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A complete analysis of the free-field massless spin-s equations (s = 0, },1) in Kerr geometry is
given. It is shown that in each case the separation constants occurring in the solutions obtained
from a potential function can be characterized in an invariant way. This invariant
characterization is given in terms of the Killing—Yano tensor admitted by Kerr geometry.

1. INTRODUCTION AND MATHEMATICAL
PRELIMINARIES

A complete understanding of the characterization of so-
lutions of spin-s free-field equations in Kerr geometry has
yet to be achieved. Interest in these equations originated
with the investigations of Teukolsky,' who showed that in
the Newman—Penrose” formalism separable solutions were
possible for certain Maxwell and Weyl scalars in Kerr geom-
etry.® (Kerr geometry is the space-time geometry of the
gravitational background due to a rotating black hole.)

Chandrasekhar® has shown that these results can be ex-
tended to the Dirac equation. These results have been
further extended™® and shown to hold for more general
classes of space-time. In the original work of Carter’ it was
established that the Hamilton—-Jacobi and Schrddinger equa-
tions admitted a solution for the Kerr geometry via standard
separation of variables techniques. Because of this property,
Kerr space-time admits a quadratic constant of the motion
in addition to the already known two Killing vector fields.
However, the key property at the heart of the solution of the
equations for spin-s (0,4,1) is the existence of a Killing—
Yano tensor.? The role played by such a tensor for the solu-
tions of the Dirac equation has been explained in Refs. 9 and
10. In this paper we indicate how this characterization works
for massless particles with spins 0, 1, and 1 and massive parti-
cles with spins-0, 1. In so doing we clarify the role of the
Killing—Yano tensor. The results for spin-1 are new and the
treatment of spins-0, 4, while not new, is presented in a uni-
fied way.

Once this work is extended we expect to better under-
stand the methods by which a theory of “variable separa-
tion” can be constructed for general spin-s equations. Earlier
work by the authors,'! although not incorrect, did not suc-
ceed in giving an intrinsic characterization of the separation
parameters appearing in the solution of Maxwell’s equa-
tions. What was in fact achieved in Ref. 11 was a characteri-
zation of a particular choice of gauge. The contents of the
present paper are arranged as follows. In Sec. I we outline
the conventions and notations used, together with the rel-
evant definitions and properties of Killing—Yano tensors. In
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Secs. II and I1I we deal with the zero-mass equations of spin-
0, }, and 1, respectively. .

In this paper we consistently use the spinor notation of
Penrose and Rindler.'? In addition, we employ the null tet-
rad formalism as described by Chandrasekhar.* Specifically,
we restrict ourselves to the Kinnersley null tetrad of vectors
with the components

I'= (1/8) (P + d*,A0,a),

n'= (1/20*) (P + &*, — A0,a),

m' = (1/+2p) (ia sin 6,0,1,i csc 6),

m' = (1/y2p*)( — iasin 6,0,1, — i csc ),
where

A=7+a®—2Mr, p* =r + a*cos’ 6,

p= (r+iacos?).

(L)

The Kerr solution of the Einstein equations has the line
element
2
ds* = (1 _Z_Af—’) dt* — L dp — p? dp?
A

P

12
+4aMr§1n 0dtd¢

2 sa2
M) sin 0.dg?. (1.2)

- ((r2 +a%) +
A Killing-Yano tensor K, .55 is a (skew symmetric)
tensor satisfying

v(CC’KAA')BB’ =0, Kys85 + Kppaar =0 (1.3)
The Killing—Yano tensor can also be equivalently represent-

ed in terms of the pair of symmetric Killing spinors
K,p, K p via

K ypp =3(€45 K4 +€ABI—<_A'B')- (1.4)
Conditions (1.3) are then equivalent to
V(AA ’KBC) =0, VA(A ’EB'C‘) =0,
_ (1.5)
VBA’KAB + VAB'KA’BI =0.
© 1989 American Institute of Physics 2360
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We have the following result: In Kerr space-time the
equations for a Killing-Yano tensor have only one solution.
The nonzero components of this tensor in the null tetrad
formalism using the Kinnersley tetrad are

(1.6)
The Klein—Gordon equation for a spin-O free-field is
Q¢ = (V. V") =m?s. (L.7)
In Newman-Penrose notation (1.7) has the form
Oé=[D—p—p")A+(A—y—y*+u+u*)D
—(*—a+B*—1+1m)b
— (5 +B—a* — 1+ 7%)86* ¢ =m’s. (1.8)

In terms of the coordinates used to describe the line ele-
ment (1.2) this equation reads

O¢=(—-120{M(2, D5 + D[ D)

Koy =itacos 0, Kojyg =7.

