on the size

of rules and therefore there is no limit on the amount of con-
text that can be taken into account. It also performs well on
sequences of practical length. As the algorithm stands, how-
ever, experiments on random input show that the size of the
grammar increases dramatically as more input is seen, and
it is clear that convergence does not occur even with such a
simple ergodic source.

Recently, Kieffer and Yang (in press) modified SEQUITUR in
a way that admits a proof of universality. Though the proof
is too long to sketch here, the modification is simple: it is to
check, whenever a new rule is about to be created, whether its
expansion is the same as the expansion of any existing rule. If
it is, the existing rule is used instead. This dramatically alters
the grammar generated by the algorithm on stochastic inputs,
for the original algorithm needlessly duplicates many useless
rules. For structured input such as natural language text, the
change is not so marked. And unfortunately the modification
destroys the linear execution-time bound derived above.

4.2 Offline techniques

To permit it to work in an online fashion, SEQUITUR process-
es the symbols in the order in which they appear. The first-
occurring repetition is replaced by a rule, then the second-
occurring repetition, and so on. If online operation is not re-
quired, this policy can be relaxed. This raises the question of
whether there exist heuristics for selecting substrings for re-
placement that yield better compression performance. There
are three obvious possibilities: replacing the most frequent
digram first, replacing the longest repetition first, and replac-
ing the most compressive repetition first.

421 Most frequent first: FREQUENT The idea of forming
a rule for the most frequently-occurring digram, substituting
the head of the rule for that digram in the input string, and
continuing until some terminating condition is met, was pro-
posed a quarter century ago by Wolff (1975) and has been
reinvented many times since then.! The most common re-
peated digram is replaced first, rather than the first one as in
SEQUITUR, and the process is repeated until no digram ap-
pears more than once. This algorithm operates offline be-
cause it must scan the entire string before making the first
replacement.

Wolff’s algorithm is inefficient: it takes O(n?) time because
it makes multiple passes over the string, recalculating di-
gram frequencies from scratch every time a new rule is cre-
ated. However, recently Larsson and Moffat (1999) devised a
clever algorithm, dubbed RE-PAIR, whose time is linear in the
length of the input string, which creates just this structure of
rules: a hierarchy generated by giving preference to digrams
on the basis of their frequency. They reduce execution time
to linear by incrementally updating digram counts as substi-
tutions are made, and using a priority queue to keep track of
the most common digrams.

For an example of the FREQUENT heuristic in operation, con-
sider the string babaabaabaa. The most frequent digram is ba,
which occurs four times. Creating a new rule for this yields
the grammar

Only last month we received for refereeing a paper claiming discovery of
this algorithm.

S — AAaAaAa
A — ba.

Replacing Aa gives

S — ABBB
A —ba
B — Aa,

a grammar with eleven symbols (including three end of rule
symbols). This happens to be the same as the length of the
original string (without terminator).

4.2.2 Longest first: LONG A second heuristic for choosing
the order of replacements is to process the longest repetition
first. In the same string babaabaabaa the longest repetition is
abaa, which appears twice. Creating a new rule gives

S — bAbaA
A — abaa.

Replacing ba yields

S — bABA
A — aBa
B — ba,

resulting in a grammar with a total of twelve symbols.

Bentley and Mcllroy (1999) explored the LONG heuristic for
very long repetitions, and removed them using an LZ77
pointer-style approach before invoking gzip to compress
shorter repetitions. This is not a linear-time solution.

Suffix trees (Gusfield, 1997) provide an efficient mechanism
for identifying longest repetitions. A suffix tree is a compact-
ed trie of suffixes in which every suffix of the original string
is represented, and internal nodes correspond to repetition-
s. In the compaction operation, suffixes that share a prefix
are merged up to the end of the common prefix. Thus the
longest repetition corresponds to the deepest internal node,
measured in symbols from the root. Since there is a one-to-
one correspondence between leaf nodes and symbols in the
string, the number of nodes in the tree is linear in the length of
the input. The deepest non-terminal can be found by travers-
ing the tree, which takes time linear in the length of the input.

