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This paper constitutes a detailed study of the nine-parameter symmetry group of the time-dependent
free particle Schrddinger equation in two space dimensions. It is shown that this equation separates
in exactly 26 coordinate systems and that each system corresponds to an orbit consisting of a
commuting pair of first- and second-order symmetry operators. The study yields a unified treatment
of the (attractive and repulsive) harmonic oscillator, linear potential and free particle Hamiltonians in
a time-dependent formalism. Use of representation theory for the symmetry group permits simple
derivations of addition and expansion theorems relating various solutions of the Schridinger equation,

many of which are new.

INTRODUCTION

This paper is a continuation of a series of articles
studying the connection between Lie group theory and
the separation of variables in the principal equations of
mathematical physics.'=® The group theoretic method
for the description of separation of variables originated
from the study of the Helmholtz equation

o

AYp=03,"p=2y, 9, =——,

o, (0.1)

u=1,2
in two variables for spaces of constant (or zero) curva-
ture. Much of this original work was done by Winternitz
and co-workers®7 with a view to describing all possible
quantum mechanical operators which can be used to
label bases for the “little groups” of the Poincaré group.
This work used the earlier results of Olevskii, ® who
classified all separable coordinate systems for (0.1) in
two and three dimensions for spaces of constant (non-
zero) curvature. In order to correlate separation of
variables with the underlying symmetry group G of
(0.1), it is found necessary to require that ¥ be the
eigenfunction of an additional basis operator L. This
operator belongs to the factor space T=S/S N C, where
C is the center of the universal enveloping algebra U of
G and S is the set of all symmetric second order ele-
ments in U. There is then a one-to-one correspondence
between equivalence classes of elements of T under the
action of G and the various distinct orthogonal separable
coordinate systems for (0.1). It is found that the opera-
tor L in many cases does not correspond to the Casimir
operator of a Lie subgroup of G. The resulting type of
basis has been termed a non-subgroup basis.® We should
mention here that the case of the Helmholtz equation in
the pseudo- Euclidean plane is somewhat more compli-
cated. The reader is referred to Ref. 10 for further de-
tails. The correlation between separation of variables
and the symmetry group of (0.1) in » dimensions can
easily be extended from the two-dimensional case. A
basis is now specified by an (n - 1)tuple of mutually
commuting operators Ly, ..., L, ;. In addition to equiva-
lence under the group action two such (z — 1)tuples,

{Lyy oo, Loat and {Z}, ..., I’} are equivalent if
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n=l

Ly=2,a,L]
g
with real nonsingular matrix (a;;).

For the treatment of the Helmholtz equation in a two-
dimensional space of positive constant curvature [two-
dimensional sphere with symmetry group SO(3)], see
Refs. 4, 9. The corresponding problem for negative
constant curvature [upper sheet of two sheeted hyper-
boloid with symmetry group SO(2, 1)], see Refs. 4, 11.
Some investigations have also been made for the
Helmholtz equation in three dimensions in Euclidean
space, 2 on the three-dimensional sphere, !* and on the
upper sheet of the two sheeted three-dimensional
hyperboloid. 4

The present paper is a continuation of Ref. 5 which
will be referred to as 5 in the following. In that paper
the problem of the separation of variables for the free-
particle time-dependent Schrodinger equation in one
space dimension was treated in detail, i.e., the
equation

U, +ilU,=0. (0.2)

The corresponding symmetry group G of this equation
was taken to be that generated by the largest set of
first-order partial differential operators in the varia-
bles # and x [each of which is a symmetry of (0.2)].
This group is isomorphic to the semidirect product of
the three-dimensional Weyl group and SL(2, R). It was
found in 5 that there is a correspondence between R-
separable coordinate systems for (0.2) and equivalence
classes of elements of the Lie algebra of G. In this
paper we extend this earlier work to the case of two
space dimensions.

We present a detailed study of the free-particle time-
dependent Schrodinger equation

Usyry Fthy,e, +iu, =0, (0.3)
Boyer'® has classified all equations of the form

Uyxy T Uiyn, ~ V(xy, x5) u +iu, =0, (0.4)
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which admit a nontrivial symmetry algebra of first
order differential operators. He has shown that (1) the
maximal dimension for a symmetry algebra is nine, (2)
this maximum occurs only for constant, linear, and at-
tractive or repulsive harmonic oscillator potentials,
and (3) the algebras of maximal dimension are isomor-
phic. Furthermore, it is known, e.g., Niederer, 16 that
the oscillator and linear potential equations are actually
equivalent to (0.3). In this paper we will examine the
equivalence explicitly and relate it to separation of vari-
ables for (0. 3).

In Sec. 1 we rederive the nine~parameter symmetry
group G of (0.3). Here G is a semidirect product of the
five-parameter Weyl group W and SO(2)® SL(2, R). We
determine the global action of G and compute the orbit
structure of its Lie algebra (; (the Schridinger algebra)
under the adjoint representation. We also determine the
second order symmetry operators admitted by (0. 3) and
show that they form a 20-dimensional vector space con-
sisting of symmetric quadratic polynomials from
(This last computation was carried out in Ref. 17 for
the equivalent case of the harmonic oscillator, but the
results are incomplete. )

In Sec. 2 we classify the 26 possible coordinate sys-
tems such that variables separate in (0. 3). In Sec. 3
we show that each such system is characterized by a
G-orbit of symmetry operators, an element of which
consists of 2 commuting pair of symmetries, one first
order and one second order. Qur derivation of possible
coordinates which permit separation and the relation
to G-orbits is new. We also show that each of these
orbits can be naturally associated with exactly one of
the four Hamiltonians mentioned above.

In Secs. 4 and 5 we compute the eigenbasis in a two-
parameter model for a representative of each G-orbit.
We also calculate the basis in the three-parameter
model of functions depending on variables x,,x,,? and
determine overlap functions relating various distinct
bases. Our knowledge of the G-structure of (0.3) great-
ly simplifies these computations and provides many
expansion theorems for functions in L,(R,), some of
which are new.

Among the special functions arising as solutions of
(0.3) are Bessel, Airy, Hermite, parabolic cylinder,
Mathieu, Laguerre, and Ince functions. Our group
theoretic approach provides deep insight into the prob-
lem of expanding one of these functions in terms of
another. Unless otherwise mentioned, all special func~
tions are defined as in the Bateman project.'®

1. SYMMETRIES OF THE EQUATION ju; + A,u =0
Let X be the partial differential operator

X =10, + 0z T 0, (1.1)
acting on the space 7 of locally C~ functions of the real
variables x,,{. We begin by determining the maximal
symmetry algebra of the free-particle Schrdinger

equation

du, + +u,2x2=:Xu=0, (1.2)
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i.e., we compute all linear differential operators
L=alx,,?) G b(x;,1) 3, + clx;, 1) 0, +d(x;,1),

a,...,d€ ¥, (1.3)

such that Lu is a solution of (1.2) whenever u is a
solution. A necessary and sufficient condition for L to
be a symmetry is

[L,X]=r(x,, )X 1.4)

for some » €_#.15:192 Rquating coefficients of
9x,x55 9,5 0x, and 1 on both sides of (1.4), we obtain a
system of differential equations for a,...,d,r, see
Refs. 15, 19 for details. Solving these equations, one
finds that the allowable L form a nine-dimensional
complex Lie algebra (° with basis
Ky=—170, = 1(x,8, +2%,0,)) —t + G/ DG +45), K,=0,,
P,=0,, By=~1d, +ix;/2, M=%03,~%0y, E=i,

7

D=x9

1¥x1

+ 2,0, + 210, + 1

(1.5)
and commutation relations
[D,K,,]=+ 2K,,, [D,B,]=B,, [D,P,]=-P,
[D,M]=0, [M,K,]=0, [P,,M]=(-1)}"P,,
[B;,M]=(-1Y"B,, [K,,K,]=D, [X,,B,]=0,
(K., B,l=-P,, [K,,P]=0, [P, K,]=B,,
[p,,B;,]=:E, [P, .B,]=0, §,1=1,2, %1,
(1.6)

with E in the center of G°. In the following we will study
only the real Lie algebra ( with basis (1.5), the
Schrédinger algebra.

