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We present a detailed group theoretical study of the problem of separation of variables for the

characteristic equation of the wave equation in one time and two space dimensions. Using the well-known
Lie algebra isomorphism between canonical vector fields under the Lie bracket operation and functions
(modulo constants) under Poisson brackets, we associate, with each R -separable coordinate system of the
equation, an orbit of commuting constants of the motion which are quadratic members of the universal
enveloping algebra of the symmetry algebra 0(3,2). In this, the first of two papers, we essentially restrict

ourselves to those orbits where one of the constants of the motion can be split off, giving rise to a reduced
equation with a nontrivial symmetry algebra. Our analysis includes several of the better known two-body

problems, including the harmonic oscillator and Kepler problems, as special cases.

INTRODUCTION

This is the first of two papers in which we study the
problem of separation of variables for solutions of

Wi- W2- Wi=0, (0.1)
the characteristic equation of the wave equation
Uy~ ¥y~ ¥,,=0. 0.2)

As is well known!? the symmetry algebra of (0.1) de-
fined in terms of operators acting on £,x,y is 0(3,2).
Furthermore, there is an isomorphism between the
symmetry algebras of {0.1) and (0. 2).

In Refs, 3—5 it was shown that every R-separable
coordinate system for (0. 2) is characterized by a pair
of commuting second order symmetric differential
operators in the enveloping algebra of o(3,2). Further-
more, coordinates whose operators lie on the same
orbit under the adjoint action of O(3,2) can be consid-
ered as equivalent. The separated special function solu-
tions are eigenfunctions of the commuting symmetry
operators and this relationship is a powerful tool for
the derivation of special function identities,

In Ref, 2 it was shown that the symmetry algebra of
the Hamilton—Jacobi equation for the free particle

S,+S=0 (0.3)

(acting in ¢,x, S space) was also isomorphic to o(3, 2).
The problem of additive R-separation of variables for
(0. 3) was studied in Ref. 6. There all solutions of the
form

S=R(u,v)+ U)+ V({v) 0.4)

were classified where u,v is a new coordinate system,
either R =0 or R#0 and is not expressible as a sum of
a function of u alone and a function of v alone, and U, V
are arbitrary solutions of first order ordinary differen-
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tial equations, It was shown that the separable co-
ordinates agree exactly with the separable coordinates
for the free-particle Schrddinger equation

i‘l’t+‘llxx: 0 (0- 5)

as derived in Ref. 7. There coordinates are all asso-
ciated with the Schrddinger subalgebra of 0(3,2).
Furthermore, the other elements of 0(3,2) lead to sym-
metry adapted solutions which do not separate additively
as in (0. 4) but in some more complicated fashion. In
exact analogy with the linear results in Ref. 7 it was
also shown that the Hamilton—Jacobi equations for the
harmonic oscillator, repulsive oscillator, and linear
potential are equivalent to (0, 3). Finally, it was pointed
out that all these equations are equivalent to (0. 1) in the
sense that (0, 1) is the equation of the graph of each of
the considered Hamilton—Jacobi equations.

Here, we look for additive R-separable solutions of
(0.1) in the form

sl
We show by example that the separable systems are the
same as those derived in Refs, 3—5 for (0. 2) and,
properly interpreted the Lie algebraic characteriza-
tions of the systems are the same. The proper inter-
pretation of the symmetry algebra of (0.1) is that it is
an algebra of functions in the six-dimensional phase
space. {t,x,v; py=W,, p1=W,, py=W,}, linear in the
ps, where the commutator is the Poisson bracket. The
second order symmetries are formed by taking linear
combinations of products of these functions. For the
linear case, separable solutions are eigenfunctions of
commuting second order differential operators, For
the Hamilton—Jacobi case, separable solutions are
those for which the corresponding second order func-
tions, commuting under the Poisson bracket operation,
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take constant values. The orbit analysis for the classi-
fication of separable systems is identical to that in the
linear case,

We follow closely the procedure of Ref. 3 and concen-
trate here on those systems where one coordinate can
be split off by diagonalizing a first order symmetry,
leaving a reduced equation in two variables. The addi-
tively separable coordinates for the reduced equations
(Hamilton—Jacobi equations for the free particle,
harmonic oscillator, repulsive oscillator, linear poten-
tial, the equation of geometrical optics, etc.} corre-
spond to proper subalgebras of o(3,2). However, utiliz-
ing the full symmetry algebra, we find many solutions
of these reduced equations which separate nonadditively,
On one hand each reduced equation is a special case of
(0.1), but also (0.1) is the equation of the graph of the
reduced equation. Thus each reduced equation is equiv-
alent to (0.1) and admits the symmetry algebra o(3, 2).

We show that the passage from a Hamilton—Jacobi
equation to the associated Hamiltonian system provides
us with the analogy of a momentum space model in the
linear theory. We also indicate how the results of Ref.
4 concerning cyclidic R-separable coordinates for
(0. 2), in which it is impossible to split off one variable
at a time, carry over directly to (0.1)., In the second
paper we will provide complete proofs concerning the
identity of separable coordinates for these two equa-
tions. Finally, due to the fact that Lie algebra compu-
tations are much easier (though equivalent) for (0. 1)
than for (0. 2), we have been able to find and correct
some computational errors in Refs, 3 and 8.

Although this paper concerns only the nonlinear equa-
tion (0, 1), it should be obvious to the reader that our
Lie algebraic procedure can be applied with little change
to more general Hamilton—Jacobi equations, Indeed
there has been a recent revival of interest in separation
of variables® !’ for general Hamilton—Jacobi equations
owning to its usefulness as a solution technique for the
Einstein and Einstein—Maxwell equations. !! (For the
classical literature see Ref, 12, and the book by
Hagihara, ** where many applications to celestial me-
chanics are given. ) Of the recent literature dealing with
separation of variables for the Hamilton—Jacobi and
related second order differential equations in general
Riemannian (and pseudo-Riemannian) spaces we men-
tion the works of Havas, ? Dietz, !° and Woodhouse. 1°
Havas® has given the general form of the metric tensor
for coordinates which admit complete or partial sep-
aration, He also gives the general form of linear and
quadratic integrals of motion. Dietz!® and Woodhouse!®
consider a much more restrictive definition of separa-
tion of variables; they additively split off a single varia-
ble at a time, In this way one cannot obtain the more
general type separable coordinates. !* None of the above
authors allows nontrivial R separation or considers
nonadditive separation such as appears here. Further-
more, this and our subsequent paper are the only ones
to associate with separable systems orbits of second
order members of the enveloping algebra of the sym-
metry algebra as the correspondings integrals of the
motions, thus allowing us to give explicit lists of sep-~
arable coordinates classified in equivalence classes,
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It is our hope that this treatment of a most interesting
example will aid in the establishment of more general
results for Hamilton—Jacobi equations,

1. BASIC PRINCIPLES
We begin with the equation
Wh— Wi - Wha=0, W,u=20,.W() t.1)

for the characteristics of the wave equation. As is well
known!? the space—time symmetry algebra of (1,1) is
0(3,2). That is, the set of Lie derivatives

