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Potentials for which the corresponding Salirger equation is maximally super-
integrable in three-dimensional Euclidean space are studied. The quadratic algebra
which is associated with each of these potentials is constructed and the bound state
wave functions are computed in the separable coordinates1999 American
Institute of Physicg.S0022-24889)02602-X]

I. INTRODUCTION

The present paper continues our study of the systems hidttlen symmetrpr so-called
superintegrablesystems in spaces with constant curvature.

The best known systems of this kind in three-dimensional Euclidean space are the harmonic
oscillator and Kepler—Coulomb problems, which have many special properties distinct from other
spherically symmetric potentials. These include the phenomena of separation of variables for the
Hamilton—Jacobi and Schdimger equations in more than one orthogonal coordinate system and
the existence of integrals of motion in addition to the total angular momehturin particular for
the isotropic oscillator there is the Demkov tenfig=p;px+ w?x; Xy, and, in the case of the
Kepler—Coulomb problem, the Pauli-Runge—Lenz vesterl/2([L X p]—[pXxL])—r/|r|. Both
these systems possess five functionally independent integrals of mdtibme first systematic
search for all potentials for which the ScHinger equation admits separation of variables in two
or more coordinate systems was begun by Smorodinsky and Winternitz with co-workers in Refs.
4—6 and continued by Evans in Refs. 3 and 7. They found all such systems in two- and three-
dimensional flat space and introduced the notionsgperintegrability In general, a physical
system inN dimensions is calledninimally superintegrable if it hasi—2 integrals of motion,
and maximally superintegrable if it hasi®— 1 integral of motions. There are five known maxi-
mally (and some minimallysuperintegrable potentials listed in Refs. 3, 8, and 10 and investigated
from different points of view in the last decafié®® Note also that superintegrable potentials in
spaces of constant curvature were introduced in Refs. 14-16.

In previous articleS ~*°we have looked at potentials in two-dimensional Euclidean space and
the two-dimensional sphere and hyperboloid, for which the Stihger equation is maximally
superintegrable. In this article we extend this study to the case of three-dimensional Euclidean
space. As previously seen in the case of two dimensions, some of these potsegalzable )l
admit bound state or finite solutions and it is these to which we draw attention in this article.

The basic equation that we investigate is of course the Saotger equation=m=1)

FZE G

1
ax? oy 97°

1
HY = 2A\IHLV(x,y,z)\If= — E(

v +V(X,y,z2)W=EWV. (1)

The idea is to find solutions of this equation via a separation of variables ansatz
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TABLE I. The three-dimensional maximally superintegrable potentials.

PotentialV(x,y,z) Separating coordinates

Cartesian
Spherical
Cylindrical polar
Cylindrical elliptic
Sphero-conical
Oblate spheroidal
Prolate spheroidal
Ellipsoidal

-1 K-

+
X

I

kg_

INT

w2
Vi=—> (C+y2+2)+ +

+
!

ki—2 O
Cylindrical polar
+
X y Cylindrical parabolic
Cylindrical elliptic
Parabolic

2 1 k%%) Cartesian

2
1
sz% (R+yP+42)+

o 1 ( ki—% K- %) Spheroidal-conical

V3= + Spherical
By 2

Parabolic
Prolate spheroidal Il

X2 y2

3
~P=j[[1 ¥;(u;)

for some suitable orthogonal coordinatgs(see Table .

In Secs. II-IV we consider three maximally superintegrable poten(sale Table )l and use
the Niven-type(or Bethé®) ansatz for constructing the solution of the Safinger equation in
coordinates such as spheroidal, sphero-conical, and ellips@dal Table . In addition we
discuss the extension to the quadratic algebras that were in evidence in the case of two dimensions
and see what their implications may be.

Section V is devoted to the calculation of interbasis expansion coefficients fulthetential
between spherical and parabolic bases.

II. GENERALIZED ISOTROPIC OSCILLATOR

The first potentialsee Table )l on our list of three is

2 k2—1 (kZ_l) (kZ_l
0, L (ki—3 2717 371
Vi(X,Y,2)= 5 (xc+ys+z9)+ 5 2 + y2 + 2 , (2

where the constank;=3. For k;=3 we have the ordinary isotropic oscillator potential. The
corresponding Schdinger equation admits solutions via a separation of variables in eight coor-
dinate systems: Cartesian, spherical, sphero-conical, cylindrical polar, cylindrical elliptic, prolate
and oblate spheroidal, and ellipsoidal. We summarize the bound state solutions in each case.

Before considering various coordinate systems we note that a basis for the symmetries of
Schralinger’s equation with the potentié2) consists of the six operators:
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TABLE Il. Systems of coordinate in three-dimensional Euclidean space.

Kalnins et al.

