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We present a detailed discussion of the infinitesimal symmetries of the Hamilton-Jacobi equation (an
arbitrary first order partial differential equation). Our presentation elucidates the role played by the
characteristic system in determining the symmetries. We then specialize to the case of a free particle in one
space and one time dimension, and study the local Lie group of point transformations locally isomorphic to
0(3,2). We show that the separation of variables of the corresponding Hamilton-Jacobi equation in the
form of a sum is related to orbits in the Schrédinger subalgebra of o(3,2). The remaining orbits of o(3,2)
yield symmetry related solutions which separate in more complicated product forms. Finally some

connections with the primordial equation of hydrodynamics (without force terms) are made.

INTRODUCTION

One of the most important techniques in finding ex-
plicit solutions of partial differential equations is that
of Lie group theory. This is said while keeping in mind
the recent developments which illustrate the intimate
connection of the time honored method of separation of
variables with the theory of Lie groups, !~% Up to now
most of this development has treated only second order
linear partial differential equations, although the first
and perhaps best understood example of separation of
variables occurred for the nonlinear Hamilton—Jacobi
equation, ®~? Indeed there is a close connection between
the separation of variables for second order linear
partial differential equations of hyperbolic—elliptic type
and the corresponding quadratic Hamilton—Jacobi equa-
tion which describe the characteristic surfaces of the
former. This connection is usually described in the
dual formulation in terms of a covariant Riemannian
metric!® ds?=g,,dx* dx‘, However, even for parabolic
equations like the time dependent Schrodinger and heat
equations we will see that the connection with a Hamil-
ton—Jacobi equation of first degree in the temporal
derivative remains, in the sense that they both admit
the same type of separable coordinates, This is no
doubt related to the fact that such coordinates are pro-
jectively related to quadratic surfaces in a higher
dimensional pseudo-Riemannian space. However, we
will show shortly how the elliptic Hamilton—Jacobi equa-
tion (sums of quadratics) is related by a simple point
transformation to the parabolic Hamilton—Jacobi equa-
tion (first order derivative in time), It is also em-
phasized that the separation of the parabolic type pre-
sents a unified picture of four types®® of potentials V,
the free particle (V=0), the linear potential (V=ax),
and the attractive and repulsive harmonic oscillators
(V=1+ wx?),

Now generally any first order partial differential
equation can be cast by the process of embedding in a
space of one higher dimension, into the Hamilton—
Jacobi form

St +H(x‘9pht):0)

0.1
py=S4 (0.1)
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(subindices with respect to variables denote differentia-
tion). The importance of this equation in geometrical
optics, the calculus of variations, and obtaining ex-
plicit solutions of Hamilton’s equations of classical
mechanics is well known. (For the classical treatment
see Chap. 2 of Ref. 11; for modern treatments see
Chap. 13 of Ref, 12 and Chap. 4 of Ref, 13,) There is
also a close connection with the theory of canonical
transformations which we mention briefly here since the
treatment in the sequel is complementary to this in the
sense that it relates to contact transformations. Indeed
consider a manifold (Hamiltonian manifold) with local
coordinates (x!,p,, #) which has a closed 2-form w and a
function H such that

w=dp,Ndx* - dHAdt, (0.2)
Now each submanifold such that w =0 implies the ex-
istence of a function S(x*, #) which is a solution of the
Hamilton~Jacobi equation (0.1) (for more details see,
e.g., Chap, 13 of Ref. 12). On the other hand, if we
consider — H as a coordinate, then the transformations
which leave w invariant form the pseudogroup of canoni-
cal transformations over a (2n + 2)-dimensional mani-
fold, Then restricting H to be a function will give a
subpseudogroup which depends upon H, of course.

We now consider the special case of a free particle
in a Riemannian (or pseudo-Riemannian) n-space with
contravariant metric g*/, Then (0. 1) becomes

Se+8"8,45,4=0. (0. 3)
If we introduce a change of variables T={+S, z=¢-~S§,
an easy calculation shows that (0. 3) is equivalent to

T4+ g T Ty =1 (0.4)

as long as both sets (x,#) and (x*,z) can be treated as
independent variables. Two comments are in order:
First, the local symmetry group of point transforma-
tions of (0.3) and (0.4) are isomorphic. It was shown
in Ref. 14 that when g'’ is the flat Euclidean metric,
the local symmetry group of point transformations of
(0. 3) is a factor group of order 2 of O(n +2,2). Second,
the above change of coordinates involving the dependent
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variable shows that (0. 3) is equivalent to a Riemannian
(pseudo-Riemannian) metric.

In this paper we study in detail the symmetries and
separable coordinates of the equation

S;+8t=q+p*=0. (+)

This equation can be obtained from (0. 3) by partial
separation, at least in the case when &' admits a
Killing vector, Thus from the point of view of separable
coordinates we only study here subgroup coordinates.
In fact the more general point transformation sym-
metries of (x) will yield coordinates not associated with
the usual separation of variables. From this point of
view the similarity solutions or complete integrals we
obtain are more general than ordinary R-separation;
however, we do not study here the usual quadratic
orthogonal separation involving quadratic forms. Those,
of course, do not appear in (»), but they will appear in
the analog of (0.4), i.e.,
T2+ T:=1. (x4)
We plan, to treat these in a subsequent work, Recently15
it was shown that in a Riemannian or pseudo-Riemannian
metric space there are two types of separation, those
coming from local symmetry groups and those coming
from the usual orthogonal separation, and that the
latter are described by contravariant quadratic sym-
metric forms (Killing tensors).

The outline of the paper is as follows: In Sec. 1 we
compute the Lie algebra of vector fields depending on
both coordinates and momenta which are infinitesimal
symmetries for an arbitrary first-order partial-differ-
ential equation, This computation elucidates the role
played by the characteristic system in determining the
symmetries, We discuss some of the underlying struc-
ture of this infinite-dimensional Lie algebra. Then we
specialize to the subalgebra of point transformation
symmetries of (x). These generate a finite-dimensional
local Lie group-conformal transformations in R3,
locally isomorphic to O(3,2)., We then classify the orbits
in the Lie algebra O(3, 2) under conjugacy with respect
to the group. In Sec. 2 we obtain all R-separable co-
ordinates systems for («), In Sec. 3 we present a
similarity solution!® for each of the orbit representa-
tives found in Sec, 1 and discuss the connection with
the separation of variables of Sec. 2. Some remarks
concerning the general solution and characteristic vec-
tor fields are also made,

Finally, in Sec. 4 we present a discussion of sym-
metries which derives from the fact that the » deriva-
tive of (x) yields the primordial equation of hydro-
dynamics without force termsl 16

P +2pp,=0 (+xx)
(the connection holds for n spatial dimensions). This
allows one to relate a subalgebra of symmetries of (***)
to a subalgebra of symmetries of (x). Moreover, even
symmetries of (x**) which are not symmetries of (x)
can be used to determine complete integrals of the latter,
or vice-versa,
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1. THE INFINITESIMAL SYMMETRIES OF THE
HAMILTON-JACOBI EQUATION

Consider an n» dimensional manifold 4 with local
coordinates'” x* and an arbitrary first order differential
equation on M

Gt uu,u)=0, (1.1a)
We wish to determine the infinitesimal symmetries of
such’an equation which depend on all the variables
present, To do this we consider the cotangent bundle
T*(M) over M with local coordinates (x%,p,), and con-
struct the product manifold T*(M) xR, Now T*(M) has a
canonical 1-form p,dx‘ which provides the contact
1-form

a:du—j),dx‘

on T*(M)XR. Solutions of (1.1a) will be surfaces in
T*(M)XR

Gxt, p,,u)=0,

which also annul the 1-form o. Now, following
Cartan, !® we construct the closed ideal (closed refers
to exterior differentiation) I defined by

Glx*, py,u), (1.1b)
a=du-p;dxt, {1.1c)
dG=Gudx' + G, dp; + G,du, (1.1q)
da=dx*ndp,, (1.1e)

The surfaces in 7*(M) XR which annul 7 will be the solu-
tions of the differential equation (1. 1a), Stated more
precisely we look for immersed submanifolds whose
pullback annuls 7,

Now the symmetries of the differential equation
(1. 1a) will be those local C? diffeomorphisms on T*(M)
X R whose pullback maps / into I, Stated infinitesimally
this reads'%1?