2
L=7, a,(x)d,m

ual

such that LW is a solution of (1.1) whenever W is a
solution forms the Lie algebra o(3,2) under the opera-
tions of addition of Lie derivatives and commutator
bracket. A basis for 0(3,2) is provided by the elements
Muv:xuax"— XyOyu, MFV,
P,=8u, D=x-98,=x"0,u, 1.2)
K,=2%,x:0,~x%9,n, 0<u,v<2,

where x,=x", x;=—-x’ forj=1,2, x*=x"x, and the
Einstein summation convention for repeated indices is
adopted., The commutation relations are

(Mo, My, ] =2, Myp + 8,6M,, = £u6M,, — 8, M,,,
(M,.,, P]=£,,P, - £.,P,,
(P.,P,]=[K,,K]=[M,,, D]=0,
(D,P,]=~P,, [D,K,]=K
M,.,, K] =2,.K, - 2,,K,,
(K., P,]=-2(M,, +g,D),

where gyo=-g;;=1, g,,=0for p#v,

(13

These operators can be exponentiated to yield a local
Lie transformation group® of symmetries of (1.1). In-
deed the operator M, P, generate the Poincaré sym-
metry group

W(x) - W(A-l(x - d)), a= (a()s al’ a2); Ae So(ly 2)’

(1. 4)
the dilatation operator generates the symmetry
(expXD)W(x) =X (e*x) (1. 5)
and the K, generate the special conformal
transformations
exp(a“K ) Wix,) = W(t—;-ﬁ%) X 1.6)

We shall also consider the inversion, space reflec-
tion, and time reflection symmetries of (1, 1),

IW(X) = W("‘ x/xz)y RW(X) = I'V(x()’ X1, — xZ)y
TW)= W(~x4,%4,x3),
which are not generated by the Lie derivatives (1. 2).

In Ref. 6 the full infinite-dimensional symmetry
algebra of an arbitrary first order partial differential
equation was computed and shown that this algebra
splits into symmetries which are contact transforma-
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tions and an ideal of characteristics. Now there is a
well-known Lie algebra isomorphism between canonical
vector fields on phase space with the usual Lie brackets
and functions on phase space (modulo constants) with the
Poisson brackets. ! Explicitly, given phase space with
coordinates (x",p,) we have the canonical 2-form w
=dp,A dx*. Then with each vector field X on phase
space which leaves w invariant, we can associate a
function F(x*,p,) such that

X Jw=dF, a€m
where _| denotes the inner product between vector fields
and forms. To the Lie brackets for vector fields there
correspond the Poisson brackets

aG 3F oF 3G

{F(x,i)),G(?C,P)}:E(_-—u - ——-—) 1.8)

for functions, Explicitly for the Lie derivatives (1.2) we
have, using (1.7),

Muv:xupv'xupu.: Pu:pu,
K, =2x,x"p,) —xzpuu

D=x"p,,
1.9)

One can easily check that the basis functions {1. 9)
satisfy relations (1. 3) under the Poisson bracket opera-
tion. From the point of view of separation of variables
of (1.1), the Lie algebraic characterization (1.9) in
terms of functions on phase space is superior to that of
Lie derivatives.

By taking all possible products of operators (1.2) we
can generate an enveloping algebral® of s0(3, 2).
Furthermore, we can identify the subspace §j of homo-
geneous symmetric kth-order elements in the envelop-
ing algebra with the space §, of kth-order polynomials
in the basis functions (1.9). That is, the two subspaces
are isomorphic as vector spaces and the adjoint action
of 50(3,2) on S, induced by the commutator [-, -]
agrees with the adjoint action on §, induced by the
Poisson bracket, In particular, §j is spanned by ele-
ments of the form [Ly, Ly],=L;Ly + L,L;, where the L;
are Lie derivatives belonging to the symmetry algebra,
Let Ly, Ly be the corresponding functions in the Lie
algebra (1.9)., Then the correspondence

[Ly, Ly], = 2Ly Ly, (1.10)

extended by linearity provides the stated isomorphism
between §7 and §,.

As is well known there is an intimate relationship be-
tween a first-order partial differential equation

HE*, p,)=0, p,— 2 (1.11)

ox*’

and the Hamiltonian system of ordinary differential
equations?®

O0<p<mn,

op dx*

{1.12)

Indeed, consider the n-dimensional surface x,
=x,(t,...,t,) and prescribe initial data on this surface:

W=Wlty,oouyty)y Pu=b.(t, .0, b, 1.13)
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subject to the requirements
ow _ ot
ot “oty
HE"(t, ..., t), 0., ...
Then, provided

j:l,...,n,

’ tn)) =0,

-
ﬁ’po"'Hp,,
my |

aet] 0t 9 |,
x| o
52, o,

on the surface, the solutions of (1.12) with initial data
(1, 13) generate a local solution of (1,11), The function
W can be obtained either from the equation

dr =Publy, (1.14)
or the defining relations p,= W,
Conversely, let
W=fx*,ay,...,a,) ta (1.15)

be a complete integral of (1.11), i,e,, W is a solution
of (1,11) for each choice of the » +1 real constants a,
and the n X{n +1) matrix

(20,2501 = fagee)

has rank n. Then (1.15) and relations
fai(x“,a,): A, J=Ll 000,
po=rol®, @),

with @y, ..., M,...,A, fixed, define a solution of the
characteristic system (1, 12),

(1.16)

v=0,...,n

3

It is also well known that the canonical transforma-
tion generated by (1.12) preserves Poisson brackets. !
Thus, if

F}(x“,[)v):F,(x“(f),p,,('r)), i=1, 2’
where
X (D =24 (1,5, b, Do) =Py (T, 5%, by), 1.17)

are solutions of (1,12) such that x*(0)=x*, p,(0)=p,,
then

{F], Fi}={Fy, Fol. (1.18)
Furthermore,

d

T =Fully ~Fy Heu= {0, FT}
so that F'=F if F commutes with H.

Applying this theory to Eq. (1.1), we find

H=p{~-pi- 1}, (1.19)
so that the associated Hamiltonian system is

@_ gx_“_ 1 uv < 1.20

dT“O) dT_Zg py; OSP’,V 2a ( ° )

Thus we can obtain a solution of (1, 1) by prescribing
initial data for W, x*, and p, on a two-dimensional
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surface in x-space and solving Egs, (1.20). For some
of our computations we shall choose this surface and
data in the special form

x0=0, po=(p}+p}/?
pI:pl(tU tZ)’ p2:p2(t1’ tZ)e

Note that the basis functions (1. 8) restricted to this
surface become

Po= (B + DD 2 =py, Py=p;, My=%ips=%5b4,
Mog=%pg, Ko=[01? + 2 lpg, ) =x'p;,
Ky=2x,0'p ) + [ + (x9)21py, 4,5=1,2.

