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The Hamilton—Jacobi and Laplace-Beltrami equations on the Hermitian hyperbolic space HH(2)
are shown to allow the separation of variables in precisely 12 classes of coordinate systems. The
isometry group of this two-complex-dimensional Riemannian space, SU(2,1), has four mutually
nonconjugate maximal abelian subgroups. These subgroups are used to construct the separable
coordinates explicitly. All of these subgroups are two-dimensional, and this leads to the fact that
in each separable coordinate system two of the four variables are ignorable ones. The symmetry
reduction of the free HH{2) Hamiltonian by a maximal abelian subgroup of SU(2,1) reduces this
Hamiltonian to one defined on an O(2,1) hyperboloid and involving a nontrivial singular
potential. Separation of variables on HH(2) and more generally on HH(n) thus provides a new
method of generating nontrivial completely integrable relativistic Hamiltonian systems.

PACS numbers: 02.30.Jr, 02.20. + b, 02.40. + m

I. INTRODUCTION

The purpose of this article is to discuss the separation of
variables in the four (real) -dimensional Hermitian hyperbo-
lic space HH(2) for the following two equations:

(i) The Hamilton-Jacobi equation (HJ)

a8 d§

g2 2 _F 1.1
Z 8x ox' (L1

(11) the Laplace—Beltrami equation (LB)

i 0
4y = Z ‘/ P O g2

In a previous paper’ (further to be referred to as I) we
have considered the separation of variables in complex pro-
jective spaces CP(n). The isometry group of CP(#n) is the com-
pact group SU(n + 1), and its Cartan subgroup was used to
generate n ignorable variables and to reduce the problem of
variable separation on CP(n) to the separation of variables on
the real sphere S ". We refer to this paper for a discussion of
the motivation and for some historical background.

Here let us just mention the relation between separation
of variables in the HJ equation and complete integrability of
the corresponding Hamiitonian system. Indeed, separability
for the HJ equation is defined to mean that a solution .S of
(1.1) exists satisfying

—/11//. (1.2)

a%s
Ix'IA;
where A, are n constants: the separation constants. We asso-

ciate n second-order operators in involution with each sep-
arable coordinate system in an n#-dimensional space (one of

S=Y SxA k) det 0, (1.3)
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them is the Hamiltonian); the constants A, are the eigenval-
ues of these operators. The existence of these operators as-
sures that the system is integrable.

For studies of the separation of variables in Hamilton—
Jacobi equations on Riemannian and pseudo-Riemannian
manifolds, see also Refs. 2-5.

The additive separation of variables (1.3} in the HJ
equation corresponds to multiplicative separation in the LB
equation {1.2):

b= A, (1.4)

Indeed, for Einstein spaces every coordinate system that sep-
arates the HJ equation will also separate the LB equation®™
(the converse is always true). Separation of variables in LB
equations makes it possible to use powerful methods of
group theory to study broad classes of special functions.’”

1. THE SPACE HH(n) AND ITS ISOTROPY GROUP
SU(n,1)

We introduce the Hermitian hyperbolic (or complex
hyperbolic) space HH({r) following Kobayashi and No-
mizu'®and Helgason.'' Let (eg,e,,...,¢, ) be astandard basis in
"+ 1 and consider the Hermitian form

Fix,p)= —Xoyo + Z Xi Yis (2.1)
=1

where the overbar denotes complex conjugation. This form
is invariant under the action of the group U(n,1):
gelU(n,1), Fl(gxgy)=F(x,y), x,yeC"*}, (2.2)

which acts transitively on the real hypersurface M in C" *'
defined by

F(y,y)= — 1 (2.3)
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The group U(1) = {e”} acts freely on this manifold by

y — € y. The space of orbits with suitable complex manifold
structure and Kaehler metric is identified as HH(n). The cor-
responding natural projection m:M — HH(n) defines a prin-
cipal bundle with U(1) as structure group. The U(n,1) action
commutes with that of U(1), and it hence projects to an ac-
tion on the base HH(rn). The isotropy subgroup of U{n,1) at
the point p, = m{e,) is U(1) X U(n), and we obtain the diffeo-
morphism

U(n,1)/[U(n) X U(1)]~HH(n). (2.4)

The group SU(n,1) acts almost effectively on this space.
In addition to the homogeneous coordinates
{ ¥o0s V1s--» ¥ |, let us introduce affine coordinates on HH(n):

k=1,..,n.
(2.5)

The space HH(rn) can then be identified with an open unit
ball in C"

7T(yoyy|’---syn) = (Zl,...,Z"), 2y =yk/y09

zC, Y Ziz <l (2.6)

k=1

The real part of the Hermitian form (2.1) determines in a
natural manner a metric on HH(#n), which is the noncompact
version of the well-known Fubini-Study metric'®:

ds® = _4

(1 520) (S enae) (52000 ) (S et

X )

(1 — kazk>2

(2.7)

where ¢ <0 is the {constant) holomorphic sectional curva-

ture.

We now limit ourselves to the case under consideration,
namely n = 2.

The Hamiltonian associated with the metric (2.7) for
n=2(c= —4)is

H=41- ‘zl|2 - |22|2)[(|z,|2 —1)ppi + (|22|2 - 1)
Xp2DPr+ 22,01 P> +Z,2, 0, P, - (2.8)

The Lie algebra u{2,1) in the representation acting on
the homogeneous coordinates ( ¥, ¥;, ,) is realized by 3 X3
complex matrices X satisfying

—1
XY J+JX=0, J= 1 (2.9)
1
(the superscript + denotes Hermitian conjugation).
Two convenient bases are given by the matrices X,, or

alternatively Y,, i =0,1,...,8:
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o 0 0 0 0 0
X1=(0 0o 1]=v, x,={0 0 i|=v,
0 -1 0 0 i 0
00 o0
X3=(O i o |=HtTe
0 0 —i 2
0 1 0 0 i 0
X4=(1 0 ol=v, x,=| -i 0 o]=v,—7,
00 0 0 0 0
0 0 1
X(,:(o 0 ol=v,—7,
1 0 0

0 0 i
X7=(0 0 O|l=Y,— 7,
—i 0 0
/2 0
X,=——[o —1 o |=Xi=3T
3 P W3
1
Xo= 1 =Y, (2.10)

[the Y, basis is particularly appropriate for considering solv-
able subalgebras of su(2,1)].

With these conventions the second order Casimir oper-
ator of su(2,1) can be written as

CG=X1+XI+X}—-X2-X}-X2-XxX2+X}
=1Y}-Y}-Y}-Y;-Y!?
+ {1 Y5} + { Y3, Y} + (Yo, X},
where { , } denotes the anticommutator.
A Killing vector L on the cotangent bundle with local
coordinates (z;,Z;, p;, D;, i = 1,2) is a linear polynomial in p,,
bi:

(2.11)

L =3 ciz,,2,2,,%) p; + c.c. (2.12)

(where c.c. indicates the complex conjugate quantity), such
that
[H.L]), =0, (2.13)

i.e., the Poisson bracket of H with L is zero. The Killing
vectors for HH(2) provide a realization of the algebra su(2,1).
Using the basis X, (i = 1,...,8) of (2.10) for the infinitesimal
operators, we calculate the corresponding Killing vectors in
affine and homogeneous coordinates to be, respectively,

Xy= —zp, +2,p., +cc.= —y,p, +y,p, +cc,
X, = — i(22pz, +21Pz1) +cc. = i()’zPy, +)’1Py2) +c.c,
Xy=id—-zp, +zp,)+cc. = {yi1p,, —¥2p,,) +cc,y
X,=z —1p., +22,p., +cc. =y, p, +yop, +cc,
Xs=i[lzi + 1)p, +2:2,p, ] +cc.

