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We show that second-order superintegrable systems in two-dimensional and three-
dimensional Euclidean space generate both exactly solvable (ES) and quasiexactly
solvable (QES) problems in quantum mechanics via separation of variables, and
demonstrate the increased insight into the structure of such problems provided by
superintegrability. A principal advantage of our analysis using nondegenerate su-
perintegrable systems is that they are multiseparable. Most past separation of vari-
ables treatments of QES problems via partial differential equations have only in-
corporated separability, not multiseparability. Also, we propose another definition
of ES and QES. The quantum mechanical problem is called ES if the solution of
Schrodinger equation can be expressed in terms of hypergeometric functions , F,
and is QES if the Schrodinger equation admits polynomial solutions with coeffi-
cients necessarily satisfying a three-term or higher order of recurrence relations. In
three dimensions we give an example of a system that is QES in one set of sepa-
rable coordinates, but is not ES in any other separable coordinates. This example
encompasses Ushveridze’s tenth-order polynomial QES problem in one set of sepa-
rable coordinates and also leads to a fourth-order polynomial QES problem in
another separable coordinate set. © 2006 American Institute of Physics.

[DOI: 10.1063/1.2174237]

I. INTRODUCTION

It is well known that N-dimensional nonrelativistic quantum systems described by the Hamil-
tonian

1o &
H=—52—2+V(x1,x2, cesXy) M
i=1 OX;

are integrable if there exist N linearly independent and global differential operators Z,, ¢
=0,1,...,N-1 and Zy=H, commuting with the Hamiltonian (1) and with each other

[Z,H]=0, [Z,Z,]=0, €,j=12,....N—1. 2)

This particular class of integrable systems is called (maximally) superintegrable (this term was
introduced first by Rauch-Wojciechowski in Ref. 1) if it is integrable and, also, possesses 2N— 1
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functionally independent differential operators (integrals of motion). The additional N—1 integrals
L, commute with the Hamiltonian

[£oH]=0, k=1.2,....N-1, (3)

but not necessarily with each other. (These definitions have obvious classical analogs for the
classical Hamiltonian.) Three examples of this kind have been well known for a long time, viz. the
Kepler-Coulomb problem, the isotropic harmonic oscillator, and the nonisotropic oscillator with
commensurable frequencies.

The existence of additional quantum integrals of motion for these systems leads to many
interesting properties not shared by integrable systems. In classical mechanics the corresponding
additional integrals of motion have the consequence that in the case of superintegrable systems in
two dimensions and maximally superintegrable systems in three dimensions all finite trajectories
are found to be periodic.

One of the most important properties for many superintegrable systems (particularly second-
order systems where there are 2N—1 functionally independent quadratic constants of the motion)
is multiseparability, i.e., the separation of variables for the Hamilton-Jacobi and Schrédinger
equations in more than one orthogonal coordinate system.z’8 (Each separable coordinate system is
associated with N commuting second-order constants of the motion.) For instance, the isotropic
harmonic oscillator in three dimensions is separable in eight coordinate systems, namely in Car-
tesian, spherical, circular polar, circular elliptic, conical, oblate spheroidal, prolate spheroidal, and
ellipsoidal coordinates. The Kepler-Coulomb potential is separable in four coordinate systems,
namely in conical, spherical parabolic, and prolate spheroidal coordinates.

A systematic search for such systems in two- and three-dimensional Euclidean space was
started in the pioneering work of Smorodinsky and Winternitz with collaborators in Refs. 9-11 and
was continued in Ref. 12. Particularly, in Ref. 10 it was shown that in two-dimensional real
Euclidean space there exist four superintegrable potentials, three of which could be considered as
the singular generalization of Kepler-Coulomb, circular oscillator and anisotropic oscillator sys-
tems. These results were extended for two- and three-dimensional spaces with constant curvature
(both positive and negative),13 and on the complex two-dimensional sphere and Euclidean
space.m_18 The program is continuing for various conformally flat space spemce:s.19_30’5_7

