Searching digital music libraries 1

Running head: SEARCHING DIGITAL MUSIC LIBRARIES

Searching digital music libraries

David Bainbridge, Michael Dewsnip, and Tan H. Witten
Department of Computer Science
University of Waikato
Hamilton

New Zealand

https://core.ac.uk/display/29195334?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Searching digital music libraries 2

Abstract

There has been a recent explosion of interest in digital music libraries. In particular,
interactive melody retrieval is a striking example of a search paradigm that differs
radically from the standard full-text search. Many different techniques have been
proposed for melody matching, but the area lacks standard databases that allow them to
be compared on common grounds—and copyright issues have stymied attempts to develop
such a corpus. This paper focuses on methods for evaluating different symbolic music
matching strategies, and describes a series of experiments that compare and contrast
results obtained using three dominant paradigms. Combining two of these paradigms
yields a hybrid approach which is shown to have the best overall combination of efficiency

and effectiveness.

Searching digital music libraries 3

Searching digital music libraries

Corresponding author: David Bainbridge
Phone: 464 7 838 4407
Fax: +64 7 858 5095

E-mail: d.bainbridge@cs.waikato.ac.nz

A shorter version of this paper was presented at International Conference on Asian
Digital Libraries, Singapore, December 2002.

Keywords: music libraries, melody retrieval, music matching, evaluation

Searching digital music libraries 4

Introduction

There has been a recent explosion of interest in digital music libraries—indeed,
Apple’s iPod has been called the world’s first consumer-oriented digital library. In all
human societies, music is an expression of popular culture. Different generations identify
strongly with different musical styles. People’s taste in music reflects their personality.
Teenagers, in particular, feel that their musical preferences are strongly bound up with
who they are. Many researchers seek to capitalize on this natural interest by building
digital music libraries (Bird & Downie, 2000; Downie & Bainbridge, 2001).

Digital music libraries are an attractive area of study because they present
interesting and challenging technical problems, solutions to which are likely to be highly
valued by enthusiastic end-users. This paper addresses the problem of searching a music
library for a known melody. In other words, given a fragment of an unknown melody,
typically played or sung by a user, return a list of possible matches to a large digital
library collection. This operation is not supported by the information structures provided
by traditional libraries, except insofar as knowledgeable music librarians are able to
provide human assistance. For scholarly work on melody, there is a book that provides a
paper index of themes (Parsons, 1975), but its scope is restricted to the older classical
repertoire and it does not provide flexible searching options. And yet the problem of
melody retrieval is of great interest to a wide range of potential users—so much so that
there are popular radio programs that feature human abilities to “guess that tune”.

A practical scheme for searching digital music libraries requires robust
implementations of several supporting components. First, it is necessary to assemble a
large database of music in searchable form—which implies some kind of symbolic
representation. Normally this is accomplished by manually entering a large number of
melodies on a keyboard, a highly labor-intensive process. The alternative is to

automatically infer notated information from an analog form of the music, such as a

Searching digital music libraries 5

recording of a performance, or a paper score. The latter possibility, OMR for “optical
music recognition,” is a well-advanced technology (Bainbridge & Bell, 2001) but is not
addressed in this paper. Second, the audio query, generated by the user singing, whistling,
or humming it—or playing it on a keyboard—must first be transcribed into the same
symbolic representation. This is a far easier proposition than inferring a musical score
from a recording of a performance, because the input is monophonic—only one voice is
present. However, again we do not address the problem in this paper: the transformation
is accomplished by standard signal-processing techniques of pitch detection (Gold &
Rabiner, 1969), followed by quantization of the pitch track in both frequency (placing the
notes on a standard musical scale) and time (placing the notes within a standard
rhythmical framework). Third, the music searching operation must take place within a
context that allows the user to examine search results and request that generalized
“documents” be presented. Such documents might include stored musical performances,
performances synthesized on the fly from some symbolic representation, facsimile images
of the score, scores created on demand from a symbolic representation by musical
typesetting techniques, and so on. Suitable general contexts for browsing and document
presentation exist, for example (Bainbridge, Nevill-Manning, Witten, Smith, & McNab,
1999); again, they are not addressed by this paper.

We focus here on the central problem of music matching. We assume that the
material to be searched is stored in symbolic form in terms of the notated music. We
assume that the audio query has been transcribed into the same symbolic form. We
assume that a suitable infrastructure is in place for examining and presenting results.

Three basically different approaches to symbolic music matching have been
proposed: dynamic programming (Mongeau & Sankoff, 1990), state matching (Wu &
Manber, 1992), and n-gram-based methods that employ standard information retrieval

techniques (Downie, 1999). All have been used to implement practical melody retrieval

Searching digital music libraries 6

systems. Dynamic programming techniques work by calculating, in an efficient manner,
the “edit distance” between the query and each melody in the database. The lower the
distance, the better the match. Rudimentary edit operations include adding a note,
deleting a note and substituting one note for another, along with more subtle changes
such as consolidating a series of notes at the same pitch into one note of the composite
duration. State based matching also works by adding, deleting and substituting notes to
provide an approximate match, but its implementation takes a different form. It uses a
matrix of bits that records the state of partial matching so far, and achieves efficiency by
encoding the matrix as an array of machine words. Given this data-structure, only shifts
and bitwise Boolean operators are needed to implement the matching progress. Unlike
dynamic programming, state-based matching does not keep track of which edits were
made, and its running time is proportional to the number of errors that are allowed.
N-gram-based methods work by mapping both queries and melodies to textual words
(n-letters long) and then using full-text retrieval to locate documents in the database that
contain the “words” included in a given query (Witten, Moffat, & Bell, 1999).

The aim of this paper is to provide a comparative evaluation of these three methods
for searching digital music libraries. We begin by introducing the workbench we have
developed to perform these experiments, and then describe the experiments themselves
and the results obtained. Notable amongst the experiments is a hybrid technique that
achieves the computational expediency of the n-gram approach while maintaining the
more favorable recall and precision of state-based matching. The paper concludes with a

summary of our findings.