We are left with two problems: how to find all longest repeti-
tions, and how to update the tree after creating a rule. Farach-
Colton and Nevill-Manning (in preparation) show that it is
possible to build the tree, and update it after each replace-
ment, in time which is linear overall. The tree can be up-
dated in linear amortized time by making a preliminary pass
through it and sorting the depths of the internal nodes. Sort-
ing can be done in linear time using a radix sort, because no
repetition will be longer than n/2 symbols. The algorithm re-
lies on the fact that the deepest node is modified at each point:
it does not generalize to the most-compressive-first heuristic
where shorter rules may compress better than the longest rep-
etition.

4.2.3 Most compressive first: COMPRESSIVE A third
heuristic for choosing replacements falls between the ex-
tremes of most frequent and longest: it replaces the most

compressive repetition first. Whether a corresponding linear-
time algorithm exists is an open question.

In the string babaabaabaa, the most frequent digram is ba,
which appears four times, and the longest repetition is abaa,
which appears twice. Replacing either of these yields a total
of eleven symbols on the right hand side of the two rules in
the grammar. The substring aba appears three times: it is nei-
ther the longest or the most common. However, replacing it
results in ten symbols.

Expression 1 above gives the savings generated by replacing
a substring of length W that appears N times. At each point,
the substring that maximizes this quantity is replaced. For
our example string, (W, N) = (3,3) gives a saving of two
symbols, whereas (W, N) = (4,2) and (2, 4), the longest and
most frequent replacements respectively, save only one sym-
bol.

5 Implementation

Although two of the offline heuristics have linear time solu-
tions, we chose to implement all three in a uniform, simple,
but less efficient way using a suffix array. A suffix array is
a sorted list of all suffixes of a string, and can be construct-
ed by initializing an array of pointers to every character in
the string and sorting the array according to the lexicograph-
ic ordering of the suffixes denoted by the pointers. Then the
array is scanned for a replacement that satisfies the particular
heuristic under consideration.

To find the longest repetition, adjacent entries in the suffix ar-
ray are compared: after scanning the entire array, the longest
match is replaced. To find the most compressive repetition,
each entry in the array is compared to every following en-
try until the two only match on the first character; then, for
each match, the corresponding saving is calculated from the
length of the match and the distance between the entries—
which gives the frequency of the repetition. Again, once the
entire array has been scanned, the maximally compressive
repetition is replaced. A similar procedure is used for the
most frequent repetition.

After the first replacement, a new rule is formed. In the case
of LONG and COMPRESSIVE, new rules might contain strings
that are repeated elsewhere, and so the content of the new
rule is added to the suffix array. The process of constructing
the suffix array, finding an appropriate repetition, and mak-
ing a new rule is repeated until no more replacements can be
made.

This process can be accelerated in several ways. First, instead
of reconstructing the array of pointers from scratch and re-
sorting it each time, the suffix array can be updated. In fact, if
newly-created rules are placed in the space occupied by one
of the repetitions, there are already pointers to the suffixes in
the rule. However, they may be out of order, because they
are truncated at the end of the rule. Also, suffixes that pre-
cede a repetition that has been replaced have been similarly
truncated. To move these to their correct position in the ar-
ray, we perform a lazy bubble sort: when an entry is found to
be out of order it percolates down to its correct position, and
scanning resumes from there.

A second optimization can be made by noting that there are
often several replacements that yield equivalent savings. For
example, near the end of the LONG procedure, there are many
matches of length two. This calls for an arbitrary choice, and
it is most efficient to choose the first match. Furthermore, it
is unnecessary to start from the beginning of the array each
time: instead, all repetitions of a particular length can be re-
placed in a single pass through it. Both optimizations signif-
icantly decrease the time taken, although they do not affect
the overall time complexity.

6 Evaluation

We first demonstrate that there are strings on which some
schemes outperform other schemes. For didactic purposes
we use very small examples; this is followed by larger-scale
analyses of natural and artificial sequences.

6.1 Small-scale examples

The first example of Figure 1a shows a case where FREQUEN-
T’s replacement of aa results in a smaller grammar, in terms of
both the symbol count, s, and the rule count, r, than LONG’s
replacement of aaa. The second example shows where replac-
ing the longest repetition, abbb, is better than replacing the
most frequent, bb.