+ (&L + L L) =ms. (1.9)
Equation (1.9) admits a separable solution
¢ = Ro(r)Sp(B)e™*+ 1, (1.10)

where the separation equations are

AMD DS +D D) +2mr* + 1R, =0,
(1.11)
[L1 L + L Lo+ 2mPa® cos® § — 1 ]S, = 0.

The directional derivatives in expression (1.11) are de-
fined by

D,=08, +iK/A+2n(r—M)/A,

G} =0, —iK/A+2n(r— M)/A,

KL, =0+ Q+ ncoth,

L =0,—Q+ ncoté,

(1.12)

where K = (# + a*)o+am and Q = acsin 8 + m csc 6.

From the theory of separation of variables for the
Klein-Gordon equation it follows that there exists a second-
order symmetry operator U such that

Up = A (1.13)

for a separable solution ¢. (We say that U is a symmetry
operator if it commutes with OJ: [(J,U] =0.)
In terms of the Killing-Yano tensor,

U= (KAA 'BB'VBB‘ ) (KAA’CC’VCC‘) _ KAA 'BB’MBB'VAA'
= (1/2p*)[@* cos? 0 [AM(Z D5 + D+ D))

~-P[ZL\ L+ L L] (1.14)
where
MAB’ = %VBA ’KBB‘AA"
We also note here that the symmetric tensor
'z/'AA'CC'zKAA'BB’KBB’CC' (115)

is a second-order Killing tensor satisfying the Killing equa-
tion

V(AA"%/‘BB’CC') =0. (1.16)
This fact is crucial in the separability of the corresponding
Hamilton—Jacobi and Schrédinger equations.
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Il. THE DIRAC EQUATION

In spinor notation the Dirac equation has the form

VAX'XX' = (ime\/i)¢Ar VAX'¢A = = (’me/‘/i)Xx
2.1)

Equations (2.1), when written in Newman-Penrose nota-
tion, are

(D —p*)x1 — (6 + 7* —a*)yo = (im./N2)4y,
(8* +B* — ™)y — (A +p* — ¥ )xo = (im./\2)¢,,
(D— )by — (8% +7— Dy = — (im Do,
(6+B—7¢— (A +u—1o= — (im/\2)x,.
Chandrasekhar* found solutions of the form

= (1/p*)R_,;,S_,,,&" T,

$o= — R, ;251,67 + "™,

Xr = — (1/P)R_;;5S,,¢" + ™™,

XO' i —Rl,’ZS—UZeia‘+im¢-

(2.3)

The second-order separation equations are
{825, D, — [im./ (A +im.)]AD,
— (A4 mP)IR_,,, =0,
{09, D5 + [im./ (A —im,r)|AD
— (A2 4+ m2P)}AV?R,,, =0,
{& L%, + [am,sin@ /(A +am,cos 6)].L 1,
+ (A% —a*ml cos’ 9)}S_,,, =0,
{&£5 L) — [am,sin@/(A —am, cos 6)].L ),
+ (A% —a*m? cos® 6)}S,,,=0.