Coordinate system

Coordinates

I. Cartesian
X,y,zeR

Il. Cylindrical polar
p>0, ¢ €[0,27)

IIl. Cylindrical elliptic
zeR, e1<u1<e,<pu,

IV. Cylindrical parabolic
£xeR, =0

V. Spherical
r>0, 0e[0,7], ¢[0,2m)

VI. Prolate spheroidal
e <u;<e,<u,, pel0,27)

VII. Oblate spheroidal
e <u <e,<u,, ¢e[0,2m)

VIII. Sphero-conical
r=0,e,<p;<e,<p,<e;

IX. Parabolic
&,1=0, pe[0,2m)

X. Ellipsoidal
a;<uj<a,<u,<az<us

Xl. Paraboloidal < #7;<a,<7%,

<a3z<17s3

X,Y,Z
X=p COS¢, y=p Sing, z

Xzi(/ul_el)(:u'Z_el) yzi(Ml_ez)(Mz_ez)
(&—e) (&—e)

1

x,y=£&n, 2= 56— 7?)

X=T C0SHCOS¢p, =T Ssinfsing, z=r cosh

2_ (u—e)(U— ) cod
(e1—&)
R

y= (e—&)
_ (U —e)(U—ey)
(e,—€y)

sir? ¢,
zZ

(u—e)(u—ey)
Xéﬁ cog ¢,
_(u—e)(uy—ey)
v (C=]
22:(U1—ez)(uz_ez)

(e1—€)

Sir? ¢,

2_ 2 (p1—e)(p2—er)
(er—e)e—ey)’
erz(Plfez)(szez)
Y eeeey
(p1—€3)(p2—€3)
P=r—— = =
Mee)ee)

x=En cose, y=£nsing, z=3(£— 1)

o (U—a)(Up—ay)(Uz—ay)
(ag—ay)(a—ay)
(U= ay)(Up—ap)(U3—ay)
(g —ap)(az—ay)
_(up—ag)(U;—ag)(Uz—ag)
 (@ag)(@ag)

y2

2

e (11— 83)(17,—83)(173—83)
(ag—ap)

yz_(m* ) (17— 3) (13— 3)
(ap—ag)

1
2°=5(m1+ m2t m3—az—a3)

1
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k2—1
Mi==Dji= =7, —H=Mi+Mz+Ms, ®
I
1\ x? 1\ %% 1
12 2 J 2 [ -
Jij—'—ij_(ki_Z)x_iz_(kj_Z)x_jz_E’ =123, @
whereL;; =xi(9xj—xj&xi, D;= —07)2(i+w2xi2 is a diagonal components of the Demkov tehsord

we have the notatior; =X, Xo=Y, X3=Z.
The commutators of the operatai®) and (4) can be closed to form a quadratic algebra as
follows:

[Mi, M;]=0, [M;,Ji]=0, [M;,Jd]1=Qij=Qyij;. [Jij, dik]=Rijk1=R,

whereQ;; is totally antisymmetric and the totally antisymmetric quanBy;; is denoted byR.
Further commutators are calculated to be

(M, Qul=0, [M;,Q;l=4{M;,M}+163;, [M;, RI=4{MJ;j}—4{M; 3y},
[Jij» Qij1=4{M;,J;;} —4{M; ,J;j} —8(k; = 1)M; +8(kf —1)M;,,
[Jij, Qul=4{M; 3y} —4{M;, 3y},
[, RI=4{3ij Jpcd — 4{3ij Jit —8(kF — 1) I+ 8(KF — 1) iy,
where{A,B}=AB+BA. The expression for the commutators of eandR are
[Qij, Qul=4{M;,Qut, [Qij, RI= =4I, Qut —HJ;j . Qju}-

All the commutators of the operatoks; , J,,, Qpq, andR can be expressed in terms of quadratic
symmetric products of themselves. The algebra, therefore, is closed quadratically. There are rela-
tions between the symmetric products of the generators of this algebra. The exhaustive list of these
is as follows:

QE=%3; .M ,M}+ M M } +16023% — 16(1—k?)M?
—16(1—kP)M? — 22023, — 640*(1— k7)) (1— kD),
{Qij . Qud = 5{3ij .M , My + §{Ji M M} = 5{33 M M}
+320%(1—k){Jjj , i} — 32 1—k?) MM — 64w (1~ k?) Jjy ,
{Qij RF=58{3ij,ij M} = 5{J;j . Ji . M} = 5{;j . Jjic . M} = F{355 Myt — 5H{Ji .M}
_63—4{ij,Mi}+16(1_ki2){~]jk,Mj}+16(1—kj2){~]ik-Mi}_64(1_ki2)(1—kj2)Mk,
R%=— {3 i It + S{Jij  Jich + S Iy + S i Jjt — 16(1—k§) I
—16(1—k?)J5 — 16(1— k) 5+ 21— kD) Jj,
+ 3551 k§) Ji+ AL kP) I+ BA(L—KP) (1 —kF) (1 - k),

where{A,B,C}=ABC+ CAB+BCA. Note that only five operators fror8) and (4) are func-
tionally independent,and for all the coordinate systems that provide separable solutions for the
Schralinger equation the operators characterizing the separation are always combinations of the
Mi and\]ij .
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In the limiting casek; =3, we obtain a quadratic algebra, too. In this case
Qij=2(L;jDjj+DjjLij),  R={Lix.{Lij Lk},

and instead of operatordMl;,J;;,Q;; ,R} we can consider as a basis for the symmetries the
Demkov tensoD;; , and the components of orbital momentur),. In this regard we arrive at the
Lie algebra corresponding to the symmetries of the isotropic osciftator.