Model (1.22) and its relationship to (1. 1) via integration
of the Hamiltonian system (1, 20) is an analogy of the
Fourier transform model for the solution space of the
wave equation (0. 2) which was treated in Ref, 3,

x1:t13 x2:t27
(1.21)

(1.22)

We now introduce another basis for the symmetry
algebra which makes explicit the isomorphism with the
usual matrix realization of 0(3,2), The matrix algebra
0(3, 2) is usually defined as the ten~dimensional Lie
algebra of 5x5 matrices A such that AG +GA® =0,
where 0 is the zero matrix and

1
(1.23)

-1

Let ¢, be the 5X5 matrix with a 1 in row ¢, column j
and zeros elsewhere. Then the matrices

Hﬂab:érab—c’ba:_rbm a#:b)
]I‘aB:é-aB_Fé-Ba:"er lsasbssy
Ly=Cp—Cps=-Wyy, B=4,5

(1.24)

form a basis for o(3, 2) with commutation relations

[11".,,5, II“,,;] = GBVIFM: + Ga:rsr + G.,aII“:B + G:e]rm»

(1.25)
This basis is related to our basis (1.2) by the
identifications
Py=Ty +I'y5, Py=Ty5+ Iy, Py=TIy5+ Iy,
Ky=Ty5~ Ty, Ki=Tp-Tp, Ky=Ty~Ty3, (1.26)
My, =Dy, My=Ty, My=TIy, D=TIy,

Here and hereafter we denote by I'(T") the vector field
{function) which corresponds to the matrix I,

Returning to our Poisson bracket model (1. 9), we
note that if we impose the relation

Pj- P{- P;=0 .27

to obtain solutions of (1.1), we introduce linear depen-
dencies among the elements of §,. Although there are
formally 35 independent terms L,L; where the L, run
over a basis for 0o(3,2), among the explicit functions

(1. 9) subject to (1, 27) there are 20 independent rela-
tions obeyed by the L;L,, Hence, if ¢, is the subspace
of $» which is mapped to zero under this identification,
then ¢, is actually an ideal under the adjoint action of
0(3,2) and the factor space 7,= §,/¢, is 15-dimension-

203 J. Math. Phys., Vol. 19, No. 1, January 1978

al. In particular, on 7, we have the relations
K%_K%_K%ZO, r%2+ I‘%3+ 1%3:1-%53

S . (.28
My~ My - Mby=— D*, T%-T%-Th=T,

[Of course, these relations also hold in the model
(1.22).]

We shall now classify all separable solutions of (1,1)
which are analogous to the separable solutions of the
wave equation (1.23), studied in Refs, 3—5. In these
references each (R ~) separable solution of (1, 23) was
characterized by the fact that the corresponding sep-
arated solutions were common eigenfunctions of a com-
muting pair Sy, S, of second-order differential symmetry
operators from the enveloping algebra of so(3,2).
Analogously we will characterize separated solutions
W of (1.1) by the conditions Fi(x*,p,)=X, Fy(x*,p,)=u,
where Fy, Fy € 7, and {F}, Fo}=0, Here p,= W and
A, 1 are the separation constants, For all cases treated
in this paper we shall see that coordinates which yield
separation for (1.23), corresponding to commuting
operators Sy, S,, also yield separation for (1. 1) corre-
sponding to commuting functions Fy, F, € 7,. Here, S,
and F; are related by (1,10). We also mention, although
we will not make use of it, that corresponding to each
commuting pair (Fy, F;) there is via (1.7) a commuting
pair of vector fields (X;,X,) on phase space and hence a
two-parameter local Abelian group of symmetries,

In analogy with Ref, 3 we shall begin by studying
separable systems which can be characterized by com-
muting functions F,, F; such that F,=A?® for some
A< s0(3,2) with {4, F,}=0-—and where A has a non-
trivial centralizer,

In Ref, 3 the corresponding systems were called
“semi-subgroup” coordinates, However, as has been
pointed out by Winternitz, this name is not appropriate
because many coordinate systems which correspond to
the restriction of so(3,2) to a subalgebra are not “semi-
subgroup” systems. Thus, we shall now call these sys-
tems “semi-split” coordinates.

In the following seven sections we shall study systems
of the form A%, F, by first splitting off the coordinate
associated with A to obtain a reduced equation (f) such
that F, belongs to the space of second-order elements in
the enveloping algebra of the symmetry algebra (cen-
tralizer of A) of (). We shall then investigate the co-
ordinate systems in which (t) separates, In the last
section we shall give an example of a completely non-
splitting type coordinate. In the study of separable co-
ordinates it is common to associate with each coordinate
system x*=x*(y,) a metric tensor g,, and a quadratic
differential form

ds® =dx} - dx} - dxi =g, dy* dy” (1.29)
then the Hamilton—Jacobi equation (1, 1) takes the form
g WuWep=0 (1.30)

in the new coordinate system, where g“” is the inverse
tensor to g, given by

(=1)** cofg
Mo s | 1.31
detg,, (1.31)
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We alsc mention for convenience that for orthogonal
coordinates (1.29) takes the form

dst= 7] Ky (1.32)
i

and the relation between the canonical moment in p, in

Cartesian coordinates and arbitrary curvalinear co-

ordinates £* is

_2 ax

p“:? i 85‘ Dyt (1.33)

The above relations will be used throughout our com-
putations without further mention.

2. THE SPHERE

For our case we consider the function A=T;
=3(Py +K,). Setting I';s=2, X const, we see from
(1. 29) that (1.1) reduces to

Ty + Ty + T =% 2.1)

Since the centralizer of I'y; in 0(3,2) is {I';;}® 0(3),
where o(3) is the subalgebra with basis I'jy, I3, Tyg, it
follows that o(3) is a symmetry algebra for (2.1), We
call it the veduced symmetry algebra,

Equation (2. 1) can be viewed as the result of separat-
ing off one variable ® in W, Indeed, we choose new
coordinates such that I'j5=- 3,. Standard Lie theory
gives
_ y

1= cos’

(2.2)

1 Y2 2

sin
U 4 _ ,
VY1~ cOSY

T yy—cosy’
vi+tyityi=1.
Thus, choosing any parametrization y,(c, @) of the unit
sphere S,, we obtain a new set of coordinates for space
time. In these coordinates we have Iy;=1y,0,, - Y30y,
1-‘12 :ylayz - y2ayi5 F13:yiay3_ y3ay1°
The equation I'ys =X or, what is the same thing, IyyW
=X implies
W=-xp+ S(o, o). 2.3)

Substituting this expression into (1.1), we obtain the
reduced Eq, (2.1) for S,

As is well known!’ the space of second order sym-
metry operators in o(3), modulo the invariant I3, + I'}
+I'%,, splits into exactly two orbit types under the ad-
joint action of 0(3). A representative on each orbit type
is given by the assignment

(1) T, T,
(2) T%;, Th +a’T;, 1>a>0.