A second useful basis for g is given by the operators
B,, P,, E which generate the five~dimensional Weyl
algebra {/ , the operator M, and the three operators
L,,L,,L;, where

L,=D, L,=K,+K_,, L,=K_,~-K,. (r.m
Here,
(L,,L,]=~2L,, [L,,L,]=2L,, [L,,Ly]=2L, (1.8)

5o that the L, satisfy the commutation relations of
sl(2,R). It follows that G is the semidirect product of
sl(2,R) ®o(2) and [{/. Here 0(2) is the one-dimensional
Lie algebra spanned by M.

Using standard results from Lie theory,? we can ex-
ponentiate the differential operators in( to obtain a
local Lie group G of operators acting on 7 and mapping
solutions of (1.2) into solutions, the Schrddinger group.
The action of the Weyl group W is given by operators

T(w, 2, a) = exp (w,B,) exp(z, P,) exp(w,B,) exp(z,P,)
x exp(aE),
w=(w,,w,), z=/z,,2,)
such that
Tw,z,a)TW ,2',0)=Tw+w,z+2',a +a’'+3wW-2),
(1.9
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where
(Tw,2,0) fl(x,1) = exp(i/4) (2x-w — t Ws W +4a)]
Xflx-tw+z,t], fe7.
The action of SO(2) is given by T(8) = expéM,
T(6) T(68")=T(6+6"),
where

[T(®)f] (x,t)= flxO,1),

o cosé sine)
~ \-sin® cosH/ "

(1.10)
Finally, the action of SL(2,R) is given by operators
[T(A) f1(x, ) = expliB(x® + y2)/[4(6 +B)](6 +tp)™

Xf[(6+t8) x, (y+ta)/(6 +tB)], feF,

A:(i‘ B) €SL(2,R), (1.11)

5
where
T(A)T(B)=T(AB), A,BeSL{(2,R).

The one-parameter subgroups of SL(2,R) generated by
K,,,L,,L,,L,, respectively, are given by expressions
(1.11) in Ppaer 5. The adjoint actions of SO(2) and
SL(2,R) on W are

THA)T(w,z,0) T(A)=T(wA,2zA, a*),
a’'=a+j(wez-wAezA),

TU0) Tiw,z,a) T(6)=Twe, 26, ).

1.12)

These identities define G as a semidirect product of
SL(2,R)® SO(2) and W:

g:(A,O,v)EG, AESL(Z,R), 9630(2)’
v=(W,z,0)E W,
T(g)=TA)T(6) T(v).

The group G acts on the Lie algebra § of differential
operators K via the adjoint representation

K—~K*=T(g) KT (g)

(1.13)

and this action splits (; into G-orbits. We will classify
the orbit structure of the factor algebra ¢*=( /{E},
where {E} is the center of . Let K& G’ and let

Ay, Ay, A, Tespectively, be the coefficients correspond-
ing to K,,D,K_, in the expansion of K#0 in terms of the
basis (1.5). Setting @ =A,A_, + A2, we find that o is in-
variant under the adjoint representation.

The following list is a complete set of orbit repre-
sentatives in the sense that any K +0 lies on the same
G-orbit as a real multiple of exactly one of the operators
in this list:

Case 1(a <0): K, -K,+pM, |B} 21, K,—K,+M+1B,;

Case 2(a >0): D+ pM;

Case 3(a=0): K,+M, K,+P,, K,, M, P,+B,, P,.
(1.14)

We next consider the problem of determining sym-~
metries of (1.2) which are differential operators of
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arbitrary finite order in x,, x,, and ¢. That is, we look
for linear differential operators S of arbitrary order
which map solutions of (1.2) into solutions. This is
equivalent to the requirement that

[S,X]=RXx

for some linear differential operator R of arbitrary
finite order in x,, x,, and ¢. Since we will only apply

S to solutions u of Xu=0, without loss of generality we
can require that S contains no derivatives in f. In other
words, wherever 3, appears in S we can replace it by
i(a,,l,;1 +8,,,,). Another way to view this is to note that
if § is a symmetry operator, then so is $'=8§ + @X,
where @ is an arbitrary differential operator. More-
over, S'u=_Su for any solution « of (1.2). There is a
unique choice of @ such that S’ contains no derivatives
with respect to £.

With this in mind we see that only the operators
P,,B,,E, generating the Weyl algebra and M are first
order or less in the x,. The elements K, =— i(B? + B2),
K_,=i(P2+ P}), and D=—i(B,P, + P,B, + B,P, + P,B,)
are second order. [These equalities are valid modulo
the replacement of 3, by i(3,y, +34,x,). | More generally
we can compute all symmetries S which are second
order or less in x; and x,:

2

S= 4211 (%, %,, 1) Dy,

. .
+ 70 b,(x,, %) 8, +cley, %y, 0).
i=1

A tedious computation shows that such S form a 20-
dimensional vector space. A basis for this space is
provided by the zeroth-order operator E, the five first-
order operators P,,B,,M and the three second-order
operators iK,,,iD listed above, plus the eleven second-
order operators

B?-B:, B,P,-B,P,, FPi-P}, BM+MB,, B,M+MB,,
PM+MP,, P,M+MP,, B,B,, P,P,, B,P,+B,P,, M.
(1.15)

It follows that all second-order symmetries are sym-
metric quadratic forms in Bj, PJ, E, and M.

2. SEPARATION OF VARIABLES FOR THE EQUATION
Uxx YUy, +iu, =0

In this section we examine the problem of separation
of variables for Eq. (1.2). As with the similar problem
for one space dimension treated in 5, we proceed di-
rectly. Let us first make the transformation of
coordinates

x=Gv,,v,,v;) y=H,,v,,v,), t=F(v,,v,,v,) (2.1)
with G, H, and F real functions of v, (i=1,2,3). Then
we have for the partial derivatives

8,=B8,,9, + By 3, + By 0,

3,=B,;3, + B,,d, + By,0

32%V3»

(2.2)
9, = B39, + Bya, + By;9,,

where B;; =M, /detA, M,, being the cofactor of the
matrix
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G, H, F,
A=1G, H, F, |,
G; H; F

(2.3)

(subscripts on the functions G, H, and F denote differ-
entiation with respect to the variables v,).

Equation (1.2) can then be written in the form
1101y T Opp0pp T A33033 T 0150, + 413053 + dasyg

(2.4)
+ a9, + a8, + agdy +i(b,9, + b8, +bgdy) =0

We now consider the possible cases for the coefficients
a,; <4

(i) a;;#0 for all i <j. In this case the only way to have
a separable solution is for two of the solutions to be ex-
ponentials and all the remaining coefficients to be func-
tions of the remaining variable.

(ii) a;, =0, a4, a3 #0. The only possible separable
solution is an exponential solution in the variable v;.
The coefficients are then functions of v, and v,.

(iii) a,,=0, a,,=0,a,,#0. The only possible solution
is an exponential solution in the variable v,.

(iv) a,; =0 <j).