1G=¢G,
X

)t[a =\a +7dG+ (4;dx* + B*dp,)G,

(1. 2a)

(1. 2b)

where  denotes the Lie derivative with respect to the
X

vector field X, and &, A, 7, 4;, B' are functions on
T*(R")xR, where &, A;, B! must be nonsingular in a
neighborhood of G=0 but are other wise arbitrary, We
have replaced M by the Euclidean manifold R", It should
be mentioned here that the commutivity of the exterior
derivative and the Lie derivative guarantee that dG and
da are back in I when an infinitesimal transformation is
applied, and so Eqs. (1.2) suffice to define the sym-
metry condition for all of /, Notice that the Lie algebra
g of symmetries is more general than just contact
transformations since it is not necessary that the con-
tact 1-form o be preserved. The contact transforma-
tions which are symmetries of (1.1a) form a Lie sub-
algebra (/- C( given by the special case n=A4;=B'=0.
To determine the Lie algebra G, we use the expres-
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sions!? valid for a 0-form f and any form w

1tf=X1df,

x 1.3)
fw=dX Jw)+X ldw,

X

where | denotes the natural inner product between vec-
tor fields and exterior differential forms, Applying
(1.3) to (1. 2a) and (1. 2b) and defining the function on
T*(RMXR, F=X | a, we equate coefficients of the in-
dependent 1-forms in (1. 2b) to obtain

x* =~ F, +1G,, +B'G, (1.4a)

XM =Fu+pF,-n(Gg +p,G)) - 4,G, (1.4b)

X*=F+pX* =F=p,F, +1p,G, + Bip,G, (1.4c)
and from (1. 2a} we find

X 1dG=Gux* +G, X? + G X"= £G, (1. 4d)

where the superscripts on the vector field X denote its

component, i.e.,
X=X 3,4+ X013, + X", (1. 4e)

Now, inserting (1.4a)—(1. 4c) into (1. 4d), we obtain a
linear first-order partial-differential equation for the
function F which immediately yields the system

dx! du dpy

ar =G gr=iGp p = Cat 0,6, (1.5a)
aF i ‘
O (- GuB' 4G, A~ piB'G)G + G F. (1. 5b)

We recognize that Eqs. (1. 5a) describe nothing more
than the characteristic system'1? of Eq. (1.1a). Thus
the function F has two parts; one determined by Eqgs.
(1. 5b), plus an arbitrary function which depends only
on the characteristic curves of (1. 1a).

Now the characteristic vector fields ¢ in § are those
which satisfy X 1 w e for all w in I, By using the
identity

£ 1 w)=[X, Y] lw+Y | fw, (1.6)
X X
it is easy to show'? that ¢ is in fact an ideal in G for
any ideal of forms I,

However, in some sense the terms in Eqs. (1.4)
proportional to G are trivial, e.g., A, and B, since if
we restrict the vector fields to the surface in T*(R")

XR defined by (1.1a), these parts vanish., Indeed we can
consider all vector fields in (1.4) which satisfy

Y1aoa=EG, Y ldoa=8G, 1.7)

where E and B are arbitrary 0- and 1-forms, respec-
tively, on T*(R") xR which are nonsingular near G=0.
Clearly all such vector fields are characteristic.
Moreover, by using (1.3), (1,4d), and (L. 6b), it is not
difficult to show that they form an ideal ¢ in (. Thus it
is often convenient to consider the factor algebra ¢ /4.
We can always choose A; and B’ such that the term
multiplying G in (1. 5b) vanishes in which case we have

dF
27 = Guf. (1.8)
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In general when G,=0, (1.1a) takes the standard
Hamilton—Jacobi form (0. 1) and the symmetries are
determined by an arbitrary function of the characteris-
tic strips. In this case the first two of Egs. (1, 5a) are
just Hamilton’s equation of classical mechanics, For
example, for the free particle in Euclidean space, the
function F takes the form

F=F(x'-2p,t,S- 2p*t - qt,p;,q).

The point transformation symmetries are locally
isomorphic to Oz +2,2) as shown in Ref, 14. Now
G/9¢ admits a Lie algebra semidirect sum

G/9=Gc/399/9

where g o J@' is generated by the contact symmetries
given by the function F which satisfies the characteristic
system (1.5a) and (1.8), and ¢/{ describes the charac-
teristics given by the function 7.

(1.9a)

(1. 9b)

For the remainder of this section we will discuss
only point transformation symmetries ¢, cgc/ﬂ for
(x). To find them from (1,4), we set A’=B,;=7n=0 and
impose the condition

i
X:jZO’

i.e., the transformations on the base space are inde-
pendent of p,. Doing this explicitly for the case when

G =0 is given by (x) and using (1. 9¢) will determine the
point transformation symmetries of (*), From this
analysis one can find that the vector fields span the
finite dimensional Lie algebra o(3,2). [In » space and

1 time dimensions, o{n +2,2). | However, to understand
better the appearance of the Lie algebra o(3, 2) of the
conformal group, we introduced in Ref. 14 the graph
W(t,x,S) =0 of solutions of (*). Then upon computing
the derivatives W, + WS, =W, + WS, =0 and introducing
the Minkowski variables

=212¢+28), x*=212(t-29), xl=x, (1.10a)
we find that W satisfies
(W,0)% = (Wa)? — (W) =0, (1.10b)

Thus the point transformation symmetries of («) are
precisely the conformal transformations of the cone
(1.10b).

This global approach” has distinct advantages over
the infinitesimal method: (i) Without much work we have
reduced the problem to known results; (ii) the geometry
elucidates the meaning of the symmetries; (iii) we ob-
tain certain symmetries which are not connected to the
identity component of the group and thus are not ob-
tainable through infinitesimal methods. However, it
should also be mentioned that in general it is not always
s0 easy to find such a nice geometrical situation in
which case infinitesimal methods provide the most
straightforward approach,

The symmetries of a cone in a pseudo- Euclidean
space of three dimensions with signature (+, -, -) form
the conformal group C*? which is a certain factor group
of the pseudo-orthogonal group O(3,2). More precisely
we can consider the group O(3, 2) as a group of trans-
formations in a five-dimensional pseudo-Euclidean

C.P. Boyer and E.G. Kalnins 1034

Downloaded 02 Nov 2008 to 130.217.76.77. Redistribution subject to AIP license or copyright; see http://jmp.aip.org/jmp/copyright.jsp



space with signature (+, -, —, —, +) which leaves the
quadratic form 7} — 7} - 73 - 73 + % invariant, We now
consider the 5-cone n,n=*=0 and define homogeneous
coordinates

x4 =n"/(+ ), (@.11)

where p=0,1,2. The linear action of O(3, 2} on the 5-
cone given by

No= ¥ N4s
with A.é€O(3,2), then induces through (1.11) a non-
linear action on the Minkowski space M ={x%, which
we will give shortly, However, it is seen that the action
of O(3,2) on i is not effective. Indeed, there are two
members of O(3, 2) which act as the identity transforma-
tion on M, namely the subgroup Z, ={A c O3, 2):
An=#7}. Hence, the conformal group C*?~0(3,2)/Z,.