Of all the coordinate systems for which separation is possible, in the case of this potential
there are only five which are not essentially a Euclidean two-space coordinate system supple-
mented by an additional Cartesian coordinateSuch coordinate systems we do not consider
further here and the corresponding solutions of the Qtihger equation and invariant algebra are
given in our previous pap¥r(see also Refs. 3 and.gor the remaining systems we now work out
bound state solutions and their corresponding symmetry characterization.

A. Oblate spheroidal basis

Let us consider what we call oblate spheroidal coordinéges Table ). If we write these
coordinates in the form

x=x'cosep, y=Xx'sing, z=y’, )

and put¥ =(x') " Y2d, the Schrdinger equatior(1) with potential(2) assumes the form

Pd PP
w2yt

(7X,2

1(&2 k21 k%—%) 1 K-t
X

_ 2 /2+ 12 S — = + _
2E- 0 (XY )+ S dp® cos ¢ sife| 4x'? y'?

If we now write
D=A(X"y")Y(e),
the ¢ dependence can be extracted by requiring that

2 2_1 2_1
d ki—2 ki—3

(9<p2

Y(@)=—M?Y(p). (6)

coS¢ sife

The orthonormal solution of Ed6) for ¢ €[0,7/2] has the following form:

vk () = \/2(2m+ Ki+K,+1)mIT(m+k;+ky,+1)
m T(m+K,+ 1) (m+k,+1)

X (cosg) 1t V(sin cp)kZ*l’ngl’kz)(cos 20), 7
Wherepﬁf"ﬁ)(z) is a Jacobi polynomial and the separation constant quantizes as
M=2m+k;+k,+1, m=0,1,2,.... (8
The remaining equation for the function(x’,y’) is

2_1 I\/|2_%1
A(x',y")=0.

3 4
- 12

2/ yr2 12y _
2E— w0 (X'“+y'?) y,2 x

(92 2
w2yt
This is exactly the equation we have already fodsele Ref. 1yin the case of two-dimensional
Euclidean space in elliptic coordinates. In terms of the original Cartesian coordinates the bound
state solutions have the form
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’ s o n X2+ y? 22
AR (xy,7) = e~ (0 +y?+2%) (42 ¢y 2yt (Ky+o+ 1)/2 kg + 112 n
s s e

=1}, 9

where thed; satisfy of the system afi nonlinear equations

n

M+1 kg+1 2

+ + —w=0.
fi—e; 6i—e [Zi 0,—0

We note that this prescription does correctly give a separable solution by noting the identity

X2 +y? i (up—0)(uy— )

+ 1= 2
0—e 0—e (6—e1)(6—ey)

The energ)E is quantized according to
E=w(2n+M+kz+3)=w(2N+k;+ky+kz+3), (10

whereN=n+m is the principal quantum number.
Consider the Schdinger equation in the spheroidal separable coordinatesi§, ). After
the substitution? = i1 (uq) ¥(U,) Y(¢), the separation equations are

d?y(u) 1

aZ 2

2 1 )ddf(u) E{ZEu—wz(u—el)(u—ez)Jr)\ (e,—e;)M?
u-e; u-e (u—ep)(u—ey) (u—ep)*(u—eyp)

du + 4
(e—e)(K5— %

*m] no=o o

whereu=u,,uU, and\ is the oblate spheroidal separation constant. The operator whose eigenvalue

is\is
_Up(up—eq)(u—ep) 5_2 1 2 N 1 ] u(u—e)(u—ep)
! u;—Uu, Ui 2|u;—e;  U;—e,)duy U;—u,
3? +1 2 . 1 J +1 ) " M?(e;—e,)
X | — —+ = | wi(e,e,— Uyl
2 2|u—e;  Uy—ey)du,| 4 (282~ Uyl (u;—e;)(u,—e;)

(K5—D(e,—ey)

(Up—ep)(u—ey) (Us

X(Us+u,—eq)+ +U,—ey)

=J1a+ Jog+ Jipt (61— €)M —eyH — (Ki+K5+k3) + 3 (12

with eigenvalues

n

M+1 .
A= _4822 m— 4912
| i 1 |

ky+1 5 2 o 3
oo, 2[(e;tep) +(erkg+eM)Jow—(ki+ky+k3) + 7 (13
i~ ©2
and the second operator which characterizes the separation of variables in these coordinates is
LW =(J,—K2—K3+1)¥=—M>P. (14)

To close this paragraph let us note that in the lireit{e;) —0 and €,—e;) —« the oblate
spheroidal coordinates are changed into spherical and cylindrical polar coordinates, respéctively.
Correspondingly, the oblate spheroidal bases transform to spherical and cylindrical polar ones.
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B. Prolate spheroidal basis

For prolate coordinates the description is almost exactly the same. All that is essentially
involved is the interchange @& ande,.