The separated solutions satisfy the eigenvalue equations

LAA'XA‘ = (KAA'BB'VBB' _MAA‘)XA’ = (4 /\/5)¢A,

(24)

) .5)

Ny ¢'= (Kuu %2 Vpp + M, )¢t = (4 /\/E)XA"
From Eqs. (2.5) follows the conditions

[Vai L%+ Ny V¥ x4 =0, 26

[V4Ny + L4V, 18" =0. '
From (2.5) we can construct the operator

0 L4
A= 4 2.7)
N4 0

acting on the Dirac spinors

b4 ]

Xarl

The operator (2.7) anticommutes with the Dirac Hamilto-

nian

. [ (im,/\N2)ex* — V" ]
Lo — (im 2)es

The proof of relations (2.6) is instructive; we now prove the
first of these relations. Consider the operator

QA'C’ = NAA‘VAC' - VAA’LAC'

using

(2.8)

2.9)
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Vi Kpc =€56Mcy + €4cMp,.,
VKpc =— €apMic —€40Myp.
We find that
Qic = %[KABVBA‘VAC‘ + EA’B'VAB’VAC’
— K,V Voo — Ko 2V, V.
+ (64c M + €, M )V 4
+3M2, Ve ]
My Vi + My V4 4+ (V1 M) (2.11)
Noting that
K Vi Vi =K V" Ve
since K 5 is symmetric,
K, 2V Vi —K.BV4,.V
=31K, P (Vg Vi + VoV, + [Vis Vi)
~ 3K (V4 Vo + Vg Vi + [V 9,5 1)
= %EA’C’I—(D’B'(VAB’VAIT + V42V ,5)
H3K P [(Vag Vi ] + 4K 7 [Vap V00 ]
=K, 5 [V Ve | + 3K [V,5, V4 ], (2.13)
€qcMABV p =M.V, —M*, V., (2.14)
we can write
Quc =K [Vap Ve ]
+ 1K P [V V40 ] + (V4 M ). (2.15)
Now consider
Vg Mg =49, Vep K
=1V Vs + [VaaVes DK
={(Vp- Mgy + €45V M€,
+ €48 Vapcn K ),
from which the following results can be obtained:
V(A(A’MB)B') =0, VAA’MAA‘ =0,
Vs Mp,* =1V ,5cpK P =W,p, defining W,,.

Note that we can also write V, , Mg,
= —1V,, Vye. K €'y and proceed in a similar manner as
before to obtain the additional result

VA(A'MAB’) = —'%WA’B’C’D'EC'D'
= — W,.p, defining W,.,.. (2.18)

Now since (by reducing to symmetric spinors) we can write
forany T 5,5,

(2.10)

(2.12)

(2.16)

(2.17)

_ 1 K’
TABA ‘B — T(AB)(A ‘B') + ieA ‘B’ T(AB)K'

+%EABTKK(A'B') +%EAB€A'B’TKKK'K’ (2.19)
it follows that
ViaMep =345 Weg — €5 Wap. (2.20)

We also note in passing that V.. M ;. is a skew-symmetric
tensor, i. e., M, satisfies

VM, =0, (2.21)
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i.e., M, is a Killing vector.
Returning to the operator Q,, .., we can now write

QA’C' = %EA’B'[VAB”VAC’ ]

4K P [Vap Vi 1+ W (2.22)
from which its action on a spinor ¢ is as follows:
Q¢ = iK'A'BlfA AEB’C'C'M'¢M’
+ %—K_'C’BIGAA@B'A'C'M’¢Ml
W ca KEM9S =0, (2.23)
Thus
NAA'VAC’¢C' = VAA’LAC'¢C' (2.24)

If we consider only the neutrino equation V44'¢, =0
for the case in which m, = 0 (massless spin-}), then the sep-
aration constant A > stems from the eigenvalue equation

LHA'NAA'¢A =4 2/2)¢B‘ (2.25)

lil. THE MAXWELL EQUATIONS

For the case of the Maxwell equations corresponding to
mass-zero spin-1 the characterization of separation param-
eters in terms of the components of the Killing—Yano tensor
can also be achieved. Maxwell’s equations are commonly
formulated in terms of the skew-symmetric energy momen-
tum tensor F,, 5., which satisfies
VAA'FBB'CC' +VCC'FAA‘BB’ +VBB'FCC'AA' =0’ (3 1)

VAA'FAA‘BB’ =0, Fyipp +Fppaq =0.

As with the case of Killing-Yano tensor, F, .55 can be
realized via the symmetric spinors ¢ 5, ¢,.5. according to

Fuypp = €584 5 + €15 Pap- (3.2)

In terms of these symmetric spinors, Maxwell’s equations
have the form

VA $a =0, (3.3a)
V,bcp =0. (3.3b)

In Ref. 4 Chandrasekhar has obtained explicit solutions for
these equations: viz.