The third example raises a new issue: how to choose amongst
overlapping repetitions. As noted above, we choose to re-
place the leftmost occurrence. In fact, in this example the
FREQUENT heuristic could mimic LONG by replacing the sec-
ond aa in the substring aaa, thereby obtaining a better result.
However, there is no general way, other than trial and error,
of choosing the best overlapping repetition.

Figure 1b compares COMPRESSIVE with the other schemes.
By its nature, it can never be worse than the other schemes so
far as a single replacement is concerned. The first two exam-
ples, based on the same string, show that a string of nine as is
better compressed into three triplets than four duplets or two
quadruplets.

We will see below that, in practice, LONG is significant-
ly inferior to the other techniques. This is at first sur-
prising because the heuristic only governs the order of re-
placements: LONG will eventually replace substrings of
length two. To understand the problem, consider the string
aa|1aaa|2aaaals...|n—1a™ . Bach occurrence of “|;” stands for
a different symbol, so that this character acts as a separator
and rules cannot be formed across it. LONG forms n rules:

S—)AllB|2C|3D|4E...
A —aa
B — Aa
C—Ba
D —Ca
E— ..

where the rules are formed in reverse order, rule A last.

On this sequence FREQUENT begins by forming A — aa, then
B — AA, and so on up to a rule that expands to as many
as as the largest power of two smaller than n + 1. Now
each string between the separator characters is expressed as

a kind of binary Roman numeral: a string of non-terminals
that each stand for 2* as (for some k), possibly followed by
a final a. Next, repeated pairs of non-terminals are replaced.
If ties are broken by performing replacements left to right,
non-terminals are in order from longest content to shortest.
There are |log n| non-terminals, so the number of pairs is
o HesnI=1 ~ log? n. These can again be combined, giving
a number of rules that is polynomial in log n. Thus the num-
ber of rules grows much more slowly for FREQUENT than for
LoNG.

Figure 2 shows behavior of FREQUENT and LONG on se-
quences of the kind just discussed for n < 400. The num-
ber of symbols in rule S grows linearly in n, the length of
the longest repetition, for both heuristics, with FREQUENT
growing faster. The total number of symbols grows faster for
LONG, however, and the reason can be seen in Figure 2b. As
we expect, the number of rules that LONG produces grows
linearly, whereas growth is approximately logarithmic for
FREQUENT.

6.2 Natural language text

Figure ?? shows grammar sizes for a 50 Kb excerpt from
Thomas Hardy’s novel Far from the Madding Crowd, a test file
from the Calgary compression corpus (Bell et al., 1990). The
height of the bars represent the total number of symbols in
the grammar, while the solid parts represent the number of
symbols in the top-level rule of the grammar, rule S. COM-
PRESSIVE outperforms FREQUENT by a small margin. SE-
QUITUR is next, with LONG lagging behind.

As foreshadowed above, LONG performs significantly worse
than the other techniques. The most compressive repetitions
in English text are common short rules, not infrequent long
ones. By Expression 1, a string of length two that appears
n times saves the same number of symbols as a string of
length n that appears twice. In Far from the Madding Crowd,
the most common pair of symbols is e_, which appears 14097
times, whereas the longest repetition is only 105 characters
long.2 Indeed, apart from _ the, the 15 most compressive re-
placements are only two symbols long. FREQUENT is clearly
a better approximation to COMPRESSIVE than is LONG.

Note, though, that LONG has fewer symbols in rule S and
therefore accounts for more structure at the surface level,
which is an interesting aspect of the compressibility of the
string. Minimizing the length of rule S is appropriate if the
objective is not overall compression, but rather segmentation
into a small number of repeating elements to gain insight in-
to its structure. For example, it might be useful to segment
a piece of English text into the fewest “words” to analyze its
lexical structure.