For the orbit of type (1) we introduce spherical co-
ordinates on S,

y;=c0S0, y,=sinoccosa, y;=sinosina. (2. 4a)
Then (2,1) becomes
8S ER)
esclop? +pi=22, Pa=7s, Po= 50> (2. 4b)

and the requirement [y;=p,=m yields the separated

204 J. Math. Phys., Vol. 19, No. 1, January 1978

solution

S=ma+ | (m?cscio - 1)1/ %do,

im A+ coso
=ma+ — ln(——c———-> z)\ln( coso + A)
2 A— COSO

A=[1- (\3/m? sin’c]!/?, 2. 4c)
For the orbit of type (2) we introduce elliptic co-
ordinates on S,:
vy =k’ dn(a, k) dn(o, a),

vs=Fksn(a, k)sn(o, k),

vo=ikk'len(a, k) en(o, k),

(2. 5a)

where £’ = (1 - %'/% and dn{a), en{a), sn{a) are Jacobi
elliptic functions, !* Then (2.1) becomes
P2 - pE == A%*(sn’e — sn’c)
and the condition
%, + k%, = (sn’a - sn’o)(sn’ap’ - sn’op?) =
(2. 5b)

leads to the separated solution

S=/ (-

Matsnlo + )% da + [ (= \2a? sn’o +u)' 2 do.
(2. 5¢)

There is a close relationship between our own study
of I'y; and the Hamilton—Jacobi equation for the Kepler
problem with closed orbits in two-dimensional space,
Indeed, on the surface (1, 21) the condition Iy;=x for a
solution of (1, 1) becomes

WP+ 6 - 20 /py=-1, po=(p]+pd'"
Performing the canonical transformation p, —x7, %7
— — p;, which preserves Poisson brackets, we trans-
form (2, 6) to the Hamilton—Jacobi equation for the
Kepler problem with energy normalized to — 1 (bound
orbits), viz.,

piEpi-2xr=-1, r=

(2.6)

(o +a3)1 /2, 2.7

Moreover, the o(3) symmetry algebra for (2, 6) gen-
erated by Iy, ['y3, I'y3 is mapped to an o(3) symmetry
algebra for (2.7). ¥ ¥(¢, &) is a solution of (2,7) (with
xt= =§y, X = = £,), then by prescribing the initial data x’

wc , P;=¢&; on the surface (1, 21) and integrating along
charactenstlcs we find a solution of (1.1) with I'y5=x.
Conversely, if W(x*) is a solutjon of (1.1) with [';g=2,
then a function ¥(%,, &) such that

xl =y, Wal0,2)=¢;, §,01=1,2 (2.8)

with det{W,s,1)# 0 is a solution of (2,7). This relation-
ship is a classical analogy of Fock’s treatment of the
quantum mechanical hydrogen atom, !? and underlies the
group theoretical approach to the Kepler problem. 20

We have obtained the reduced equation (2.1) from
(1. 1) by additively separating off dependence on the
variable ¥, However, (1,1) can also be viewed as the
equation for the graph of (2,1), Indeed, set A=1 for
simplicity and let S(o, a) be a solution of (2.1), A graph
of S is a function W(o, o, S) such that W(o, o, S0, 0)) =0,
Since W, + W,S,=0, W,+ W,S,=0 it follows from
(2. 2)— (2. 4) that W satisfies Eq, (1.1) with ¢ replaced
by S. In this sense Egs. (1.1) and (2.1) are equivalent.
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Since (1.1) admits the symmetry algebra o(3,2), it
induces an action of 0(3,2) as a symmetry algebraz'e
of (2.1). Now, however, 0(3,2) acts not only on ¢, & but
also on S, We have used only the o(3) subgroup of 0(3, 2)
to explain the two systems in which (2, 1) admits an
additive separation of variables, (We believe that there
are only two such systems and will settle this point in a
future publication, ) However, we can use commuting
pairs of second-order elements in the enveloping alge-
bra of 0(3, 2) to distinguish many other symmetry
adapted solutions of (2,1), [For example, some other
solutions may correspond to a product separation in
(2.1). ] Indeed, every separable solution of (1,1) cor-
responds via the graph to some symmetry adapted solu-
tion of (2,1). Our restriction to the subalgebra o(3)
merely picks out those solutions which are additively
separable for (2.1),

3. THE EQUATION OF GEOMETRICAL OPTICS

In this section we consider the equation obtained from
(1.1) by partial separation via the operator Py, i.e.,
we treat the usual equation of geometrical optics ob-
tained from (1.1) by putting Pi=?, viz,,

W=+ Sx!, %),

S% + Sh= P+ PE=)7,

8.1a)
(3.1b)

It is easy to check that the centralizer of P, in 0(3, 2)
is {P;} @ e(2), where e(2) is generated by {M,,, P;, Py}
However, in this case P; has a normalizer which is
bigger than its centralizer, and for the purpose of
separation of variables it is convenient to classify
orbits using the full normalizer group D3 E(2), where
D is the one-parameter group of dilatations generated
by D, For (3.1b) there are four separable orthogonal
coordinate systems corresponding precisely to the four
orbit types® of the quadratic members of the universal
enveloping algebra e(2) (modulo P2 +P§) under the ad-
joint action of Dg E(2). The list of pairs of orbit
representatives is

(3) P, P%, Cartesian,
(4) P%, AM3,, polar,

(5) P}, M;yP,, parabolic,
(6) P§, Mi,+ Pi, elliptic,

The coordinate systems and corresponding solutions
(3. 1a) are now given for each of the above cases:

(8) Cartesian: The coordinates are the usual Cartesian
coordinates

=t xl=x, 2=y (3.2a)
with the solution

S=px + (A0 - )’y (3. 2b)
whose separation constant is

P=pl=p?, (3.2¢)

(4) Polar: The coordinates are

x'=t, x'=rcosb, x*=rsind (3. 3a)
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and the well-known solution

S=pb+ [ dr(x? - u?/r)t/? (3. 3Db)
with the constant of the motion
My =pl=pl, (3.3c)
(5) Parabolic: The coordinates are
=t xl=(2-n)/2, =iy (3. 4a)
with — 0 < <w 0=<n <o, The solution is
S=[ 0= p)dg+ [ O3+ p) 2y (3. 4b)
with separation constant
2MypPy = (88 4+ ') (PG - n'p]) = 1.
(6) Elliptic: The coordinates are
x%=¢, x'=coshpcoso, x’=sinhpsino, (3. 5a)

with — @ <p < 0<0 <27, The solution is
S= [ (Xcosh®p - u)2dp+ [ (u - A cos?o)/2do
(3. 5b)
with constant of the motion
M3y + P} = (cosh®p - cos’o)™ (cos®op? + coshPpp?) = pu,
(3. 5¢)

Just as in the previous section, we can also interpret
(1.1) as the equation for the graph of a solution of
(3.1b), In this sense (3. 1b) admits the full symmetry
algebra and any separable system for (1. 1) gives rise to
a symmetry adapted solution of {3.1b).

