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ABSTRACT. A topological space X is said to belong to the class of Stegall
(weakly Stegall) spaces if for every Baire (complete metric) space B and min-
imal usco ¢ : B — 2% o is single-valued at some point of B. In this paper we
show that under some additional set-theoretic assumptions that are equicon-
sistent with the existence of a measurable cardinal there is a Banach space
X whose dual, equipped with the weak® topology, is in the class of weakly
Stegall spaces but not in the class of Stegall spaces. This paper also contains
an example of a compact space K such that K belongs to the class of weakly
Stegall spaces but (C(K)*, weak™) does not.

1. INTRODUCTION

We say that a Banach space X is a weak Asplund (almost weak Asplund) [Gateauz
differentiability] space if every continuous convex function defined on a non-empty
open convex subset A of X is Gateaux differentiable at the points of a residual
(everywhere second category)[dense] subset of A. While it is easy to see that every
weak Asplund space is almost weak Asplund and every almost weak Asplund space
is a Gateaux differentiability space, the status of the reverse implications remains
unresolved. In the study of weak Asplund spaces C. Stegall introduced the following
class of topological spaces which are defined in terms of minimal uscos. Recall that
a set-valued mapping ¢ : X — 2Y acting between topological spaces X and Y is
called an usco mapping if for each x € X, ¢(x) is a non-empty compact subset of
Y and for each open W in Y, {z € X : p(x) C W} is open in X. An usco mapping
¢ X — 2Y is called a minimal usco if its graph does not properly contain the graph
of any other usco defined on X and a topological space Y is said to belong to the
class of Stegall spaces if for every Baire space B and minimal usco ¢ : B — 2Y, ¢ is
single-valued at some point of B or equivalently, ¢ is single-valued at the points of a
residual subset of B, (see, Theorem 3.2.6 of [I]). Here we study the class of weakly
Stegall spaces which was first introduced in [2]. We say that a topological space Y
belongs to the class of weakly Stegall spaces if for every complete metric space M
and minimal usco ¢ : M — 2V, ¢ is single-valued at some point of M. The study
of this class of topological spaces is very natural, especially in the setting of Banach
spaces. Since for a Banach space X if (X*, weak®) is a weakly Stegall space, then
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X is a Gateaux differentiability space (but not necessarily a weak Asplund space).
This is particularly significant as it has been a long standing open question as to
whether every Gateaux differentiability space is a weak Asplund space. Thus one
would ideally like to construct a non-weak Asplund space X such that (X*, weak™)
is a weakly Stegall space. Unfortunately, the construction of such a Banach space
remains elusive. However, in this paper we construct a Banach space X such that
(X, weak*) belongs to the class of weakly Stegall spaces but not to the class of
Stegall spaces.

The remainder of this paper goes as follows. In Section 2 we introduce a topo-
logical game that is related to the class of weakly Stegall spaces. Then we use this
game to characterize those spaces belonging to the class of weakly Stegall spaces.
We end Section 2 by applying this characterization to a recent example given in
[4] to obtain a Banach space X such that (X*,weak™) is a weakly Stegall space
but not a Stegall space. Section 3 is then devoted to constructing a weakly Stegall
compact space K 4 such that (C(K4),| - ||o) is not almost weak Asplund.

2. A WEAKLY STEGALL BUT NON-STEGALL SPACE

Let U be any open cover of a topological space (X, 7). On X we consider the
G(U)-game played between two players ¥ and 2. Player ¥ goes first (always!) and
chooses a non-empty subset A; of X. Player 2 must then respond by choosing a
non-empty relatively open subset By of Ay of the form: B; := BfNA; with B} € U.
Following this, player ¥ must select another non-empty subset Ao C B; C A; and
in turn player  must again select a non-empty relatively open subset Bs of As
of the form: By := B N Ay with B; € U. Continuing this procedure indefinitely
the players ¥ and €2 produce a sequence {(A,,B,) : n € N} of pairs of non-
empty subsets called a play of the G(U)-game. We shall declare that Q wins a play
{(An,By) : n € N} if, (2, B, is at most one point. Otherwise, the player ¥ is
said to have won the play. By a strategy t for the player ¥ we mean a “rule” that
specifies each move of the player ¥ in every possible situation. More precisely, a
strategy t := (¢, : n € N) for ¥ is a sequence of set-valued mappings such that
0 # tp+1(B1, Ba,..., By) C By, for all n € N. The domain of each mapping ¢, is
precisely the set of all finite sequences {Bi, Ba, ..., B,_1} of length n — 1 with each
Bj being a non-empty relatively open subset of ¢;(B1, Ba, ..., Bj—1) of the form
Bj := B} Ntj(B1,Ba,...,Bj_1) with Bj € U. (Note: the sequence of length 0
will be denoted by ). Such a finite sequence {Bi, Ba, ..., Bp,—1} (infinite sequence
{By, : n € N}) is called a partial t-play (t-play). A strategy t := (¢, : n € N) for
the player Y is called a winning strategy if each infinite t-play is won by . We
will say that the G(U)-game on X is X-unfavourable if the player ¥ does not have
a winning strategy in this game.