Let us proceed to evaluate all coordinate systems
which are of type (iv) and admit a separation of vari-
ables. We shall see that all the coordinate systems of
interest arise in this case. We shall discuss the evalu-
ation of cases (i)—(iii) at the end of this section. For
the conditions a,, =0(j> ) we must have the relations

BBy, + BB, =0,

B, B, +B,,B,,=0, 2.5)

BBy + BBy, =0.

These conditions may be interpreted to mean that the
vectors b, =(B,,, By,), b,= (B, B,,), and by=(B;,, B,)
are mutually orthogonal. Therefore, there must exist
a nontrivial relation of the form

ab, + Bb, +yb,=0 (2.6)

with (a,B,7)#(0,0,0). Let us enumerate the possibili-
ties for the vector (o, B,7):

(i) @, B,y all nonzero. This case implies B;; (j#3)
are all zero and is hence inadmissable.

(ii) y=0, B,a nonzero. This case implies that
B,,= B,, = B,,= B,,=0. Now, considering the conditions
B,, = B,, =0 which can be written

HlFs‘F1H3=G1F3_F1G3:O,

we see that, in order to have the partial derivative 2,
appear in (2.4) at all, we must have H,G;— G H;#0.
This implies F, = F,=0; the other conditions similarly
imply that F,=F,=0. The matrix A is then singular.
This case is therefore inadmissable.

(iii) o,8=0, v nonzero. This case implies by reason-
ing as in case (ii) that F, = F, =0, so that F=F(p,) and
F#const. Accordingly we can define F(v,)=v,. For this
case detA = G,H, — H,G, and we have the simplifications
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M, =H,, M),=-G,, M, =~H,, M,,=G,. The only non-
trivial constraint arising from conditions (2.5) is

(*) HH,+G,G,=0,
There are two possible types of separation.

(1) There is an exponential solution in the variable
v, and B, =0. The conditions of separation then also
require B,, =0. For a nonsingular choice of coordinates
these conditions imply H, =0, G,=0. The condition
9,(#,/G,) =0 implies that G=h(v,) v, + flvy). In particular
the condition 9,(B,,) =0 requires h=const. We can, by
suitably redefining the variable v,, take f=0. The cor-
responding problem then is equivalent to finding all
separable coordinate systems for the equation A2 tu,
+1iu,=0. The only new coordinate system is then

1/2

y=uv; (2.7)

If we remove the requirement B,,=0, then the coordi-
nates which have exponential solutions will appear in
separable systems of the second type (see below).

xX=12,, vy, t=v;.

(2) These are coordinate systems for which all
B,,, (i,j=1,2) are nonzero.

The conditions for separation for the second deriva-
tive terms are

B} + B3, = fv,,v,)/ 1P (v,)
Bgl + Bgz = g(v1 s Uz)/hz (113)

Now for functions G =Gh, H=Hp, the corresponding re-
duced functions B,, (i,j=1,2) satisfy the constraints
(2.8) without the #2(y,) term on the right-hand side. The
conditions for separation in v, v, satisfied by the E”
are then exactly those conditions satisfied for separation
of variables in the two-dimensional Helmholtz equation
in orthogonal coordinates. Therefore, to within a
Euclidean motion G, H, assume one of the four standard
separable forms of the Helmholtz equation in two space
dimensions. We can thus write

2.8)

G=h[cosa 5, —sina /{,]+ T, 2.9)

H=h[sina 7, +cosa #,]+ U,

where o, T, and U can be functions of v;. The standard
separable forms will be taken as:

1) Cartesian coordinates:

71=0y, Hi=vy (2.10)
2) polar coordinates:

#2=0,COSV,, fH,=v,Sinv,; (2.11)
3) parabolic coordinates:

sa=3Wi=12), Hi=v0, (2.12)
4) elliptic coordinates:

# ,=coshy, cosv,, /,=sinhy, sinv,. (2.13)

The remaining conditions for separability then become
By =f(v,,v,)/ 12, Byy=g(v,,v,)/ 1. (2.14)

The form of the functions f and g is determined by the
choice of 7, and /.. It follows from the general form
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(2.4) that the functions k, @, T, and U have the general
form

h=+Vbv,Fc, a=Kln(bv,+c),

2.15
U=buv,. ( )

T = av,,
We shall now summarize our results. In each case we
give the form of the functions f and g in Eqs. (2.14) and
the corresponding coordinates in reduced form.

1) Cartesian coordinates. In this case f=f(v,),
g=glv,), and K=0. The contributions of T and U may
be transformed away by using the v, translation prop-
erties of the Weyl group action. This process does not
affect separability. The resulting coordinate systems
are then

(2.16)
Y =1y, 2.17)

2) Polar coordinates. In this case f=f(v,), g=g(v,),
and T and U are both zero. In particular for 5#0 we
have K#0. The resulting coordinate systems are

—pl/2 —qnl/2 —
x=v%,, y=v¥?, t=u,,

X=v,, t=uv,.

(1) x=v}?, coslv, +Klny,), t=uv,, (2.18)
y = v}/ %y, sin(v, + K Inv,),
(ii) x=wv, cosv,, y=uv,siny,, t=uv,. (2.19)

3) Parabolic coordinates. In this case f=f(v,)/
(3 +12) and g=g (,)/ (v% ++%). This implies that K, U,
T, and b are all zero. We thus have only one coordinate
system, viz.,

(2.20)
4) Elliptic coordinates. In this case f=7(»,)/ (sinh2y,
+ cos®v,) and g= g (v,)/(sinh?y, + cos?v,). This implies

that K, U, T are zero. The two resulting coordinate
systems are

1
x=302=13), y=vw,, t=wv,.

(i) x=v3/%coshy, siny,, y=uv}/2sinhy, cosy,, t=uv,,
(2.21)
(ii) x =cosho, sinv,, y=sinhv, cosv,, t=uv,. 2.22)

This completes the list of separable coordinate sys-
tems. In particular we note that we can essentially

take K =0 for the angular variable in the system (2.18)
by redefining the variable »,. We now seek to classify
all solutions of (1.2) which admit an R-separable solu-
tion, i.e., a solution of the form u=expQ(v,,v,,v;)

X A(v,) B(v,) C(v;), where @ is not expressible as a sum
of functions of each of the individual variables v, nor is
it a constant. If we extract the multiplier and write
down the equation for the product, we obtain an equation
of the form (2.4) with new coefficients & and an addi-
tional constant term a, on the left-hand side. The possi-
ble types of R-separation can then be classified in the
Same manner, i.e., types (1) and (2). For solutions of
type (1) we have the R-separable solutions for the cor-
responding equation in one space dimension found pre-
viously in Paper 5. They are:

() x=v,, y=0,0,+b/v,, t=v,,
§=3vdv, - bu,/ 2v,; (2.23)

(i) x=v;, y=v,+b2, t=uv,,

503 J. Math. Phys., Vol. 16, No. 3, March 1975

S = bo,v,; (2.24)
(iii) x=v,, y=0,(1 +0D/2, t=v,,

S=4%v2v,; (2.25)
(iv) x=v,, y=0,(1 =02)/2, t=0, (Jv,| <1),

S= - {120, (2.26)

x=v, y=0,(02=1)2 f=0v, (|v,] >1),
S = 1v2v,.

Here we have written the multiplier function @ =R +iS
and R =0 in each case. For R-separable solutions of
type (2) we again require that G and H have the form
given in (2.9) with o =0. The coefficients of the partial
derivatives 9, and 3, are then

c;=2a,R, +a, +i(2a,,S, + b)),
Co=2a,R, + a, +i(2a,,5, + b,),

respectively.