6.3 L-systems

To highlight the difference between the four heuristics, we
performed experiments on longer artificial sequences. These
were produced by L-systems, which are used to model the

“This is a copying error in the text. The longest repetition in the corrected
text is which was to be found nowhere in, which Hardy repeats to good effect in
Suddenly an unexpected series of sounds began to be heard in this place up against the
sky. They had a clearness which was to be found nowhere in the wind, and a sequence
which was to be found nowhere in nature. They were the notes of Farmer Oak’s flute.

growth of plants (Prusinkiewicz and Hanan, 1989) and other
natural objects. For example, the grammar of Figure ?? gives
rise to the plant-like shape shown below after five applica-
tions of the rewriting rule when the five symbols f, [,], + and
— are interpreted as appropriate graphical commands in the
Logo language (Abelson and diSessa, 1980) — step forward,
save position and orientation, restore position and orienta-
tion, turn right, and turn left respectively. In L-systems, all
rewrites are done in parallel. Because they produce a hierar-
chy of repetitions, the result of each heuristic can be assessed
according to how close the inferred grammar is to the origi-
nal.

Four input sequences were generated by the L-systems de-
tailed in Table 1, which shows each grammar, the number
of derivation steps, and the size of the artificial string pro-
duced. Figure 5 illustrates how well the heuristics compress
these artificial strings. In each case, the original L-system size
is included on the left. Note that the grammars in Table 1 in-
volve recursion, yet the hierarchical rules that are inferred are
non-recursive and capture the particular input string exactly.
For this reason, the original L-system size in Figure 5 is cal-
culated as the size of the equivalent non-recursive L-system
corresponding to the number of derivation steps used, a non-
recursive expansion of the structures in Table 1.

As before, the height of the bars in Figure 5 represent the to-
tal number of symbols in the inferred grammar and the solid
parts show the size of rule S. In each case, COMPRESSIVE
performs best overall—even outperforming the original L-
systems, because they include repeated elements like f- in Ta-
ble 1a. While LONG is always worst, in all but the second case
it produces the shortest rule S. The online SEQUITUR algo-
rithm performs less well than COMPRESSIVE and FREQUENT
on all but the third example.

Qualitatively, COMPRESSIVE is the only method that consis-
tently arrives at a structure similar to the original L-system.
In order to infer the rewrite rules, the repetition bound-
aries must be detected very precisely. Otherwise higher-
level rules must account for extra or missing symbols, which
destroys their ability to mimic the structure of the original
rules. For example, Table ?? shows the grammars inferred
by COMPRESSIVE and FREQUENT for L-system. COMPRES-
SIVE’s grammar is much smaller, and if rules A through G are
expanded, the grammar consists of five versions of the orig-
inal recursive rule, one for each application. In contrast, the
grammar inferred by FREQUENT reflects none of the structure
of the source grammar.

7 Applications

Efficient methods for inferring hierarchical structure from se-
quences, which arose in the field of data compression, have
numerous applications elsewhere. The three sketched below
all use SEQUITUR, because it was the first linear-time algorith-
m for hierarchical structure detection, but the other heuristics
are likely to be equally suitable—perhaps more so.

7.1 Hot subpath identification

The sequence of machine instructions executed by a program
is highly repetitive. Whereas repetition is used in data com-

pression to save space and bandwidth, it can be used by op-
timization techniques to save computation. The first step
in program optimization identifies frequently-executed se-
quences of instructions: these are the paths that will yield
the greatest improvement if optimized. The granularity with
which program traces are analyzed is often based on a stat-
ic analysis of the program code: for example, counting the
number of times an entire function or a loop is executed.
However, the program’s dynamic behavior might contribute
additional regularities, and the techniques described above
provide a non-parametric way of decomposing a stream of
instructions that allows unexpected structures to be discov-
ered.

Larus (1999) shows how SEQUITUR can be used to infer “w-
hole program paths,” which are decompositions of an in-
struction stream that could be used as the basis for further
optimization. The paths identified in the SPECINT95 com-
mercial benchmark promise a significant opportunity for op-
timization. The hierarchical decomposition may also be use-
ful for dynamic optimization, improving instruction schedul-
ing and cache loads within a microprocessor.