= i — Vi Py, +YoP,, )+cc,
Xo=212,p. + (2 — 1)p,, +cc.=p,p, +yop,, +coc,
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X,=i[zz,p, + (5 + I)p., ] +ce

=il —y,py, + YobP,,) +CcC,

(2.14)

Xs = iV3(z p,, +2,p,) + cc.

= (i/V3)2p0 Py, —¥1 Py, —¥2P,,) + C.C.
Throughout we shall make use of the moment map; when-
ever convenient we use the operators d /9z; or @ /dy,, instead
of the functions P, or Pyp and commutator brackets instead
of Poisson brackets.

lll. SUBGROUPS OF SU(2,1) AND COMPLETE SETS OF
COMMUTING SECOND-ORDER OPERATORS

According to the operator approach to the separation of
variables,®*® each separable system on HH(2) will be charac-
terized by four second-order operators { H,T,,7,,T5} that
are in involution with respect to the appropriate Lie bracket
{(one of them being the Hamiltonian H, or correspondingly
the Laplace operator 4 ). The first task is to classify the tri-
plets of operators { T',,T,,75} into equivalence classes under
the action of the group SU(2,1), leaving H invariant.

The task in the present case of HH(2) is greatly simpli-
fied by two circumstances:

(1) It has recently been shown'? that for HH(2) all sec-

ond-order Killing tensors, i.e., operators
2

T= 2 {cul21,21,22,25) P1 Pi

Lk=1
+ dy(21,21,22:2,) p; P +€.C.}, (3.1)
satisfying
(rLH]=0 (3.2

lie in the enveloping algebra of su(2,1). Each of the operators
T, can hence be written in the form

8
T,= > Au XX, A, =4}, R (3.3)
ab=1

(2) We have shown in I, Theorem 4, that every separable
coordinate system in CP{2) and HH(2) has precisely two ig-
norable variables. We recall that an ignorable variable in a
certain coordinate system is a variable that does not figure in
the metric tensor g,, expressed in this system.* An ignorable
variable ¢ is obtained by setting a Killing vector, say L,
equal to the momentum p, canonically conjugate to ¢. The
square of this Killing vector is then a second-order Killing
tensor

T,=L3%=pj;. (3.4)
This can be done'® if the corresponding Killing tensor T, is
the square of a Killing vector, i.e., in our case the square of an
element of su(2,1). Since two variables must be ignorable in
each separable coordinate system, it follows that two of the
operators T, say T, and T,, must be squares of elements of
su(2,1):

T,=L2= ( i b, Xa)z. (3.5)

a=1

Since T, and T, commute, the operators L, and L, must
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generate an abelian subalgebra of su(2,1). All subalgebras of
su[2,1) are known,'* and work is in progress on the classifica-
tion of the maximal abelian subalgebras (MASA’s) of all clas-
sical Lie algebras.'>'® In particular, su(2,1) has four different
MASA'’s [each representing a conjugacy class of MASA’s
under the action of SU(2,1)]. Each of them is two-dimension-
al.

The procedure of finding all triplets of operators
{T,,T,,T5] related to separable coordinates on HH(2) thus
reduces to the following:

(i) Take T, and T, as in (3.5), where L, and L, run
through the four different MASA’s of su(2,1).

(ii) For each MASA L ,,L,, find the most general opera-
tor Q = T,&S *(su(2,1)) [second-order symmetric tensor in
the enveloping algebra of su(2,1)] commuting with L, and
L,. The operator T has the form (3.3).

(iii) Simplify each T, by linear combinations, with L 1,
L2, LL,and C,(2.11) and classify the operators T, into
conjugacy classes under the action of the normalizer of
{L,,L,}in SU(2,1) (the normalizer is the group of transfor-
mations leaving the algebra {L,,L,} invariant).

A particularly important and simple class of coordi-
nates are called “subgroup type coordinates,”>”*!? and they
occur when 77 is the Casimir operator of a subgroup of
SU(2,1).

In Fig. 1 we show all subalgebras of su(2,1) that are
relevant for our purposes (for a complete classification see
Ref. 14). The basis elements {X, } and {Y, } are defined in
(2.10), we use the two bases interchangeably. The lowest row
in Fig. 1 is occupied by the four MASA’s: [ X;,X,} and
{Y,,Ys — Y,} are the compact and noncompact Cartan sub-
algebras, respectively, { Y,,Y,] contains a nilpotent element

! 1
1 A4_1o ‘1 Aa,q ‘ l u1,1) u(2) W‘
Y., Y, “(y VoY WY b [ Y e, Y Y ) (X7 X X O(X,
‘123412315‘“4_5_61}.‘123 8.
I
A, 9002y |
| i
L{va.vs) v, }
! Toizyerz) |
Tl ‘, n(2)wT o(z)m(1,1)” 0(2)+0(2) !
li :
AN ‘ RARY My V6-Y4}”l [ UMt

FIG. 1. Maximal abelian subalgebras of su(2,1) and some subalgebras con-
taining them. The basis elements X; and Y, are defined in (2.10). The four
MASA’s constitute the lowest row, and double boxes indicate their normal-
izers; 4 4 10,4 14,and 4, aresolvablealgebras,and T denotesa translation

type subalgebra.
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Y, (Y, is represented by a nilpotent matrix in any finite-
dimensional representation). All elements of { Y,,Y,} are nil-
potent, i.e., this is a maximal abelian nilpotent subalgebra
(MANS).'!¢ The letter T in the boxes denotes the presence
of such nilpotent elements (“translations” on a light cone).
The double boxes indicate normalizers of the MASA’s. By
definition, Cartan subalgebras are self-normalizing. A clas-
sification of all real Lie algebras of dimension d<5 exists'’;
the notation A, o, 4 ; o, A, refers to that article. The alge-
bras 4, 1o, U(1,1), and u(2) are the only subalgebras of su(2,1)
[up to conjugacy under SU(2,1)] containing at least one
MASA and having a second-order Casimir operator.

These algebras and their Casimir operators play an im-
portant role below; so let us discuss them in more detail.

(1) The su(2) subalgebra of u(2} is { X,,X,,X;] and its
Casimir operator is

I(su(2)) = X2 + X2 + X2, (3.6)

(2) Two mutually conjugate su(1,1) subalgebras and
their Casimir operators are

{X4’X5’%(X3 - ‘/ZXS)} -~ { Y4yY59Y(,}9

(3.7)
Lsu(L)) =X} + XI — (X, —V3X,f
and
(X X23(X5 +V3Xg)}
L(su(1,1)) = X% + X3 — X, + V3Xg) . {3.8)

(3) The solvable algebra 4, ,,:

{Y,,Y2,Y3,Y4} g {Xs + (1/‘/3)/"3’
— X5 + (X5 — VIXR) X, — XX, — X,}.