2.27)

The requirement of separability implies that R is at
most a sum of functions of the individual variables. We
may therefore take R=0. We give an outline of the
method for the case 7 =v,, #/ =v, and then list the re-~
sults for the remaining coordinate systems. From the
requirement that ¢, =f(v,), c,=g(v,) we find that S can
be written in the form

S =1 hk' @3 +02) + 3h(T*v, + U'p,). (2.28)
Then from the constraint
@y = ay, (= 5% +iS,,) + ay,(— S% +1iS,,)
+ia;S; +ia,S, — b,S, = b,S, — b,S,
=(p(w,) + q(v,))/ B + s(v,) (2.29)

we obtain the following set of coordinate systems:

() x=vwy+a/vy, y=v0,+b/vy, t=uv,, a,b>0,

=302 +v2) v, — (1/20,)(av, + bo,); (2.30)
(1) x=v,+avi, y=v,+bv%, t=v,, a,b>0,
S=(av, + bv,) vy; (2.31)
(ii)) x=0,(1 +02'2, y=0,(1 +o}/2, t=y,,
=4(v% +02) vg; (2.32)
(iv) x=0,(1 =032, y=0,(l =0D*2, t=uv,, [0,]<1,
§==3f+v) v, (2.33)
x=0,(W~12, y=0,3-1)2, t=uv,, |v,|>1,

=50 +2) v,

In the remaining three types of coordinate systems we
have the following possibilities:

Polar coordinates:

() x=Q+02) 20, cosvy, y =1+ 20, siny,, t=uv,,

S:%vaa; (2.34)
(i) x=(1 =022y, cosy,, y=(1-22)/2y siny,,
t=wvs, ’Usl <1,
S= - ;vivg;
Bovyer, Kalnins, and Miller 503
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x=(v%-1)"/2v, cosv,, y=w:-1)*/%y, sinv,,

t=v;, ]Usl >1,

S= ludyy; (2.35)
(iii) x =wv,v, cOSV,, y=v,0,8inp,, t=1,
S = tviv,. (2.36)
Parabolic coordinates:
(i) x:%(vf—vz)ua-i-a/vs, y:vlvzvs, t=v,,
=52+ 0220y ~ (a/4v) (0} - v3); (2.37)
(1) x=3(% -3 +ad, v=uv,1,, t:vs,
S=%a(v? - v3) v,. (2.38)

Elliptic coordinates:
(1) x=(1+02)!/2coshy, siny,, y={(1+2v%)*/2sinhy, cosy,,
t=wv,,
S = v, (sinh?y, + cos®v,); (2.39)
(i) x=(1~v2)!2coshy, cosv,, y=(1-2%)/%sinhy, sinv,,
t=v,, ]Usl <1,
S = — jv,(sinh?p, + cos?,);
/2 y=(v2~1)/2 smhv1 siny,,

x = (v ~ 1)1/% coshv, cosv,,

t=v;, ‘03} >1,

S = $v,{sinh®p, + cos?v,); (2.40)
(iii) x =wv,coshy, sinv,, y=v,sinho, cosv,, t=uv,,
S = §vg(sinhpy, + cos?v,). (2.41)

This completes the list of R~separable solutions of (1.2).

At this point we comment on the separable solutions of
types (i)—(iii). In defining a separable coordinate sys-
tem we require that in addition to admitting a separable
solution, the equation in question be equivalent to three
ordinary differential equations, one in each of the sepa-
ration variables. For solutions of type (i)—(iii) this is
not the case as we have proven, Separable solutions of
types (i)—(iii) actually correspond to a change of
coordinates

X=ay0;, V=00, t=azv;,

det{a;,} #0, a,, constants. (2.42)

We accordingly make no further comment on these
cases.,

The general features of the separable systems we
have classified are evident from our explicit procedure.
Corresponding to each system there is always a first
order operator K and a second-order operator S defin-
ing the coordinate system in question. These two opera-
tors are also symmetries of (1.2), mapping solutions
into solutions. The operators K and S can accordingly
be expressed as first- and second-order operators, re-
spectively, in the generators of the Lie algebra 9 . The
form of these basis defining operators is discussed in
the next section. The notation for the coordinate sys-
tems we have introduced in Table I requires some com-
ment, The capital letter corresponds to the type of
Hamiltonian, i.e., F+— free particle, L — stark ef-
fect (linear potential), O-— harmonic oscillator, and
R «— repulsive harmonic oscillator. The small letters
indicate the type of coordinates used in each of these
Hamiltonians, i.e., ¢+— Cartesian, r-— radial (polar)
coordinates, p ~— parabolic, and e «— elliptic coordi-
nates. The superscript (i) determines the coordinate

TABLE I, Separable coordinate systems for the equation U+ U, +iU,=0 (¢ =sgn —13)),

Coordinate system Coordinates

Multiplier &S

1) FeW? X2V, V=UyUs = @i +vd)v,/a

2) Fe® X=v,, V=1 0

3) Fr® X =V vy COSUy, Y =Uy0;Sinv, vivy/4

4) Fr® X=v, COSVy, Y =70y Siny, 0

5) Fpd x:vs(v%—vz)/Z 3= v30y0g 0§+ %) vy/16

6) Tp®’ =@l —v})/2, y=v0, 0

7) Fe'D x=v; coshv, cosvy, y=vysinhy siny, (sintlv, +cos?v,) vy /4

8) Fe® x=coshv, cosvy, sinhv, sinv, 0

9) Le) X =vuy+a/vy, V=090 +b/vy W +v§)vs/4 — (L/20y) v, +bvy)
10) Le® x= v +avm52, J=n +bod {avy +buy)vg ,
11) Lp® x=v3(0] —v)/2 1a/vy, ¥=vi090y (v{+v Y v3/16 = (a/4v3} (] = v3)
12) Lp® x= (1}12—’[}2)/2 +avy, y= vlv av, wf —vz)/2

13) Oc y=v, A+, y=u, 0+ 03 )”2 (Vt +vf)v, /4

14) Or (1 +v2)‘/zv costy, ¥ (1 rvd )1/2111 sinwy vivy/a

15) Ce = (1 +vd)1/? cosho, cosvy, y= (1 +v$)!/? sinhv, siny, (sink? v, +cos?vy)vy/4

16) Re W x= v,v}/z, y= Uov;}}

17) Re® x=o(lof =12, y=v, (0} ~1])1/2 € f +vf)vy/4

18) Re®) x= vlvq‘/ cosv,, ¥ =vyvi /% siny, 0

19) Rr(® x=(l v] —1l)”2v1 cosvy, =103 —1 1)1/ %v, sinv, evluy/4

20) Ret? x =04 7 coshu1 costy, y=vi/?, y=v{/? sinhy, sinv,

21) Re®) x=(lof —=11)1/2 coshw, cosv,, y=(lvd—1])1/? sinhv, sinv, € (sinh?vy +cos’vy)vy/4

22) L1 X=v, ¥ = v2v3+b/v3 vy /4 — by /2,

23) 1.2 x=vy, y="0y +avd avyvy

24) O1 x=vp, v=u ( +vd) /2 vqvl/4

25) R1 x=vy, y=v08 /2 0

26) R2 x=vy, y=vp (1 vf =1 1)1/ evfvy/4
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system which is the simpler of two which lie on the
same orbit from the point of view of the spectral analy-
sis in a given basis.

3. THE OPERATOR CHARACTERIZATION OF
VARIABLE SEPARATION

From the method of the preceding section we see that
corresponding to every separation of variables for Eq.
(1.2) we can find a pair of commuting differential opera-
tors K,S such that:

1) K and S are symmetries of (1.2);

2) K is first order in x,,x,,¢ and contains a term in 9,
(except for the subgroup coordinates);
3) S is second order in x;,x, and contains no terms
in 9,.
The separation of variables is then characterized by
the simultaneous equations
(3.1)

In particular, the eigenvalues A, u are the usual separa-
tion constants.