A workbench for symbolic music information retrieval

To support practical research in this area we have developed a workbench for

symbolic music information retrieval. Figure 1 gives on overview of the system, which fits

Searching digital music libraries 7

into a larger digital library software architecture, Greenstone (Witten, R., Boddie, &
Bainbridge, 2000; Witten, Bainbridge, & Boddie, 2001) Work is divided into two phases:
the assimilation phase and the runtime phase. The former is responsible for collecting files
together and creating from them the necessary indexes and/or databases. The latter,
guided by user input, supports experimentation and evaluates performance measures.
While assimilation is typically performed once for a given collection, the runtime phase is
executed many times to gather results from different experiments.

Internally the workbench represents music files using the XML version of Guido
(Hoos, Renz, & Gorg, 2001) which is general, expressive enough for our needs, and
straightforward to parse. During the assimilation phase the workbench processes these
files, building algorithm-specific data structures that allow efficient searching.

In the runtime phase, users issue commands to interact with the workbench. They
can provide sample inputs and match them against the database using different matching
algorithms, examining and comparing the results. Each matching method has optional
arguments that modify its behavior. For example, one can seek matches only at the start
of melodies, rather than at any position within them. Instead of using absolute pitch
values, one can use pitch intervals (differences in pitch value) or pitch contour (whether
the pitch value rises, falls, or stays the same). The workbench implements many other
matching options. The outcome of a search is held as a result set from which statistics are
extracted, graphs plotted, tables generated, and so on.

Interactive use has its limitations, particularly when setting up and running large
experiments. Consequently there is a facility for users to develop a “script” that defines a
particular series of experiments. This script is then run by the workbench in batch mode,
and the results are recorded in files for later examination by the user.

A third mode of operation is to allow a different process, rather than an online user

or a pre-prepared script, to access the facilities of the workbench. The workbench can be

Searching digital music libraries 8

accessed through a web-based user interface, using the CGI mechanism, to perform
music-content retrieval and format the data returned in a suitable format. This allows its
use directly by digital library software, for example, Greenstone. The advantage is that
exactly the same implementation and options are used for live retrievals as have been
evaluated in interactive and off-line experiments.

The music information retrieval workbench is released under the GNU public
license. It provides a uniform basis for evaluating melody matching algorithms. More
importantly, other research groups will be able to add their retrieval algorithms to it,
allowing a comprehensive comparison of their strengths and weaknesses against the prior
state of the art without the need to continually re-implement earlier methods. An
alternative strategy, which has been adopted in other communities (for example text
compression (Arnold & Bell, 1997) and machine learning (Blake, Keogh, & Merz, 1998)),
is to develop a standard corpus of material against which different algorithms are
evaluated, and publish the results of these evaluations. Indeed a public domain workbench
is complimentary to such an approach, however in the context of music, on-going efforts to
form such a tested have been stymied by issues of copyright. Recently, a small but richly
diverse database of music has been created for this purpose (Goto, Hashiguchi, Nishimura,

& Oka, 2002), avoiding copyright issues by producing and recording all original music.

Experimentation

The purpose of our experiments is to shed light on how well commonly-used music
information retrieval algorithms perform under a wide variety of conditions. This provides
the basic information needed to design and configure a digital music library. Such
information is necessary to make a sensible choice of algorithms used to support query by
music content in practice; it is also necessary to fine-tune particular parameter settings.

Conditions differ from one digital library to the next, depending on factors such as the

Searching digital music libraries 9

user community being served, the computer infrastructure that underpins the service, and
the type and size of the collection. Our aim is to provide design data for digital music
libraries. If, in addition, a library uses our workbench to respond to queries, the

implementation is guaranteed to be the same as was used to produce the design data.
Datasets

For evaluation, we need to use standard corpora of melodies. Recall the legal
difficulties, mentioned above, of creating and distributing corpora. Due to the absence of a
globally used corpus at the time of experimentation, we have used two datasets that were
available to us internally. The first dataset combines songs from the Essen and Digital
Tradition collections (Bainbridge et al., 1999) to form a dataset of nearly 10,000 short
folksongs (about 530,000 notes in total). The second dataset consists of 1000 tunes
extracted from MIDI files of various genres (pop, rock, classical and alternative) obtained
from the internet. These tunes are much longer than those in the folk collection, so
despite having only one-tenth the number of songs, the MIDI collection is much larger

(about 2,000,000 notes in total).

Summary of experiments

Our experiments are based on earlier work by McNab (1996), Downie (1999), and
Rand et al. (2001). Where possible, we follow the same experimental procedures,
expanding and extending the details appropriately.

Our first set of experiments studies the recall and precision rates of the various
algorithms. This helps establish some limits on how well they perform in terms of the mix
of relevant and non-relevant documents that are returned, but does little to convey how
much effort a user must exert to locate a sought after tune. This is the purpose of our
second set of experiments which, through artificially constructed examples, considers the

number of songs returned to a given query. The usefulness of a matching algorithm is also

Searching digital music libraries 10

dependent on how long it takes to execute. This forms the basis for our third set of
experiments. Additional information about our experimental procedures can be found in

(Dewsnip, 2002).
Recall and precision

Recall and precision are the dominant measures of an information retrieval system’s
ability to present the relevant documents in response to a query. Recall is the proportion
of the relevant documents returned, and precision is the proportion of returned documents
that are relevant.