Now the group O3, 2) consists of four components,
where the component connected to the identity is
$0,(3,2)={Ac 0(3,2): detA =1, AL AL - A0 >1}. The
other three components are obtained by reversing the
signs of detA and A %A%~ Ay'A,°. Notice that SO,(3, 2)
cCY%?, The whole O(3,2) can be obtained by extending
SO, (3, 2) by two discrete operations P-parity and 7-
covariant time reversal given by

P={x?—=x0 x! = - x! x2~x?}

T={x" = -2 x! 2! x?—~x},
respectively. In terms of {(f,x, S}, we have

P={t—t,x—~-x,8—8},

T={t—-2S,x =x,S—~~ 5},

(1.12a)
{1.12p)

We will also be interested in a discrete symmetry R ob-
tained by combining P with a certain member of
S0,(2, 1) SOy (3,2), namely

R={t—S,x—x,S~t. {1.12¢)

Finally we mention the well-known inversion symmetry

1={¢,%,S) ~ @¢,x, )/ (4tS- x*)}. (1.12d)
It is emphasized that the symmetries (1.12b)—(1,12d)
are nontrivial symmetries of the Hamilton—Jacobi equa-
tion (x)., Indeed, (1.12b) and (1.12¢) imply that, given a
solution S(x, f) of (x), we can use the implicit function
theorem and solve for £=%(x, S), which again satisfies

ti+t5‘:09

1.e., is another solution of («).

We now give the group transformations of SO4(3, 2)
in terms of the original Hamilton—Jacobi variables
(t,x,S):

(1) 02, 1) transformations:

x':A’1X+ _lr_é_é_z. t+ V’E(Alu_ AIZ)S’
M= (Aoi + A21) x + (AOD + A02 + A20 + A22)f
vz 2

+ (A% + A%~ A% - A%)S,

1035 J. Math. Phys., Vol. 18, No. 5, May 1977

g = (A% = AY) X+ (A% + A% ~ A% ~ A%) :
2V2 4
L A% A"g; A%+ A%) s

2 (1.13a)

where A, €0(2,1), 4,/ =0,1, 2.

(2) Translations:

x'=x+a, t'=t+71, §+S+a, (1.13b)
with a, 7,0 R.
(3) Dilatations:
x'=px, t'=pt, §'=pS, (1.13¢)
with p> 0.
{4) Special conformal tvansformations:
x' =0"x, t, S)fx + C (x? - 4£5)),
t' =0, t, S)[t + C,(x% - 419)], (1.13q)

S'=0"Yx, ¢, SIS+ C_&x2 ~ 4£9)],
where
o(,1,8)=1-2C,t- 4C_S+2Cx + (C,C. - C})(4S - x?)

and C,, C, € R, It is mentioned that the special conformal
transformations can be generated by a translation, an
inversion, and another translation,

Now the group action {1.13) is really only 2 local
group since the points where o(x, ¢, S) vanishes map
finite points to infinity. Nevertheless, a global Lie
group can be defined if we consider the “cone” com-
pactification of R:’, making the manifold homeomorphic
with the sphere S*, Although this is necessary for a
global Lie group, for our purposes it is more convenient
to work with the local coordinates (x, ¢,S), keeping in
mind that under finite group transformations singulari-
ties can occur. Hence, what we are really dealing with
is a finite pseudogroup. Although the study of such
singularities is of interest, we will not consider them
further here. We only mention that Sard’s theorem®®
guarantees that they form a set of measure zero,

In what follows we will be interested in two different
formulations of the Lie algebra o(3,2). The first is the
covariant formulation with a basis given by M, with
a,b=0,..,,4, which satisfy the Lie brackets

[Maw Mod] :gadec+gbcM¢d_guchd'gu ac* (1- 14)

On the n-space realization used previously the M,, can
be realized as 7,9, - 1,3, However, on R? it is more
convenient to consider the realization!! [these are the
point transformations of 1.4 for (x) projected onto R*]

Xy=8, X;=t3,+3x8,, X,=£3,+x3, +ix’a,,
X4=axv X5=ta,+%xa5, XG:aSy

X, =%xa_ +Sog, (1.15)
Xy=3xto, + 1S+ 1x°)8, + $x53s,
Xy=1x%, + Sxd, + 0, X,=3%x3,+So,.

It is not difficult to see that the generators X,...,X;

form a subalgebra of 0(3,2). In fact this subalgebra is
maximal and generates the subgroup of so,(3,2) which
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leaves a lightlike two-plane invariant. It has the struc-
ture gl(2, R) Pw, i.e., the general linear algebra with
the Heisenberg—Weyl subalgebra as an ideal. However,
we will be more interested in the subalgebra formed

by the generators X, ...,X; whose structure is s,
~8l(2, R) ®w. This algebra generates a group known as
the Schrodinger group §; since it is the group which
leaves invariant the Schrodinger equation for a free
particle in one space and one time dimension, 42,2
The existence of the Schridinger group §, as a sub-
group of O(3,2), or more generally’*® ¢ cO(r+2,2),
emphasizes the close connection between the Schro-
dinger and heat equations on one hand and the Hamilton—
Jacobi equation on the other. The subgroup §; will play
an important role in what follows. It is also seen that
the discrete symmetry R given by (1. 8c) provides us
with another Schrodinger subgroup ¢, conjugate to §4,
through the mappings X; ~= Xg, X;— X;, X3—X,,
X=Xy X5 Xy, X3 X

Rather than write down the commutation relations
explicitly for the generators (1.15), it is more con-
venient to express them in terms of generators M,
satisfying (1, 14), viz.,

My =— (1/V2) X5+ 2Xyp),

May =Xz — Xy,

Mgy = (1/2V2) (X + 32X ~ 2X3 - 4X,),
My = (1/V2)(X; - 2Xy),

My = 3(X, +4X,),

Mg = (1/2V2)(X{ - 3X¢ +2X; - 4X,),
M= (1/2V2) (X + 35X, + 2X 3+ 4X,),
My =3(Xy - 4Xy),

My = (1/2V2)(X; - 3X5~ 2X + 4X,),
Mp=X; + X,

(1.16)

Now we are interested in the orbit structure of O(3, 2}
under the adjoint action of the conformal group Cch%, In

fact this problem has been solved in several places®25;

however, in none of these are the results in a form
particularly suited for our needs. As will be seen in the
next section, for the purpose of separation of variables
the subgroup ¢, plays a distinguished role. Therefore,
we want to pick orbit representatives which are mem-
bers of the Lie algebra s; of §, if possible. The proce-
dure we use to do this is to notice that every member of
0(3, 2) stabilizes a timelike, spacelike, or lightlike vec-
tor. Of course, specific elements may stabilize more
than one type of vector. We then study each case
separately by looking at the adjoint action of the stabili-
ty subgroup and picking orbit representatives in s, when
possible. When this is done, we must then check for
conjugacy under the full CH? group, again picking mem-
ber of s; when possible. In this way we obtain a com-
plete set of orbit representatives emphasizing which are
conjugate to members of s; and which are not.

We begin by classifying the orbits of s;., Now in the
case of the linear Schridinger equation treated in Refs.
2 and 3, the orbits of the factor algebra of s; by the
central element X; were considered. The reason for

1036 J. Math. Phys., Vol. 18, No. 5, May 1977

this is that for all linear eguations it is convenient to
think in terms of diagonalizing operators and from this
point of view X, is irrelevant. However, in the case of
nonlinear equations one cannot always diagonalize
operators in this sense. Instead, we can construct
relative invariants, % j,e,, if the infinitesimal genera-
tor X is a symmetry of the differential equation (1. 1a),
we can construct the graph f(x‘,u,t,u)zo of a solution

u which satisfies X 1 df=Xf=0. In the special case
when (1, 1a) is a linear equation, this is equivalent to
diagonalization of operators in the factor algebra as
long as we consider general orbit representatives which
include the central operators. The case at hand should
illustrate the point. Thus we are interested in classify-
ing orbits in s; under three particular groups: (i) the
Galilei group Gy extended by dilatations, D 9 Gy; (ii) the
Schridinger group §;; (iii) the full conformal group che,
The first group D G; is of particular interest since
this is the geometrical group closely associated with the
separation of variables. That is, two coordinate system
which differ by dilatations of (r,f), or by Galilei trans-
formations, essentially look the same. In Refs. 2, 3
there are some incounsistencies concerning this point.
Conjugacy under §; and C1? are of interest for obvious
reasons.