(D —2p)po, — (6% + 7 — 2a) ¢y, = O,
D —p)¢11 —(6* + 27T)¢01 =0,

(3.4)
(6 —27)Po, — (A + 1 — 27) Py =0,
(6—14+28)d,, — (A +2u)d,, =0.
From the crucial observation that
P8 —27)(D —2p) = (D —2p)p(5 — 21), (3.5)

Teukolsky' deduced that if #oo = 1gee’ + ™, then the func-
tion ¢, satisfies

[AZ, D} + L5 L\ — 2i05]tho = 0. (3.6)

This function admits a separable solution ¢, = R,S,, where
the separation equations are

(AD D" —2ior —A)R, =0,

(3.7)
(Lo L +2a0cos8 +4)S,=0.
If Egs. (3.4) are analyzed further and we write
Kalning, Miller, Jr., and Williams 2362
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¢“ — (2(5*)2)—- 1¢1 leiar + im¢’
we find that the function #,, satisfies

[ADG Do+ LoL [ + 2i0p)1, =0, (3.8)
which admits a separable solution ¥,, = R_,S_, with the
separation equations

[AD G Do+ 2ior+ A R_, =0,

[LoL " —2a0cosf—A]S_,=0.
Equations (3.7) and (3.9) were first derived by Teukolsky.'
The functions R _ ,, S, arecalled Teukolsky functions by
Chandrasekhar. If instead of R , ; we choose the function
P_,=R_,, P_,=AR_,, then the functions exhibit inter-
esting properties, which are summarized in the Appendix.
Chandrasekhar proceeded further and showed that ¢,, can
be written in the form

$o1 = (AWN2B*E) [ D oL, — (1/p*)

X (L +iasin 0D )}P_ .S,

(3.9)

3.10
(3.10)

[(A=p/2)A+p—y+ (1 =2p)y* —pu*)}D + (1 —p)p*)

where € is asin (Al).

We now seek the invariant characterization of the pa-
rameters A and % . To determine this we draw on the results
of Cohen and Kegeles,'> who showed how to obtain solu-
tions of (3.3) via the use of a Debye potential P*¥'¥" and a
gauge degree of freedom G /. If these functions satisfy

VAM'Y L PNOW = gaM'G N (3.11)
then
bap = v(AW’vB)X'? e 2V(AW'GB) v (3.12)

is a solution of (3.3). More specifically, if one chooses
G,¥ = —-U, P*", where

— % — i —_ =
U =p*i Uip =7%, Uy = — 7%, Uy = —pu*,

then P*'% satisfies the decoupled equation

— (1 =p/2)6+B—7+ (1 =2p)a* — pr*)(6* + 2(1 —p)B* + (1 —p)7*)
—P/2)*+7m—a+ B -2p)B*+ 2—p)r*)6+2(1 —pla* — (p — 1)7*)

+ (/2D —p+ 2 —p)p*NA +2(1 —p)y* — (p— DHp*))P*'? =0,

where p is the number of “ones” appearing in the indices of
y 2K

The choice of G} made above is particularly interest-
ing since it yields three equivalent representations for the
same function, viz.

(l) p= 0, ?0'0‘ =P lsleiaz+ im¢:
$o0 = DD P,

$o1 = UN25*) [ DL, — (1/p*) (3.14)
X (&L + iasin 62 ,)1P°°,
= [1/2(,—)*)2]3031?0'0"
(ii)p=2, P'V=(p)’A"'P,,S_ e+
boo =L L P,
b= — (AP [ L — (1/p%) (3.15)

X(LF +iasin 0D )P,
¢, =[A2(6%) 1D D ;P
From the identities given in the Appendix it is straightfor-
ward to establish that (3.14) and (3.15) are representations

of the same functions ¢ .
(iii) p = 1; in this case P%" satisfies

o5 1) L)oo 229
P P p
A(Z0 B8O Lpor g
p Np _
An examination of this equation shows that P! satisfies the
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(3.13)