Its invariant is'*
14'10=4Y,Y4+3(Y§+Y§). (3.9

Notice that one realization of 4, |, is related to the one-
dimensional harmonic oscillator. If we put

3 (82 2) a
Y=—|—+x"), YV,=x, YV,=— Y,=1,
T2 \gx? 2 =g N
then the commutation relations for Y, are satisfied, and we

have I, |, =4Y,.
Let us now return to the classification of triplets of op-
erators outlined above.

A. The compact Cartan subalgebra
We have
T, =X3 T,=X3,
and [T,,T5} =0, [T,,7T5] = O implies
Q1 = T = al (sul2)) + bl (su(1,1)) + cl,(su(1,1)).(3.10)

The Cartan subalgebras are self-normalizing; hence the only
freedom left is to subtract some multiple of C,. The following
possibilities occur:

()b=c# —a: Q,=1(su(2)),

2)e= —a#b: Q,=1I(su(1,1)),

(3)b #et —asth: Q,, = ILisu(1,1)) + uly{su(l,1)),
0::0<u<l, Qp —1<u<0,

2025 J. Math. Phys., Vol. 24, No. 8, August 1983

(the case || > 1 can be rotated into one of the cases with
lul<1).

B. The noncompact Cartan subalgebra

T,=3[X,+(1/V3 X)), T.=X1,
On = T3 =al|(su(l,1))
+ b6 (X X + XX, + XX, + X,X,) .
Two possibilities should be distinguished:
Q;: b=0,
Qs b=1, a>0

(the relative sign of b and a can be changed by a rotation
through the angle 7, hence the restriction a0 in Q).

(3.11)

a=1,

C. The MASA (Y,,Y,}

T,=Y7 =3 [X; + (IV3X]%,

T, = Y}. =(—X; +%X3—%‘/3X3)2,

Oum =Ts=al, o + bl\(su(1,1)).
Four possibilities occur:

O a=0 b=1,

Oy a=1, b=0,

Qs a=b=1,

Qo a= —b=1

Indeed, if ab #0, we make use of the external part of the
normalizer of { Y,,Y,}, namely the operator ¥ to scale a
with respect to b: For ab> 0 we can scale so that we get
a = b; for ab <0 so that we geta = — b.

(3.12)

D. The maximal abelian nilpotent subalgebra

T = Y% =(X2—X-,)2,
Tz = (Y4)2 = ( _XS + %X3 - %‘/SXB)z’
Qw=Ty=al,,, +b[Y,Y;+ Y;Y,
— 3L Ys + ¥i¥)) — 6(Y, Yy + VoY) .
Two cases should be distinguished:
Q¢ a=1, b=0,
Qi a=0, b=1

Indeed, if a #0, we set @ = 1 and use the external part of the
normalizer of { Y, Y,} to transform & — O [this is achieved
by a transformation of the type Q' = exp(a ¥5)Q

exp( — a))].

We have thus obtained 12 orbits of operators
{T,,T,,T;}. Among them six are of the subgroup type, i.e,
such that Q is the Casimir operator of some subgroup of
SU(2,1). These are the sets involving Q;, @, Qs, @5, O, and
i

In the following section we shall establish a one-to-one
correspondence between the above-classified triplets of op-
erators in involution and 12 types of separable coordinates
on HH(2).

(3.13)
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1V. SEPARABLE COORDINATES ON HH (2)
A. Introduction of ignorable coordinates and reduction
to separation on an O(2,1) hyperboloid

Our purpose now is to find all separable coordinates in
HH(2), 1.e., to transform from the affine coordinates
{21,22,2,,2,} to four real variables {4,B,x, v} such that x and
y are ignorable and that Eqs. (1.1) and (1.2) separate in the
new variables. This transformation can be performed in two
different manners, starting with the affine coordinates z;

(i = 1,2) or the homogeneous coordinates y, (1 = 0,1,2), re-
spectively. In each case the procedure is repeated four times,
separately for each MASA of su(2,1).

Using affine coordinates, we proceed as follows:

(1) Choose a basis {L,,L,} for the considered MASA,
express L, and L, in terms of z; as in (2.14) and put

L,=P, L,=P, (4.1)

Solve equations (4.1): This provides the explicit dependence
of z, and z, on the ignorable variables. The dependence on
the essential variables 4, B is as yet unknown and is con-
tained in the integration “constants” of (4.1).

(2] To obtain the dependence on 4, B make use of a
procedure outlined in Ref. 4, for arbitrary four-dimensional
Riemannian spaces. Since HH(2) is a positive-definite metric
space and since each separable system must involve precisely
two ignorable variables, only case “C” of Ref. 4 occurs.
Hence a pseudogroup P of coordinate transformations (de-
scribed in I and Ref. 4) must exist, transforming the Fubini~
Study metric (2.7) into a form in which the metric tensor
satisfies:

1

A= B: , B:O,
gA gB k(A)+ k,(B) gA
gom et elB) o, fid)+ fiB)
k(A)+ k,B) ky(A) + ky(B)
y hd)+ hy(B) 4.2
g kiA)+ ky(B)’ 2

g =g =g =g” =0,
where k., e,, f, and A, are functions of the indicated variables
satisfying

azm[ (k, + k) -0 (43
0AJB (e +e) fi +3) —{th + h,)?

fi.e., R,z =0, where R is the Ricci tensor]. Solve Egs. (4.2)
and (4.3) to obtain the dependence of {z,,2,} on 4 and B.

Following this procedure, we find that the MASA
{X3,X,} leads to four different types of coordinates,

[{Y,,Y, — Y,] totwotypes, { Y,Y,] tofour types, and finally
{Y,,Y,] to two. The computations are quite long and in-
volved, but the results are relatively simple and coincide
with those obtained using a different, more geometrical and
group-theoretical method, described below.

The second procedure is an adaptation of the general
method of the reduction of phase space in classical mechan-
ics by ignorable variables.'® The procedure is related to that
used by Marsden and Weinstein'® and Kazhdan, Kostant,
and Sternberg® to obtain completely integrable Hamilton-
ian systems. In I we applied this procedure to reduce by the

2026 J. Math. Phys., Vol. 24, No. 8, August 1983

maximal torus, i.e., the Cartan subgroup of SU(n + 1). We
thus reduced the problem of separating variables on CP{n) to
that of separating on the sphere S, , | . The free Hamiltonian
on CP(n) was reduced to a singular Hamiltonianon S,, | ,
with a specific inverse square type potential. We shall see
that the situation is very similar for HH(2) and that the re-
duction can be performed by any of the maximal abelian
subgroups (not just the maximal torus).