4. THE FREE RELATIVISTIC PARTICLE

By separating off one space variable, say xz, via the
operator P,, Eq. (1.1) reduces to the equation for a
free relativistic particle in one space and one time
dimension, Explicitly, putting Pi=2%, we find

W=+ S, &%), (4.1a)

(S,0)2 = (S;1)% = Pi— P{=»% {4.1b)
Again a straightforward calculation shows that the cen-
tralizer of P, in 0(3,2) is {P,}®e(1,1), A basis for the
subalgebra e(1,1) is given by {My,, Py, P;}. The orbit
analysis of the quadratic members of the universal en-
veloping algebra of e(1,1) (modulo P3 - P}) under the
adjoint action of the normalizer group Dy E(1,1)
extended by certain discrete transformations was given
in Ref, 22. There it was also seen that there is 2 non-
uniqueness for the orbit corresponding to the separation
of the Klein—Gordon equation in the usual Cartesian
coordinates. This nonuniqueness was resolved by con-
sidering nonorthogonal coordinates. Here, however,
only orthogonal coordinates are considered. Further-
more, there is one orbit for which the Klein—Gordon
equation (Laplace operator) does not admit a separa-
tion of variables. The question as to whether there is
also no separable coordinate system for (3, 6b) corre-
sponding to this orbit representative [My, (P, + P;)] will
be answered in Paper II,
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The list of orbits representatives is

(3") P}, P,P,, Cartesian,

(7) P§, M:,, polar,

(8) P, 2MyP,, parabolic—type 1,

(9) P3, M3, — (Py+ P;)?, hyperbolic—type 3,

(10) P%, M:, + (P,+ P,)?, hyperbolic—type 2,

(11) P}, 2My (P, + P)) + (P,— P;)?, parabolic—type 2,
(12) P}, M% - P,P,, hyperbolic—type 1,

(13) P§, M: + P elliptic—type 1,

(14) P% M3 ~ P, elliptic—type 2.

From the point of view of separable coordinates (3')
is equivalent to (3). The remainder of the coordinates
and solutions are:

(7) Polar: The coordinates for the region (x*)? - (x!)?
>0 are

x’=zxvcoshy, x'=7sinhy, 4. 2a)
0s¥ <o, —wJy<w, The solutions are
S:iun+]ldv()\2+u2/'rz)”2, (4.2b)

For the region (x%)?— (x!)? <0, interchange x® and x* and

find (4, 2b) with A2~ — 2%, The separation constant is
M} =Pt =, (4. 2c)
(8) Parabolic—type 1: The coordinates are
=238+ D), x'=1gn, (4.3a)

with — < <f<w, sy <, This parametrizes the region

("% = (x1)? > 0, The solutions are

S= [ de(u 22D+ [an(p + A/ (4.3b)
with separation constant

£ 28 Py = (8 = ') (¥l - b = u (4.3¢)

The spacelike region (x*)2 - (x!)? <0 can be parametrized
by interchanging x° and x!; however, the orbit represen-
tative then changes (see Ref. 22 for further discussion).

(9) Hyperbolic—type 3: The coordinates are
x'=cosh(n- £) - exp(n+ &)
(4. 4a)

x"=cosh(n~ §) +exp(n+ ),

with — « <n, { <, The solutions are
S= | dan(u+2ax2e™ %+ [ dg(u+2ar%e®)/? (4, 4b)
and separation constant

ME = (Py+ Py = (¥ = e®) (epi - e¥pl)=u. (4.4c)
The coordinates (4, 4a) parametrize the region x° +x!
>2, 9~ x!> 0. In this case we can introduce similar
parametrizations for all region except the strip |x° +xt]
<2, For this strip there appear to be no separable co-

ordinates of this type for (4, 1b).
(10) Hyperbolic—tlype 2: The coordinates are

x’=sinh(n- £) +exp(n+ &) x!=sinh(n- &) - exp(n+ &),
(4.5a)
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where — « <7, { <x, These coordinates parametrize the
region x’ —x!> 0, By interchanging x° and x! we can
parametrize the region x® - x! <0, The solutions are

S= [ dn(u+2x2™ 2+ [ de(u - 222/ (4. 5b)
with constant of the motion
Bt (Pt Pt (@ + ) e plr el = . (4. 5c)
(11) Parabolic—type 2: The coordinates are
=3m-E+ M+, x'=3-8’-M+E  (4.6a)

with —© <¢f <» and 0 sn<«, These coordinates cover
the half-plane x’ +x!> 0. Similarly we can parametrize
the remaining half-plane, The solutions are

S=[ dnlu+am)' 2+ [ (u+4axe)!/2de (4. 6b)
with separation constant
My (Py+ Py) + (Py— Py)?
=(n=~ &) o} - &Y = (. 6c)
(12) Hyperbolic—type 1:
= 3[coshz(n- ¢) +sinhz(n+ )],
(4.7a)

x'=3[coshz(n - L) - sinh(n + )],
where 0 < <o, ~o<f<« and (4.7a) parametrizes the
half-plane x® +x*> 1, By taking (° x")— x°, 7x!) we
can parametrize the remaining portion. The solutions
are

S=1% [ an(u+3¥sinhm)!/2+ § [ dg(p + :2? sinhg)!/?

(4.7b)
with separation constant
M3, — 4P, P, = 4(sinhn - sinh )" (sinhnp? — sinhgp?) =
4.7¢)
(13) Elliptic—type 1: The coordinates are
x°=sinhp cosho, x!=coshp sinho, {4, 8a)

where the full plane is parametrized with —~ <p,0 <,
The solutions are

S= [ dp(u +*cosh?p)t /2 + [ do(p - A?sinh’o)!/?
(4. 8b)
with separation constant
(cosh?p + sinh%0)"!(sinh%0p? + cosh®opl) = u.
(4. 8¢)

(14) Elliptic—type 2: For the last case we have dif-
ferent coordinates for different regions of Minkowski
space, viz,,

M+ Pi=

4, 9a)

with = <p<w, 0<0<w for the region x">1, If we
let (x%,x1)—~ 0

x%=coshp cosho, x'=sinhp sinho,

(- x°,x%), we can treat the region x°< -1,
However, for the region ~1<x%<1 we have

1

x'=cos¢ cosy, x'=sing siny (4. 9b)

with 0 < ¢ <27, 0< B <7, With (4. 9a) and (4. 9b) we

still miss the region -1 <x?<1, 1< |x!{, This region
can be handled by interchanging x° and x!; hence, we

can cover the full plane with elliptic—type 2 coordinates.
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The solution corresponding to (4. 9a) is
S= [ dp(u + 2 sinh%)! 2+ [ do(u +A? sinh’c)! /2
(4. 9¢)
while for (4, 9b)

S= [ do(\sin’¢p — p) 2+ [ dy(A\?sin®y- p)t/? (4. 9d)
with constants of the motion in the corresponding
regions

M2, - P} = (cosh?p - cosh®0)~!(sinh?pp? — sinh?opl) =,

4, 9e)

M ~ P} = (cos?y~ cos®p) ! (sin®yp? - sin’¢pl) = u.

5. THE HYPERBOLOIDS (DOUBLE AND SINGLE
SHEETED)

In this case we consider the function D given in (1, 9),
Putting D=2x and using (1, 28), we see that (1,1) re-
duces to

M+ My = M, =22, (5.1)

Now the centralizer of D in o(3,2) is {D}@0(2,1), where
0(2,1) is the subalgebra of o(3,2) with basis My, M,
M,; hence, o(2,1) is the reduced symmetry algebra for
(5.1), Introducing the real variable 0 <p= (x-x)!/2,
x+x>0, for which D=pP,, we obtain

Xg=PVg,

vi-vi-vi=1

X1=0p¥V1, X3=PV,

(5. 2)

Thus we have separated off one variable in such a way
that we are left with a double-sheeted hyperboloid. We
will hereafter restrict ourselves to the upper sheet
(»¢>0). Furthermore, for the region x - x <0 with p
=(-x.x)!/%> 0, we obtain the single-sheeted hyper-
boloid, viz,,

Xo=DPYVg, X1=pPYy,
yi-yi-yi=-1.