C. Ellipsoidal basis

For ellipsoidal coordinatesee Table )l we proceed as follows. We consider the Sclimger
equation in Cartesian coordinates,

FZ aZ\P

+——t 2(x2+y?+2%) -
PRy A 2E— o (X*+y +2°)

Ki-d (K- (K5—3
X2 2 b
y V4

If we now write
W(x,y,z)=€" o(x%+y +22)X2k1+1y2k2+122k3+1¢(xiy'2)’
the equation foxb becomes

P P P 2k+1l 9 2k, +1 9 2ks+1 d 9 d
— —+

—t+—+—+ + 9,— 20| X—+y—
x> ay®  9z° X X y ay z 7“9 7 ax yay Jz

—2w(Ky+ Ko+ Ks+3) | W =—2EW.

To obtain the appropriate finite solutions we can make use of the identity

X N y? N 4 (U= 0)(up— 0)(uz—0)
0—e; 06— O-e; = (0—e)(f—e)(6—ey)
and write
N X2 2 2
y z
P(xy.2)= 1:[ 6;—e; 0,-—e2+0j—e3 1, (19
where

—w=0

ki+1 Ko+1 k3+1+§N:
bi—ep 9i_ez bi—e3 {7 0i—6

and the energy levet is given by Eq.(10).
Writing the Schrdinger equation in terms of the ellipsoidal coordinatesand using the
identities

(X2+ 2+ZZ)=§ LU')
=1 Higj(ui—up)’ y S Mg (ui—up”

(K- (G-D (KE-D|_ & Aw)
y* z* =1 Wi j(ui—up)’

whereP(u;) = (uj—a;)(uj—a,)(u;—as) and[aj=(a;—a)] and
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ki-%) (k33 (ki3

A(u)=aza +a +a s
(u)=agayy u—ay 12837 u—a, 13823 U—ag

we arrive at the following equation:

3
Z 4\/P(u \/P(u —+2Eu 2— w2P(u;) —A(u) ¥

H&](U,—U )(

which, after the substitutionV = ¢ (u4) #,(U,) 3(u3z) and the introduction of the ellipsoidal
constants\; andX\,, is divided into three identical differential equations

d dy ) (Ke—%)
P(u)— P(u)—+ 2EUV’—w P(u)+ X Uu—»Ay— = )(ag—al)(az—al)
(k3= %) (k3= s
_m(al_az)(as_az)_m(al_as)(az_aa) =0,

whereu=u,,U,,U;. The operators that specify the eigenvaligsand\, are
A1 =311+ Jpat Jogt (8 +83)My + (8 +a1) Mg+ (a; +ag) M — (Ki+ K3 +K3) + 3
and
Ar,=a3drtayJiztadostaazsM+aaMs+aas;M,
—K3(ag+a,—a;)—ki(a,+az—ay) —kj(a;+a,—ag)+ 3(a, +a,+ay),
respectively. In terms of the zer@s the eigenvalues of these operators are

)\l: _2[k2(31+ a3)+k1(a2+ a3)+k3(al+ az)_4(a1+ a2+ a3 ]w—2(kl+ k2+ k3)

N N N

X(katkptkat D) =344 3 a ot o tatD) o (stD)

220G —ay) T2 A6 —ay & %0 ay| 19

and

)\2: - %(al"‘ a2+ a3)—2w[a2a3(k1+ 1)+a2a1(k3+ 1)+a1a3(k2+ 1)]_a1(k2+ k3+ 1)2

—ay(ky+kyt+1)2—ag(k,+ky+1)2

N N N
(ko+1) (ki+1) (ks+1)
-4 Q38—+ 2, gyt 2, aa;———|. 1
‘Zl (6,-ay) ;1 ¥2(0,—ay) & TN 6—ag) 17
D. Spherical and sphero-conical bases
For spherical-type coordinates there are two possibilities.
If we choose coordinates in Euclidean space accordingly,
X=ISq, Y=ISy, Z=ISg3, (18

wheres?+s3+s2=1, and put the wave function in the form

\I,ZR(r)S(le)Z)! (19)

where p,,p, are the spherical or sphero-conical coordinates, after separation of variables, we
arrive at two equations,

Downloaded 23 Oct 2008 to 130.217.76.77. Redistribution subject to AIP license or copyright; see http://jmp.aip.org/jmp/copyright.jsp



716 J. Math. Phys., Vol. 40, No. 2, February 1999 Kalnins et al.

d’R 2dR ,, JUA+1)
W+FW+ 2E— w°r _T RZO, (20)

K2—%) (k3—3) (k5—3
J(J+1)—( =7 (k3

IL12+ Lozt Last }S=O, (21

7
1 S2 S3

wherelJ is the spherical separation constant.
(1) In the spherical coordinatdsee Table I} the wave functiorS(p,,p,) has the separable

form
S(9,0)=Z(NY ' (),
whereY(kl kz)((p) is given by formula(7). This leads to the equation fa:
1 d 2 K3
smﬁ‘df}smﬁd JJ+1)— P TZ 0, M=2m+k;+k,+1.