Instead of MASA’s of su(2,1), we shall use MASA’s of
u(2,1),1.e., to the basis L,,L, of each MASA we add a further
operator

Xo= »op,, + ¥iP, + ¥2p, +cec. (4.4)

When acting on functions f( ye, ¥,, ¥,) that project properly
onto HH(2), i.e., homogeneous functions satisfying

S oy )= F3i1/Yos ¥/ Yo) (4.5)
we have
d ad a )
(J"() e M o, Y2 S S/ (4.6)

and for the corresponding constant of motion on HH(2) we
have

Xo= yobPy, + 1Py, + Y20, =0. (4.7)

The procedure is:

(1) Choose a basis {L,,L,} for the considered MASA,
express L, L,, and X, in terms of y as in (2.14) and (4.4) and
put

Li=p. L,=p, X0=Pp- (4.8)

Solve equations (4.8) to obtain the explicit dependence of y on
the ignorable variables x, y, and p [upon projection from C(3)
to HH(2) p will cancel out].

The variables y, depend on three more real variables,
say Sy, 5,, and s,, which are contained in the integration con-
stants of Egs. (4.8). These must be introduced in such a man-
ner that s, x, y, and p parametrize all of C(3), that x and y
project into ignorable variables on HH(2), and that the varia-
bles s, are compatible with the projection, i.e.,

2

‘zzs(z) —si —s}

IJ’|ZE')’(2)\ - 1)%‘2 —i»m
==¢" = const. (4.9)

In order to obtain the space HH(2), we puts® = 1; other
homogeneous spaces with SU(2,1) actions are obtained by
putting s> = — lors* =0.

{2) Express the su(2,1) infinitesimal operators X
(i = 1,...,8) the Hamiltonian H and the Killing tensor T; = @
in terms of the variables {x, ¥,5,,5,,5,} (setting p, = 0, or cor-
respondingly dropping a term containing d /dp). The essen-
tial variables s, are constrained by the condition (4.9). The
corresponding momenta p, figurein the infinitesimal opera-
tors X; only via the expressions

I, =s,p — 5P, Ioy = 5o ps, + 5105,

Ly, =500, + 520, - (4.10)
The quantities I, ( #,v = 0,1,2) generate an o(2,1) algebra
under the corresponding Lie bracket. This o(2,1) is in general
not a subalgebra of su(2,1); however, if we restrict ourselves
to the manifold (4.9) by setting the ignorable variables equal
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to zero, then we obtain
Xi=1, X,=I,, Xe=Ip, (4.11)

i.e., the O(2,1) group acting on the variables s coincides with
the real O(2,1) subgroup of SU(2,1). In the new variables the
Hamiltonian H and the Killing tensor Q are expressed as

H=1I}, — 13, -1 +f1(3p)P;2c

+ fls.) Py + fils.) P Py (4.12)
Q = 2 Auv.y'v' va I;t'v'

mv

v

+ hyls, p% + hals,) 5 + hals,) pe Py (4.13)

where f; and 4, are functions of the essential variables s, and
A,y = A,y ., 18 a symmetric constant matrix. The prob-
lem of separating variables for the free Hamiltonian on
HH(2) has thus been reduced to that of separating variables
in the Hamiltonian (4.12). This is an O(2,1) Hamiltonian,
which is, however, not a free one: It includes a “potential”
term depending on the O(2,1) variables s, . We recall that the
momenta p, and p, corresponding to the ignorable variables
should be set equal to constants

Py =¢C; Py=0C (4.14)
Notice that we have
I, —I<2>1 _1(2)2 =(P§0 _Pf, —Pi)’ (4.15)
where we have used the fact that
2
2 S, Ps, = 0. (4.16)
u=0

(3) Introduce separable coordinates on the hyperboloid
(4.9), compatible with the form of the operator Q and the
potential in (4.12).

Let us now implement the first two steps of this proce-
dure for each of the four MASA’s of su(2,1).

1. The compact Carlan subalgebra [ X3 X/

We first introduce the ignorable variables ( p,a,,a,),
putting

X, — (1/V3)X,] = p,,,

— 4 [ X+ (V) Xe] = pa,, Xo= p,. (4.17)

Using (2.14), we obtain a system of equations that is easily
solved to express the homogeneous coordinates as

Yo=15p PN T3y =ge

J’z — Szei13p—a. + 2a,)/3 i

i3p + 2a, — a,)/3
3

(4.18)

The infinitesimal operators are expressed in these co-
ordinates in the Appendix. Putting a, = a, = 0, we obtain
(4.11); X,,X3,X5,X,, X, then involve only the essential varia-
bles and the momenta conjugate to the ignorable ones. Ex-
pressions {4.12) and (4.13) for the Hamiltonian H and Killing
tensor @, (3.10) reduce to

H= -1}, +1}, +13,
1, | 1 2]
+ — z, +— a, — — - + » s
[ P 2217, 02(17. Pa,)

. (4.19)
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§2 s2
=a|I? +(1+—2) 3 +(1+—‘> i]
o3 [12 2 Pa, 2 Pa,

SZ
+b[131 +(—1+—§—)pi,
S

1

SZ
— 142 2
+( +Sg)(p,,.+paz)]

s2 52
+c[132 +(—1+—°>pf,2 +(—1+—j)
e So

X(Pa, + paz)z] :

Setting p, = O we obtain a free O(2,1) Hamiltonian and a
Killing tensor of a specific type: it involves the squares I,
only. Separation of variables on an O(2,1) hyperboloid H, is
discussed below.> ! Nine distinct separable coordinate sys-
tems exist on A, but only four of them have Killing tensors of
the type Q. Precisely these four occur in our HH{2) prob-
lem.

Setting p, = c¢; #0, we reduce (4.19) to an O(2,1) Ha-
miltonian with an inverse square type singular potential, and
QO reduces to the corresponding integral of motion. We have
thus generated a nontrivial relativistic completely integrable
Hamiltonian system. Similar systems with singular inverse
square potentials have been studied in a nonrelativistic con-
text.22-2

(4.20)

2. The noncompact Cartan subalgebra [X; + (1/V3)Xe, X5/

Introduce the ignorable variables ( p,a,u) by putting

- %[Xs + (1/V3)Xs] =p,, Xs=p, Xo= Py
(4.21)
Expressing X; in terms of the homogeneous coordinates Yus
we obtain a system of partial differential equations that can
be solved to yield

Yo =€~ isichu + s;shu), 0< p <2m, 0<a <2,

1= €PN (is chu — syshu), O0<u < oo, (4.22)
Y, = o3 + 2a)/3 is, .

The infinitesimal operators are given in the Appendix. Put-

tinga = u = 0, we again obtain (4.11). The Hamiltonian and

Killing tensor Q [(3.11)] in this case are

2 2
So —S5t

5P
{s5 + 51y

4505,
mpupa]! (423)

H= —1f2+151+132+[—

ss—s1 1

2
—_— e a+
% +5F ]”

ana[ é]“"—_—(Sé_S%)z( 5* i)_4—__5051(s(?3—5%) u a]
(s5 +51)° (s5 + 1)
2
505153
+b | Ul +2—"=p2
[l ol 42255

5 sos [(s5 + 517 =53]
(5 + 53)s3 :
(55 +51) + 53 (s5 — 57)
2 PuPal-

_+_
(s3 +s3)°
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Setting p, = p, = 0, we again obtain a free 0(2,1) Ha-
miltonian and a specific O(2,1) Killing tensor (leading to only
two of the nine separable systems on H,). Forp, = ¢, and p,

= ¢,, we obtain a new nontrivial completely integrable Ha-
miltonian system with a singular potential.