The orbits of s; under D G, are
XiiX{;, X2+QXS’ XgiXs, Xi +X3+(1X5,

Xy - Xg+aX, X;+X5 XitX,, 1.17)

Xi X'a‘y X4’ Xﬁs XG:

’

where - © <ag <x, We will discuss the connection of
these orbits with the separation of variables of () in the
next section,

Under §; we gain the type of equivalences discussed
in Refs, 2, 3, viz.,
X £X,, XptaXy,, X;+X;+taXg, (1.18)
Xl +X5’ Xl, X4’ X69

where again — © <a <=, In both the above cases ¢=0 is
a degenerate orbit.

Under the full conformal group C%? the orbits of s,
become

Xy+ X, Xot+Xg, Xt X+ Xy, X3 +Xi,

(1.19)
Xl +X3: XZ’ Xi-

Thus under C*? we can dilate a to + 1 using X;, and inter-
estingly enough we find that X, is on the same orbit as

X, — X, through a rotation generated by X;— X,. Again
the last three entries in (1, 15} correspond to degenerate
orbits,

Now we wish to clasify the orbit structure of 0(3,2)
under the conformal group. As mentioned previously we
first classify the one-parameter subalgebras of the sta-
bility subgroups and then later take into account conju-
gacy under the full ci?,

A. Timelike

We take the vector (1,0,0,0,0) for which the stability
subgroup is O(3, 1) generated by the rotations {Myy, My,
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My} and the boosts {My, My, M5}, The one-parameter
subalgebras are well known, 2”28 and, using (1.16), we
have the orbits

My~ (X5-2Xy), Mp=X,+X,,
Mgy + My ~ (Xy - 3Xg),
My +aMg~ (X5 - 2Xyg) +alX,y + Xp),

where here 0 <a <«, Our conjugacy is under O(3,1) and
not just the connected component SO;(3, 1).

(1.20)

B. Spacelike

We choose the vector (0,1, 0, 0, 0) for which the sta-
bility subgroup is O(2, 2) generated by {M,y, My, Myy, M3,
Mg, Mg}, Here it is convenient to employ the well-known
Lie algebra isomorphism o(2, 2)~0(2,1)$0(2, 1), where
@ is a Lie algebra direct sum. Explicitly, we construct

Ji= %(Mmi My),
(1, 21a)

which can be seen to generate a commuting pair of
0O(2, 1) algebras which satisfy

(5, Kol =Ky, I3, Kpl=~K;, [K{,Kp]=-J3 (1.21Db)

To find the orbits of this 0(2,1)'® 0(2,1)" under O(2, 2),
we first notice that the o(2, 1)" is conjugate to o(2,1)* by
a discrete transformation in O(2, 2) [explicitly in terms
of our model this is the transformation R given by (1. 8c)
combined with certain dilatations in S0,(2, 2)]. Thus we
have the usual one-parameter subalgebras of 0(2,1)*,
Then we must find the nontrivial extensions of these or-
bits by the orbits of 0(2,1)", This is done by the method
of the Goursat twist as discussed for example in Ref.
28, Finally one checks for conjugacy of the extensions
under O(2, 2). Accordingly, we find the orbits

J3+aly~X, + Xy +aX;+ Xy),

~1<a<l, a#0,
JytaKi~X;+X;+aX, 0<a<w,
Jiz U3+ K~ X, + X2 X,
Ki+ (J3+ K3) ~ X, + X, (1.22)
Jy+ K3+ (J3+K3) ~ X, £ X,,
K{ +aK]~X, +aX;, ~1l<a<1, a#0,

Ji~ X+ X5, Ki~X,, J3+EK;~X|.

In arriving at (1. 22) we have taken full advantage of the
dilatations in O(2, 2) generated by X, and X, to remove
some of the annoying constants which multiply the vari-
ous X’ s in the expression in (1.16).

C. Lightlike

We choose the vector (0,0, 0,1, 1) for which the sta-
bility subgroup D R E(2,1) is generated by the o(2,1) sub-
algebra {My, Myy, My}, the translations {My + M,,,

Mgy + My, Mgy + My}, and the dilatation M5, Again we
use a modified Goursat twist’® method to find the non-
trivial extensions of the 0(2, 1) subalgebra (modified
since the ideal is solvable rather than Abelian). In order
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to simplify the notation, we introduce Jy=M,;, K; =My,
K, = My, which satisfy (1.17b), for the Abelian subalge-
bra Py=Mg + My, Py=Mgy+ My, Py=My+ My, which
transform as the designated components of an O(2, 1)
vector, and D=M,3; which commutes with o(2, 1) and
satisfies [D, P;]=— P;,, We thus obtain the following or-
bit representatives:

dJy3taD~X;~ X +alX, +X;), 0<a<w=,
Jy+ Py~ X, + X5 - Xy,

K, +bD~X, +aX,,
K+ Py~Xy - X,
Jy+ Ky + D~X, + X+ X,,

~1<asi,

(1.23)

Jy+ Ky + P2~X1 +X5,
Py~Xy-Xg, Py~X;+Xg,
Pz +P3~X1, D~X2 +X7°

Again we have made use of the dilatations in D 2 E(2,1)
to simplify the operators in terms of the X’s,

Now in order to obtain all orbits of o(3,2), we only
have to check the above results for conjugacy under the
full C*2, Since we have already done this for the s, sub-
algebra, we can restrict our attention to the remaining
cases, Indeed for the timelike case we can use dilata-
tions to adjust some of the constants appearing in (1.16),
and we see that all of the orbits (1.20) also appear as
orbits in the other two cases. In fact, there are no fur-
ther simplifications due to conjugacy other than identi-
fying those orbits which appear in both cases., We have
collected our results in Table I, indicating in which of
the three cases the various orbits appear as well as
which are members of the Schrddinger subalgebra s, as
well as its maximal proper extension gl(2, R) 2w in
0(3,2).

2. SEPARATION OF VARIABLES

For the purpose of separating variables in (%) it is
more convenient to use the equivalent homogeneous
equation

W2+ WW, =0 @2.1)

obtained from (x) by the substitution S=InW, We are in
general interested in R -separability, that is, we look
for a transformation of coordinates

¥ =Fy,vp), t=Gvy,v,), 2.2)

v4,v; € R, where F and G are once differentiable real
functions, such that the solution of (2. 1) takes the form

W= exp{Q@,, v;) A ,) B(v,), 2.3)

where € can not be written as the sum of functions of
the single variables unless it vanishes. It is clear that
a solution of (2.1) of the form (2. 3) implies a solution
of (x) of the form

S$=Q(v;, v;) + InA(vy) +1nB(v,).
We proceed by considering the cases @ =0 and Q%0
separately. First, it is convenient to introduce a notion
of equivalence. Two coordinates will be said to be equiv-
alent if they can be related by a member of the group
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TABLE 1, Orbits in o(3,2) classified under C!:2, ¢, s, I denote
respectively timelike, spacelike, and lightlike.

Orbit Representative Type Remarks
X +eXq ie=~1),s,7 e=x1,0
X+ X s
8 Xy s,1
< X+ X H
o) X+ X3+ eXg s €=+1,0
Eﬁ: Xy +aX, tla=1},s,1 -1l=qg=1
al X+ X3 +aX, s O<a<e
w® Xo+ X+ Xy Z
X1+X5—X‘0 I 0
X;-Xp+alX,+X,) 1,1 -0=xgcw
X+ Xy+alXo+ Xy s ~1=g=1,4a=0
et

D 3G, discussed previously. We also consider any two
systems to be equivalent if they differ by a constant mul-
tiple; i.e. ) (vh 1)2) ~ (U{, Ué) if (’U{, ’Ué) = O!('Ul, vZ)s a
constant,

A. Pure separability, Q = D

Rewriting (2.1) in terms of the coordinates vy and
vy, we obtain

ay Wi+ anW Wy + an Wi+ ey W, + Wy =0,  (2.4)

where ay; = (Go/ DY, ay,=-2G,Gy/D?, ap=(Gy/D), a,
=~ F,/D, ay=F;/D, D=F,Gy~ F,G,, and the subscripts
on W, G, F indicate differentiation with the respective
variable. The conditions for separability can be further
subdivided into two cases:

(i) a,5# 0: This is only possible if W is an exponential
in one variable, say v,, and the coefficients depend only
on the remaining variable vy. Upon redefining the vari-
able vy this gives rise to coordinates of the form t=v,
+k({vy), x =vy, where k is an arbitrary function of vy,
These coordinates describe nonorthogonal coordinate
axes and always give rise to exponential solutions, We
will not consider these any further in this article,

(i1) @y =0: Without loss of generality we can take G
=0 and hence t=v,., By multiplying (2.4) by F} we can
take the coefficients as a;,=2, a;=- F,F,, and a,= F},
The conditions for separability are then

Fi=f@)g(z), FiFy=hivy), (2.5)

with f, g, and & arbitrary functions of their respective
variables, By redefining the variable v,, the conditions
(2. 5) imply
F:vip(v2) +q(1)2), Pha=a, pgy=8,
where a and § are constants., Without loss of generality
we can put ¢ =0, and we find two cases:
{1) a=0, x=01, =0,

(2) a#0, x=vp,17% t=uv,,

B. A-separability, Q # 0

We now wish to classify all coordinate systems for
which (2. 1) admits solutions of the form (2, 3) for non-
trivial real function @, The appearance of the @ will
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give rise to a factor q,W? added to Eq. (2.4), We now
only consider the case @y, =0 and we obtain, preceeding
as. before, the nonzero coeificients

ay=1, @=2Q ~ FiFy, ay=F,
ay=Q{ + Fi(F1Qy - FyQy).

The condition for separability then gives
Fl=fW)gwy), 2Qy- FiFa=h(,),
Q1+ Fy(FiQy - F,Q)) =f,)g ;) +p(vy),

where again f, g, h, p, g are arbitrary functions of their
denoted variables., By suitably redefining the variable
vy, we have from the first of Egqs. (2.6)

F=vu,) + W(v,)

2. 6)

and from the second
1.2 1
Q = quiusy + zuu W,

Then from the third equation in (2. 6), a straightforward
computation yields

wlugy =A,

M3W22:B, (2', 7)

where A and B are constants. Now we can integrate the
first of these equations to give u={(av3+ b)*’%, We con-
sider the following cases:

(1) a=0: We can take u=1. Then by using equivalence
under space translations, Galilei transformations, and
dilatations, the coordinates can be brought to the form

x=v40%, vy=t with @=zxv,.

(2) b=0: We may take u=v, and similarly bring the
coordinates to one of the forms

x =004 1/vy, t=0v, with @ =4v,’vev/20,,

x =V, t=vy, Q=1v0,.

(3) a/b> 0, a,b+0: Using dilatation, we can take
= {v,® +1)'/2, Again using Galilei and space translation,
we find

x=v (v + VY, =0y, Q@=1vva
(4) a, b#0, a/b<0: Similarly we find
2 t=v,, Q=/4vi’n,,

where ¢ =sgn (1 ~ v,%), Thus we have shown that up to
equivalence under the group D ® G,, there are precisely
seven coordinate systems such that (2. 1) and hence the
Hamilton—~Jacobi equation (*) is separable, Moreover,
these coordinates coincide with the separable coordinate
system?® for the Schrédinger equation U, + iU, =0 and the
heat equation U, + U,=0, The list of separable coordi-
nates is presented in Table I, where equivalences under
the full Schrodinger group is also noted. It is also men-
tioned here that the separation of variables for {*}also
implies the equivalence of the four types of potentials;

i, e., free particle, linear potential, and attractive and
repulsive harmonic oscillator, Indeed it is not difficult
to give explicitly the transformations which map the time
dependent Hamilton—Jacobi equation with a linear poten~
tial, attractive, or repulsive harmonic oscillator poten-
tial onto (*). Thus it follows also that their local sym-

x:vill—vz
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metry groups of point transformations are all isomor-
phic to O3, 2), A closer connection will be seen expli-
citly in the next section.

3. SIMILARITY SOLUTIONS

In this section we give a systematic treatment of simi-
larity solutions of (x} by giving the solution which cor-
responds to each of the orbit representatives in Table L
We can then say that any similarity solution obtainable
from point transformations must be related to one of
our representative solutions by at most a transforma-
tion in C!?, Moreover, we will show how the orbits of
the subalgebra s; relate to the method of separation of
variables presented in Sec. 2, or more specifically that
to each system of separable coordinates (¢, 7), there cor-
responds an orbit representative of s such that the simi-
larity variable is £ and the similarity solution is the so-
lution obtained by the separation of variables of (x}. In
this way we will obtain complete integrals of (x). Any
arbitrary parameter which has been transformed away
by our orbit analysis can, of course, always be re-
instated. As is well known,!! then, the general solution
can always be obtained by forming the envelope of any
complete integral. It seems likely that all known expli-
cit complete integrals of (x) can be obtained by group
theoretical methods.

More generally let f(x*, u) =0 be the graph of a solution
u of (1,1a) and Xeg,; then f is called a relative invari-
ant with respect to X if

é{f:Xde:Xf: 0. 3.1)

For every such f which satisfies (3.1), we can solve im-
plicitly for # which when combined with the original dif-
ferential equation (1, 1a) reduces (1,1) to a differential
equation with one less variable, Any solution # obtained
in this way is called a similarity solution,® It is clear
in general that in order to specify a unique solution for
an equation in » independent variables, we must demand
that f be a relative invariant for » - 1 members X of g,
a=1,,..,n-1, The X,’ s need not commute, but owing
to (3.1) they must form a subalgebra of g. Thus, the
problem of finding complete similarity solutions relates
to the problem of classifying all subalgebras of a given
Lie algebra. ?® The preceeding discussion of similarity
solutions has a simple geometric interpretation. We

restrict ourselves here to R®, Indeed (3. 1) says that for
any vector field X we construct surfaces in R® such that
X lies in its tangent plane at each point. The tangent
planes to all integral surfaces at a point intersect along
X, i.e., X defines the characteristics of (3,1). If in ad-
dition X is a symmetry of a differential equation as given
by (1.1a), £ describes the infinitesimal dragging of the
tangent plafxe to an integral surface of the equation (1, 1a)
in such a way that the tangent plane lines up with the
tangent plane of another solution. For a general first
order equation the possible tangent planes form a one-
parameter family which envelops the Monge cone at a
given point, Now, choosing a tangent plane defined by a
generator of the Monge cone and X, we are guaranteed
that, by moving along the curve generated by X, there
will be a generator of the Monge cone which lies in the
tangent plane at each point, In this way we describe an
integral surface which satisfies both (1,1a) and (3. 1),
There are two qualifications to be made: First X cannot
be collinear to the generator of the Monge cone; second
X must not imply a relationship between the independent
variables for (1.1a).

Now in the practical computation of relative invariants
one uses the characteristic equations of a given vector
field, viz.,

X = (%, )0, +1(x, u)8,, (3.2)
then u«(x) can be obtained by solving
dx! dx" du
)T W) nx,w) (8.9)
In our case any X € o(3, 2) takes the form
X=alx,t)e, +bx,t,S)e,+ck,S)dg, (3.4)

where the coefficients can be read off from (1,11). The
characteristic equations for (3. 4) are then

dt  dx  dS
alx,t)” blx,t,9) cx,S)" (3.5)

Solving any two of the Eqs. (3. 5) when combined with
(*) will then give the similarity solution corresponding
to the vector field (3. 4).

We now proceed to discuss the similarity solutions
for the subgroup §; and their relation to the separation
of variables of the previous section. For the s, subalge-
bra we see from (1, 11) that both b and ¢ are independent

TABLE II. Separable coordinates (*) classified under D ® G,. Subgroupings indicate equivalence under § (-

s
]

Coordinates Multiplier Operator Remarks

x=vy, t=v, @=0 X +eXg e=+1, 0

x:’Ul'Uz, tzﬂg Q=%U12’U2 X3+€XG "

x=U+evyt, f=vy Q=cvyvy X +€X; "

X=v0y+€/vy, t=0, Q=v%,/4 - evy/2v, X3+ eX, "

x=v,t/? t=v, Q=0 2X,+aX, —0<g< o
x=v11=0211/2, t=v, Q = tev v, X; ~X3+aX, e=sgn(l ~v,) "
x=vy [1+02 132, t=yp, Q =vyvy/4 X+ X3+aXg "
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of § (transformations which act linearly on w=e?), and

2 is independent of x, Thus we can integrate the first fwo
of Eqs, (3.5) to give the similarity variable §=t(x, 7).
Then expressing x as a function of £ and {, we have

dS:g—(:—é:)’—t-Ddt. 3.6)

Integrating along the characteristic ¢, we obtain S as

S= f CEED) 41 4 pigy.
aconst

() 6.7

Substituting (3.7) back into (x) yields a first order ordi-
nary differential equation for F which can then be inte-
grated to give the explicit similarity solution.