Calculating recall and precision requires knowing which documents in a collection
are “relevant” to a query, as determined by human evaluation. Human relevance
judgements can be distributed with a collection and associated queries, and used to
measure the recall and precision performance of different retrieval techniques. These
resources are not yet available for the music retrieval community, however, so the
approach taken by Downie (1999) is used instead. This approach defines the relevant
documents to be those in the collection that include the query in its entirety.1 In the
workbench, these are determined using either of the matching algorithms (state-based or
dynamic programming) in exact matching mode. The experiments presented in this
section were run on the folk collection, using the same 150 queries for each. Downie (1999)
tested 4-grams, 5-grams and 6-grams; here 3-grams also are considered for their potential
robustness to errors. The dynamic programming algorithm is not tested in the recall and
precision experiments, since in exact mode it returns the same results as the state-based
matching algorithm, but takes a lot longer to do so (see Section).

The first experiment measures the optimum performance of the algorithms. This
occurs when the algorithms are in exact mode (state-based matching allows no errors,

n-grams perform boolean AND queries) and the queries are free of errors. Each algorithm

Searching digital music libraries 11

is tested using just rhythm, just pitch, and both pitch and rhythm. Additionally, where
pitch is used, the three pitch representations are considered: absolute pitch (abs), pitch
interval (int) and pitch contour (con). The precision values for the five algorithms are
shown in Table 1; recall is always perfect (1.0) in this situation because there is no chance
a relevant document can be missed.

Table 1 shows some interesting results. First, retrieval performance using only
rhythm is very poor: at best, only one document in ten returned is relevant. This is due
to the small amount of variation in tune rhythm (there are only a few common note
durations, so the entropy (Shannon, 1948a, 1948b) of the rhythm information is low and it
does not discriminate well). Retrieval performance using only the pitch information is also
poor. For absolute pitch, the best achieved is about six relevant documents in ten
returned, pitch interval achieves four in ten, and pitch contour does not even manage one
in a hundred. Pitch contour does poorly for the same reasons as using only rhythm does:
it has only three different symbols so there is very little variation to distinguish the
documents.

Using both pitch and rhythm, performance is much better. When absolute pitch or
pitch interval are used, well over 90% of the documents returned are relevant. Pitch
contour performs poorer, but still manages around 80% precision for all algorithms except
3-grams. It is clear from these results that using both aspects of music information is
necessary for acceptable performance, and using only one aspect is not considered further
in this section.

Comparing the algorithms, the state-based matching technique performs best, since
it is simply pattern matching in exact mode. The n-grams algorithms perform slightly
worse because the documents they class as matches do not necessarily contain the whole
query—the n-grams are not required to occur consecutively and in the same order. The

number of these extra, irrelevant matches is represented by the difference in precision

Searching digital music libraries 12

between each n-grams algorithm and the state-based matching algorithm. Except where
grams are short (the 3-grams algorithm), only a small fraction of the documents returned
are irrelevant—this supports Downie’s findings (1999).

User entry errors are much more common when searching a music digital library
than when searching text. If queries are hummed or sung, many users do not possess the
motor training required to do this accurately (McNab, Smith, Witten, Henderson, &
Cunningham, 1996). Also, the transcription algorithm identifying the notes entered can
be a source of error. Regardless of the query entry method, users may remember the tune
incorrectly (forgetting notes, for example). With a text retrieval system, the majority of
users can accurately enter the query they have in mind, but with a music retrieval system
it is likely only a minority can do so. Therefore, lenient algorithms are essential for music
retrieval.

The next experiment investigated the effects of user errors on retrieval performance.
This experiment is the same as the previous one, except a randomly chosen error (entering
the wrong pitch, entering the wrong duration, or dropping a note) is added into each of
the queries. As expected, recall and precision plummet when errors are present: instead of
retrieving every relevant document, only between 11% and 34% are found. Worse still,
there are many more irrelevant documents returned: little more than one in ten matches
are relevant to the intended query. Clearly, exact algorithms are unsuitable in an
environment where errors are probable.

The leniency of the approximate algorithms promises better performance when
errors are present. For the experiments testing approximate matching, the state-based
matching algorithm is configured to allow one error when matching. The n-grams
algorithms perform boolean OR queries, which are more lenient because they do not
require every query n-gram to appear in a matching document. The recall and precision of

the algorithms in this situation are shown in Figure 2. When errors are present, the

Searching digital music libraries 13

approximate matching algorithms perform much better than the exact algorithms: most
configurations retrieve the majority of the relevant documents, and the best configurations
achieve precision rates over 30%. This is reasonable performance, considering that the
queries are not perfect (they include an error). Also, for many users the documents
classed as “irrelevant” in this discussion may be of interest (if tune variants are being
searched for, for example).

The performance of the algorithms could still do with improvement. One method of
improving precision and recall is to increase the query length—longer queries mean fewer,
more relevant documents are returned. To confirm this, the previous experiment was
repeated using ten (rather than eight) note queries. In general, recall and precision
performance improved (by up to 35%), and even longer queries would increase
performance further. There is a limit on the number of query terms a user can be expected

to enter, however, and entering more terms may mean more errors are introduced.

Number of songs returned

The effort required to use an information retrieval system is an important factor in
user satisfaction and productivity. This section describes experiments investigating the
trade-off in user effort between entering more query notes and searching through larger
sets of matches.

These experiments measure the number of matches returned in relation to query
length. Effectively, they show an algorithm’s discriminative power: the number of query
notes it needs to pick out the true matches. The results from these experiments can be
used to predict the query length (on average) required to return a particular number of
matches. For example, a user desiring fewer than ten matches can estimate the number of
query notes necessary to achieve this.

Results from these experiments also can show the limits on retrieval performance.

Searching digital music libraries 14

Using exact matching and all the information available from a melody (absolute pitch and
rhythm) shows the best that can be achieved using melody retrieval. For example, it
shows that entering short queries will return many matches in a large collection, regardless
of the algorithm used.

The number of matches returned from queries depends on many factors: the query
length, the information used (pitch, rhythm, or both), the pitch mode, whether rests are
used or ignored, whether exact or approximate matching is performed, and the contents of
the collection. It also depends on properties intrinsic to a given retrieval algorithm. For
example, the n-grams algorithm is less discriminating because the n-grams are not
required to occur consecutively and in the same order, and therefore matching documents
may not contain the exact query pattern.