The solution of the above equation(see Ref. 8

, _ﬂJﬂﬂm+H&H«ﬁ«ﬁkﬂHHHQm+h+@+@+m
(0)= L(1+kg+ 1) (1+2m+2+k,+ky)

X (cosf) 2+ ka(sin )MP M (cos 29), 1N, (22)
and for a spherical separation constant we get
J=21+M+kg+3=21+2m+k; +k,+ ks + 3. (23

(2) If we choose the sphero-conical coordinates on the splser Table I, the solution of
the equation(21) has the form

- k,+1/2
+
S(plapZ) H S H 0 91 Hj_ez aj_es '

(24

and the spherical separation constant is quantized according t®@8qwheren=I1+m. This
achieves a separation of variables solution because of the identity

st N S5 N S5 _ (p1=0))(p2—0))
Hj—el ej_ez Hj_eg (Hj—el)(ﬁj—ez)(ﬁj—e3)

and the Niven equations

ki+1 Kk 1, kstl <
1 2 3 +2
0i—e; 9i—92 vi—e3 {Fi 9i_9j

The functionsS(p,,p,) have the separable form

S(p1,p2)=B1(p1)Ba(p2), (25

and the separation equations 8R{p)=(p—e1)(p—e,)(p—e3)]
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k3—3)

k (
m(el_ez)(el_es)_(p—)(ez e;)(e;—e3)

P d P a8, 1 JJ+1
(P)% (P)%JFZ A=J(J+1)—

(-

- (p—e3) (26)

(e3—ey)(e3—ey) |B=

whereB=B,,B, according ap=p;,p,, respectively. The sphero-conical wave functions satisfy
the eigenfunction equations

(1ot 15+ Jo9) S=[ (K3 + K3+ K3) — (29+ 2+ Kk, + ko + kg)?>— 3]S (27

(€123t €5J131€3315)S
=[ki(e,+e3—e))+Ki(e;+e3—ey) +Ki(e1+e,—e3) — 3+ e+ e3) —\]S,
(28)

where
N=2[ki(es+e3) +ky(e1+e3) +ks(e,+eq)+ ek ko + ek ks+ e ksky ]+ 3(ete,+ €3)

"okl "
ezee,E + elee.E + e2612

ks+1

el (29

Let us now go to the radial equatiq20). This equation is very reminiscent of the radial
equation for the three-dimensional harmonic oscillator except that the orbital quantum rdusber
replaced by 2+2m+k;+k,+ks+ 3. The orthonormal solution of the radial equati(0), in
terms of Laguerre polynomials;(x), is

I'n,+21+2m+k;+k,+kz+3)

372,
RnrJ<r>=\/ . (Vor) exp( > )LJ“’Z( r?), (30

and the energy spectrum is given by form@®) where then,=0,1,2,... is the radial quantum
number and the principal quantum number nowis (n,+n)=(n,+1+m).

Ill. GENERALIZED ANISOTROPIC OSCILLATOR
The second potentidbee Table)lis

2

V(X _Y 22 2
2(X,Y,2) 2(x +ye+4z°)+ (31

i
21 Ty
The corresponding Schdinger equation has separable solutions in five coordinate systems: Car-
tesian coordinates, cylindrical polar coordinates, cylindrical elliptic coordinates, cylindrical para-
bolic coordinates, and parabolic coordinates. It is the last of these that gives interesting new
solutions. The first four coordinate systems are of cylindrical type and can be deduced from what
we already know for Euclidean two-dimensional spésee Refs. 8 and 17Before considering

the bound state solutions in the case of the parabolic coordinate system we consider the quadratic
algebra of second-order symmetry operators which are associated with this potential. A basis for
these operators is

1
4

Mi=di— 0+ ==, My=dy—w?y’~ 7 P=d;-4w’Z, (32
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1\ y? 1\ x2 1
L=L§z—(k§—z)7—(k§—z)—z—§' (33

1 2,2 1
Slz_z(pr13+L13px)+Z O X == |

ki— 3
w?y?— ) (34)

1
Szz_E(FJyLzsﬁL Logpy) +2 2

wherep, y=dy y .
The relations that define the quadratic algebra are obtained by exhaustive commutation. The

nonzero commutators of the above basis are

[My,L]=[L, M2]=Q, [L,S$]=[$,,L]=B, [M;,S]=A;, [P,§]=-A;.