3. The orthogonally decomposable MASA {Y,,Y,}

To introduce the ignorable variables ( p,a,? ), we put

—3Yy=p,, —Yi=p, Xo=0p, (4.25)
and obtain
Vo= 5o +ilsg —st], — w<t<oo,
p=e%=a 5 4 ilso— st 1,
0<p<2m, OLa<2r, (4.26)

y2 — e£(3p+ 2a]/3s2 .

The infinitesimal operators are given in the Appendix. The
Hamiltonian and Killing tensor (3.12) are

H= “1%2 +I(2)1 +I(2)z

LI So+581 2 2 ]
+ Iy a+ .+. AR
7+t e
(4.27)
S0 — 8§,
Qu 230[(102—112)2+———(0 2 ) Pa
2
+ 5 P+2 ]
(SO _sl)z b Pa P:
S0+ 51)° PR
-+—b[1(2,l +ﬁ_ll2_[,t2+2mptpa
(S0 — 51) S — 8,
(4.28)

For a = ¢ = 0 we again have pure O(2,1) quantities. The spe-
cific form of Qy; leads to four of the nine separable 0(2,1)
systems. For p, = ¢, and p, = c,, we obtain yet another
0O(2,1) Hamiltonian with a new nontrivial singular interac-
tion.

4. The maximal abelian nilpotent subalgebra { Y5, Y4/

To introduce the ignorable variables (p,t,u), we put

Ys=p, Yi=—p, Xo=0p, (4.29)
and obtain
Vo=€" [(sg — si)u —Lit?) + 55t —is5], — o <U< 0,
o =e€" [(so — sy)u — Lit?) + st —is;), — o0 <I< o0,
yo=€" [ —is, — (s — )], O0<p<2m. (4.30)

The infinitesimal operators are in the Appendix; the Hamil-
tonian and Killing tensor (3.13) are

1

H= _1%2+131+1(2)2+[_‘_2p%
(5o — $1)
2 22
__ﬂTpuanﬁ?__s"_“sl_ ﬁ], (4.31)
{50 — 54) (5o — $1)
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26 2
Qv =3a[(112-——102)2—|—(p, - 2 Pu)
So — 5

2s
2 p}

+ 3b [{102 —Il27101} +

So — 8y

2 2 2
4 55 —s1+5
+ SZ 3 pu
(5o — $1)

12 257 — 353 — 25,5 », p[] .

(8o _51)2

(4.32)

Forp, = p, = Otheoperator Q;, reduces toan O(2,1) opera-
tor related to variable separation in two of the nine separable
systems on H,. For p, = ¢, and p, = ¢, we again obtain a
nontrivial interaction term in (4.31).

B. Separation of variables on an 0(2,1) hyperboloid

Let us now consider the separation of variables in the
free Hamilton—Jacobi equation or free Laplace-Beltrami
equation on the O(2,1) homogeneous space

—2=K? (K= +1o0r0) (4.33)

Nine separable coordinate systems have been shown to ex-
ist?! and to be in one-to-one correspondence with orbits of
second-order operators in the enveloping algebra of
0(2,1).>7 Since the results are not readily available and were
not presented in a convenient form for our purposes, we
summarize them here.
Let I, be the O(2,1) operators (4.10), satisfying
Uovlodd = — 1oy [ialoi] = 1o, Uiodo) = — Loy
{4.34)
A general second-order operator in the O(2,1) enveloping
algebra can be written as
I 12
R ={IlodpX | 1o, )
I 02
Under an O(2,1) transformation, R is transformed into
R’ given by (4.35) with X replaced by X ":
X'=G"XG, GIG"=/, (4.36)

where J is a nonsingular 3 X 3 real symmetric matrix with
signature { — + + ). We rewrite (4.36) as

X'=G'XG, X=Jx, X"J=JX. (4.37)
Thus, X is symmetric under the involution that defines
0(2,1). Such symmetric matrices have recently been classi-
fied for all classical Lie algebras.”® For O(2,1) the results are
quite simple, namely any pair of matrices (X,/ ) satisfying
(4.37) is SL(3,R) conjugate to one of the following:

(I} X; orthogonally decomposable with three real eigen-
values:

=5t —5

X =XTeR™> (4.35)

—e —1

X, = a , J= 1 . a,b,ceR.

(4.38)

(IT) X, orthogonally decomposable with one real eigen-
value and one pair of complex conjugate eigenvalues:
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b O 0 1 0
a 0] J=|1 0 0} abceR,b>0.
0 ¢ 0 0 1

(4.39)

(II1) X ;;; orthogonally decomposable with two real ei-
genvalues:

a 0 O 01 0
Xu=|1 a o) 7=t 0 0} abeR.
0 0 & 0 0 1
(4.40)
(IV) X v indecomposable (one real eigenvalue):
a 0 O 1
Xv=|1 a 0] J= 1 , aeR.
0 1 a 1
(4.41)

Returning to a basis in which J is as (4.38) and simplifying by
linear combinations with the O(2,1) Casimir operator

A=1} +1}, —1%,, (4.42)
we obtain four classes of quadratic operators R:

Ry =A,13 +A, 1} +A4,1%,, AR,

Ry = AL, + (Iopd 15}, (4.43)

Ry = AIG +plly, — 1), p#0, A,ueR,
Ry = {102 _112!101}

{the brackets [ , ] denote an anticommutator). The opera-
tor R, can be further simplified by combinations with 4; in
R, wecan assumeA >0;in R,;; we canscaleu with respect to
A by means of the O(2,1) transformation expa I;; and hence
only distinguish three cases: A =0, u = 1;A=u=1;
A= —pu=1

Finally we obtain nine classes of operators R,
{(a = 1,...,9) and the corresponding coordinate systems for
which the O(2,1) Hamilton-Jacobi and Laplace-Beltrami
equations separate. The separable coordinates, Hamilto-
nians H and integrals of motion R, for the two-sheeted hy-
perboloid, i.e., K * = 1 are as follows.

1. Spherical: R, with A, = A3,

s, = coshA, s, =sinh4 cosB, s, =sinhA sinB,
0<A4 < w0, 0KB <27, (4.44)
1 2
Hzpf, ‘+‘m[’}9’ R =13, =P§-
2. Hyperbolic: R, with — A3 = A, #4,
so = cosh4 coshB, s, = cosh4 sinhB,
s, = sinh4, A,BeR, (4.45)

1
H=p, + ;—pé,

osh’A R, =13 =p}.
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3. Elliptic ! R, with — g A, A % — A,
Ay + A Ao+ A3)> 0
B =vpla, $=v—1p~1a—1)

53 =(v—a)la—p)/la—1a, 1<p<a<v<w, l<a

(4.46)
H=[4/(v—p)l[vlv—1)v—a)p;
+plp—a—plp;] .
R;= aI<2)1 + ](2>2
= [4vp/(v — p)][(v — l)lv —a) P’
+(p—Na—-pp]-
4. Elliptic Il R, with — Ay A, A% — Ag,
(A + AV s + A3) <0
ss=Ww—11—p)/la—1), si=—wp/a,
53 = (v —a)a —p)/la — g,
p<0, 1<a<vy, 0<a— 1«1, 4.47)

H=[4/(v—p)[vv—1l)v—a)p}
+p(p—1a—pp],
Ri=(a— 1} -1,
= — [4(l —p)v— /(v —p)] [viv—a)p.
+(a—plpp, .