We say that a subset Y of a topological space (X, 7) has countable separation in
X if there is a countable family {O,, : n € N} of open subsets of X such that for
every pair {z,y} with y € Y and = € X\Y, {x,y} N O, is a singleton for at least
one n € N. For a completely regular topological space (X, 7) we shall simply say
that X has countable separation if in some compactification bX, X has countable
separation in bX. It is shown in [7] that if X has countable separation in one
compactification, then X has countable separation in every compactification and
that every Cech-analytic space has countable separation. A set-valued mapping
¢ : X — 2Y acting between topological spaces X and Y is said to be minimal if for
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each pair of open subsets U of X and W of Y such that o(U)NW # () there exists a
non-empty open subset V' C U such that (V') C W. This definition is modeled on
the characterizing property of minimality of usco mappings, i.e., an usco mapping
¢ : X — 2Y is a minimal usco if, and only if, ¢ is a “minimal” mapping. The
following theorem may be extracted from Theorems 4, 5 and 6 of [5].

Theorem 1. For a completely regular topological space (X, T) with countable sep-
aration the following properties are equivalent:
(i) (X,7) is a weakly Stegall space;

(ii) the G(7)-game on X is Y-unfavourable;

(iii) every minimal non-empty valued mapping ¢ : M — 2% acting from a complete
metric space M into X is single-valued at some point of M;

(iv) every minimal non-empty valued mapping o : M — 2% acting from a complete
metric space M into X is single-valued at the points of an everywhere second
category subset of M ;

(v) every minimal non-empty valued mapping ¢ : B — 2% acting from an a-
favourable space B (see, [5] for the definition) into X is single-valued at the
points of an everywhere second category subset of B.

The previous theorem enables us to establish the relationship between weakly
Stegall and fragmentable spaces as well as the relationship between weakly Stegall
and almost weak Asplund spaces. Recall that a topological space (X, 7), endowed
with a metric d, is said to be fragmented by d if for each € > 0 and each non-empty
subset A of X there exists a non-empty relatively open subset B of A such that
d-diam(B) < e. In such a case the space is said to be fragmentable. Now in [6] the
authors show that a space (X, 7) is fragmentable if, and only if, the player Q has a
winning strategy in the G(7)-game played on X. This contrasts with the situation
for weakly Stegall spaces which are characterized by the lack of a winning strategy
for the player ¥ in the G(7)-game played on X. Hence the distinction between being
fragmentable and being weakly Stegall is equivalent to the distinction between (2
having a winning strategy and ¥ not having a winning strategy. The relationship
between a Banach space X being almost weak Asplund and possessing a weakly
Stegall dual space can also be clarified here. It follows from Theorem 1 (iv) and the
proof of Theorem 3.2.2 in [I] that every Banach space whose dual, equipped with
the weak™* topology, is weakly Stegall is almost weak Asplund.

Theorem 2. Let (X,7) be a completely regular topological space with countable
separation and weight k > Ng. Then (X, 7) is a weakly Stegall space if, and only
if, for every complete metric space M of density at most k and minimal usco ¢ :
M — 2%, ¢ is single-valued at some point of M.