X2 =PV,
(5.3)

We note that, on the light-cone x -x=0, (5,1} reduces
to an ordinary differential equation and the problem of
separation does not exist.

Now using the coordinates (5. 2) or (5.3) it is straight-
forward to show that M,,=y,8,-3,3,; thus by diagonal-
izing D, i.e., DW= we have

W=2alnp + S(y*) (5.4)

and (1. 1) reduces to (4. 1) where the M’s in (5.1) are
interpreted now as M,,S, i.e., M,,~M,,.

It was shown by Winternitz, Luka&, and Smoro-
dinskii?® that the space of second order members of the
universal enveloping algebra of 0(2, 1) modulo its center
splits into nine orbits under the adjoint action of O(2,1),
Furthermore, the connection with the separation of
variables for the Laplace— Beltrami operator was estab-
lished. Here, we list the pairs of commuting functions
which separate variables in (1. 1) keeping with the nota-~
tion used previously® %

(15) D?, Mi,, spherical ,
(16) D®, M3,, equidistant ,
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(7' D?, (M~ My)?, horocycle ,
’ 12 02/ »
(17)y D%, M5, +a’M%,, elliptic, D<a<l,
(18) D?, M —a*M%,, hyperbolic, 0<a<l,
> 61 1
(19) p?
) D%,

(20

, 2aMj - M,M;;, semihyperbolic, 0<a <w,
(Myy + Mp5)2 + aMi,, elliptic—parabolic,
D<a< o0,
(21) D?, (M, + M)? - aMi,, hyperbolic—parabolic,
0<a<o,
(22) D, §Myy(My~ Myy), semicircular—parabolic.

We now give the solutions for the above orbit rep-
resentatives on the upper sheet of the double-sheeted
hyperboloid. The coordinates on the single-sheeted
hyperboloid can be obtained by y* —iy* with the ap-
propriate change of parametrization; however, different
parametrizations are sometimes needed for different
regions, There is also no guarantee that Eq, (5.1) is
separable in all regions (see Ref. 24). Each of the sep-
arated solutions is found by solving (4.1) (i.e,, D*=2)
and taking one of the above orbit representatives as
constant of the motion,

(15) Spherical: The coordinates are

»"=coshn, y!=sinhncosp, y*=sinhnsind, (5. 5a)

with 0 <5 <« and 0 = ¢ <27 and the separated solution is

S=p¢+ [ (A2- p?/sinh’n)!/ay (5. 5b)
with separation constant
My =p% =pt, (5.5¢)

(18) Equidistant; The coordinates are
y"=coshpcosho, y'=sinhp, v*=coshpsinho (5. 6a)

with — e <p o <, and separated solution

S= o + [ (e - u?/cosh®p)! 2 dp (5. 6b)
with separation constant
My =pl= 12, (5. 6¢)
(7*) is the same as (7).
(17) Elliptic: The coordinates are
V=) dnudno, y!'=k() " enucny,
2 (5.7a)

Vv =— ik snu snv

with «  (0,4K) and v € (0,:K'), The separated solution
of (4,1) is

S= [ du(u - A2 cnlu)t/? + [ dv(p - 2% enlo)t /2
(5.7b)
and separation constant is

R M3y + BEME = (cn’u - cno) ! (enlup? ~ enopl) = .

(5.7¢c)
(18) Hyperbolic: The coordinates are
v =ik® ) enuenv, y'=iksnusny,
v =1 (k)" drez dnw (5. 8a)
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with « « ((K’,iK + 2K) and v € (- iK' iK),
solutions are

S=(1/k% f du(3k? sny — u)t/?
+ (1/k%) ] dv(Z2E* sn — p)t/?

with constant of the motion

The separated

(5. 8b)

M5y = k°M3y = k¥ (snu — sn0)" (snop? — snlup?) = p.
(5. 8c)

(19) Semihvperbdolic: The coordinates are

2 _—Vn
V=01 &
vy 1.1 ((V—a)2+62)((77-a)2+62)]“2
A TE ) 2+2B[ ol + g ’

(5. 9a)

, v #+l+L[((v—a)2+32)((n-a)2+62)]”2
07 2+ 2 28 o’ + g

with 0= n <o, —«<<p<0, and a, B real. The separated
solutions are

S= [ dv(u+ ) (v - o)t + BT
+ [ dn(n + DI Y (= o) + B2

with separation constant

(5. 9b)

alMi — 2BM oMy,
=) (- @)+ B - (v = o) + BIpL] = b
(5. 9¢)

(20) Elliptic—parabolic: For simplicity we consider
the nondegenerate point a=1; the coordinates are

K 1 <cosh2p + cosze> )2 1 <sin29— cosh2p>
. b b

T coshp cos® ) coshp cosd

y!'= - tanhp tanf (5.10a)
with — o <p <o and - 7/2 < 6 < 7/2. The solutions are

S= [ dp(n +2/cost’p) /2 + [ d6(= = r*/cos?0)/?

(5. 10b)
with constant of the motion
M, + (Mgy + Mya)?
= (cosh?p — cos?6) ! (cosh®pp? +cos?opd)=p.  (5.10¢)

(21) Hyperbolic—parabolic: Again for a=1 the co-
ordinates are
o 1{/cosh®p +cos?6 » 1/{sin®6- sinh2p>
B sinhp siné ’ sinhp sinf /’

J 2 = 2
y!=cothpcoté (5. 11a)
with 0= p <« and 0= 6 <7, The separated solutions are

S= [ dp(u~ Y/ sinh®p)! 2+ [ d6(- - AY/sinto)!/?

(5.11b)
with separation constant
= (Mg + Mypp)? + M3y
— (sinh?p + sin®8)"!(sinh’pp? — sin®6p3) =1, (5.11¢)
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(22) Semicivculay—parabolic: The coordinates are

o (WA He oy o g, (et d

8&n ’ 2&n 8&n
(5.12a)
with 0 < £, <e, The solutions are
S= [ dn(up+x/m P+ [ dg(F/ g - '/ (5. 12b)
with the constant of the motion
EMop(My; = Myp) = (8 + ) bk - b= . (5.12¢)

As with the sphere in Sec. 2 there is a close relation-
ship between our model on the hyperboloid and the
Hamilton—Jacobi equation for the Kepler problem with
unbounded orbits (positive energies). Indeed the opera-
tor D=T'; is conformally equivalent to I';; = 3(Py— K).
Explicitly, Adexp(37T5)Tys= Ty, Thus I';;=2x, and on
the surface (1.21) we have

xF+ad+20/py=1, py=(p} +p3t/E,

Agaﬁn implementing the canonical transformation p;
-x?, x¥--~p,, we obtain

(5.13)

prpi+an/r=1 r=@ul+xjt/?, (5.14)

i.e., the positive energy Kepler problem. It is clear
that under the above canonical transformation the re-
duced symmetry algebra o(2,1) is preserved.