5. Complex elljptic: R,

Yso + isy)* = (v — alp — a)/ala —a*), s} = —wp/|af’,
v<0<p, a=a+iB, >0, afbeR, (4.48)
H=1[4/(p—v)] [plp —a)p—a*)p;

—vv—alv—a*pi],
Rs=al§, — B 1,1}

= [4pv/lo — V)] [(p—a)lp — a*) P}
—(v—alv—a*pl].

6. Horospheric: R, withA =0

so=coshd + 1 e, s =sinhd +1re 4,
s,=re 4, —w<Ad<w, —0<r<co,

H=Pf1 +eZAP3, Ry = (102_112)2=P3-

(4.49)

7. Elliptic parabolic: R, with Au> 0

so=1(v+pV/vp, st =4v+p—2v)/vp,
S=(1-vp—1), O<v<lcp, (4.50)
H=[4/(p—V][pp— 1D +V(1 =],
R7=131 +(102—112)2

= [4pv/(p —¥)] [plp — 1)p; + V(1 —v}pl] .
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8. Hyperbolic parabolic: R, with Au <0

55 = +p—2vp)f/(—dvp), 5 =(v+p)/—dvp),
s5=(1—=vp—1), v<O0<l<p, (4.51)
H=1[4/(p—v)] [p(p—1p, + V(1 —vp1],
Ry=12% — (I, — I,

= [4pv/(p— ) [plp =V p; + V(1 = V)Pl ] .

9. Semicircular parabolic: R,,

3= 1/1—16(pv) [(p = + P T,
= 1/[—16(pv] [lp — v — p* 1,

2

55 =(p+v)/(—4pv), v<O0<p, (4.52)

H=1[4/{p - V)](P3P,2; - VjPi), Ry = {1y, — 1111y}
=2[vp/(v — p)l0° p; — V' D).

Three of these coordinate systems are of the “subgroup

type,” namely spherical, hyperbolic, and horospheric, corre-
sponding to the group reductions

0(2,1)D>0(2), 0O(2,1)D0(1,1), and O(2,1)DT,

respectively (7 being the group of translations generated by
Io, —15).

All coordinate systems are written so as to parametrize
the upper sheet of a one-sheeted hyperboloid. It is not diffi-
cult to modify the coordinates so as to parametrize the one
sheeted hyperboloid (s> = — 1).

C. Separable coordinates on HH(2) and the Hamiltonian
systems

In Sec. IIT we have classified triplets of operators
{T\,T,, T} into 12 orbits under SU(2,1). In Sec. IVA we have
introduced ignorable variables on HH(2). Each different
MASA of SU(2,1) leads to specific coordinates in which the
Hamiltonian H and integral of motion Q = 75 reduce to an
0(2,1) form corresponding to an O(2,1) Hamiltonian system
with a nontrivial interaction. In Sec. IVB we reviewed separ-

ation on the O(2,1) hyperboloid s* = 1. Combining all these
J

1. The compact Cartan subalgebra { X5, Xg |

X5~ (1/V3)Xs] = p,, =1,
— 41X+ (L) =p,, =,

a. Spherical coordinates:
z, = tanh 4 cos Be’, z, = tanh 4 sin Be'™,

Q, =p3 + (1/cos’B) p2, + (1/sin’B) p;,, = c3,

H =p% + (1/sinh?4 ) Q, — (1/cosh’4 )( p,, + Pa, )} =E.

b. Hyperbolic coordinates:
z, = tanhBe™, z, = (tanh 4 /cosh B e,

Q, = p} + (1/sinh?B) p, —(1/cosh’B) (pa, + pa,)’ = €3,

H = p% + (1/cosh?4) Q, + (1/sinh’4 ) p,, = E.
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results together, we obtain the following theorem.

Theorem 1: (1) There exist precisely 12 systems of co-
ordinates on HH (2) in which the Hamiltonian-Jacobi and
Laplace—Beltrami equations separate.

(2) Each separable system has two ignorable and two
nonignorable variables. The nonignorable variables are in-
troduced so as to separate variables on the O(2,1) hyperbo-
loid s* =53 — 53 —s? = 1.

(3) The separable coordinate systems in HH (2} are in
one-to-one correspondence with orbits of triplets of second-
order operators { 7',,7,,7,} in the enveloping algebra of
su(2,1). The operators T, are in involution, two of them,
T,=L7and T, = L3,aresquares of the generators L,,L, of
a MASA of su(2,1), the third Q = T3 is a general operator of
the form (3.3). The operator Q takes one of the forms
Q.,.-,Q\, listed in Sec. I11.

(4) The compact Cartan subalgebra {X;,X,} for which
Q has the form Q, of (4.20) leads to four types of coordinate
systems, namely, (4.18) with (sy,s,,5,), expressed in spherical
(@,), hyperbolic (Q,), elliptic I (Q;), or elliptic II (Q,) coordi-
nates on the O(2,1) hyperboloid H,.

(5) The noncompact Cartan subalgebra { X5 + (1/v3)
Xy, X5 for which Q has the form Q; of (4.24) leads to two
types of coordinate systems, namely, (4.22) with (s,,s,,5,) ex-
pressed in hyperbolic (Qs) or complex elliptic (Q,) coordi-
nates on H,.

(6) The decomposable non-Cartan subalgebra { Y, Y}
for which Q has the form Q,,; of (4.28) leads to four separable
coordinate systems, namely, (4.26) with (s,,s,,5,) expressed in
hyperbolic (Q-), horospheric (Qy), elliptic parabolic {Q,), or
elliptic hyperbolic (Q,,) coordinates on H,.

(7)The MANS { Y,,Y,} for which Q has the form @, of
(4.32) leads to two separable systems, namely, (4.30) with
(S0551,8,) expressed in horospheric (Q,,) or semicircular para-
bolic coordinates (Q,,) on H..

Finally, let us list the 12 separable coordinate systems
and in the process show that the “potentials’ in the O(2,1)
Hamiltonians are indeed compatible with separation in each
of the 12 cases. We shall use the affine coordinates (2.5).