7.2 Segmentation for text-to-speech conversion

Hierarchical grammar inference has been used to improve
speech synthesis. Because words do not usually correspond
to phonetic units, Martin (1999) used SEQUITUR to segmen-
t the input hierarchically; they attach phonemes to rules at
the appropriate level. The techniques described here segment
text into common substrings, which often correspond to pho-
netic units. This is not surprising: although English orthog-
raphy is not strictly phonetic, there is nevertheless a high de-
gree of correlation between certain substrings and phonemes,
and the modularity of phonemes is reflected in the modular-
ity of corresponding substrings.

Martin (1999) developed a client-server scheme for speech
synthesis in which the server uses a grammar derived au-
tomatically from a large corpus of text to segment natural-
language strings sent to it by a client. The individual seg-
ments, corresponding to individual grammar rules, are trans-
lated to phonetic strings individually and returned to the
client for speaking. If users wish to improve the rendition,
they edit the phonetic strings interactively, whereupon the
strings are transmitted back to the server and replace the o-
riginal phonetic transcriptions of those segments. Thus the
system improves gradually as users interact with it.

SEQUITUR was chosen for this application because of its a-
bility to process a large amount of training text very quickly.
Based on the results in the present paper, we expect COM-
PRESSIVE and FREQUENT to perform even better on this task.

7.3 Browsing large text collections

Hierarchical phrase structures suggest a new way of ap-
proaching the problem of familiarizing oneself with the con-
tents of a large collection of electronic text. Nevill-Manning et
al. (1999) presented the hierarchical structure inferred by SE-
QUITUR interactively to the user. Users can select any word
from the lexicon of the collection, see which phrases it ap-
pears in, select one of them and see the larger phrases in

which it appears, and so on. Although reminiscent of the
permuted title or keyword-in-context (KWIK) indexes of days
gone by, there are two crucial differences. First, the new inter-
face presents a hierarchical structure of phrases. This greatly
reduces the size of the index and allows the user to home in
on useful information in logarithmic time. Second, phrases
are restricted to those that occur more than a predetermined
number of times—usually twice or more. This shifts attention
from individual items towards the content of the collection as
a whole.

Figure 6 shows a screen display of a hierarchy based on the
complete text of the Computists” Communique, an online Al
research news magazine. SEQUITUR has been used in word
mode, with complete words as tokens rather than individual
characters. Punctuation is removed and words are folded to
lower case. The vocabulary of the collection is displayed al-
phabetically in the leftmost column. Users can select a word
(either with the mouse or by typing), and all phrases in which
itappears are displayed, along with the number of times each
phrase occurs.

In Figure 6 the user has selected index from the vocabulary
and the phrases it appears in are listed in the next column to
the left. For example, index htm appears six times. Note that
this particular phrase appears as an artifact of word parsing;:
it emanates from the filename index.htm—as of course does
index html, further down the list. It is encouraging that these
junk entries consume far less space in the list than they would
in a conventional query for the term index. Each phrase can be
selected and expanded in turn. The user has selected indexing
and retrieval, which also appears six times in the corpus. In
this particular case, each of these six phrases occurs exactly
once and cannot be expanded any further.

The user can traverse the grammar, extending and hence spe-
cializing the query term. Every word is the root of a tree
structure whose leaves are the occurrences of that word in
the top-level rule. Occurrences in other rules are internal n-
odes corresponding to phrases that contain the word. Those
phrases are themselves used elsewhere in the grammar, ei-
ther in the top-level rule of in other rules for longer phrases.
It is possible to stop at any internal node and use that phrase
as a query term, or continue down the tree to a leaf and re-
trieve the corresponding document.

8 Conclusion

This paper has examined the tradeoffs inherent in differen-
t heuristics for data compression using hierarchical structure
inference. The work was stimulated by the existence of an ef-
ficient, linear-time, online algorithm, SEQUITUR, and the re-
cent discovery that offline techniques can also work in linear
time. While an online algorithm is forced to identify rules
soon after they first occur, offline algorithms offer more scope
for different preference heuristics. We have studied three:
most frequent first, longest first, and most compressive first.
Throughout we measure compression in terms of the total
number of symbols in the grammar.