The experiments in this section are configured in the following way. Except where
noted, queries can match anywhere, rests are ignored, and the state-based matching
algorithm is used in exact mode. Query lengths range between 2 notes and 20 notes: using
one note is not applicable to pitch interval and pitch contour because they are based on
differences in pitch. The experiments are run on the folk collection, using 300 randomly
chosen files for each experiment.

The first experiment tested the effects of using only the pitch or only the rhythm
information of tunes, and the results reinforce points from the previous section. Using only
rhythm provides poor performance: queries 19 notes long (on average) are required to
obtain ten matches. Using only pitch provides much better performance: about six notes
are required for ten matches. Using both pitch and rhythm, however, only requires four
notes. For most query lengths, using both pitch and rhythm returns about one-tenth as
many matches as using just pitch, and about one-thirtieth as many as using just rhythm.
It is clear that using both pitch and rhythm has beneficial effects on retrieval performance;

using both does not usually require much extra work by the retrieval algorithm.

Searching digital music libraries 15

The next experiment explored the effects of the three pitch representations used in
the previous section: absolute pitch, pitch interval, and pitch contour. Rhythm is not used
in this experiment, in order to clearly show the effects of the pitch representations. The
results of this experiment support those obtained with the recall and precision
experiments. Absolute pitch is (as expected) the most discriminating representation.
Pitch interval is less discriminating, requiring an extra query note for a similar number of
matches; pitch contour is worse, requiring another three or four notes again.

Up to this point, rests have been ignored. The next experiment justifies this,
showing they have negligible effect on retrieval performance. The experiment compared
the number of songs returned when rests are used, and when they are ignored. Using rests
returns about 10% fewer matches than ignoring them—clearly, rests do not have much
more information content than notes, and are therefore not particularly useful. This result
supports the findings of other projects: “rests appeared to be unhelpful in matching”
(Uitdenbogerd & Zobel, 1999, page 65). Also, it is often unclear how to handle rests when
matching, and they usually require special treatment. It is therefore concluded that rests
require more effort than they are worth, and they are not considered further in the
experiments described here.

The beginnings of songs are often designed to be catchy, and are therefore
remembered well. Research has indicated that many people would form queries from the
beginning of songs (McNab et al., 1996). Given this, it seems sensible to have a special
option for matching queries at tune beginnings, and this is easily provided by the
state-based matching and dynamic programming algorithms. From another experiment
(Dewsnip, 2002), it was found that matching only at the start returns ten times fewer
matches than when matching anywhere—an effective technique for reducing the number of
matches for a user to search through.

The last two experiments in this section compare the performance of the matching

Searching digital music libraries 16

algorithms to the n-grams algorithms, and show the effects of different gram sizes. The
first experiment compares the state-based matching algorithm to the n-grams algorithm
(using 3-grams and 6-grams—the extremes of the gram sizes investigated) when exact
matching is performed. The results from this experiment are expected to show that a
longer gram size is more discriminating, but that the n-grams techniques never quite meet
the performance of the matching algorithms. Figure 3(a) shows that these expectations
are met. The 3-grams algorithm returns some extra, irrelevant matches to queries, but
surprisingly few (supporting Downie’s findings). The 6-grams is indistinguishable from the
state-based matching algorithm, but actually returns extra documents very occasionally.
The 4-grams and 5-grams (not shown) also return very few extra documents.

The recall and precision experiments in the previous section showed the necessity of
approximate matching. The next experiment investigates the increase in documents
returned when approximate matching is performed. This experiment tests the state-based
matching algorithm; an equivalent graph could be computed for the dynamic
programming algorithm, but they are not directly comparable due to their different
leniency measures. The n-grams algorithms (3-grams and 6-grams again) perform boolean
OR queries. Figure 3(b) shows the results from this experiment, which look very unusual
at first glance. The state-based matching algorithm performs as expected, but the n-grams
algorithms seem to perform very strangely: longer queries mean more matches? This
behavior is due to the boolean OR queries, which match any document containing at least
one of the query n-grams. More query terms therefore mean more matching documents,
rather than less. The n-gramming process used explains why the number of songs returned
drops sharply for very short queries, and then rises after a specific query length. When the
query length is less than the gram size, the query cannot be broken up into n-grams.
Therefore, a single gram of the query length must be searched for in the index, and every

document containing it is returned. Once the query length exceeds the gram size,

Searching digital music libraries 17

however, more than one n-gram can be formed, and a boolean OR query can be performed.

Documents containing any of the n-grams are returned, and the number of matches rises.
Comparing the performance of the state-based matching algorithm between

Figures 3(a) and 3(b) shows that allowing an error when matching requires an extra note

or two to get a similar number of matches. This supports the results from the previous

section that showed that recall and precision decrease when approximate matching is

used. When searching using approximate techniques, users should be encouraged to enter

slightly longer queries (if they can), especially with large collections.
Algorithm efficiency

Fast algorithms are vital for searching large music collections. The experiments in
this section measure the time algorithms take to perform queries. The experiments were
run on a 1000MHz computer with 512MB of memory. The time taken to perform queries
was measured using the built-in Java timer, which measures real time rather than process
time—the computer was therefore dedicated to running only these experiments.
Additionally, the results for each experiment were averaged over 300 repetitions to smooth
out any small variations that occur.

Two experiments were run to determine the effects of using approximate matching
on the time taken by the algorithms. The time taken by the dynamic programming
algorithm is not affected by the type of matching (exact or approximate) performed. The
state-based matching algorithm, however, takes time proportional to the number of errors
allowed. When matching in exact mode, the state-based matching algorithm takes
approximately 240 ms to search the folk collection (for all query lengths). When allowing
one error, it takes 270 ms, and allowing more errors would increase the time taken
proportionally.