As mentioned previously, it is the geometric subgroup
DGy, which is relevant for the separation of variables;
therefore, we consider the orbit representatives given
by (1,13} for the similarity solutions, We will see that
for each orbit in (1.13) the similarity variable & will
carrespond precisely to the variable v; for one of the
separable coordinate systems listed in Table IL, although
there are degenerate cases. The separation constant
corresponds to the parameter 2 in (1,13), i.e., to the
one-parameter extensions by the central element X;, In
some cases the separation constant can be transformed
to +1 or 0 by a member of D 2(; which alters only
slightly the functional form of the solution, We also
group together those orbits (1, 14) and separable sys-
tems which are inequivalent under the Schridinger group
§4. As in Refs, 2, 3, these systems are denoted by the
appelations, harmonic oscillator, repulsive harmonic
oscillator, free particle, and linear potential, since
they reduce (x) to the time-independent Hamilton—Jacobi
equation with the corresponding type of potential, Within
this grouping we label by 1 and 2 coordinates which are
equivalent under S, but inequivalent the subgroup
D®(, since they appear differently from a geometric
point of view. We will give the details for the first case
only.

A. Harmonic oscillator

The separable coordinates are

f=vy=x/(L+2 T=v,=14, (3.8)
Substituting these into () and using the ansatz

S=3E 1+ F(§)+G(7), (3.9)
we obtain

F+58+1+7)G,=0. (3.10)
Separation implies

1+ 76, =aq, (3.11a)

which reduces (3. 9) to the time-independent Hamilton—
Jacobi equation with a harmonic oscillator potential

F+ig+a=0. (3.11b)
Integrating Eqs. (3.11) and placing into (3.9), we find
S=igr+atan 7 - asin"(¢/2V=a)
+3Va gl + £2/4a)t 3, (3.12)

From the point of view of similarity solutions it is easy
to see that the coordinates (3. 8) correspond to the orbit
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X, + Xg+aXg of (1.13) for which Eq. (3.5) is

dt _dx _dS
1+8 & WP +a

(3.13)

The first two of these equations give precisely the vari-
able £ of (3. 8), while the first and third [or what amounts
to (3. )] gives, integrating along the characteristic &,
(3.9) with G=atan"'7. Then substituting (3. 9) back into
(*) gives (3.11Db) and hence the similarity solution (3.12),
We point out that the case a=0 is degenerate,
B. Repuisive harmonic oscillator
(1) The separable coordinates are
{=2)1=x/lt]”3, T“—“Z}2’—:t, (3.14)

which correspond to the orbit 2X, +aX; whose subsidiary
conditions are

(3.15)

Integrating (3. 15) gives
S=t%alnT+ F(¢), (3.16a)
which upon substituting into () gives
Fl-3tF,+a=0, (3.16b)

yielding the solutions

-1 L2 _ ]
S=3zalnT+35E° - acosh 78%)
a 1/2 53 1/2

+(§) g(aa'l) » 720

S=3alnT- $£° - asinh! (__g_)

(3.17)

V8a
172 /.2 1/2
+(%) g(—&;+1) , T<0.

Again the case a=0 is degenerate,
{2) The separable coordinates are
t=vy=x/|2 1|12 T=0v,=t, (3.18)

corresponding to the orbit X; — X3 +aX; in (1. 13) whose
equations are

dt dx ds

F-lZE:%xz—a. (3.19)
Integrating, we obtain
S=1igr+acothir+F(g), T>1,
(3.20a)
S=1igfr+atanhiT+ F(z), 7T<1,
where F(§) satisfies
Fl-4g-sgn(?-1)a=0, (3. 20b)
leading to the solutions
S=4gr+acoth™r +asinh (ﬁ—;)
2 1/2
+§\/Eg(§;+1) , T>1,
C.P. Boyer and E.G. Katnins 1040
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e 1p? g af_ &)
S=~g¢7+atanh™7T~acosh (25)
2 1/2
+§\/a§(-§;-1) , T<1,

As mentioned previously cases (1) and {2) are related
by a transformation in S;. The transformation which
takes (3.21) into (3.17) is given by
1+¢ 21/2%¢ x?

! = ’ = 4 = +

=17 =<y Y=5Twa=y-
It is also mentioned that Eq. (3.16b) can be cast into the
form of a repulsive harmonic oscillator by replacing F
by F+ £2/8, Again in both cases (1) and (2), a=0 is
degenerate,

3.21)

(3.22)

C. Free particle

(1) The separable coordinates are

E=vy :x/t, T=vy=1, (3. 23a)
corresponding to the orbit X;+eX; in (1, 13),
The subsidiary conditions (3. 5) are

dt dx dS

v T (3.23Db)
giving rise to

S=1g'7-¢/T+F(5), (3.24a)
where

Fl+e=0, (3. 24b)
Thus we have the solution

S=%§2‘r—e/‘l’:t: \/-—_Eﬁ. (3.25)

(2) The coordinates are simply the usual Cartesian
ones £ =x, 7=1I, corresponding to the orbit representa-
tive X +eX; whose equations are

dez% zf_S , 3. 26)
giving rise to
=¢t + Fix) (3. 27a)
with
Fl+e=0. (3.27D)
Hence, the similarity solution is simply
=etxV—ex+ec, (3. 28)

Here we allow ¢ =0 as well as e=+1 80 as to include the
degenerate orbits X; and X|,

D. Linear potential

(1) The separable coordinates are

x
§=U1:;+§2, T=‘l)2=t, (3. 293,)
corresponding to the orbit X; +¢X, with the subsidiary
conditions

dt  dx a9

T =i (3. 29b)

1041 J. Math. Phys., Vol. 18, No. 5, May 1977

which gives rise to

S= 2’ +—§ —;g+F(§) (3. 30a)
with
~2£=0, (3.30b)
Integrating (3.41b), we find the solution
s=ET4h_Coiimpn (3.31)
(2) The separable coordinates are
E=v =%~ 3, T=vy=¢, (3.32)
corresponding to X; +¢X; with the equations
& :’f ii (3.33)
Integrating, we find
s=4T+ €7 4 ), (3. 342)
2 12
with
F2+ £=0, (3. 34b)
giving rise to the solution
=3elTHh T+ V2 822 (3.35)

Again we allow ¢ =0 as well as 1 in order to include the
degenerate cases. The group transformation which takes
(3.35) to (3.31) and (3, 28) to (3. 25) is

H=-1/t, x'=x/t, §'=S-x%/4t, (3.36)

It can be seen that this is the square of the transforma-
tion (3. 22).

The remaining orbits in (1,13) and (1. 14) are degen-
erate in the sense that they give rise to special cases,
X, gives the usual cartesian separation and the special
solution S=const, where as X; which is equivalent to
X, under S, gives the degenerate solution a=0 in (3.17).
A relative invariant of X, violates the condition that x
and ¢ be independent (in involution). However, we should
notice that it does not violate the independence of x and
z in (*x) and thus gives rise to a nontrivial solution, It
is interesting that under the full conformal group these
cases are equaivalent to those already discussed. In
fact under C¥? we have only the four types given by the
potentials and their degenerate cases as noted in (1, 15),
We can always set the separation constant equal to + 1
or 0.