Not surprisingly, COMPRESSIVE is the best method. In large-
scale tests with regular L-system structures it consistently
finds grammars that are smaller than a non-recursive version
of the generating grammar. Note, however, that like all these

heuristics it strives only for local optimality, and so could con-
ceivably be outperformed by other methods—though they
would likely be far more costly. At the other extreme, LONG
produces consistently poor results—much to our initial sur-
prise. However, it does tend to minimize the size of the top-
level rule S, a kind of “surface” representation of the input,
that could be useful in some applications.

Both FREQUENT and LONG, like SEQUITUR, take time linear
in the length of the input sequence. Again this is a surpris-
ing result, and the linear-time algorithms are quite intricate.
Although such an algorithm has not been demonstrated for
COMPRESSIVE, neither has a tight lower bound: this is clearly
an area for future investigation.

For practical data compression using hierarchy inference, if
online operation is necessary SEQUITUR is the only reason-
able choice. If offline operation is acceptable, FREQUENT is
the recommended technique, for experiments show that it
performs almost as well as COMPRESSIVE and yet works in
linear time. However, if one is concerned to infer the best
structure for a sequence, or the exact structure of an artificial
sequence, COMPRESSIVE gives better results in exchange for
additional execution time.

Finally, there are many applications of hierarchical structure
inference techniques outside the data compression areas. The
existence of new linear-time algorithms broadens the choice
for application developers.

Acknowledgements

We appreciate numerous enlightening discussions with Mar-
tin Farach-Colton about various algorithmic issues.

References

Abelson, H. and diSessa, A. (1980) Turtle geometry. MIT Press, Cam-
bridge, MA.

Bentley, J. and Mcllroy, D. (1999) “Data compression using long
common strings.” Proc Data Compression Conference, pp. 287-
295. TIEEE Press, Los Alamitos, CA.

Cameron, R.D. (1988) “Source encoding using syntactic information
source models.” IEEE Trans Information Theory, Vol. 34, No. 4;
pp- 843-850; July.

Gusfield, D. (1997) Algorithms on strings, trees, and sequences. Cam-
bridge University Press, Cambridge, UK.

Kieffer,].C. and Yang. E.-H. (2000) “Grammar based codes: a new
class of universal lossless source codes.” IEEE Trans on Informa-
tion Theory, 46, 737-754.

Larsson, N.J. and Moffat, A. (1999) “Offline dictionary-based com-
pression.” Proc Data Compression Conference, pp. 296-305. IEEE
Press, Los Alamitos, CA.

Martin, A.R. (1999) “Intelligent Speech Synthesis Using the Sequitur
Algorithm and Graphical Training: Server Software,” M.S. The-
sis, Engineering Science, University of Toronto.

Miller, V.S. and Wegman, M.N. (1985) “Variations on a theme by Ziv
and Lempel.” In Combinatorial algorithms on words, edited by A.
Apostolico and Z. Galil, pp. 131-140. NATO ASI Series, Vol. F12.
Springer-Verlag, Berlin.

Nevill-Manning, C.G. and Witten, LH. (1997) “Identifying hier-
archical structure in sequences: a linear-time algorithm.” |
Artificial Intelligence Research, Vol. 7, pp. 67-82.

Nevill-Manning, C.G., Witten, LH. and Paynter, G.W. (1999)
“Lexically-generated subject hierarchies for browsing large
collections.” International Journal of Digital Libraries, Vol. 2,
No. 2/3, pp. 111-123.

Nevill-Manning, C.G. and Witten, LH. (1998) “Phrase hierarchy in-
ference and compression in bounded space,” Proc. Data Com-

pression Conference, J.A. Storer and M. Cohn (Eds.), Los Alami-
tos, CA: IEEE Press. 179-188.

Prusinkiewicz, P. and Hanan, J. (1989) Lindenmayer systems, fractals,
and plants. Springer-Verlag, New York.

Wolff,].G. (1975) “An algorithm for the segmentation of an artificial
language analogue.” British | Psychology, Vol. 66, pp. 79-90.

Ziv,]. and Lempel, A. (1977) “A universal algorithm for sequential
data compression.” IEEE Trans Information Theory, Vol. I1T-23,
No. 3, pp- 337-343; May.