The equivalent of exact and approximate matching for the n-grams algorithm is

Searching digital music libraries 18

boolean AND and boolean OR queries. An experiment was run to compare the time taken
by these types of queries on the folk collection. For large gram sizes (five and above), AND
and OR queries were almost indistinguishable. For small gram sizes, however, OR queries
take up to eight times longer (depending on the query length).

The following experiments measure the effects on query time of query length and
collection size, using the folk collection. The time taken to query the (larger) MIDI
collection is investigated in Section .

The time taken by an algorithm to search a collection is often affected by the length
of the query. Results from the previous sections have shown that longer queries are more
effective, so two experiments were run to estimate search times for queries of increasing
length. Both were run on the folk collection, using approximate matching and queries
between 2 notes and 20 notes long. The first experiment investigated the performance
gain when matching only at the start of documents—the size of the search space is
effectively reduced because far fewer melody events need to be compared. The state-based
matching algorithm takes 270 ms to search for queries anywhere in a document, and
between 185 and 210 ms (depending on query length) to match at the start of documents
only. The dynamic programming algorithm achieves a similar (relative) improvement,
since it also takes time directly proportional to the collection size. The n-grams algorithm
(as implemented) does not have the native ability to match queries only at the start of
documents.

A second experiment compared the performance of the three algorithms. From the
discussion of the algorithms at the start of the paper, the time taken with respect to the
query length is theoretically linear with the dynamic programming algorithm, constant
with the state-based matching algorithm, and sub-linear with the n-grams algorithms.
The results from this experiment, shown in Figure 4, clearly support these facts.

The dynamic programming algorithm has the worst performance for all query

Searching digital music libraries 19

lengths. For queries of reasonable length, eight notes long for example, about three
seconds are required to perform the query—Iikely to be unsatisfactory for many users.
Worse still, this performance is for a modest music database of less than 10,000 tunes. As
shown in the next section, the time taken by the dynamic programming algorithm also
increases linearly with respect to the database size.

The state-based matching algorithm performs well, requiring about one-quarter of a
second to search the folk collection. It is important to remember that this performance
can only be maintained for queries shorter than the machine word size (32 on the machine
used), however. To support longer queries, more complex operations would be needed to
calculate the match state, and more memory would be needed to store it. However, results
from the previous section indicate that it is unlikely that queries this long would ever be
necessary.

The n-grams algorithms (3-grams and 6-grams were tested) are the clear winners.
Except for very short queries, the time taken by the 6-grams algorithm to search the
collection of nearly 10,000 tunes is less than one-hundredth of a second. This is about
twenty times faster than the state-based matching algorithm, and hundreds of times faster
than the dynamic programming algorithm. The graph seems to show that the time taken
is constant with respect to the query length, but it actually increases very slightly as
queries get longer (the graph’s resolution is insufficient to show this). The 3-grams
algorithm is slower, but is still over five times faster than the state-based matching
algorithm.

The n-grams algorithm takes much longer (relatively) to process very short queries
(the rise at the 2 note point of Figure 4). This is due to the support for queries shorter
than the gram size, as explained earlier.

Algorithms whose performance scales well are vital for the large music collections of

the future. An experiment was run to compare the search performance of the three

Searching digital music libraries 20

algorithms as collection size increases. This experiment uses eight note queries, and tests
ten subcollections of the folk collection, of stepped sizes. The number of melody events
ranged from 0 to the total number in the folk collection (approximately 530000). The time
taken by the three algorithms to search these collections are shown in Figure 5.

The graph shows that the dynamic programming algorithm is linear with respect to
the collection size. The time taken is increasing quite sharply however, so this algorithm
soon becomes impractical for large collections. The state-based matching algorithm is also
linear, but it has a much lower constant of proportionality. The n-grams algorithm is

sub-linear, although it is hard to determine this from the graph.

A hybrid algorithm

The previous section has found the matching algorithms (state-based and dynamic)
to be more effective: fewer query notes are required to return reasonable sets of matches,
and recall and precision are usually better. The n-grams algorithms, however, are more
efficient: queries are processed much faster. An ideal algorithm would be a combination of
both these approaches, potentially achieving a good balance between effectiveness and
efficiency. This section applies knowledge from the previous evaluation to the design of a
“hybrid” approach, and evaluates it. Hybrid algorithms are sequential applications of the
fundamental algorithms in the workbench. The first algorithm in the sequence must
search the entire collection, but subsequent algorithms only search the documents the
previous algorithm identified to be matches. In this way, each algorithm in the sequence
refines the set of matches further.

The n-grams algorithm does not have the ability to search an arbitrary subset of a
collection, so it can only be used as the first algorithm in the sequence. This is ideal: it is
extremely fast and has the best recall for small gram sizes. The second algorithm used is

therefore one of the matching algorithms. Our experiments in Section showed the

Searching digital music libraries 21

dynamic programming algorithm is a little more effective than the state-based matching
algorithm, but a lot less efficient; consequently, we chose the state-based matching
algorithm to be the second (and last) algorithm of the hybrid. The two algorithms in the
hybrid use both the pitch and rhythm aspects of the tunes, and pitch intervals. Absolute
pitch requires unreasonable accuracy from users, and the precision achieved using pitch
contours is generally low. Lastly, a gram size of 3 is used for the n-grams
algorithm—Figure 2 shows that this configuration has perfect recall on the collection
tested, even with errors present. Its poor precision is not an issue for the hybrid approach,
because it is followed by the state-based matching algorithm (which achieves much better
precision).

The remainder of this section describes a series of experiments run to evaluate the
performance of this hybrid algorithm. The experiments are based on those in the previous
sections, but here only approximate matching is considered, since it is so important for
music retrieval. Therefore, the 3-grams component performs boolean OR queries, and the
state-based matching component allows one error. The experiments match queries
anywhere in the documents, and compare the hybrid algorithm to the state-based
matching algorithm alone and the 3-grams algorithm alone. The majority of the
experiments in this section are run on the MIDI collection, since its larger size shows the
performance trends better.