Again, we emphasize that Eq. (1,1) can also be in-
terpreted as the equation for the graph of a solution
S(n, #) of (5.1), here parametrized by the spherical
coordinates (5, 5a). Thus o(3,2) is the full symmetry
group of (5.1) and every separated solution of (1.1)
gives rise via the graph to a symmetry adapted solution
of (5.1),

6. THE NONRELATIVISTIC FREE PARTICLE

We now look at the only partial separation of (1.1)
which involves nonorthogonal coordinates, Since this
case was already treated in detail in Ref, 6, we will be
brief here, Considering the reduced equation corre-
sponding to the operator P, + P;, we set P+ Py=2A; then
(1,1) reduces to

A8, - S2=0, (6.1a)
where

P= @ =xl), y=x° (6.1b)
and

W=l +x1) + SE, v). (6.1c)

Clearly (6, 1) is equivalent to the equation studied in
Ref. 6 (take { —~ - A"!¢ and y —x). Its reduced symmetry
algebra is the Schridinger algebra s; generated by

{Py- Py, Ky +Ky, D+My, Py, My~ My, Py+ Py}, Notice
that in this case we no longer have a Lie algebra direct
sum of the operator corresponding to the partial separa-
tion (here e = P+ P;) and its centralizer., However,
since ¢ is in the center of sy, we can consider the factor
algebra si/ee Because the partial separation in this case
involves nonorthogonal coordinates, the R-separable
coordinates of the reduced equation (6, 1a) are non-
orthogonal and are characterized by orbits in the factor
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algebra S1/e. The list of representatives is:
(3") Py+ Py, P,, free particle,
(23) P, + P, P,~ P, - i(K,+K,), attractive oscillator,
(24) Py+ Py, Py— Pyt (M, - My,), free fall (linear
potential),

(25) Py + Py, D+ M, repulsive oscillator,

In Ref, 6 orbits in s; were classified by equivalence
under the full conformal group. It is easy to see from
those results that the orbits in s;/¢ under the conformal
group are precisely those listed above. Moreover, be-
cause all of the above are members of the Lie algebra,
one can construct constants of the motion via functions
on phase space as done here or equivalently construct
relative invariants of vector fields as done in Ref, 6,
One can easily check by using the Lie algebra iso-
morphism (1, 7) that the two methods are indeed equiv-
alent, keeping in mind that orbits of relative invariants
in s; considered as vector fields correspond to orbits in
s1/e considered as functions to be set equal to constants,

Again as shown in Refs, 2 and 6, 0(3,2) is the full
symmetry algebra of (6. 1la) corresponding to the fact
that Eq. (1.1) can be interpreted as the equation for the
graph of a solution of (6,1a). Thus all separated solu-
tions of (1.1) give rise to symmetry adapted solutions
of (6.1a). Indeed all those corresponding to first order
operators have been given, up to equivalence, in Ref, 6,

7. ANONLINEAR EPD EQUATION

Now we look for coordinate systems yielding separa-
tion of variables in (1.1) such that A= Iy, =m, m con-
stant, Setting x°=¢, x=7cos¢, x*=7sing, we have
Typ=-p, s0

W=~ me¢ + S(¢,7), (7.1a)
where

S2_S2-m¥/r’=0 (7.1b)
or, from (1. 29),

Tis - Ty - D= Th=m?, (7.2)

Since the centralizer of I'y, in 0(3,2) is {y}D 0(2, 1),
where 0(2,1) is the subalgebra with basis T'y;, T'yy, Iy,
we see that o(2,1) is a symmetry algebra for the re-

duced equation (6.1). Here,

Lys=2(1+2+7)p, +trp,,
F14:é(1 - 12_ Vz)pt" typr;
I—‘15:_ thy - vp,, pt:sty pr:Sro

It is well known?® that the space of second order sym-
metry operators in 0(2,1), modulo the invariant
s - Tf,~ I';, splits into exactly nine orbits types under
the adjoint action of 0(2,1). A representative of each
orbit type is given by the assignment

(1,) F§2’ FZS ’
(4’) r%Z, (]:145""1-‘14)2 ]
(15') '}, T3,

(26) T%, Tfy+ Ty Ty—all, a>-3,

(7.3)
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(27) TS, I3+ T Ty +all;, a>-3,

(28) T%, al};+ Ty, Ly,

(29) I'},, I} +a’T%, 0<a<l,

(30) T}, ;- a’Ty;, 0<ac<l,

(81) I}y, (T'yy+Tys)Ty5

We shall show explicitly that (1.1), hence (7.1),
admits an additive separation of variables correspond-

ing to each of these orbits, The separable coordinate
systems are exactly those studied in Ref. 8,

Orbits (1’), (4’), and (15’) have been treated above,

(26) We consider for simplicity the nondegenerate
point a=0 and

t=cosbcosa, r=sinbsina, (7.4a)
Then (7. 1) yields the separated solutions
S, @)= [ @u*-m?cot?s)!/? a0
+ [ @ut-mlcot’a)?da (7. 4b)

with constant of the motion

T+ Ty Tys
= 3(sin’e - sin?6)" (cos? 0 sin®ap? - sin6 cos®apd)
=-ul (7. 4c)

The coordinates 6, o are valid only for |#l +7 <1, As

shown in Refs. 4 and 8 there are similar separable

parametrizations for |#]/ 27 +1 and |¢| €7 -1, but not

all regions of the »—f plane with » > 0 are covered with

parametrizations which permit separation of variables.
(27) With a=0 the separable coordinates are

t=coshfsinha, »=sinhfcosha (7.5a)
and the solutions have a form similar to (7. 4b).

Solutions corresponding to orbits (28)—(30) are rather
similar, For (28) the separable coordinates are

t=2(kk")*(k +ik’) sn(9,1) sn(a,1)/R,
r=2(kk")/?/R,
R=(k-ik’')dn(8,1)dn(a,l) + (& +ik') cn(8,1) cn(a, 1),

da=k'/k—k/k', B =(1-k)", (7.6)
1= (k+ik')/(k-1ik"),

for (29) the coordinates are
t=dn(6,a)dn(a, a)/a’R, r=1/R,
R=asn(6,a)sn(a,a)+acn(6,a)en(a,a)/a’, r.n

a'=(1-a®)l/?,

and for (30) they are
t=Fksn(0,k)sn{c,k)/R, r=1/R,
R=(k")tdn(6,k)dn(a, k) + (k/k")cn(6, k) cn(a, k), (7. 8)
a=kr', k'=Q1-kH/?