(4.53)

(4.54)
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c. Elliptic I coordinates:
z; = [alv — 1) p — 1)/la — 1pwp] €, (4.55)

2ia,

z; = [(v —a)l@a — p)/la — 1pp] &,

0, = [1/(v — p)1{4pv(v — )lv — a) p%. + 4vp(p — Vla —p) p;
+ [la—p/lp =)+ v—ap/v—1)]p2 +allp— w/la—p)+v—1)p/v—a)l p,
—av/p — p/V\Pa, +Pa)} =03,

H=[1/{v—p)} [4v — 1)v —a) p +4p(p — Vla —p)p;
+la—U[/p—1)—v—1)]p% +ala— 1[1/a—p)+ 1/lv—a)l p,
—a(l/p = 1/¥) P, +Pa)’] =E.

d. Elliptic II coordinates:

i = —(a— lpp/alv— 1)1 —p), 23 =—a)a—p)/av—1)1-p), (4.56)

p<0, l<a<y, O<a— 1<,

H=[1/{v—p)] {4y — 1)v —a) p2 + 4p(p — )la — p) p; + a{ — Vp + 1/} P,
+ala—)[1/{a —p)+ /v ~a)] p2, — la— D1/ —p) + 1/(v = ))(pa, + Pa,) =E,

0, = [4(1 —p)lv — /(v —p)] [Vlv—a)p} +pla—p)p, ] + [vp —ap —av+a)/vpl P,
+la—1pv—a)p2 + lla— D2 —v—p)/v—101—=p)](Pa, +Pa) =05

2. The noncompact Cartan subalgebra {X; + (1/V3) Xg, X/
— X+ (V3] = p, =¢;, Xs=p, =0y

e. Hyperbolic coordinates:

__isinhB coshu — coshB sinhu i tanh4

) = je , 4.57
i coshB coshu + sinhB sinhu icoshB coshu + sinhB sinhu 14.57)
Qs =p3 + (1/cosh?2B ) p> — p%) — [2 sinh2B /cosh®2B | p, p,, »
H =p% + (1/cosh’4) Qs + (1/sinh®4 ) pl, .
f. Complex elliptic coordinates: The coordinates are
z, = is, coshu — s, s¥nhu oz, =g 5, ‘ (4.58)
is, coshu + s, sinhu is, coshu + s, sinhu
with s, 5, and s, as in (4.48)
Q.= [1/1p — )] {49 p — allp —a*) 3 — 4oty — allv — a*1 5%
+4la—a*Ppv [1/(p—a)lp —a*) — Vv —a)lv—a*)}{ - p. +p2)
+ ([a*/pvi p* — ) pa
+ Lila —a%){[(a* + apvp — 2|al’p]/(v — a)lv — a*) — [(a* + alvp — 2|a[*>v]/(p — a)lp — a*)} p., Pa] ’
H={1/(p~v) [4p(p —a)(p —a*)p, —4vlv —allv —a*)p;
+ila—a** [p/lp—a)p—a*) —v/v—aflv —a*] (—pi +p2)
+(lal/pvi(p — ) pe
+ ila—a*){ll@* +a +2]|a]*/(v — allv — a*) — [(a* + a)p — 2|a*]1/(p —a)(p —a*)} p, pa] ’
!
3. The orthogonally decomposable MASA {Y,,Y,)} z, = (sinhB + ite ~ #)/(coshB + ite ~ 7},
—1Y, = -4 [ X5+ (I/V3) X5l =p, =cy, z, = tanh Ae®/(coshB + ite ~ %), (4.59)
— Y= X5 — Xy —V3Xg) =p, =c,. Qr=p5 + €%, +pa) — P =3,
g. Hyperbolic coordinates [a = 0 in (4.28)): H=p% +(1/cosh’4) @, + (1/sinh’4 )p2 =E .
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h. Horospheric coordinates [b = 0 in (4.28)):
zy=(—14+e*+B*+2it)/(1 + e+ B% 4+ 2it),

z, = Be”/(1 + e** + B2 + 2it), (4.60)

Qs =p5 + [(1/B)p, + Bp,]*,

H=pj +e"Qy +e* p;.

i. Elliptic parabolic coordinates [3a = b in (4.28)]:

zy=Ww+p—2vp+2ivpt)/Iv+p+ 2vpt),

Z =dvp(l —v)(p— )e¥/(v +p + 2ivpt )*, (4.61)
]

J. Hyperbolic parabolic coordinates [3a = — bin (4.28)):

Qo= [1/(p =] 4pv[ plp — 1) P, + Y1 —v) P} ]
+ [p(1 =WV +vp — 1)/p*] p}
+vwll/(1 =)+ /(p—1)]p2
+2(p/v —v/p)ppa} = c5,
H=[1/(p—)]{4p%(p — 1) P} + (1 —v)p}
+ [/ =¥+ U/(p—-1]p;

+ (1 = »)/V + (p — 1)/p*1p?
+2(1/v—-Vp)p,p}=E.

zy=W+p—2ivpt)/(v+p—2vp —2ivpt), z5=[—4vp(l —v)(p— 1)e**]}/(v+p—2vp —2ivpt)?, (4.62)
Qo= [p—v1{dpv[plp—1p, + vl =v)pL] + [ p(l = V/V’ +v(p — WV/p*] pi
+vp [1/(1 =)+ V(p— 1)) pi — 2(p/v—v/p)p. p.}
H=[1/(p—]{4p*(p— D) p, + 4(1 —v)p} + [1/1 =)+ I/(p—1)]p}
+ [ =/ +(p = V/p*] pi = 2(1/v — V/p) p, p.} -
4. The maximal abelian nilpotent subalgebra {Y,, Y,/
Yi=X,—X,=p,=¢,, — Y4=X5—%X3+%‘/3X3=Pu =0y
k. Horospheric coordinates [b = 0 in (4.32)]:
z,=[2(u+Bt)— il + B>+ 1> — 1))/ [2u + Bt) — il + B + 2+ 1)], .63
z,= —2(t+iB)/[2(u+Bt)—ile**+ B> +t*+ 1)], (4.63)
Qu=ps + (p.—2Bp,) =c;,
H=p} +e"Q, +e*p. =E.
1. Semicircular parabolic coordinates {a = 0 in (4.32)}:
_ 20*Vu —2pv(p + )t —i[(p — v)* + pV(t? — 1)]
7, =L : TPV , (4.64)
20°V’u —2p¥(p + V)t — il(p — vf + p*V(1* + 1))
z, 20vt — 2i(p + v)

T WV —dpvp+ Vi —illp — VP + PR+ )]

Q1= [2/(p — V)] (vp* P2 —vp P2 + W/p — p/v) p + 4v/p* — p/V’) P2

+ (4v/p* —4p/V: +p—V)p, p.},

H=[4/(p—v1{p’pl =V’ P, +(1/p—1/v)p; + 41/p’ — 1/V)) pl + 41/p> — 1/V*)p, p.} .

To summarize: The nonsubgroup type coordinates on
H,, namely elliptic I and II, complex elliptic, elliptic para-
bolic, hyperbolic parabolic, and semicircular parabolic each
occur precisely once. The subgroup type coordinates on H,
occur as follows: spherical coordinates once [since the com-
pact subalgebra u(2) contains only one MASA], hyperbolic
coordinates three times [u(1,1) contains three MASA’s] and
horospheric coordinates twice [4, ,, contains two MASA’s
(see Fig. 1)].