The first two experiments show the recall and precision performance of the hybrid
algorithm. The first is a repetition of the experiment summarized in Figure 2: searching
the folk collection for eight note queries containing one random error. The results from
this experiment are shown in Figure 6. The results for the state-based matching and
3-grams algorithms are the same as those from Figure 2—they are shown here for
comparison. This experiment also shows the performance of the hybrid algorithm using

absolute pitch and pitch contour.

Searching digital music libraries 22

Figure 6 shows that the hybrid algorithm achieves recall and precision performance
equal to the state-based matching algorithm by itself (which achieved the best
performance in the original experiment). The reason for this is that the 3-grams algorithm
has perfect recall for the folk collection, and therefore removes no relevant documents
from consideration. The state-based matching component of the hybrid receives a smaller
set of matches to search, but one that still contains all the relevant documents. Similar
results were obtained for the MIDI collection.

Recall and precision are not sufficient to show the benefits of the hybrid approach.
After all, using the state-based matching algorithm alone gives the same performance
without the complexity of the hybrid approach. The key to the hybrid is the 3-grams
algorithm—it removes many of the irrelevant documents, but leaves all the relevant ones.
The number of irrelevant documents removed by the 3-grams algorithm is investigated by
the next experiment.

This experiment is an application of the ‘number of songs returned’ evaluation
technique to the MIDI collection. It is equivalent to the one shown in Figure 3(b), except
it tests the hybrid algorithm; Figure 7 summarizes the results from this experiment.

The number of songs returned from a hybrid approach is always less than the
number of songs that each of its components would return—it is actually the intersection
between the sets of documents that each part would return by itself. Figure 7 shows that
the n-grams algorithm (even using 3-grams) removes between 500 and 1000 tunes (usually
about 800) from consideration. Effectively, the state-based matching algorithm only has
to search 5% to 50% of the collection (usually about 20%), but all of the relevant
documents are still present. The benefits of the hybrid approach stem from this.

The fact that the state-based matching algorithm is only required to search a small
subset of the collection means that the total search time is much reduced. The time taken

by the state-based matching algorithm is directly proportional to the collection size, so

Searching digital music libraries 23

the total time taken by the hybrid approach is a linear combination of the time taken by
the separate algorithms alone. If time3grqams is the time taken by the 3-grams algorithm to
search the whole collection, and timegigre—pased 1S the same for the state-based matching

algorithm, then:

2fi"nehybrid = timeiigrams + p timestate—based (1)

where p is the fraction of the collection left by the 3-grams algorithm.

This formula is supported by an experiment measuring query time, similar to the
one shown in Figure 4. The time taken to query the MIDI collection with the three
algorithms was measured as query length increases; results are shown in Figure 8.

The graph shows some interesting results. First, the state-based matching algorithm
is slightly faster when the query length is small. This is due to the fact that very short
queries match most documents exactly, and therefore the state-based matching algorithm
does not have to calculate the approximate match state. Second, even on the larger
collection the n-grams algorithm is extremely fast, taking about one-hundredth of a
second.

The performance of the hybrid algorithm seems unusual, until Figure 7 and
Equation 1 are considered. For queries between two and four notes long, the 3-grams
algorithm performs exact (boolean) queries, and the number of matches found drops
sharply. The p value of Equation 1 gets smaller, and the total time taken is reduced. After
four notes, the 3-grams algorithm performs approximate (OR) queries, and increasing
numbers of matches are found—p increases, and the total query time gets longer.

The last experiment shows the performance of the hybrid algorithm in relation to
collection size. This experiment is the same as Figure 5, except the MIDI collection is
used. Figure 9 shows the results from this experiment. The state-based matching

algorithm achieves reasonable performance, searching the entire MIDI collection in about

Searching digital music libraries 24

425 ms. The hybrid algorithm does a great deal better, however, searching the collection
in just over 60 ms—a factor of seven faster. The 3-grams algorithm does about eight times
faster again (requiring a mere 8 ms to search nearly 2.5 million melody events), but its
precision is much lower. Assuming the trend continues as it is shown in the graph, it is
expected that the collection could grow by a factor of 16 (to approximately 40 million
melody events) before the hybrid approach would require one second to search it
(assuming the indexes fit into memory).

To summarize the important points from this section, a hybrid algorithm with an
excellent balance between effectiveness and efficiency has been designed and tested. The
algorithm uses pitch intervals and rhythm, and consists of the n-grams algorithm using
n = 3, followed by the state-based matching algorithm. The algorithm was shown to equal
the best recall and precision achieved when errors are present, to return reasonable sets of
matches, and to perform queries very efficiently. Searching the MIDI collection with eight
note queries takes about 60 ms, so it is likely the algorithm could search much larger
collections in a reasonable amount of time. A fact not mentioned is that the hybrid
algorithm also can perform matching at the start of documents, since the state-based
matching algorithm supports this. Previous experiments showed that matching at the
start of documents is an effective method of reducing the number of matches returned,
and the time taken.

Even when the disadvantages of hybrid approaches are considered (they are more
complex, and require more disk space and memory), they are excellent choices for

achieving good efficiency and effectiveness.

Conclusion

We conclude this paper by relating the outcomes of our experimentation to forming

a digital music library.

Searching digital music libraries 25

First, effective algorithms should use both the pitch and rhythm information of the
melodies. Using both aspects has a beneficial effect on the number of songs returned, and
improves recall and precision—users are likely to get fewer, more relevant matches to
queries. Using both aspects does not usually require much extra work to implement, for
example extending the state-based matching and n-grams algorithms to use rhythm
require trivial changes (Dewsnip, 2002). Second, pitch interval was found to be a good
representation to use, although it is more susceptible to some entry errors. Absolute pitch
is not in general practical because it is key-dependent, and pitch contour requires too
many query notes to be useful. Third, rests were found to be unhelpful in matching.
Fourth, matching only at the start of documents is an effective method for reducing the
number of query results and the time taken to search the collection. Melody retrieval
systems may wish to allow the user to specify that their query is from the beginning of a
song—or at least starts within the first few notes—and take advantage of these benefits.