Proof. Tt is immediately clear from the definition that if (X, 7) belongs to the class
of weakly Stegall spaces, then for every complete metric space M of density at most
 and minimal usco ¢ : M — 2% there is a point at which ¢ is single-valued. So we
consider the converse. Let B be a topological base for (X, 7) with cardinality x and
let ¢t := (¢, : n € N) be a strategy for the player ¥ in the G(7)-game played on X.
We need to show that ¢ is not a winning strategy, that is, we need to construct a
t-play, {By, : n € N} in which 2 wins. To accomplish this we consider a new game
on X. Namely, we consider the G(B*)-game on X, where B* := BU {X}. For this
game we inductively define a strategy t' := (¢), : n € N) for the player ¥ in terms
of the strategy t.
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First we define t{(0) := t1(0) and then under the assumption that for each
1 <45 <n, t;- has been defined in such a way that each partial ¢’-play of length
at most n is a partial t-play, we define ¢], | (B1, Ba, ..., By) := tp41(B1, Ba, ..., By).
This completes the definition of ¢’ := (¢}, : n € N). With this definition we see that
every t'-play is a t-play. In fact, ¢’ is essentially the restriction of the strategy ¢ to the
G(B*)-game. Next we let P denote the space of all ¢’-plays endowed with the Baire
metric d, that is, if p ;== {B,, : n € N} and p’ := {B], : n € N}, then d(p,p’) =0
if p = p’ and otherwise, d(p,p’) = 1/n, where n := min{i € N: B; # B}. It is
straightforward to verify that (P, d) is a complete metric space. We claim however
that the density of (P, d) is at most . To see this, we first observe that there are at
most « partial ¢'-plays and that for every partial ¢’-play {B; : 1 < j < n} we may fix
a unique extension to a full ¢’-play, namely, that defined By, := tx(B1, Ba, ..., Bx_1)
(i.e., Bf := X) for all K > n. One may now check that the set of all these extensions
is dense in (P, d). Therefore, the density of (P, d) is at most .

Next we define, as in Theorem 2 of [5], a set-valued mapping F : P — 2% by

F(p) := ﬂ B,, wherep:={B,:n¢ecN}
n=1
If F(p) = () for some ¢'-play p, then © wins the play and so ¢ is not a winning strategy
for the player ¥ in the G(7)-game played on X; which completes the proof. Hence
we shall assume that F' has non-empty values. It now follows, as in Corollary 3 of
[5], that F' is a minimal mapping. Moreover, by Theorem 6 of [5] there is a dense
G5 subset G of P and a minimal usco F' : G — 2% such that F(p) C F(p) for
all p € G. Now since G is completely metrizable and has density at most &, there
exists some t/-play p in G such that F (p) is a singleton, from which it follows that
F(p) is a singleton and thus p is a t-play in which ©Q wins. Therefore ¢ is not a
winning strategy for the player ¥ in the G(7)-game played on X. This completes
the proof. O

Proposition 1 ([2| Proposition W2, part(b)]). Let (X,7) be a topological space
and let {X,, : n € N} be closed subsets of X. If each X, is a weakly Stegall
space and X =J;—; Xp, then X is a weakly Stegall space.

Proof. Let M be a complete metric space and let ¢ : M — 2% be a minimal usco.
For each n € N, let M,, := {m € M : o(m) N X,, # 0}. Then {M, : n € N}
is a sequence of closed sets covering M, hence there is some ng € N such that
U := int M,,, # 0. Now one can easily verify that the restriction of ¢ to U is a
minimal usco which maps U into X,,, (see, Lemma 3.1.2 of [1]). Therefore, since
X, is a weakly Stegall space, there is some point m € U such that ¢(m) is a
singleton. [l

Example 1. If Martin’s axiom and the negation of the continuum hypothesis hold,
then there exists a Banach space X such that (i) (X*, weak™) is a weakly Stegall
space and (ii) (X*, weak™) is not fragmentable.

Proof. In [4] the author gives an example, under the assumptions stated above, of
a Banach space X such that (X* weak") is not fragmentable but is in Stegall’s
class with respect to the class of all metrizable Baire spaces of weight at most
N;. One can check that in this example the weight of (Bx«,weak®) is at most
Ny. Therefore, by Theorem 2 (Bx-«,weak”) is a weakly Stegall space and so by
Proposition 1, (X*, weak™) is a weakly Stegall space. O
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Example 2. If there is a precipitous ideal on w; and Martin’s axiom and the
negation of the continuum hypothesis hold, then there exists a Banach space X
such that (i) (X*,weak™) is a weakly Stegall space and (ii) (X*, weak”) is not a
Stegall space.

Proof. In [4] the author shows that if there exists a precipitous ideal on wy, then
(X*, weak™) fails to be a Stegall space, where the Banach space X is the same as
in Example 1. [l

Remark 1. The author in [4] notes that the assumptions in Example 2 are equicon-
sistent with the existence of a measurable cardinal.