'same equation as pdo. - Hence a solution may be taken to be

PV = (1/\2%)[ DL — (V/p)( L —iasin 6T ,)]
XP_\S_,eo+ime

With this choice the components of ¢, can be written as

o= (2/P) DL P,

¢01=_—21[A(°@1—‘_2;)-@o+ +A(gl+ —_i)@o
4p p p

_a sin 9)$o]
P (3.16)
" (yr ia sin 0) P ]ﬁo,l,’
F;

é1 = (AN2*) D" L PO
Again, using the identities in the Appendix it can be verified
that expression (3.16) for ¢,, is identical to those given
whenp =0o0r2.
These representations (and the corresponding ones for
& 4.5 ) are invaluable for the proof of our principal result.
Theorem: If the functions ¢,; are the solutions of
V4 ,.¢,.5 = 0as represented by, say, (3.14), then the param-
eters A and ¥ are intrinsically defined via the relations

C*, 5 Pan
= (KA(A'CC'K BB') DD,VCC’ Voo
+ 4MA(A’KBB‘) PPV oo + ZMA(A'MBB’) )ban
=1€d, 5, (3.17)

+ (.fr
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A(AB¢C)B = (KAA'EE'VEE' - MAAI)
X (KBA’DD,VDD' + 2MBA' )¢ac

=(A/2)$ 4. (3.18)

The proof of relations (3.17) and (3.18) is (in princi-
ple) straightforward. The use of the algebraic computing
language MACSYMA has been particularly useful in this re-

A -
_____a cos 6 (2,2 + D Do)p*bro— -
4p°p* 4p'p*
"Ma?® cos® ¢ p iar cos 6(p* + 5p)
W T 4 (

is nontrivial.
It can also be verified that the following holds.
(i) If ¢,5 is a solution of (3.3a), then so is

¢;B = A(A C¢B)c-
In fact,
VCC'A(CA¢B)A
= [ABAGA'Cl — (K Vg — M )M,
+ MK PPV +2M 1)
—2Mp M AV K PP M, 1V
(3.20)
(ii) If ¢,5 is a solution of (3.3b), then
¢4 =C*'"? ,5d,.5 is asolution of (3.3a). Moreover,
$cp = CC’D A’B'¢A’B'
is a solution of (3.3b) if ¢,.5. is a solution as well.
(iii) If ¢ .5 is a solution of (3.3a) then
ACFCFDKL¢KL + ADFCFCKL¢KL
= CCDAB [AA E¢EB + ABE¢EA ]
The operator C4,?" is essentially the operator introduced by
Torres del Castillo."
We take the opportunity here to give a more complete

discussion of the vector potential 4 5. which gives rise to the
corresponding F, 4. 55

ABHA'B’ —
’ C AB¢A’B' _(C‘C’D‘

(3.21)

Asis well known, the choice of vector potential is not unique.
A derivative of a gauge function can always be added accord-
ing to Acc- »Acc + Voo ¢ As in Ref. 11, we choose the
gauge in which the components A... are divergenceless;
then these functions satisfy

Odce = (VBB Vpp )Ace =0, VP4, =0. (3.22)
There are two independent solutions for the above equation

which correspond to the same F,,.p5.. These solutions are
the analogs of electric and magnetic multipoles,'*

Aoy = [P+1(«=2’)1S+1 —ZLS_naT

Fecpg =VecApp — VBB‘ACC"

1 ] eiat + im¢’

Ay =[P (LTS — fls+1)(2p2)"l]ei”’+i"’¢,
Agy = — (DG P+ @op—l)s+1(\/§ﬁ)-leiot+im¢’
2364 J. Math. Phys., Vol. 30, No. 10, October 1989

$i0— T*7¢w

spect. For relations (3.17) the given result can simply be
verified using identities (A4) of the Appendix.