Approximate matching is a necessity for melody retrieval. There are many
opportunities for errors to be introduced into queries: poorly remembered tunes, pitch and
duration errors (if queries are hummed or sung), and errors introduced by the
transcription process (again, if queries are hummed or sung). These errors have dire
consequences on the performance of the exact algorithms, and this makes exact algorithms
unsuitable for melody retrieval. Also, approximate algorithms allow users to find tunes
that are similar to a query. To achieve the best performance with approximate
algorithms, however, users should be encouraged to enter an extra note or two.

Recommendations also can be made considering the three algorithms evaluated.

The state-based matching algorithm has a good balance between efficiency and
effectiveness. Recall and precision performance is satisfactory in approximate mode, even
when errors are present. Efficiency is reasonable: the MIDI collection can be searched in

under half a second. The time taken by the algorithm is also independent of query length

Searching digital music libraries 26

(provided it does not exceed the machine word size), so users are not penalized for
entering longer queries. The state-based matching algorithm is a suitable choice for
searching moderate-sized collections of music.

The dynamic programming algorithm in comparison is slightly more effective in
some cases and a little more flexible in its measure of approximation. Indeed a side effect
of the algorithm is that it can detail the edits that are necessary to transform string A
into string B—a factor that should not be overlooked when considering usability issues in
a digital music library. This is something the state-based matching algorithm cannot do
without effectively recomputing the match with additional information stored. The main
detraction of the algorithm is its relatively high computational cost, taking on average 8
times longer to perform a match than its state-based counterpart—a problem that grows
more acute as the collection size increases. One way to counter this trend is to base
matching around identified themes in the songs rather than the entire piece, however this
would require further experimentation to study the impact this has on recall and precision
rates.

The n-grams algorithm is very efficient, but not as effective as the other two
algorithms. Where the gram size is small, recall is excellent (and often perfect—even when
queries contain errors), but precision is generally poor. Increasing the gram size can alter
this balance: recall is reduced, but precision improves. The time taken by the n-grams
algorithm to search the two collections was under one-hundredth of a second for boolean
AND queries, and slightly longer for boolean OR queries. Unless queries are guaranteed to
be free of errors, the poor precision of the n-grams algorithm is likely to make it
unsuitable for use in a melody retrieval system, however.

Finally, the hybrid algorithm tested (3-grams followed by stated-based matching)
has an excellent combination of efficiency and effectiveness. Using this algorithm, users can

expect 80% of the relevant documents to be returned, and 60% of the documents returned

Searching digital music libraries 27

to be relevant (for eight note queries containing one error). Furthermore, they can expect
queries to be processed very quickly (well under one-tenth of a second, on the machine
used). The only disadvantages of the hybrid algorithm are related to its complexity and
space usage, which are likely to be of little concern to the end users of the system. The
hybrid approach has the best overall combination of efficiency and effectiveness, and it is

therefore recommended for digital music libraries and other melody retrieval systems.

Searching digital music libraries 28

References

Arnold, R., & Bell, T. (1997). A corpus for the evaluation of lossless compression
algorithms. In Proceedings of the ieee data compression conference (p. 201-210).

Snowbird, Utah.

Bainbridge, D., & Bell, T. (2001). The challenge of optical music recognition. Computers

and the Humanities, 35(2), 95-121.

Bainbridge, D., Nevill-Manning, C., Witten, I., Smith, L., & McNab, R. (1999). Towards
a digital library of popular music. In The 4th ACM conference on digital libraries

(p. 161-169). Berkeley, California.

Bird, D., & Downie, J. (Eds.). (2000). Proceedings of the 1st. int. symposium on music
information retrieval: Ismir 2000. Plymouth, Massachusetts. (Available through

WWW. MUSIC-1T. 0T)

Blake, C., Keogh, E., & Merz, C. (1998). UCI repository of machine learning databases.
http://www.ics.uci.edu/ mlearn/mlrepository.html, University of California,

Department of Information and Computer Science, Irvine, CA, Irvine, CA.

Dewsnip, M. J. (2002). Evaluating melody retrieval algorithms. Unpublished master’s

thesis, University of Waikato, Hamilton, New Zealand.

Downie, J. (1999). Evaluating a simple approach to musical information retrieval:
Conceiving melodic n-grams as text. PhD. thesis, University of Western Ontario,

Canada.

Downie, J., & Bainbridge, D. (Eds.). (2001). Proc. of the 2nd int. symposium on music
information retrieval. Indiana University, Bloomington, IN. (Available through

WWW. MUSIC-1T.07q)

Searching digital music libraries 29

Gold, B., & Rabiner, L. (1969). Parallel processing techniques for estimating pitch

periods of speech in the time domain. J. Acoust. Soc. Am., 46(2), 442-448.

Goto, M., Hashiguchi, H., Nishimura, T., & Oka, R. (2002, October). RWC music
database: Popular, classical, and jazz music databases. In M. Fingerhut (Ed.), 3rd

international conference on music information retrieval (ismir 2002) (pp. 287-288).

Hoos, H., Renz, K., & Gorg, M. (2001). GUIDO/MIR: An experimental musical
information retrieval system based on GUIDO music notation. In J. S. Downie &
D. Bainbridge (Eds.), Proc. of the 2nd int. symposium on music information

retrieval: ISMIR 2001 (p. 41-50).

McNab, R. (1996). Interactive applications of music transcription. MSc thesis,
Department of Computer Science, University of Waikato, NZ.

McNab, R. J., Smith, L. A., Witten, I. H., Henderson, C. L., & Cunningham, S. J. (1996).
Towards the digital music library: Tune retrieval from acoustic input. In Digital
libraries '96: Proceedings of the acm digital libraries conference (pp. 11-18).