3. A NON-ALMOST WEAK ASPLUND SPACE

In this section we give an example of a weakly Stegall compact space K4 such
that (C(K4),| - |lo) is not an almost weak Asplund space. Let B be a Bernstein
subset of (0, 1), that is, B is a subset of (0, 1) such that neither B nor its complement
contains any perfect compact sets (see [9], p. 23). We now set A :=[(0,1/2)N B]U
[1/2 4+ (0,1/2)\B] (then A does not contain any perfect compact subsets either),
and define

Ka:=[(0,1] x {0} U[({0} U 4) x {1}].
We endow K4 with the order topology generated by the lexicographical (i.e., dic-
tionary) ordering (i.e., (s1,82) < (t1,t2) if, and only if, either s; < t; or 81 = 1

and sg < t3). It is shown in Proposition 2 of [3] that K4 is a compact Hausdorff
space.

Proposition 2 ([2] Proposition W3|). K4 is a weakly Stegall space.

Proof. Let M be a complete metric space, let ¢ : M — 254 be a minimal usco and
let p: K4 — [0,1] be defined by p(t,¢) :=t (i.e., p is the natural projection). When
K 4 is given the order topology and [0, 1] is given the usual topology, p is continuous.
Therefore by Lemma 1 (d) of [3], the composition mapping po ¢ : M — 201 is a
minimal usco on M. Since [0, 1] is metrizable (and hence in Stegall’s class) there
exists a dense G5 subset G of M such that po ¢ is single-valued at each point of G.

Now if (p o ¢)(m) C [0,1]\A for some m € G, then ¢ is single-valued at m.
Hence we need only consider the case when (p o 9)(G) C A. Since A does not
contain any perfect subsets, it follows from Proposition 7 (d) of [3] that there exists
a non-empty open subset U of G and an element a € A such that (po¢)(U) = {a},
e, p(U) C {a} x {0,1}. Now by applying Lemma 2 of [B] twice we see that the
restriction of ¢ to U is still a minimal usco and since the two point set {a} x {0, 1}
is metrizable (and hence in Stegall’s class) ¢ must be single-valued at some points
of U. This completes the proof. O

We now show that (C(K4),|| - ||e) is not an almost weak Asplund space.
Lemma 1. Let M : C(K4) — R be defined by
M(f) :=sup{f(t,e) + f(t +1/2,€") : (t,e,&') € &}
where ¥ is given by
Y= {(t,e,e): 0 <t <1/2 and e,e’ €{0,1}with (t,e) K4 and (t +1/2,e")EK4}.

Then M is a continuous convez function on C(K4).
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Proof. For each (t,¢,¢') € ¥, define a7, _ ) : C(Ka) — R by
Toeen ()= f(te) + f(t+1/2,€).

Then each 7, ., is a continuous linear functional on C(Ka), (ie., Tlpeery €

C(K4)?) and |7, . .|l = 2. Now, M(f) = sup{a}, . ., (f) : (t.e,¢') € £}. There-
fore, as M is the pointwise supremum of continuous (2-Lipschitz) linear functionals,
M is convex and 2-Lipschitz. O
Lemma 2. M(f) = max{f(t,e)+f(t+1/2,&'): (t,e,&') € X} for each f € C(Ka4).

Proof. We define p : K4 — [0,1] by p(t,e) :=t (i.e., p is the natural projection).
When K4 is given the order topology and [0, 1] is given the usual topology, p is
continuous. Hence p~! : [0,1] — 2K4 defined by p~1(t) := {(t/,e) : p(t',e) = t} is
an usco mapping. So for each f € C(K4) the mapping Ty : [0,1/2] — 2% defined
by
Tp(t) = fp~ (1) + fp~(t +1/2))

is an usco mapping, since sums and continuous images of usco mappings are again
usco mappings. Thus, T ([0,1/2]) is a compact subset of R and so,

M(f) = sup{T(t):t€[0,1/2]}
= max{T(t):t€[0,1/2]}
= max{f(t,e) + f(t+1/2,€"): (t,e,&') € X}.
([l
We will say that (¢,e,e’) € ¥ supports M at fif M(f) = f(t,e)+ f(t+1/2,¢).
Let us now observe (using the notation of Lemma 1) that if (¢,,¢’) supports M at
f, then
T(peery € OM(f) :={a" € C(Ka)" : 2™(9) — 2" (f) < M(g) — M(f)
for all g € C(K4)}.
Let us also recall that since M is convex, M is Gateaux differentiable at f if,
and only if, M (f) is a singleton.
Lemma 3. Let S : C(K ) — 21912 be defined by
S(f)={t€0,1/2]: (t,e,&") supports M at f for somee,e" € {0,1}}.
Then S is a minimal usco.