Xu=0, Ku=ixu, Su=puu.

1t follows from the results of Sec. 1 that K lies in
the symmetry algebra (’ while S can be expressed as a
symmetric quadratic form in B, P,, E, and M. Thus
the possible coordinate systems in which (1.2) separates
can always be characterized by eigenfunction equations
for operators at most second order in the enveloping
algebra of ;. From the results of Sec. 2 it is straight-
forward to determine the operators K,S associated with
each coordinate system. This information is listed in
Table II.

TABLE II. Symmetry operators associated with variable
separation

Coordinate 1st-order 2nd-order
system symmetry K symmetry S
1) Fe® K. B
2) Te®) Kf A
3) Frit? K, M
4) Fr@ K, e
5) Fp? K, B,M +MB,
6) Fp@ K, P M +MP,
7) Fe') K, M _ B2
8) Fe K, M- pé
9) Le® Ky +2aP, +2pP, B +2pPE
10) Le® K, ~2aB; — 2bB, P% +2aB,E
11) Lp® K, +aP, B,M +MB, +aPF}
12) Lp® K, +2aB, P,M+MP, +2aB}
13) Oc K, - K, E + B
14) Or K, ~K M
15) Oe K,-K, M~ P5 - B}
16) Re®) D B, P, + PB,
17) Re®’ K, +K, P5_53
18) Rr®) D M
19) Rr® K, +Ky M
20) Ret? D M + (B, P, + P,B,)/2
21) Re® K, +K, M, — P} + B
22) L1 P, B} —2bP,E
23) L2 P, 7P 42aB,E
24) O1 P, P§ +B}
25) R1 P, P,P, + BB,
26) R2 P X _ B
505 J. Math. Phys., Vol. 16, No. 3, March 1975

The above 26 coordinate systems were classified up
to equivalence under the Gallilean group G{2) C G. How-
ever, from another point of view we can regard two co-
ordinate systems as equivalent if the first can be trans-
formed to the second under the action of some g€ G. In
terms of operators, the system described by K,S is
equivalent to the system described by K’,S’ if, under
the adjoint action of G on the enveloping algebra of ¢,
the two-dimensional space spanned by K,S can be
mapped onto the two-dimensional space spanned by
K’,S’. Under this more general equivalence relation not
all of the above coordinate systems are inequivalent. In-
deed the systems denoted Ab®? and Ab®’ lie on the
same two-dimensional orbits so that there are only 17
equivalence classes of orbits,

We can describe these equivalences in terms of the
operator J = expin(K, ~ K_,):

Jf&, 1) =[VZ/(1 + )] exp[§i(l + ) xox]

XfFIvZA +8x,(t-1)/A+1)], fe7. (3.2)
Note that J2=exp3n(K, - K_,), and
J2f(x, 1) =t" exp[(i/at) xo x| f(t"' x, — 1),
Jfx, 1) = - fl-x,1), (3.3)

JEfx, ) =fx,1).

It is easy to show that J(K_, +K,)J*=D, and, checking
the adjoint action of J on second-order operators, we
“can verify that the three coordinate systems Rc®, Rr®),
Re® are equivalent under J to the three systems Re @),
Rr® Re® respectively.

Denoting the adjoint action of J* on K€ § by K’
=J2KJ?, we find P}=~B,, B|=P,, K,=—K,, K}
=-K_,, D'=-D, M'"=M, E'=E so that the six pairs
of the form Fa®’, Fa® or La®), La® are equivalent
under J2,

4. TWO- AND THREE-VARIABLE MODELS

We next demonstrate that the operators (1.5) can be
interpreted as a Lie algebra of skew-Hermitian opera-
tors on the Hilbert space L,(R,) of complex-valued
Lebesgue square-integrable functions on the real line.
This is accomplished by considering  as a fixed param-
eter and replacing 3, by i(3,,, + axzxz) in expressions
(1.5). 1t is then clear that the resulting operators mul-
tiplied by ¢ and restricted to the domain of C*-functions
on R, with compact support are essentially self-adjoint.
In fact these operators are real linear combinations of
the operators

Kzzéi(x?—i_xg)a K-Zzi(axlxl+a ), /9‘,:9,]_,
B,=%ix,, /M:xlaxz—xzaxl, & =i,

a, =%,8,, T%0,, 1,

¥a¥g

4.1)

which are well known to be essentially skew-adjoint.
Note that when the parameter =0 the operators (1.5)
reduce to (4.1). Thus the script operators (4.1) satisfy
the same commutation relations (1.6) as do the block
operators (1.5). More specifically we have the identities
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(exptK .) Py lexp(— tK )]=P,,
(exptK-z)Bj [exp(=tK )= B,

with similar expressions relating the other script and
block operators.

If f€ L,(R,), then u(f) = (exptK _,) f satisfies u, =K ,u
or iu, = - A,u (for almost every #) wherever fis in the
domain of K_,, and #(0)=f. Also the unitary operators
expa K = exp{tK _,)(expa K ) exp(~#X _,) map « into v
= (expaK) u which also satisfies v, = K ,v for each linear
combination X of the operators (4.1). Thus the opera-
tors expaK are symmetries of (1.2).

(4.2)

We will see later that the operators (4.1) generate a
global unitary irreducible representation of the group
G on L,(R,). Assuming this here, we let U(g), g€ G, be
the corresponding unitary operators and set T(g)
= (exptK _,) U(g) [exp(~ X _,)]. It is then easy to show
that the T(g) are unitary symmetries of (1.2) with as-
sociated infinitesimal operators K = (exptK ;) K
X [exp(— tK -2)] .

Next consider the operator [ ;=K _,~ K,=i(a, — (2
+x2) € G . If fE€ L,(R,), then u(t) = (expt/ ;) f satisfies
u, =/ s or

fu,=—Au+ 13+ 2 u 4.3)

and «(0) = f. Similarly the unitary operators V(g)
= (expt/ ) U(g) lexp(~#/ ,)] are symmetries of {4.3),
the Schridinger equation for the harmonic oscillator,
and the associated infinitesimal operators
(expt/ J)K lexp(~1t/ ;)] can be expressed as first-order
differential operators in f and x. Analogous statements
hold for the operator [ ,= K _, + K, =, +3(Z +132))
with associated equation u, =/ ,u,

iy = = Byu = 5 (0 +23) u, (@.4)
(Schrodinger equation for the repulsive oscillator) and
the operator X _, — 8,=1i(4, ~ x,/2) with associated equa~
tion u, = (K 5, — B,)u,

iu, = — Byu+3xu (4.5)

(linear potential).

These remarks show explicitly the equivalence of
equations (1.2), (4.3)—(4.5). Through we have chosen
to start with Eq. (1.2) in this paper, an analysis of any
of the other equations would have led us to the same
results.

From Table IT we see that, except for the subgroup
coordinates (22)—(26) which were essentially discussed
in 5, every separable coordinate system corresponds
to a G-orbit which contains exactly one of the Hamil-
tonian operators iK _,, i/ 5, i/ ,, or i(K_,— ;). Thus
each coordinate system is naturally associated with one
of these four Hamiltonians.

Consider a pair of commuting self-adjoint operators
iK,S, where K € G and S is a symmetric quadratic
operator in the enveloping algebra of g . These opera-
tors have a common spectral resolution, i.e., there is
a complete set of (generalized) eigenvectors f, ,(x) in
L,(R,) with
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in)..u:)\f)hu’ .S-fx,u = p’f).,u.’ (fx,u7fx',u’):6n’6uu’ b
(4.6)
where

(i) = [T 1G0T () dxy dry, 1, € L(R,).