Mongeau, M., & Sankoff, D. (1990). Comparison of musical sequences. Computers and the
Humanities, 24, 161-175.

Parsons, D. (1975). The directory of tunes and musical themes. Cambridge: Spencer
Brown.

Rand, W., & Birmingham, W. (2001). Statistical analysis in music information retrieval.
In J. S. Downie & D. Bainbridge (Eds.), Proc. of the 2nd int. symposium on music
information retrieval (p. 25-26). Indiana University, Bloomington, IN.

Shannon, C. E. (1948a, July). A mathematical theory of communication (part 1). Bell
System Technical Journal, 27, 379-423.

Shannon, C. E. (1948b, October). A mathematical theory of communication (part 2). Bell

System Technical Journal, 27, 623—656.

Searching digital music libraries 30

Uitdenbogerd, A. L., & Zobel, J. (1999). Melodic matching techniques for large music

databases. In Aem multimedia 99 (pp. 57-66). Orlando, Florida.

Witten, I., Bainbridge, D., & Boddie, S. (2001). Greenstone: open source DL software.
Communications of the ACM, 44(5), 44.

Witten, 1., Moffat, A., & Bell, T. (1999). Managing gigabytes: compressing and indexing
documents and images. San Francisco, CA: Morgan Kaufmann.

Witten, L., R., M., Boddie, S., & Bainbridge, D. (2000, June). Greenstone: a

comprehensive open-source digital library software system. In Proceedings of the

fifth ACM conference on digital libraries (p. 113-121). San Antonio, Texas.

Wu, S., & Manber, U. (1992). Fast text searching allowing errors. Communications of the

ACM, 35(10), 83-91.

Searching digital music libraries 31

Footnotes

1Downie uses only the pitch aspect of melodies, and does not consider absolute pitch.
Here, the queries are represented using absolute pitch and have rhythm information. This
change causes the numerical results presented here to be different from those in Downie’s

work.

Searching digital music libraries 32

Algorithm | Rhythm only Pitch only Pitch and rhythm
abs int con abs int con

State-based 0.106 0.593 0.396 0.009 | 1.000 0.963 0.829
6-grams 0.096 0.582 0.389 0.009 | 1.000 0.963 0.826
5-grams 0.077 0.561 0.373 0.006 | 0.997 0.958 0.816
4-grams 0.054 0.505 0.324 0.002 | 0.991 0.954 0.772
3-grams 0.030 0.323 0.234 0.001 | 0.987 0.943 0.546

Table 1

Precision values for the folk collection, using exact matching and error-free queries.

Searching digital music libraries 33

Figure Captions

Figure 1. A workbench for symbolic music information retrieval.

Figure 2. (a) Recall and (b) precision values for the folk collection, using approximate

matching and queries with one random error.

Figure 3. Number of songs returned from the folk collection with the state-based
matching, 3-grams and 6-grams algorithms, using (a) exact matching (b) approximate

matching.

Figure 4. Time to query the folk collection as query length increases, using dynamic

programming, state-based matching, and 6-grams algorithms in approximate mode.

Figure 5. Time to query the folk collection as collection size increases, using dynamic

programming, state-based matching, and 6-grams algorithms in approximate mode.

Figure 6. (a) Recall and (b) precision values for the folk collection, using state-based
matching, 3-grams and hybrid algorithms in approximate mode and queries with one

random error.

Figure 7. Number of songs returned from the MIDI collection using the state-based

matching, 3-grams and hybrid algorithms in approximate mode.

Figure 8. Time to query the MIDI collection as query length increases, using state-based,

3-grams and hybrid algorithms in approximate mode.

Figure 9. Time to query the MIDI collection as collection size increases, using state-based

matching, 3-grams and hybrid algorithms in approximate mode.

Assimilation phase

| Import |

R y Confi ti
[Filter R {Expand|

| Ir;dex/D:attaba‘se |

< | Search |

Res'ults
| |

4 ® @ ¥ o o
s S oS o

anfeA uoisioald

rrrrr

hing'
ams'
-grams'
ams
ams

"state-matchi

4 ©® @ ¥ o o
s oS oS o

anfeA |[evay

interval contour

Algorithm configuration

absolute

interval contour

Algorithm configuration

absolute

Number of matches returned

10000

1000

100

10

8 10 12
Number of query notes

(a)

Number of query notes

(b)

T T T T 10000 T T — T
“"state-matching” —+— “"state-matching” —+—
"3-grams" - "3-grams"” ----x---
"6-grams" * "6-grams" *
°
El g 1000 ¢
2
o
@
o
S
J £ 100t
£
S
|9
2
1 5 w¢
z
1
14 16 18 20 0 2 4 6 8 10 12 14 16 18 20

Time to query (ms)

8000

7000

6000

5000

4000

3000

2000

1000

‘ ‘ "dynamic-programming” —
"state-matching"”
r "3-grams" %
"6-grams"
£ "
0 2 8 10 12 14 16 18 20

Number of query notes

Time to query (ms)

3500

3000

2500

2000

1500

1000

500

"dynamic-programming” —+—
"state-matching" ----x---
"3-grams” %o

"6-grams*” e

Number of events in collection (1000s)

600

3-grams”
"hybrid"

"state-matching"

anfeA uoisioald

anfeA |[evay

interval
Algorithm configuration

interval contour

Algorithm configuration

absolute

Number of matches returned

10000

1000

=
o
]

=
o

"‘state-ﬁwalchiﬁg”

8 10 12 14 16
Number of query notes

18

20

Time to query (ms)

500
450
400
350
300
250
200
150
100

50

X

‘”state-‘malchihg" —

"hybrid" -

"3-grams" %

xe

S

8 10 12
Number of query notes

14

16 18

Time to query (ms)

500
450
400
350
300
250
200
150
100

50

‘”state-malchihg" —
"3-grams" -
"hybrid" -

500 1000 1500 2000
Number of events in collection (1000s)

2500