(For a discussion of the ranges of the variables 6, @,
see Ref, 8,)
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As an example of the form of the solutions we insert
coordinates (7.6) in (7.1) to obtain

pE— p% =m*(sn’a — sn’0) (7. 9a)
with separated solutions
S= [ (W2 +m?dn?0)! 2 a6+ [ (u®+ m*dna)! 2 da,
(7. 9b)

Here, I'};~ (#")*T%,= u% (Some errors in the corre-
sponding list of elliptic coordinates for the EPD equa-
tion, contained in Ref, 8, have been corrected here,)

(31) For this orbit we set

t=x (2 +al), r=28a, t= |7l (7.10a)
in which case (7. 1) becomes
pi-pL—-m?(1/o?~1/6% =0, (7.10b)

The condition
~ Ty + D) Tyg = 2 (68 = o*) (65— &®pl)=u®  (7.10c)
yields the separated solution
S0, a)= [ (@ut-m?/ 0 do+ [ (ap?- m¥/ o P do.
(7.104)

(Contrary to the statement in Ref. 8, variables do not
separate for = [{],)

In analogy with the previous reduced equations it is
easy to show that (1. 1) is the equation of the graph of
(7.1). Thus, 0{3,2) is the full symmetry algebra of
(.13,

8. THE SYMMETRY I - [as

We next separate a variable from (1. 1) by requiring
L =3%(Ty3~ I'y;;)=K. In terms of the coordinates (2.2),
(2.4) with B=o + ¢, d=a~- 3 we have L =p;, s0

W=Kg+ S{¢,0),
where
cot?S% + 2K (csc’o +1)S, + St + K cot’o =0, (8.1)

The centralizer of L in 0(3,2) is {L}®0(2,1), where
0(2,1) is the subalgebra with basis A, B, C such that

A=3$(Tyy+ Ty5), B=3(Ty+Ty), C=3(Ty~ Ty,
(8.2)
[4,B]=C, [C,Al=B, [C,Bl=A.

Thus 0(2, 1) is a symmetry algebra for the reduced
equation (8.1), Here

A=S,, —B=singS,+cothzcos¢S, + K cosp/sinhz
C =~ c08¢S, + cothz sing S, + K sing/sinhz, (8.3)
sino = tanh(z/2),

and in terms of these symmetries equation (8. 1) reads

A'—B?_ C?=0, 8.4)

Note: The simple computation leading to this identity

shows that the corresponding identity for the wave equa-
tion as given in Refs. 3 and 5 is in error. The correct
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resulf for the wave egquation is

AP-B-CP= £, (8. 5)

Indeed, the eigenvalues of ~iL are A,=3(s + 3),
§=0,1,2,--+, The eigenspace V, corresponding to
eigenvalue A, is irreducible under o(2,1) and trans-
forms according to the unitary representation D] where
I=-[(-1)*+2)/4.

As usual we try to associate separable coordinates
for (8. 4) with the nine orbits of second order sym-
metries in the enveloping algebra for o(2,1). It is
guaranteed that there are separable coordinates corre-
sponding to the three orbits which correspond to
squares of first order symmetries:

(1y L%, A%,
(32) L2, 7,
(33) L%, (A-B)%,

In particular, (1’) is equivalent to {1). To obtain the
remaining systems, we note that for K= 0 the operators
and coordinates (8,3) agree with system (15) on the
hyperboloid, i.e., coordinates (5. 5a). Since the sep-
arable coordinates for (8. 4) must be independent of K
it follows that a separable system for (8, 4) must be
one of the systems (7'), (15)—(22). However, one of
the latter systems need not necessarily yield separa-
tion for (8, 4).

We are guaranteed success for systems (32) and (33),
For (32) we set coshz =coshf coshy, tang =tanht/sinhy
to obtain

1
2+
S+ ¢ (1 - cosh?{ cosh’y)

coshii

X (2K coshg sinhn coshnS, - 2K sinhg cosh®nS, + K¥) =0.

(8. 6a)
The condition
C=-8,+K sinh&/(cosh®t cosh’n~1)=p (8. 6b)
yields the R-separated solution
§= - K tan"!(sinhf cothn) ~ 5
+ [ [(K? = ~ 2K sinhg)!/?/coshE]dE. (8.6¢)

For (33) we set coshz = 3[e”t + (n? + 1)ef], tang = — 2ne’/
{et + (n* - 1)¢*] and use the condition

A=-B=5,~2K[e* + (- Vet /et + (° + 1)ef I - 4}
=M {8.7a)

to obtain the R-separated solution
S= - K tan™ | g2l 4+
et +n)— e

+f [~ (@2Ke™tm +mPe )| /2 dx, (8. 7h)

We have carefully studied the coordinates correspond-
ing to system (17) and have found that they do not lead to
R separation of variables for (8,4), It appears that only
the subgroups systems (15’), (32) and (33) yield additive
variable separation for this equation, although we have
not explicitly checked this for all systems (15)—(22),
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Just as for the other reduced equations it is easy to
show that (1.1) is the equation of the graph of (8. 4).
Thus 0(3, 2) is the full symmetry algebra of (8, 4) and
all of the additively separated solutions of (1.1) lead to
symmetry adapted solutions of (8.4).

9. NONSPLIT COORDINATES

In analogy with Ref, 3 for the wave equation, we have
listed, with the exception of some degenerate non-
orthogonal systems, ® all separable systems for (1.1) in
which it is possible to additively split off one variable,
In Ref. 4 a classification of all orthogonal R-separable
coordinates systems for the wave equation was given
for which the coordinate surfaces were families of
confocal cyclides, 53 such systems were found, and,
except for degenerate cases, it was shown that the
variables intertwine in such a complicated fashion that
it is necessary to separate them simultaneously, i.e.,
it is not possible to split off a single variable, Each
such system was shown to be characterized by a com-
muting pair of second order symmetric operators in
the enveloping algebra of 0(3, 2).

The results of Ref, 4 can be applied directly to ob-
tain orthogonal separable coordinates for (1.1) simply
by interpreting the Lie algebra of differential operators
0(3,2) as a Lie algebra of functions under the Poisson
bracket,

For example, the system [311] (i) of Ref. 4 leads to
coordinates

x° = - z{cos’a +cos’B+cos?y), x!=sina sinBsiny,

9.1)

x?=cosa cosBcosy.

In these coordinates (1.1) reduces to

(sin®8 - sin®y)p% + (sin’y - sin®a)p? + (sinZa ~ sin?B)pl =0,

(9.2)

It is not possible to additively separate one of these
variables from the other two., However, use of the
defining symmetry elements

2(Py = Py)My, + P} + P}

_ sinfap 3
"~ (sin’a - sin?g)(sin’a - sinZy)
4 sin®gp?
(sin’8 - sina)(sin’g — sin’y)
S22
sin‘yp.
+ z =
(siny - sin’a)(sin’y — sin2B) M (9. 3a)
2
2P, My ~ M3y + P}
_ sin’g sin®ap?
~ (sin%a — sin’B)(sina — sin’y)
+ sin’a sinypd
{sin’8 — sina)(sin’B - sin’y)
(2 s 20,2
sin‘“a sin“gBpy
+ = " p T =
(sin’y - sin’a)(sin?y - sin’B) v (9. 3b)
21 J. Math. Phys., Vol. 19, No. 1, January 1978

leads to the separated solution
W= [ (usin’a+v)!" da + | (usin®s+ )/
dg+ [ (usin®y + )12 dy, (9. 4)

In a similar fashion each of the orthogonal R-separable
coordinate systems for the wave equation is additively
separable for (1.1). In Paper Il we shall examine the
relationship between the wave equation and (1.1) more
closely and provide proofs of own assertions concerning
variable separation,
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