As mentioned previously the subalgebra of 0(3,2) gen-
erated by X;,...,X; is maximal and contains s;, More-
over, its structure is gl(2, R) 9 w;, but now X, is not in
the center, However, we notice from (1. 11) that for this
subalgebra the coefficient b given by (3. 4) still has no
S dependence; hence, we should obtain a similarity vari-
able £(x, #) upon integrating the first two of Eqs, (3.4).
Indeed this suggests that there may be some type of
separation of variables not considered in Sec, 2 which
lead to these solutions, We will now show that this is
indeed the case. We will only consider orbits inequiv-
alent under the full conformal group C1+2; however, we
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expect that again classifying the subalgebra gl(2,R) bw,
under its subgroup D® Gy, will lead to a more geometric
picture compatible with the separation of variables,
From Table I we pick out the following orbit represen-
tatives of gl(2, R) ®w,; which are not in s:

(1) X, +aX,, -1<a<1, a#0: The subsidiary equa-

tions are

dt dx dS

t Lla+1)x aS* ©.37)
The similarity variable is

E:t'(““/zx, (3.383.)
giving the form

S=§F(). (3. 38b)

Plugging (3. 48b) back into (), we find that F(£) satisfies
F-3a+1)¢F,+aF=0, (3.38¢)

Thus we see that we have the separation of (x) in the
form of a product instead of a sum, I we look into the
separation process in some detail, we will see that the
conditions for separation involve a coupling between the
coordinate functions (2. 2) and the separable solution in
the variable v, =1{, For this reason this type of separa-
tion is much more complicated and usually not consid-
ered for equations of the kind of (x}. However, here we
are led to these naturally by considering similarity so-
lutions. Now Eq. (3.38c) is a special case of Chrystal’s
equation®? whose solution is given implicitly by

a
(3.39a)

s (@+1)/2] Y uz (a~1)/2]4/2=C

with a#+1 and C a constant. For the degenerate cases
2=1+1 we have the regular solutions

F=3((+C), a=-1, (3. 39b)

F=-1C*s4{Ct, a=1, {3.39¢)
and, for a=1, the singular solution?®

F=3£+C, a=1, (3.394d)

{2) X, +X;+aX,, 0<a<w:The Pfaffian equations are

dt __dax_____ds
1+F tx+2zax ix*+aS’

8. 40)

which upon integrating the first two of these equations
gives the similarity variable

x 1 +ig) P/t
gzm(l—it) N (3.413)
while the first and third gives
£27. 1+i7 ~ta/2 1447 -§a/2
where F satisfies
Fj?- tatF,+aF+5E =0, (3. 42c¢)
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This equation has the form of the general Chrystal’ s
equation, 2° Its general solution is given by

E2(u — 2 ¥ $a) 12/ (u + 21 F 3a) ~1e/M = C, (3. 43a)
where C is an arbitrary constant and
F=(§/4a)(}a® - 1- 1), (3. 43b)

We mention that (3.42c¢) has a singular solution which
we ignor since it occurs when ¢ is pure imaginary.

(3) X, + X, +X,: The subsidiary equations are

T (3. 44)
which yields the similarity variable

E=x/t-1nt (3. 45a)
and the form

S=4t7inT+i7indr+ TF(E), (3. 45b)
where F satisfies

Fl- (¢+1)F,+ 3£+ F=0, (3. 45¢)
The general solution of this equation is given by

(+u -1) explu —1)=C* (3. 46a)
where C is an arbitrary constant and

F=i(l+8-d%). (3. 46D)

Thus it is seen that the remaining two cases {(2) and
(3) above] separate in the product form with an addi-
tional multiplier term Q(£, 7) present,

There now remains from Table I only three cases of
orbit representatives of o(3,2) which are not in gl(2, R)
Bw. Of these the first two to be considered are in fact
closer related to (xx).

(4) X5 - Xy + X,: The Pfaffian subsidiary equations are
dt dx _ dS

1-L~7-S =T, (3.47a)
or alternatively in terms of z=t- S, T=t+S, we have

lif_i = iﬁ *dl-—T (3.47b)
from which we find the similarity variable

=22+ (- 1) (3. 48a)
and the solution

T =sin[(c - 1)/£] + F(8), (3. 48Db)
where F satisfies

£2FE+1-52=0, (3. 48c)
giving rise to the general solution

T=sin[(c-1)/t]+ £~ 1~tan'g? = 1+C. (3.49)

Clearly this case is related to the separation of (**) in
polar coordinates.
(5) X; - Xy +a(X; + X;): The subsidiary equations are

dt___dx____dS
at—ix t-S+ax ix+aS

(3. 50a)
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orinterms of 2 and T
dz dx daT

ae-x ztax - al" 8. 500)

From the first two equations the gsimilarity variable is

2y i fzmix)H
i= a2 (252) .512)
while the second two equations give the form
'z +ix a/2i
T= <z — ix) F(§), (3. 51b)
where F(t) satisfies
(@ +1)£2F, - 2a*t F,F+a’FF - ¥ =0, (3. 51c)

The general solution of this equation is given implicitly
by

a _(aF+i(a2+Q§2-a2Fe) a /2
218 = GF @ T ) &R

F
1 Fx (éz+1)§2-aerl‘ (3.52a)
The case a=0 is degenerate and leads to
T=xx*+22+C, (3. 52b)

which in terms of S gives a certain translation in S and
¢ of the fundamental solution x?/4¢,

(6) X, + X3 +a(X, +X,): The Pfatfian equations are

dt d______dS
1+2+tax? " x(F+aS) a{l + 55 +x2°

We have not been able to find a simple way to integrate
these equations explicitly. This ends the list of similar-
ity solutionsg for (*), We mention also that it would be
interesting to see if there is any relation (perhaps of a
projective nature) between the solutions presented here
and the semisubgroup separation of variables for the
graph equation (1, 10b) and hence the wave equation in
3-space, ¢

(3. 53)

Before ending this section we briefly comment on one
other solution generated by a symmetry, namely the
general solution generated by the characteristcis, How-
ever, since (x) is not quasilinear, this solution cannot
be written as a similarity solution, The characteristics
for any first order equation are determined from the
Eqs, (1.5a) or equivalently from the characteristic vec-
tor fields (1,7). The relative invariant® obtained from
the vector fields in ¢/J given by

Y=nx,t,S,p,q)2p0,+ 8, +p%3¢) (3. 54a)
is determined by the equations

dx dt dS

ax_ @ _4q (3. 54b)

201 p2 0 0’
giving rise to the general solution of (*) in terms of the
characteristic strips!!

S=p%+ F(x - 2pt, p), (3. 54¢)

where F is an arbitrary function of its arguments. In-
deed the above analysis can be made much simpler if we
use the characteristic £ =x - 2p¢ as an underlying vari-
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able, We can consider (%) to be generated by the ideal
y=p*+q=0, dr=0, (3. 55a)
dendp+ditn dg=0, (3. 55b)

Then clearly dx =d& + 2p dt +2¢tdp, so (3.55b) becomes
dEAdp+din dr=0, (3. 55¢)

which implies the existence of a function V(¢,#) with p
=V, and r=V,, Then (3. 55a) implies that it is indepen-
dent of £, and thus the general solution is given by

p="7(8), 8. 554)

which is equivalent to (3. 54c) as long as déA dit#0, In
fact, it can easily be seen that V(£) is equal to F in

(3. 54¢), modulo an additive constant, In the next section
we will see that (3. 55d) is closely related to prolonga-
tions of (*).

4. PROLONGATIONS

The concept of prolongation was first introduced by
Cartan!®3! in his study of what has since been called in-
finite pseudogroups. His idea was to obtain and classify
certain pseudogroups (infinite groups in Cartan’s lan-
guage) by taking successively higher derivatives of Lie’s
differential equations for finite Lie groups. Indeed a
classification of certain types of pseudogroups has by
now been rigorously established, using essentially this
idea, *% However, here we wish only to apply the first
prolongation of (*), that is we take the derivative with
respect to x of (x) and notice that it gives precisely
(***), The question that is raised is then what is the con-
nection between the symmetries of (*) and (xx#)? We do
not intend to give here a full analysis of this question
but only to point out some interesting relationships.