Proof. Let f € C(K4a) and let Ty be defined as in Lemma 2, then S(f) = {t €
[0,1/2] : T (t)N[M(f),o0) # 0}. Therefore, S(f) is a non-empty closed (and hence
compact) subset of [0,1/2]. Consider f € C(K4) and U an open subset of [0,1/2]
containing S(f). Let

Mio,1/20v(f) == max{Ty(t) : t € [0,1/2\U} < M(f).
Choose 0 < & < [M(f) — Mjo,1/2pv(f)]/4. Then an easy calculation shows that
Mio,1/2pv(g) < M(g)

for all g € B(f;¢e) and so S(g) C U for all g € B(f;¢e). This shows that .S is upper
semi-continuous. The proof that S is minimal is not difficult and is left to the
reader. O
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Example 3. The space (C(K4), || - ||so) is not almost weak Asplund.

Proof. We show that C'(K 4) is not an almost weak Asplund space by showing that
the continuous convex function M defined on C(K 4) is non-Géateaux differentiable
at the points of a residual subset of C(K4). Let S : C(K4) — 2%/ be defined
as in Lemma 3 and let G := {f € C(Ka) : S(f) is a singleton}. By Lemma 3 and
the fact that [0,1/2] is metrizable and hence in Stegall’s class, G is a residual (and
hence dense) subset of C(K4). As in Lemma 2, let p : K4 — [0,1] denote the
natural projection of K4 onto [0, 1] and for each n € N let,

O1y = {f € C(Ka) : diam[f(p~'(S(f)))] <1/nand
diam[f(p~"(S(f) +1/2))] < 1/n}.

Since both mappings f — f(p~1(S(f))) and f — f(p~*(S(f) + 1/2))) are usco
mappings, it is easy to see that each Oy, is an open subset of C(K ). We claim
that each Oy, is dense in C'(K 4). To justify this assertion let us fix n € N, fo € G
and £ > 0, with the goal of showing that Oy ,, N B(fo,¢) # (). We shall only consider
the case when S(fp) := {to} C [0,1/2)\B as the case when S(fp) C B is similar.
By the continuity of fy there exists a § > 0 such that
(1) |f0(t,€) — fo(to,0)| < 1/4n for all (t,E) € K4 with |f, - t0| < 90;
(ii) |fo(t +1/2,¢) — folto +1/2,1)] < 1/4n for all (t + 1/2,¢) € K4 with t €
(to, o +6);
(iil) |fo(t + 1/2,¢) — fo(to +1/2,0)| < 1/4n for all (t +1/2,¢) € K4 with ¢t €
(to — 6, to0).
Since the mapping S is upper semi-continuous there exists a 0 < ¢’ < 1/4n such that
S(B(fo; 5)) - (to —d,to + (5) Now, if |f0(t0 + 1/2, 0) — fo(f,o + 1/2, 1)| < 1/n, then
O1/,NB(fo;€) # 0. So we will assume that |fo(to+1/2,0) — fo(to+1/2,1)| > 1/n.
In fact, we will assume that fo(to +1/2,1) — fo(to +1/2,0) > 1/n. By judiciously
choosing a “bump function” h: K4 — [0, 00) with ||h]|s < 6" and

supp(h) == {(t,2) : h(t,€) # 0} S p~*((to +1/2.to + 1/2+5))

we can assume that M (fo) < M(fo + h). In fact, with this choice of function we
can show that S(fo + h) C (to,to + ). Indeed, if t € S(fo + h) and ¢ < tp, then

(fo+h)(t.e) + (fo+h)(t+1/2,€)
= fo(t,e) + fo(t +1/2,") < M(fo) < M(fo+ h)
which contradicts the fact that t € S(fo+h). It is now a straightforward calculation
to show that
diam [(fo + h)(p~ " (S(fo + R)))] < 1/n and
diam [(fo +h)(p~ " (S(fo +h) +1/2))] < 1/n.

Therefore (fo + h) € Oy, and so B(fo;e) N Oy, # 0. We now claim that if
feN—, 01 /n, then M is not Gateaux differentiable at f. To see this consider the
sets

() ={(t',e,e’) €T :t' =t} foralltel0,1/2].

Now |X(¢)] = 2 for each t € [0,1/2) and if ¢ € S(f), then each member of ()
supports M at f, i.e., for each (¢,¢,¢") € X(t), xz‘t’s,s,) is a subgradient of M at f.

Therefore M is not Gateaux differentiable at f. This completes the proof. O
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More information on both weakly Stegall and almost weak Asplund spaces will
contained in [I0].
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