Further nonzero commutators wi€d are

[Mi, Q1=[Q, M2]=4{M1,Mz}+160’L, [S;,Q]=[Q,S;]1=4{M1,My},
[L,Q]=4{M{,L}—4{M,,L}+16(1— kM, —16(1—k2)M;
nonzero commutators with; are
[M;,A]=160%S, [L,A;]=[A,,L]1=4{M;,S;}—4{M,,S;}, [P, A]=-160%S,
(S, AT={Mi M} =2{M; P}+80%(1=K), [, AjJ={M; M} +40’L;
and nonzero commutators withare
[My,B]=—4{M,,S;}, [M,,B]=—4{M,B}, [P,B]=4{M,,S;}—4{M,S,},
[L,B]=—4{L,S;}+4{L,S,} —16(1—k3)S,; + 16(1—k3)S,,
[S;, B1={L,M}—2{L,P}—4{S;,S,} —4(1—k3)M,,
[B, S2]={L,Mp} = 2{L,P}—4{S;,S;} —4(1~ k) M.
The remaining nonzero commutators are
[Q AT=—4{M; A}, [Q,Bl=—4{LA}-4{LAj}, [A;,Ar]l=40%Q,
[A1,B]={M1,Q} —4{S;.Az}, [B,A2]={M;,Q}~-4{S;,Aq}.

There are also various relations among the generators of our quadratic algebra:
{M,B}={L,A1}—{S;,Q}—4(1—kDA,,
{M2.B}=—{L, Az} —{S;.Q} +4(1-k))As,

{P.Q}=2{S1.A}—2{S;, A1}, {M1,Az}—{M; A}~ 40?B=0,

Q%=4L,M;,M,} +8w?{L,L}—16(1—k?)M3—16(1—k3)M3
+5{M1, Mo} — 0’ — 1280%(1- k) (1K),
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{QA}=4M{,M;,,S}—4M;, M1, S} +1602{L,S,} —64(1—k3)S,,
{Q.A}=—84M{,M,, S} +8M;,M,, S} — 16w?{L,S,} +64(1—Kk3)S,
{Q.B}=—§{Mz,L,Si} — §{My,L, S} + 16(1—kD){M;, S5}

+16(1-k3){M1,S;}— $M,, S} — ${M,, Sy},
1=2M;,M1,P}+80?S,,S,} + 160w (1—ki)P—32w>M 4,
(A1, A} =4HM{,M,,P}+1602(S;,S,} + 8w?{L,P},
{A1,B}=4M,S,,S} —HM,,S;, S} + HMy,L,P+ M M} —8(1—kH{M,P}— S0?L,

{AZlB}:_%{MZvSZ Sl}+%{MlISZISZ}_%{M2!LlP}
{Ml,M2}+8(1 k){Mz,P}+634a)2L
B?=H{L,S1,S} + H{L.L,P}+ 5{S1, S} — 16(1 - K§) S~ 16(1— k3) St
+ (LM} =L P Z(1- k)M + FH(1- KM, — 16(1—k5) (1—k3)P.

This completes the nonzero relations for the quadratic algebra and the associated relations among
the generators. For the last coordinate system in our list we develop the bound state solutions.

Parabolic basis

The Schrdinger equation in Cartesian coordinates with this potential has the form

P L G
+ +
x> a9y®  97°

(K—-D (K—13
+| 2E— w?(x?+y?+47%) — T v ¥ =0.

If we choose the coordinatex’(y’,¢) according formula6) and the wave functionV in the
form

\I’(X’,y',¢)=(X,)7l/2A(X,,y,)Yf.:l'k”(gD), m=0,1,...,
Wherer:l‘kZ)@p) is given by(7), then the equation for the functioh(x’,y’) is

92 52 MZ_l)
—w?(X'%+4y'?) — 5 ~ 4 2E|A(X,y")=0.

w2 oy

This just the problem whose solution has been fo(sak Ref. 1in the case of two-dimensional
Euclidean space. If now we write

A(X,y,2)= e—(w/2)(x2+y2)—w22(x2+ y2)(k2/2+ 1/4)P(x,y),
where

2+2

+27— 92)

then the\; satisfy
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40N+1) O
+ 2062=0
6> .E;u 6>— 67 .

and energ)E quantizes according to

E=w(2n+M+2)=w(2N+k;+ky+3),

(35
where the principal quantum numbidre=n+m. This method of solution is based on the identity
X242 2_ 02)( n2+ 2
Y o o (E- PV 6

02
In fact, the separation equations §rand » for solution of the Schrdinger equation

W(&,7,0)=X1 (XYL D)
have the form

d? M?2
——+ = — +| 2Ep?— w?p®— —+¢€
dp2 pdp p p p2 B

X(p)=0,

(36)

wheree=1 if p=¢ and—1if p= 5, andgis the parabolic separation constant. By eliminating the
energyE from Eqs.(36) we produce the operator, the eigenvalues of whic:is

1 (52(9 d na

2 2
R I A S +w2§2 2(52_ 2)_52_7]2 (92 kl_%_kZ_%

Ex 2\ anTay & 9E° 9 K g En® \og? cosde sife)

(37)
In Cartesian coordinates the operatbcan be written as
2 2 2_1 2_1

J ki—2 Ke—z| o o 9
=7l —5+ 5+ 0?(X2+y?) - —— ——|— —ty——
L=7 70 ay? W OCHY) -z y? 9z | X ox yay ok

and thus the parabolic basis satisfies two eigenvalue equations

LY =(ki+ki—M?—1)W, LP=2(S;+S,)¥=3V,

where operatorg, S, , are given by formulag33) and (34) and the eigenvalug is

n n
B —2(M—1)J_]:[1 0,?<k21 0;2). (38)
IV. GENERALIZED KEPLER-COULOMB SYSTEM
The third potential we consider is
o 1| Ki—3 k%—%}
V3(X,y,2)=— + = + 39
3( y ) \/m 2 X2 y2 ( )