Since (»*x) is a first order quasilinear partial differ-
ential equation, the analysis performed in the beginning
of Sec, 1 applies. We are only interested in the point
transformation symmetries of (***) since only these can
be projected to symmetries of R?xR! with local coordi-
nates (x,#,p). Then, using (1.4) and (1, 5), we find the
pseudogroup of point transformations of (+«*) to be gen-
erated by the vector fields (projections onto R?xR1)

X =2pF'(x,1,0)3, = 2pF°(x - 2pt,p)0,
+ Fi(xyt9p)+x;pzptio(x"2ptyp)

+glx-2pt,p) 3, @4.1)
where F', F!, g are arbitrary function of their argu-
ments, It is easy to gee that the ideal I of characteristic
vector fields of (*xx) is generated by Fl(x, 1, ).

We now look for those members of the symmetry alge-
bra G of * given by (1.4) and (1, 5b) which can be re-
lated to a subalgebra of (4, 1) whose vector fields when
prolonged™ to act on the variables S and ¢ can be identi-
fied with a subalgebra of (. This prolongation can be
accomplished through the use of (1, 4¢) and (1. 4d) and
give precisely those vector fields in + for which X*,

X*, and X* are independent of S and q. A straightfor-
ward computation gives constraints on the vector fields
(4. 1) which imply the existence of a function H(x - 298, p)
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such that

1 1
_th'

’=2-P_;
el lm, +-L )
g_2p<H,.+2p,H‘+c§ N

where ¢ is a constant and we use the change of variables
p’'=p, £=x-2pt., The prolongation to the S and ¢ com-
ponents of the vector fields now proceeds via (1.4c) and
(1, 4d) respectively. These prolonged vector fields can
be wriften

X*=2pFi(x,t,p) +cx,

X*=F!'- (1/2p)H, +ct,

X =4,

Xi=-2pH, +E%x,1,S,p,q)(b* +q)

XS=p Flx, t,p)+ spH,- H+cS
+EYx,t,S,p,q)0° +q),

where F! is an arbitrary function of its arguments and
E! and E° are arbitrary except for being nonsingular,

at p+¢ =0, Again as in Sec, 1 it is convenient to factor
these terms out and use (4. 3) modulo E® and E!, We now
consider some explicit examples,

Fo le

4.2)

4.3)

The first example to be considered is the character-
istic collineation given by the arbitrary functions Flin
(4.1), For (**%) this gives rise to the general solution

p=flx - 2pt), 4.4)

Now the prolonged vector fields given by F' in (4. 3) will
generate the general solution of (x) given by (3. 54¢) or
(3.55d), In fact we can easily identify f in (4, 4) with V,
= Vx in (3. 55d).

As another example we consider those point trans-
formation symmetries of (***) which can be prolonged
to point transformation symmetries of (x) or vice-versa.
These can be found by simply demanding the condition
that the x, {, and S compaonents of the vector fields in
(4. 3) be independent of p and q. Through a straightfor-
ward calculation we arrive at a finite-dimensional sub-
algebra spanned by the vector fields™

Yl = at’ Y4 = ax’

Yy=10,+3x0,~ 5pd,, Ys=1d +30d,,

Y3=t26,+txa,+(%x—fp)5,, “.9)

Y, =3x0, + 3P0,

‘We have used a notation suggested by (1.15); the pro-
longation of (4. 5) by adding the ¢ and S components via
(4. 3) gives precisely the corresponding ¥’ s in (1.15).
Conversely, we can obtain the above vector fields from
the corresponding ones in (1.15) (the subalgebra gl(2, R)
Rw] by lifting the latter to T*(R?) XR! and projecting
onto a surface with $ and ¢ constant. We notice that ¥;
is missing from (4. 5) since X projects to the identity
for constant S, i,e., Y;=0. The structure of the gener-
ators (4.5) is gl(2,R) D a,, where g, is a two-dimensional
Abelian ideal generated by Y, and Y, Hence the pro-
longation process does not conserve Lie brackets. How-
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ever, X; generates a one-dimensional ideal of gl(2, R)
®w, and thus there is a Lie algebra isomorphism be-
tween the factor algebra [gl(2, R) v w]AXy} in {1.15) and
gl(2, R) 3 a, given by (4.5). Of course, the subalgebra s,
~sl(2,R) 3w of (;, obtained by removing X; is a central
extension of the subalgebra si(2, R) ® a; of G x4x Obtained
by removing Y; from (4. 5).

Now there is an interesting connection between the
similarity solutions of (4.5) and the corresponding ones
for {1.15) given in Sec. 3. Indeed the orbit represen-
tatives of gl(2, R) ® @, under the adjoint action of the

group are
L
Y, +a¥; (@z0), Yi+Y+al, (-o<ag>wx)
4,
Yi+Y5, YptYs+Y, Y,+Y, Y, Y. (4.6)

Comparing (4, 6) with the orbit representatives of gl(2, R)
Sw in Table I and considering the factor algebra [gl(2, R)
w]/{Xs}, we see that the only difference is the appear-
ance of Y+ Y; and ¥; and the ranges of ¢ in (4, 6). This
is s9 since X; and X, + X; are conformally equivalent to
X, and X, + X respectively, Similarly, the differences
in the ranges of g are explained by conformal equiva-
lence, Now the connection of the corresponding simi-
larity solutions of () and (*xx) ig this: Take the x deri-
vative of one of the similarity solutions in gl(2,R) 2w
obtained in Sec. 3 and put p=S5,; then this solution is
precisely the similarity solution obtained from the cor-
responding orbit representative in gl{2, R) a, for (xx#*),
It should be added that the multiple of X for a similarity
solution of (*) becomes an integration constant for the
corresponding similarity solution of (»**). A simple ex-
ample should illustrate the point. Consider the similar-
ity solution for 2X, + X, given by (3.17). Considering
only ¢> 0, we find

1 £2 _ X
p:S":W -§-+—4-—4tl , g—?‘,}, (4.,73)
which is the similarity solution of (x»*) obtained from
2Y, with proper identification of the integration constant,

Indeed

———— .7b

2t «x b (4.7b)
gives the similarity variable £ =x/#/? and

p=t125(g), {4.7¢)

I we call f=F, and substitute (4.7c) into (x*x), we get
2F,Fyy - 3EF - 3F, =0, (4.74)
which is precisely the x derivative of (3. 18b).

More generally, we can consider the entire subalge-
bra // C( 4, determined by (4.2). Now looking at (4. 3)
we see as before that we must not only factor out E® and
E! but also the constant part in the function H, i.e., the
generator X; in (1.15), That this can be done follows
readily from the form of the generators.in (4.3), namely,
that the only S dependence of the vector fields in (4. 3),
mod (E°, EY), is of the type S9s. Then the prolongation
process defines an isomorphism of 4 onto the subalgebra
of G, given by (4.3) modulo the above equivalences. We
mention that one can find nontrivial similarity solutions
for (s+*) which upon integration give solutions of (x) and
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that the prolonged vector field corresponding to such
solutions are vector fields on T*(R?) xR which are not
the lifts of vector fields on R3,

Finally we make a few comments on the members of
G and G, Which are not related by prolongations. For
example, looking at (1,15), we seen that all the mem-
bers of 0(3, 2) which cannot be prolonged to members of
G »x« are those vector fields whose components involve
the variable S. Nevertheless, they yield similarity solu-
tions of (*) for which we can determine, in principal, S
and hence p =S at nonsingular points, and are guaran-
teed that p will satisfy (++«)., Conversely, from those
members of (., that cannot be prolonged to symmetries
of (x), we can also determine a p through the similarity
methods which upon integration with respect to x pro-
vides a solution of (*)., The problem is from the group
theoretical standpoint that the prolongation process dis-
cussed above no longer gives a symmetry, However,
they can be interpreted as generalized symmetries since
they are a symmetry of one equation and give rise to
solutions of both. In this connection it would be inter-
esting to study further the symmetries of the complete
prolonged ideal of differential forms which contains both
{*) and (***) and possibly any further prolongations in
the spirit of Ref, 35.
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