V.CONCLUSION

The results of this article should be viewed in the con-
text of three different but related research programs. Oneis a
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r
systematic study of the group theoretical, algebraic, and geo-
metrical aspects of the separation of variables in linear and
nonlinear partial differential equations. From this point of
view we should stress that the hermitian hyperbolic space
HH{(2) is a noncompact manifold of nonconstant curvature
(it does, however, have constant holomorphic sectional cur-
vature). The fact that it has a large isometry group, namely
SU(2,1), made it possible to apply essentially the same tech-
niques as for spaces with constant curvature. We have shown
that all 12 separable coordinate systems on HH(2) have their
origin in the properties of the algebra su(2,1), its subalgebras,
and its enveloping algebra.

The second context is that of the classification of sub-
groups of Lie groups, in particular, maximal Abelian sub-
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groups of classical Lie groups, and its application to the
study of differential equations. Indeed, the classification of
all MASA’s of su(2,1) into four conjugacy classes was the
basis of our calculations providing the explicit forms of the
12 separable coordinate systems. In passing, we comment
that other applications of this classification are being pur-
sued. In addition to the separation of variables, these include
the derivation of superposition principles for certain systems
of nonlinear differential equations?®~?® and the symmetry re-
duction of certain nonlinear partial differential equations to
ordinary ones.?

Finally, the reduction of the problem of separating var-
iables for the free Hamiltonian on HH(2) to that of a Hamil-
tonian with a nontrivial interaction, defined on a lower-di-
mensional manifold, namely the O(2,1) hyperboloid H,, is an
example of a more general method of introducing interac-
tions, in particular completely integrable Hamiltonian sys-
tems, by symmetry reduction on group manifolds or homo-
geneous spaces.

All three above aspects are being actively pursued. In
particular, we are currently generalizing the results of this
paper to the space HH(n) making use of the MASA’s of
SU(n,1). The completely integrable Hamiltonian systems ob-
tained in this article are being investigated {explicit solu-
tions, properties of trajectories, special functions occurring
as solutions of the Laplace-Beltrami equations, etc.). The
related problem of separating variables in Hamiltonians on
HH{2) with specific potentials that reduce by symmetry to
more general completely integrable relativistic Hamiltonian
systems than the ones treated in this article is also under
consideration.
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APPENDIX: THE su(2,1) INFINITESIMAL OPERATORS
IN TERMS OF IGNORABLE VARIABLES AND O(2,1)
VARIABLES

1. Compact Cartan subalgebra variables

X, =cosla, — ay)ly,
+ sin(a, — ay)[(52/51)p,, + (51/520Pa, ]

X, = —sinla, —a))l,;
+ cos(a, — aZ)[(s2/sl)pa| + (sl/sz)Pa2 )

X, =Pa, —Pa,»

X, = cosaly, — sina, [(s,/5o + 5o/51)Pa, + (51/50)Pa, 15
Xs = sina, 1y, + cosa, [(s;/s4 + 5o/51)Pa, + (sl/so)pa2 1
X = cosayly, — sina, [(s,/50)p,, + (52/50 + 50/520Pa, 1>
X; = sinaydo; + cosa, [ (52/50)pa, + (52/50 + So/$2)Pa, |,
Xy = — V3., +pa,)-
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2. Noncompact Cartan subalgebra variables

X, = coshu cosal,, + sinhu sinal,,
— [s2/(s5 + s1)](socoshu sina — s,sinhu cosa)p,,
— [V/sy(s5 + 57)] [ — Sols5 + s7 + s3)sinhu cosa
+ 5,55 + 57 — 53 )coshu sina ] p,,

X, = coshu sinal|, + sinhu cosaly,
+ [52/(s5 + 53)](sqcoshu + cosa + s;sinhu sina)p,
+ [ /585 + 53)] [Sols? + 5} + s3)sinhu sina
+ 5,(s5 + 57 — 53 )coshu cosa |p,,

Xy = i( — sinh2uly, + [2505,/(s5 + 57)]cosh2up,
+{[(s5 — 57)/(55 +51)] cosh2u — 3}p,,),

X, = cosh2ul,, — [2s,8,/(s5 + s7)]sinh2up,
— [{s5 — 51)/(s5 + s1)]sinh 2up,

Xs=p.,

X, = — sinhu sinal,, + coshu cos/,,
— [52/(s5 + 51)] (sosinhu cosa + s,coshu sina)p,
— [U/s585 + 57)] [Sols5 + 57 + 53 )coshu sin
+ 5,(s5 + 57 — 53) sinhu cosa ] p,, ,

X, = sinhu cosal,, + coshu sinal,
— [s2/(s5 + s1)](so sinhu sina — s,coshu cosa)p,
— [V/sy(s3 +52) ][ — solss + 57 + 53 )coshu cosa
+ $,(55 + s1 — 3 )sinhu sina | p,,,

X, = V3(sinh2uly, — [2s05,/(s5 + s1)] cosh2up,
—{[(s3 —s})/(s5 +53)] cosh2u + 1}p,).

3. Variables corresponding to orthogonally
decomposable non-Cartan subalgebra

Y = —3p,,

Y, = —cosa(ly, — I5) + sina{ (s, — $,)/5,]p,
— [s2/(s0 — 51)1p. ),

Y; = —sina(ly, — I} — cosa{[(s, — 51)/5,1p,
— [s2/(s5 —s1)1p: }

Y= —p, Ys=1Iy+2p,

Yo= =2ty + (s + 51/ (55 — 51)]Pe

+ {2508, — 2t (50 — 51)°1/(56 — 5%}
Y7 = COS(ZI]Z + t Sina(IOZ - 112)

+ [ —s1(s9 — 5,) — 53 ] sina

+ (50 — 31)2“:05‘1}/52(% - sl)} o

— [s;[sesina + (s, — sy)cosal/(so — 5,)*} P,
Y, =sinal,, — t cosa(ly, — 1,,)

+ ({ [51(50 — 51) +5 Jcosa

+ (8o — 51)ssine } /5,(s — ) Par

+ {s2[s0c08a — t (5o — 5,)sina]/(s; — 51)2} p:-

4. Variables corresponding to the maximal abelian
nilpotent subalgebra

Y, =3{t(l,, — I,;) + [s2/(s0 — 5))] P,
+(t? _Sg/(so ~sl)z)Pu 5
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Y,=1,—-1,+2p,, Y,=p,

Yi= —p,, Ys=Iy+1tp +2up,,

Yo= —2uly, + 13y — Iy) + t (Lo + 1)
35,22 (S0 + 51)52 ]Pz

— = 4o+
[So_sl (50—51)2

3t %3
(8o “51)2
53(50 + 5) 25,5, ]P
(o — 5, (o — 5,)? )

3t 3s,t
Y7=112+7(102—112)— (” +—2_)P:

+[—%t4+ -2

So— 5
(so—s,)z “

12 st —s5 —s5
Yo=tly +ully; — Ioy) + —+—1—2“To's'l‘] ¢
2 (So — $1)
5,(55 — 51 +S§)]

+ [2tu +
(S0 — 5,)
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