The corresponding Schdimger equation has the form

PV PV PP
2 +

+

+
x> oy 97

2a k-3 K-i
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This equation admits separable solutions in the four coordinate systems: spherical, spheroconical,
prolate spheroidal, and parabolic.
The second-order symmetries of the corresponding Siahger equation are

, [, 1172 1 , [, 1122 1
Jog=L33~ kz_z F_E’ J1a=L13— kl_Z X2 o
1\ x? 1\y? 1
J12=L§2—(k§—z v kg 1)7_5’ (40)
L= — 2P L +{py Lo 1+ —2 ki kg_‘l‘) 41
- E[{pw 1& {py12§] J;ilyjlgi X2 y2 . ( )

These symmetry operators do not appear to close under repeated commutation. One obvious
subalgebra that is quadratically closed is that generated by the eledents s, andJ,;. The

closure relations can be readily deduced from the algebra given for the first potential with the
proviso thatkz= 3.

A. Spherical and sphero-conical bases

If we use polar coordinates according(i8) and write the wave functiol’ in the separable
form ¥ =R(r)S(p4,p»), then the separable equations are

d’R 2dR

2 J(J+1)
dar Trar’

4-7f—”—77——'R=0, (42

J(J+ 1)_ SZ 2

S=0. (43
1 Sz

(K2—3 (k-1

(1) In the spherical coordinates, choosing the wave func8m ,p,) according to
S(9,)=Z(9)Yp*?(¢), mM=0,12,..,

(ky.k2) e i ; .
whereY | *"%(¢) is given by formula(7), we go to the equation faf:

2

D= oo

The orthonormal solution of the above equation fo£[0,7] is
za—zM /(2|+2|\/|+1)|!F
( )_T; 2I(1+2M +1)

wherel e N and Cﬁ(x) is a Gegenbauer polynomii The spherical separation constant is given
by

1 d  dz
sind—+

5“;5855 a9 ZZO, M::mﬂ+kl+k2+1.

1
M+ > (sin HMCM Y2 cosd), (44)

J=l+M=1+2m+k;+ko+1. (45)

(2) The solution of the Schrdinger equatiori43) in sphero-conical coordinates follows from
what we have done before in Sec. II D, p&2}. If we write S(p;,p,) as
1 s s3

+ + ,
i—€1 6j—e 6j—e;3

S

2 n
k,+1/2
S(pl,pz)=S§H S/ H 9
/=1 j=1
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wheree=0,1 then the zeros satisfy the Niven equations

k1+1 k2+1 et+s3 2
J’_
fi—e; 6i—e, Oi—es [z 6i— 0

The functionsS(p,,p,) satisfy the eigenfunction equations
(J1ot+ J1gt+ Jo9) S=[ (K +K)) — (20+ 3+ Ky T ko + €)?— 7S, (46)
(e1d3+ €015+ €301 S=[(e;—ey) (ki—K5) +e3(ki+k5—1)—3(e;+e,) —\]S,  (47)
where the sphero-conical separation conskaigt

A= —2[ky(es+e3) +ka(er+ez)+ (e~ 3)(ex+€1) +eskiko+ (€K +€1ky) (6~ 3)]

n n n 1
k +1 k +1 €+ 3
+e,+ - + . 4
(91 €+ e3)— e2932 0 er e1e32 0 e, e2('3‘12: 0,—e; (48)

Finally, let us consider the radial equati¢f?). The introduction of(45) into (42) leads to

d°’R 2dR 2 (I+2m+ky+k,+1)(1+2m+k;+k,+2)
dar Trar YR 2

R=0,

which is the radial equation for the Coulomb problem, except the orbital quantum nuger
replaced here byl ¢-2m+k;+k,+1). The bound state solution of E@L3) is

2(a)®? [T(N+J+1)
RNJ(r): N2 (N_J_l)l

and the energy spectrum given by

ZCH’)J e—aI’/N

& e NtIr1i240: 2
ri+1ntt : "N

0(2

E=—1z N=ntJ+i=2min+ltktko+2, n=012,..

B. Parabolic and prolate spheroidal bases

The remaining solutions for which separation of variables is possible can be best observed by
writing the Schrdinger equation in parabolic coordinates. If we do this and choose solutions of

the form
V=S(£,9)(en) Y (), m=01.2,.., (49)
whereY(kl k2)(<p) is given by formula(7), we find that the Schdinger equation has the reduced
form
a28+828+ 2E(&%+ p?)+| M2— 1 1+ 1 +4a|S=0.
Er (&°+79) & a

This is clearly recognizable as solvable via separation of variables in parabolic coordiaates
7. The separable solution for the wave functisfg, ») is

ﬁ(a)?:/Z

S(&.m)= (Em) PO (1), NieN, M=2m+k+kp+1, (50
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where

—(al2N)x2
M () = T(n;+M+1)e
n n,! rMm+1)

andN=n;+n,+M+1=n;+n,+2m+Kk;+k,+ 2.
It is also interesting to observe that we could contemplatE-dependent algebra of second-
order symmetries acting on the functiod$¢, ). Indeed, a basis for such symmetries is

aX M/2 CYXZ
W) 1F1(—n1;M+1;W) (51)

1\ 1 1) 1

P1=§§+ Mz—z)?'f‘ZEfZ, P2=ﬁﬁ+ MZ—Z)7+2E7]2,
£ 7| 1
=, g (Mo g[S ] -5

The corresponding closure relations can be deduced from those given for the first potential.