Relation (3.18) is somewhat more difficult. For the
cases when A4 = C = Oor 1 the result is relatively straightfor-
ward to establish. However, the result when 4 =0, C=1
requires extensive computation. In particular, the verifica-
tion of the identity

(Z£\L5 LT Lo)p*dio

iasin @ A
b0 + Z(ﬁr:‘) ¢11=7¢01

iasin 6

267 (3.19)

Ay = (D Pyy+ DoP_)S_ (2p*) e+ ™3, (3.23a)
Ao = [P, (iacos 0.L" + iasin §)S_A~" e +im?,
A, = [P_,(iacos 6.7 + iasin 6)S . (2p%) ~']e + ™9,
Aoy = — (rDy— 1)P_1S+le""‘+"'"¢’

Ay = — rD s —DP,S_ e, (3.23b)

Indeed, the (3.23a) corresponds to electric multipoles and
(3.23b) corresponds to magnetic multipoles. In establishing
(3.23a) use was made of the identity

(L, —iasin0D; )P, ,S,,
+ (L —iasin 0L )P_ S, ]
= iop[p* Dol | — (L1 + ia 6D ,)1P_,S, 1.

It should be noted that the method of Cohen and Ke-
geles'? also gives expressions for the vector potential. More
specifically, the vector

Acer = (Ve PE . —2Gc.) + complex conjugate

is such that A .. is a solution of the Maxwell equations.
However, the choice of functions P*'Y and G !’ given pre-
viously does not lead to solutions in the divergence-free
gauge.

IV. CONCLUSION

In this paper we have explicitly shown how the separa-
tion parameters that occur for spin-s = 0, }, 1 equations can
be intrinsically characterized in terms of covariant operators
whose coefficients can be written in terms of the Killing—
Yano tensor and its covariant derivatives. In Minkowski
space we subsequently show that these characterizations and
their natural generalizations hold true for any s. There are
well-known difficulties with the generalizations of equations
of type (3.3).'% In this respect it is our intention to examine
the nature of the intrinsic operator characterization of the
functions 4 .. and their generalizations for higher spin. All
these results provide a nontrivial example of solutions to
spin-s equations. Ideally, a suitable theory of such solutions
to this type of equation would enable us to derive the exis-
tence of such solutions from intrinsic properties only.
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APPENDIX: SUMMARY OF THE CHANDRASEKHAR?
RESULTS

Chandrasekhar,* in his treatment of electromagnetic
waves in Kerr geometry, has thoroughly developed the prop-
erties of the Teukolsky' functions. We summarize his results
in the following theorems.

Theorem A1: For a suitable choice of the relative norma-
lization of the functions P , it is possible to arrange that

_J

DFP,,=(—il2K)[(A + 2ior)P,, — CP_,],

LIS =(=12Q)[(A —2a0cos )S_, + €S, 4],

DoP_, = (i/2K) [(A — 2ior)P_, — € P, ],
Z.S.,=(1/20)[(A+ 2a0cos )S, , + €S_,].

ADDP_ = CP,, ADFDP, =%P_,
(Al)
where
€2 =A%— 4(a%0* + amo).

Theorem A2: If the functions S, , are normalized to
unity,* then it is possible to arrange that

oL S =FS_,, L& LIS =%S,, (A2)

with ¢ as in Theorem Al.

Corollary: The derivatives of the functions P, , and
S, can again be expressed as combinations of the same
functions:

(A3)

In addition to identities (A3) the following relations are instrumental in the establishment of (3.17):
DL =(€/M), + L5 (1/p*) [ — ¢, +iasin 6(1/M),],

DL gy = Cthg— L o(1/p*) (¢, + ia sin H¢y),

L L =€, + (/P (L —iasin0D ), — L (1/p*) (¢, + iasin §¢,),
AD D, = — €, — (1/pIL [ —iasin 0D ), — D o(1/p*) (MY, — ia sin 64,),

ADF Dy = — €+ (1/p) (L, —iasin 0D 5 YAy — D" (A/p*) (¥, + ia sin O4fyy),

(A4)

L L =€ — (1/p) (L, — iasin 0D YAYy + &L (1/5*) (A, — ia sin O¢,),

AD L o= —Ch + (1/p) (L —iasin 6D 5 YAy,

DL by =€ + (VP (L — iasin 0D )i,
where

'/’0=2¢oo’ 'ﬁ:ﬁﬁ*ﬁbon 1/’2=2(F_’*)2¢11~
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