-

4.7

Now suppose iK'/, §’ are another pair of commuting
self-adjoint operators on the same G-orbit as ik, §.
Then by renormalizing these operators if necessary, it
follows that there is a ge G such that

K'=U(g)KU(g™), S'=U(g)SU(g™).
Thus the spectral resolution of the primed pair is identi-

cal to that for the unprimed pair. Indeed for f’, |
=U(g)f,,. we have

K =M S =1
(f')nu’ f'l',u'):én'éuu'
and the f’, , form a complete ON set in L,(R,).

(4.8)

In the following we will frequently need the spectral
resolution of a pair iK', §, where iK is one of the four
Hamiltonians listed above. However, in many cases we
will be able to use the unitary symmetry operators U(g)
to construct an equivalent pair iK’, §’ whose spectral
resolution is much simpler to compute. This informa-
tion will then provide the spectral resolution of the
original pair.

As a special case of these remarks consider the
operator K_,=144,. If {f,,.} is the basis (4.6) of gen-
eralized eigenvectors for the pair K, §, then{f] (1)
=[exp(tK - 2)]£} is the corresponding basis of general-
ized eigenvectors for the block operators
K =(exptK K lexp(=tK )], S=(exptK_,) Slexp(-tK ;)]
and the f’, ,(#) satisfy Eq. (1.2). Similar remarks hold
for the other Hamiltonians. This clarifies the relation-
ship between the two- and three-variable models of ¢ .

We now explicitly compute the spectral resolutions of
the pairs of commuting operators listed in Table II. We
being with the Oc orbit, i.e., by determining the spec-
tral resolution of the pair [ ,=K_,~ K., E + A%. Equa-
tions (4.6) are

[~a,+3g+@f=nf, @, , —idf=1f,

and the well-known normalized eigenfunctions are
frw=0¢, ()= (2™ "1 1m! )1/ 2 exp[— (2 + 22)/4]
XH,(x,/V2)H_(x,/ VZ),

A+p=m+z. (4.9)

1
b==-n-3,

=9,.0

(oc,, ,..ocC Ot s

ym’ n.m)

where H_(x) is a Hermite polynomial.

At this point one can easily show in a manner analo-
gous to that presented in 5, Sec. 3, that the operators
(4.1) exponentiate to yield a global unitary irreducible
representation of G. Indeed from the known recurrence
formulas for the Hermite polynomials one can see that
the operators [,/ ,, [ , acting on the oc-basis define
a unitary representation of s(2,R) which is a direct sum
of representations from the discrete series, and the
{{/~operators define a unitary irreducible representation
of /{/. As follows from the work of Bargmann,??:23 this
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Lie algebra representation extends to a global represen-
tation of G, irreducible since its restriction to Wis al-
ready irreducible.

We now compute the unitary operators U(g) on L,(R,).
The operators
Uw,z,a)=exp(w,B,) exp(z, ) exp(w,,) exp(z, ;)
Xexp(a &)
defining the irreducible representation of Ware
[Uw,z,a) flx) =explila + 3 wex) fx+2)], fcL,(R,).
(4.10)
The operator U(8) = exp(8/) is
[U(e) flx) =r=o0)
where © is given by (1.10). The operators U(4),
AESL(2,R), are more difficult. From Ref. 24, we find

(expaK ) fx) =1.i.m. 4_7—rli_a

xf/exp[- (x —y)*/4ia] f(y) dy, dy,. (4.11)

(In the following Gfé will drop the 1.i.m. symbol.)
Also

(expd K ,) f(X) = exp(ibx» x/4) f(x),

(expe)) fx)=e°fle°x). (4.12)
Using group multiplication in SL(2,R), we find
expe [, =exp(tanh K ,) exp(sinh¢ coshp X _,)

X exp[— In(cosh@)X ]
so that
__expli cothgxe x/4) f

(expo /[ ,) o) = = = ik

Xexp—i- 2 Xe*y+coshgye y)

4 sinh¢

X f(y) dy, dy,. (4.13)

Similar computations yield
__ explicotdx»x/4)

(exp/ ) fl) = == e

x[f exp-i- - —z—x-y+cot8y-y)

4 siné
X f(y)dy, dy,, (4.14)
23
exPP(K o + a8, )7) = expi /2 /1)
i
xff exp 7y l:(x1 —ap*—y,)?
== (4.15)

+ o= 32| A5, .

From (4.11) it follows that the basis functions
oc, .(x) map to the ON basis functions Oc, . (x,2)
= exptK _,) oc, (x)or

Oc,, . (x,t)= (2™ a0l m 1)1/ 2 explin(m +n -1)/2]

507 J. Math. Phys., Vol. 16, No. 3, March 1975

44\ (men)/2
X expl- $(02 + 2)(1 - iv,)] (%)
3

X (g = D)V H,, (0,/VOH, (0,/ VD),

where

(4.16)

¥, =01+ x,=0,(1 +02)V3, t=u0,.

The functions (4.16) are those corresponding to the
separable coordinate system.Oc in Table I.

Next we compute the spectral resolution for the sys-
tem Or:

UK~ K F=Nf, MPf=uf.
The basis of eigenvectors is
or;, . (x)=[m!/2"1(n+m) 11"/ 2 exp(= r?/4) "L (G7?)
Xcosmé,
(4.17)

where m=>1,rn>0 and x, =7 cosé, x,=»sinf. The eigen-
values A, 4 are related to m,n via p=-m?, 1=
2n+m+1, For m=0 we get

ot} oK) = (2/7n1)!/2 exp(~r/4) L, G72),

or; (x)=tanméor;,  (x),

nrm

where LZ(r) is a generalized Laguerre polynomial. The
orthogonality relations are

(org . 0rf )=6,.0

r —
fnym 6m’m’e’e ==.

n'n
The three-variable basis functions Or, , (x, )
= (exptK _,) or, . (x) are

Or;,m(x, t)=K (1772’"_2:11_':—7)2—)—‘> v (_212):” (1(}1;3_4;;,),.”;/::1

X exp[3v2(it — )]L™(302) cosmu,, (4.18)
Or; . (x,t)=tanmv,Or;  (X,t), m=1
for m=0, K= V2; otherwise K=1. Also x,
=1+ 022y, cosv,, x,=(1+2) /2y, siny,, t=uv,.

For the system Oe,
K= KD =N, NP =PF = BB f= uf,
we obtain the ON basis
oe;, (%)= (1/m) hep(it, 3) her(n, 1),
(4.19)

oe, . (%)= (1/7) hsP(it, z) hs(n,3),
where
her(n, 2) = exp(- cos2n/8) Cm(n, 3),
hs?'(n,2) = exp(— cos2n/8) S7(n, 3),
Osm<p<o (-1)m?=1,
x, =coshg cosyn, x,=sinh¢sing,
The eigenvalues X and { are related to p and m
viax=p+1, u=ax+a3(z) or p=m+b7().
The orthogonality relations are
(o€t ., 088 )=5,.0...6

mmy €€ =%

The functions C*(n, £),8["(n, £) are Ince polynomials, 2526
They are polynomial solutions of period 27 of the
Whittaker—Hill equation. This equation has been investi-
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gated in detail by Arscott,?® and it is his notation for
the solutions and eigenvalues that we use. The three-~
variable basis functions Oe, ,(x,t) = (exptX _,) oe, , (X)
are

Oe;, . (x, 1) = (\/7) exp[(i/ 4) v;(sinh?p, + cos?v,)]
X (vg = iP/2 (v, +1)*/2 e iv,, 3) hel (v, , 3)

where (4.20)

%, = (1 +92)"/2 coshw, cosv,, x,=(1 +v2)*/2

Xsinhv, siny,, f=wv,.