Apart from the symbols this has the same form as was dealt with in two dimensions. If we
now regardé and n as Cartesian coordinates, separation is also possible in polar and elliptical
coordinates. The case of polar coordinates has essentially been done above. The case of elliptic
coordinates can be done by the standard prescription. This is achieved by looking for solutions of
the form

X2+y?+7°+z  XP+y*+7°-z
+ —

am_ €1 am_ €1

S

R D
S(&,m)=¢ 2E(x2+y2+7 >(X2+y2)(1/2)(M+1/2)H1
J:

where we have written the solutions in the coordinate representatRacall that &2

= X?>+y?+ 72+ z and n°= X2+ y?+Z°—z.) With

\/(Ul e1)(u,—ey) :\/(Ul_ez)(uz_ez)
(ex—ey) 7 (e1—€y) ,

wheree; <u;<e,<U,, the choice of Cartesian coordinates that is appropriate in this case is

1 \/ e,—e;\’? e,+e;\’? e,+e;\? [(e,—e)\?

T o6, 2 Uim ™5 277 2 | |co%¢
1 \/ e,—e;\° e,+e)? e,te\? [e,—e\?] .
Y= e—e, 2 Uim ™5 U= 2 | |?"e

1 e,+e; e,+e;| [(e,—e\?
e,—e; 2 2 2

This corresponds to the choice of prolate spheroidal coordinates of typ& II.

V. INTERBASIS EXPANSION

According to the principles of quantum mechanics the solutions of the saméd8uen
equation in the different separable coordinate systems for a given value of éhargyconnected
by unitary transformations or interbasis expansions. For example, we examine here the direct
calculation of the interbasis expansion between the spherical and parabolic wave functions for
potentialV;. We have
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ﬂl+ ny

Vo nym(E70)= 2 Wi n (ke ko) W (1, 9, 0). (52)
=0

wheren,+1=n;+n,. For calculation of the coefficients of interbasis expansio(bR) we may
use the “asymptotic method }¥?2which is the following. Writing the parabolic wave function on
the left-hand side 0€52) in spherical coordinates (9, ¢) accordingly,

£=r(1+cosd), n?=r(1—cos?),
eliminating the functiori(f:l'k"))(qo) on both sides 0f52), and using the formula

I'a)

Tlarm (X"

1F1(—nja;x)~

for x arbitrary large, we see that the expansib®) yields an equation which depends only on the
variable . Then, by using the orthogonality relations for the functiadhg(9) in the quantum
numberl, we arrive at the following expression for interbasis expansions coefficients:

rMm+1/2)
2n1+n2+1\/;

2l+2M+D)T'(ny+ny+1+2M+2)(ny+ny,—1)!H!
rd+2Mm+nrmn+M+0)Ir(n+M+1)(ny)!(ny)!

Wi o (K, kz) = (= 1)

X f (1+cos®)"*M(1—cosd)"2tMCM V2 9)sin9 d 9,
0

M=2m+k;+k,+ 1. (53

By using the Rodrigues formula for the Gegenbauer polynoftials

(-1) VAl (142)) X2) A+ d'

A — _ — 2yl +N=1/2
G0 = T T 12 ax (27

and comparing53) with the integral representation for the Clebsch—Gordan coefficients of the Lie
group SU2) (Ref. 23,

o \/ (2c+1)(J+ 1)1 (J—2¢)! (c+ y)! (—1)a ctp
Cabibp= Oatp.y (J—2a)!l(J-2b)!I(a—a)!(a+a)!(b—pB)!(b+B)!(c—y)! 2’1
de=”

dxt—?

Xfl (1= (14X A [(1-)722(1+ ) ]
-1

with J=a+b+c, we obtain

\lvlnlnzm(kl'kZ) =(— 1)!120;51;;5,
ny+n,+2m+k;+k,+1
a= > , c=l4+2m+k;+k,+1, (54
ny{—nNy+2m+Kk;+k,+1 N,—nNg+2m+Kk;+k,+1
a= = .
2 ' 2
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Since the parameters {54) in general are not integers or half-integers, the coefficients of inter-
basis expansioit1) may be considered as analytic continuation, for real values of their argu-
ments, of the S(2) Clebsch—Gordan coefficients. Note also that the inverse expansi@R)of
follows from the orthonormality of S(2) Clebsch—Gordan coefficients.
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