Ziv,]. and Lempel, A. (1978) “Compression of individual sequences
via variable-rate coding.” IEEE Trans Information Theory, Vol. IT-
24, No. 5, pp. 530-536; September.

string FREQUENT LoNG
aabaaaaaa S — AbAAA S — BbAA
A — aa A — Ba
B—aa
(s=7,1=2) (s=8, r=3)
abbbbabbb S — BABb S — AbA
A — bb A — abbb
B—aA
(s=8, r=3) (s=7,r=2)
aabbaaabb S — ABAaB S — AaA
A — aa A — aabb
B — bb
(s=9, r=3) (s=7,r=2)
string COMPRESSIVE LONG
aaaaaaaaa S— AAA S— AAa
A — aaa A — BB
B —aa
(s=6, r=2) (s=7, r=3)
string COMPRESSIVE FREQUENT
aaaaaaaaa S— AAA S — BBa
A — aaa A — aa
B— AA
(s=6, r=2) (s=7, r=3)

Figure 1 Comparisons: (a) FREQUENT vs LONG; (b)

COMPRESSIVE vs LONG and FREQUENT

grammar steps size
S—f-f-f-f 4 30427
fof+f-f-ff+f+f-f

S—f 5 7811
f>f[-f]f[+f]f

S — f ++f ++f 5 7168
fof-f++f-f

S—f-f-f-f 3 43911
fof-F+Hf-f-ff-fF-ffF

PP+ P+ P f

Table 1 L-systems, the number of derivations and size of
derived test strings

a
1600
frequent: symbols in rule S L
1400 frequent: total symbols L’ ’
------- long: symbols in rule S e
1200 - - - .long: total symbols
8
IS
£ 1000 4
©
>
k=
‘@ 8001
o
Q
; 600 4
0
400
200 1
0
0 100 200 300 400
n (longest repetition)
b
400 4 _ frequent
350 { long
300 4
250 4
[%]
2 200 -
2
150 -
100 - .
50 | /N
0 = : ‘ :
0 100 200 300 400

n (longest repetition)

Figure 2 Performance of FREQUENT and LONG on the
sequence aa |1 aaa |2 aaaa |5 ... |n—1 ™. n + 1is
displayed on the horizontal axes (a) symbols in
rule S and overall, (b) rules

160

osymbols in other rules

140 - msymbols in rule S
120
o 100 -
3
; 80 -
»n 60 -
40 -
20 -
0 —
T © © 2 5 ©
53223 5
5] “5’_ 2 @]
S
o
(&)
a b

+— —_ +— — —_ —
(0] c o = () c (@] (6] c (@]
> o £ =2 T > g ¢ 2 8 > & ¢
) > O = = wn -5 O 35 S o 3 o
n o o S un T R S wnw T
O O O 5 ¢ o I} 5 9 o
o = n 8 & n 5 &=
g g g
o o o

c d
I-system/heuristic

Figure5 Size of grammar produced for the four L-systems by the four different methods

sequitur

File Filter Commeon Words Rare Words
||nde>< index indexing and retrieval
increasingly K index htm B S jes for wals indexing and retrieval was more trouble tha
incredible indexing and retrieval 6 || |llo s harvestindexing and retrieval sy stem for vy and
incredibly citation index 5 5 supplying indexing and retrieval software and james ©
incremental knowledge index] s syntactica indexing and retrieval system from iconoyve:
incrementally body send index 4 =t nearly all indexing and retrieval of multimedia informs
increments indexing nlp 4 qehit full text indexing and retrieval document processing
incubation wel index 3
incubator searchable index 3
incubators index subject 3
incumbent index file 3
incur check the index 3
incurred — index html david 3
ind index html scout report 3
indecency table of contents and index 3
indecent representation indexing 3
indeed text indexing 3
indefinite indexing and retrieval 3
indefinitely jmt jicst go jp index e Lz
indentation yahoo index 2
independence computer index iciis 2 free 2 kf
independent
independently |\| JE - I'\I I
independents
inder
index
indexed The Computists’ Communique (1991-6, 288 issues)
Iindexers v |

Figure 6 Hierarchically browsing the Computists” Communique