The expression for Oe;'m(x,t) is as above except that
we now have a new constant of modulus unity A~ and
the functions hc;"(n, £) are replaced by hs;"(n, £). The
constants A are in principle calculable from a know-
ledge of the explicit form of the Ince polynomials. They
can always be calculated by inserting special values of
the parameters v,. Accordingly we make no further
comment on their determination.

In the remaining cases there are always two coordi-
nate systems associated with each orbit. For simplicity
we shall always treat the coordinate system with super-
script (1). The corresponding results for system (2)
follow immediately upon application of the operators
Jor J?, (3.2), (3.3).

The Fc system is defined by equations
iKof==%Vf, B,f =%ivcosaf
and has a basis of generalized eigenvectors
fe,, &) =[6(r~v)/Vrls(6—a), (fc, o, fc,, )
=5(y-7)ola ~a'),
x,=7rcosf, x,=rsind, 0<a<27,0<y. 4.21)

The basis functions Fc, ,(x,t) = (exptK_,) fc, ,(x) are

c,, oX, )= 4\1[; exp4t |:(x1—ycosaz)2 + (x, - ysina)z] .
The Fr system is defined by (4. 22)
iKef==%Vf, iMf=-mf
with basis
i, )= 207 eRmd) g )
=6(y~7")6,, (4.23)

Here 0<y, m=0, z1,..., and 7, 6 are polar coordi-
nates. The three-variable basis functions are

¥ 1/2 i m~1
Frr.m(x’ )= (ﬂ) eXP4-t (r 57
X exp(im8)J,, 2?) (4.24)

where J,(z) is a Bessel function.
The Fp system is determined by equations
iKaf:_ %Yzf’ (Bzm +/h32)f:_ I-‘Lf
with basis

fp;,, ()
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= (1/¥97)(1 + cos§)in/2-1/4 (1 — cog g)in/2"1/4
x[str—1)/vr ],

0, O0s#f<m,
fp;,, @) =tp; (7, 0)=1tp}, ,(r, - 0).

-1<60<0,

(4.25)

Here 7, 6 are polar coordinates, 0 <y,— < <  and
the spectrum is continuous of multiplicity two.! The
orthogonality relations are

(fp2,,,f0% . ) =00y = v") 6(u— w),
(fpt'u,fp;,’u,) =0.
The three-~variable basis functions are

iV yexp(iy?/4t) 2 4 o2y
237t cos (i um) €xp (1 6t (& +77) )

X[D-iu /2=1/2 (gff)

on - -
s ) e o))
FP;.u(xuxz,f)=Fp;,u(xl,—xz,t), (4.26)

where 0=exp(in/4)Vy and £,7 are parabolic coordinates

Fpi , (x,t)=

26, =E—-n?, x=in.
The Fe system is defined by equations
iKof ==v2f, WP+4B%-48))f=~uf,
[equivalent to (7) in Table II]. The basis functions are

8(r—v) Jece,(6,v%/2), n=0,1,2,...,
T Vrm }se(8,v%/2), n=-1,-2,.

0= 7 (fe‘r'n’fer'.n’):é(y_‘y’)énn"

fe, (x)= (4.27)

where ce,(8,q),se,(6,q) are the periodic Mathieu func-
tions of integral order and 7, 6 are polar coordinates.
The eigenvalues p=pu are discrete and all of multipli-
city one. The basis functions

Fe, (x,t) = (exptK ) fe,, ,(x)

are
Avn (7 1z . 2 i oh2 2
e e + +
Fe,,,(x,8) = Toir (ﬂ) explit(cos?a + sinh?p + y?)]
% ce,(0,7%/2)Ce,(p,7%/2), n=0,1,2,...,
Se_n(o,yz/z)Se"(p,'yz/Z), n=—1y_27°
(4.28)
where A, , is a normalization constant, Se,(p,q) and

Ce,(p,q) are modified Mathieu functions, and
x, =—2T1coshpcoso, x,=-27sinhpsino, t=r7.

The Lc system (transformed so that 5=0) can be
defined by equations

(K, +aP)f=xf, Bif=-1ip"f

with basis functions

-t o -4 (e 0]

Ie,, &)= T exp | - - e+ +12

(e, ,slc,,, ) =6(=1)8(p=p"), —o<r,p<o. (4.29)
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The three-variable basis functions are

_ _Qayre N T e Y
Le, (&, 0= Biv, VT o] exp |i (2 +03) iy

U_'i_._‘f_ A i -1/3 U_l_+l+_9i)]
L) 3v3 v3>]Al [(36a) (a a 4a/]’
(4.30)

where Ai(z) is an Airy function. Here,

X, =0V + A/ Vg, Xy =0,U5, (=05

The Lp system is defined by

ilKe+aP)f=xf, (Bo/M+MBy+aPE)f=uf

with basis functions

Ip, (%) = (1/V37Ta1) h,(x,) exp[~ (i/ @) ux, + 32,22 + - 2],

—~0<x<0,n=0,1,2,...,

(p,, . 1Py ) =0 (A = N)5, .. (4.31)
Here k,(x) is a solution of
P E + ﬁ) - 4.32
h (a + a? 492 h=0 (4.32)
such that
J2  h ) |Pax=1. (4.33)

The eigenvalues p= i, of (4.32) subject to condition
(4.33) are discrete,?” with multiplicity one, and we as-
sume them ordered so that p,< g, < u,<v--. Here h (x)
is either even or odd for each value of n.

Denote a general solution of (4.32) by Ry ra®). Then
it is straightforward to show that the basis functions
Lp,, .(x, 1) = (exptK .,) Ip, ,(x) are

Lp,, (x,¢)= G
Vs

. 2,22 & (5 5 a oA
X exp [’ ((”1+”2) 16 ~ 4o, Ui %) 1o, v)]

3,
XhZumA.a/z(Ul) h2u,,vha/2(iv2)’ (434)
where the two / functions have the same parity as k,_{(x)
and C, , is a normalization constant. Also

v, , @
x1=(vf—v§)—23+v—, Xy =V Va0, E=10,.
3

The Rc system is defined by the equations

Df=of, BP+PB)f=uf
with basis functions
. 1 .
refs (%) = o g2 agit?
TOCASo, =< u<o, gel=, A=p~ 4
where
e X, x>0 =
*=Yo0, x<o0  ATPTH (4. 35)

and similarly for x*. The orthogonality relations are

(rc.i'glu,r ,I‘Ciﬂ)zﬁieozrevé(xl - X)G(IJ" - u')'
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The three-variable basis functions are

Refs = —— [expén/4) Va7, 403 Do in + 1) Tl ija +3)
M 8nZin, 3
x eXp[i(Uf + vg)/8]D“_1/2(— Ul/"/?:‘r)Dm-x/z(_ v,/V2%),

(4.36a)

—pl/2 _,1/2 _ is
where x, = v}/ %0, x, =0v}/%v,, t=v;. The remaining
three-variable basis functions are given by

RC;Z (1,’1 , 1]2) =(-1 Joi Qan) RC;; (~ Vyy = 1)2)

= (- 1)1/2"2Re (-~ vy, v,)

=(=1)V/2e Reys (v, — ,). (4.36Db)
The Rr system is defined by the equations
Df=of, Mf=imf.
The eigenfunctions are then
rr, (x)=(1/2m)ri*"! exp(im6), (4.37)

—o<p<wo, m=0,£1,.++, x,=7cosH, x,=7sind,
satisfying the orthogonality relations

(rr,. .,rr, . )=5,.,5(p" =p).
The three variable basis functions are

2 (2 \/i—v—g)p{p F(Wl/z + (1 +ip)/2)

inv, m!

x o7t exp(ivl/8)M,, 5., ,-(iv3/4) explimu,),

Rrpm(x, [)::

(4.38)
where M, ,(z) is a solution of Whittaker’s equation and
2, =03/ 20, cosv,, ¥, =0/ %, siny,, t=v,.

The Re system is defined by the equations
Df=ixf, [P +3(BLy +PaBIf= uf.
The orthonormalized eigenfunctions are then
re; (x)=(1/V2r) r*'Ge, (8,3, ~ 1),
rey, (x)=(1/Y27) ¥**'Gs (6, 5, - 2),

x,=7vcosd, x,=7sinf. Here we have introduced the
notation

(4.39)

Ge, (6,7, — )= explicos(26)/16]gc,_ (8,1, - 1),
Gs, (6,1, —2)=exp[icos(26)/16]gs_(6,}, - 1).

(4.40)

The functions gc,, (4, @, 8) and gs_(6,«, B) are nonpoly-
nomial solutions of the Whittaker —Hill equation and the
subscript m (the number of zeros in the interval [0, 27])
labels the discrete eigenvalues of the operator /42
+3(B2Py+ P8y, i.e., u=p_. This notation is due to
Arscott and Urwin.?® Each of the solutions Gc,(6, @, 8)
or Gs,(6,a,8) can be written as an infinite series in
trignometric functions which converges for the discrete
eigenvalues K,. For further details see Ref. 28. The
three-variable basis functions are

Rey (x,t) =KX o 1D/2Ge (iv,,5,—2) Ge, (v, 1, —1),
Re;, (x,1) :E}; vé”"l)/ZGsm(i1)1, .= Gs, (vy,1,—2)

where

b
— pl/2 — 172 o3 s —
x, = v}/ ? coshv, cosv,, x,=v}/?sinhy, siny,, t=u,.
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The constants I?,’;* are in principle calculable by choos-
ing special values of the parameters »,. In fact in the
process of calculating the functions Re* we get relations
which to our knowledge are new, viz.,

K*»Geliv,, 1, - 1) Gelv,, 5,—2)
= exp[}i(sinhZy, + cos vz)]f d6Ge,,(8,%,-2)
x exp[ - 3i(coshv, cosv, cos 8 + sinhw, sinv, siné)?]
XD,,_, (- (coshv, cosv, cos 6+ sinhv, sinv, siné/v2 1)

with a similar relation holding for the functions
Gs,(6,%,-2). The constants KX can be calculated for
particular values of the arguments v;, e.g.,

Ge, (6,5, -\ =35 Al cos2rf. Then

20D,,.,(0) A7

P2
K ~M)Ge,(0,5,~1) "

1
m Gc (271’ 4,

Similar expressions may be obtained for the other con-
stants. Passage to the three-variable model in this
basis allows us to derive a set of orthogonal basis func-
tions as products of two Gc or Gs functions from a
knowledge of the orthogonality of single functions.

5. OVERLAP FUNCTIONS

Exactly as in Sec. 3 of 5 one can show that our re-
sults lead to a number of Hilbert space expansion theo-~
rems. Indeed if {f,,} is an ON basis for L,(R,), then
{U(g)£,,} for any g€G is also an ON basis. In particu-
lar, each of the three-variable models constructued in
Sec. 4 provides a basis for L,(R,). Furthermore, ex-
actly as in (3.21) of Paper 5 we can derive discrete and
continuous generating functions for each of our bases.

Now we compute overlap functions (4a,,, Bb,.,.) which
allow us to expand eigenfunctions Ag,, in terms of eigen-
functions Bb,,,,. The utility of these formulas is that
they are invariant under the action of G so the same
expressions allow us to expand U(g)Aaq,, in terms of
U{g)Bb,, .., where the results may be much less ob-
vious. In the following we use the two-variable bases
to compute some overlaps of interest. Because of G~
invariance, identical results hold for the three-variable
bases.

In the present paper we omit the overlaps between the
three discrete bases Oc,Or,0Oe, which will be treated in
a forthcoming work. (However, the Oc—~Or overlap is
well-known.?*® For most of the other bases we give an
overlap with either of the discrete bases Oc or Or. The
principle behind these computations is obvious and the
interested reader can derive for himself any of the
other overlaps:

(fc, jort )= y'/%ort (ycosa,ysina); (5.1)
0 if p#Exm,
[mly/2mi o+ m)! /2 €7/ Sy mLm(3y?)
if +and p=+m#0,
(tr,,,or,, )=C(p/m)i [m1y/2m%i(n +m)1[2/2 e7* /2y mIm(Ly?)

if —and p=xm+0,
(y/n1)/2 /1L (57?)

if p=m=0, (5.2)
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(fp?'lﬂ’O mm)
=[m!y/2mn(n+m)1 ]2 exp(— y2/4)ym L (37?)

x exp[-7i(t ¥ 1)/4] (a,x a,), (5.3)
(fp;.u’ n.m)_(fpy.u’ n,-m) (5.4)
where
ap=explnti/2- w21 Tn +3) | G LERLD
iu+i,m+i iT(-ip+3)
2F (ip.+m+1 ’-1>—I‘(—iu+m+1)
-i#+%,m+§ )
(fe,,. ,ory,) = 6(n’) (y/7) /2 3(L + (- 1)" "} A%
x[m1/2ma(n+m)! /% exp(- v%/4) y"Lm (37 2), (5.5)

where 6(x)=1 for x>0, and zero otherwise. A similar
expression for (fe ynt 2 O ") can be obtained by replacing
8(n') by 6(—n') and A" by BY in the above equation.

Am B are the coefficeints in the trigonometric expan-
sions of the even and odd Mathieu functions, respec-
tively. All other overlaps are zero. Also,

(le, ,oc (5.6)

Arp? Nym

)= SR b (oNB)C,,

where

22/3 exp[—i(% +x +p¥/ 4+ V)] Ai[22/3(%

=3 [WEy)r/nl]C

n=0

— A —ip?/4~iV2y)]

and we have normalized so that a=-1,

(lclyp’lpu. ) 2 lal h( )6<Rau> ’

(reg ,oc, )= 2(2mnmiplm!)t/2 L,’;L:

(5.7

(5.8)
where
L2 =2m 1203 /2 + 5) T((m +1)/2)
X F (=m/2,i3/2+%:3;2)
for m even,
= 2m T (12 / 2+ 1) T (m/2) ,F (1 - m)/2,00/2+1;3;2)
for m odd.

The remaining overlaps for r¢*~,rc™, and rc™ can be

‘calculated by using relations (4.36b):

8 e (2/m 1 I/ 2702
X[ +n)/m 20 (m +1 - ir)/2)

(I'I‘;m * ornm’ ) =

X, F (= n, m+1-i0)/2;m +1;2), {5.9)
(rr; ,or, .)==—i(-1)%2™(rr} ,or .), (5.10)
(rrs,,0r, ) =38, (2724 yn1) T((1 - i)/ 2)
X,F (= n, (1 —ir)/2;1;2). (5.11)
For the basis Re we have
(vel, ,or:, ) =3+ (=1)m") Am, V27 (rx3,.,01,,.)
(5.12)
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(re;,,,or;,.) =3(1 + (= 1))

xBr, Vo i(-1)%" (rr_, o1, ,) (5.13)

nm’

where A™, and B™, are the coefficients for the expansion
of the functions Ge,,(6, L, — M) and Gs,(6, 1, - 1), re-
spectively, in trigonometric series.2??
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