In the last 15 years superintegrable systems have become a subject of investigation from many
points of view: in Refs. 13, 18, 31, and 32 via the path integral approach, in Refs. 19, 21, and 22
by solving the Schrodinger equation with the help of the Niven ansatz,™ in Refs. 34-39 from the
purely algebraic approach, and generally in Ref. 40. As has been shown by a number of authors,
many superintegrable systems generate an algebraic structure which may be considered as a
nonlinear extension of the Lie algebra (in classical mechanics Poisson algebras), namely a qua-
dratic algebra. The general form of quadratic algebras, which are encountered in the case of
two-dimensional quantum superintegrable systems has been investigated.”’5 0

Particularly useful is the exact solvability of many superintegrable systems. Essentially, this
means that after any separation of variables each of the separated ordinary differential equations
admits an exact solution. However, the term exact solvability is defined differently by different
authors. In Refs. 41 and 42 [see also the recent paper (Ref. 43)] we read that “an exactly solvable
quantum mechanical system can be characterized by the fact that in its solution space one can
indicate explicitly an infinite flag of functional linear spaces, which is preserved by the Hamil-
tonian” or the “Hamiltonian is exactly solvable if its spectrum can be calculated algebraically.”
Indeed, in spite of an “intuitive” understanding of the term exactly solvable, no universal defini-
tion exists up to now.

On the other hand, there are limiting cases of well-known one-dimensional exactly solvable
systems, namely the harmonic oscillator and Coulomb problems with y/x? (y>—1/4) interaction,
Morse potential, trigonometric and modified Poschl-Teller potentials, trigonometric and hyper-
bolic Manning-Rosen potentials,44’45 and the Natanson potential.46 All these potentials have the
general property that the Schrodinger spectral problem has an explicit formula for the whole
energy spectrum including the continuous spectrum, and the eigenfunctions (up to the asymptotic
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ansatz or gauge transformations41’42) are of hypergeometric type ,F,, ,F,. For the bound states we

have solutions in terms of classical polynomials47 whereas for continuous states just infinite series.
Moreover, hypergeometric functions describe both the continuous quantum systems as well as the
finite systems and appear also as solutions of related difference equations, for instance, the finite
one- and two-dimensional oscillator expressed in terms of discrete variables polynomials, Kraw-
chuk, Meixner, and Hahn.*® The standard definitions of exact solvability do not include many of
these systems.

Thus, we propose another definition of exact solvability: a quantum mechanical system is
called exactly solvable if the solutions of the Schrodinger equation can be expressed in terms of
hypergeometric functions ,F,. (Basically, we are requiring that the coefficients in power series
expansions of the solutions satisfy two-term recurrence relations, rather than recurrence relations
of higher order.) It is obvious that an N-dimensional Schrédinger equation is exactly solvable if it
is separable in some coordinate systems and each of the separated equations is exactly solvable.
Further, we say that a superintegrable system is exactly solvable if it is exactly solvable in at least
one system of coordinates.

At first sight, such a definition of exactly solvable problems may seem too narrow, but it leads
us to distinguish two kinds of models: (1) those which it is possible to study analytically and (2)
those which can be solved numerically via the solution of algebraic equations.

The process of separation of variables in the N-dimensional Schrodinger equation leads to
ordinary differential equations having as solutions many of the special functions of mathematical
physics. A complication of the separated equations involves the N separation constants. In general
we have a multiparameter eigenvalue problem.49 It is possible to distinguish three different cases,
namely when there is complete, partial or nonseparability of the separation constants. It is obvious
that in the case of complete separability (of separation constants) the initial N-dimensional
Schrodinger equation splits into N independent second-order differential equations, each involving
a single separation parameter. This situation occurs, for instance, in the case of separation of
variables in the Helmholtz (free Schrodinger equation, which is also superintegrable) or the
Schrodinger equation for the harmonic oscillator in Cartesian coordinates. The second “extremal”
case, when complete nonseparability exists, is realized, in separation of variables for the same
problems but in ellipsoidal coordinates. In the last case each separated second-order differential
equation contains simultaneously all separation constants (usually depending on dimensional or
nondimensional parameters),S’4 for which the simultaneous quantization becomes nontrivial.

The standard method of solution of a second-order ordinary differential equation, obtained
after separation of variables in N-dimensional Schrodinger equations, involves (after taking into
account the asymptotic ansatz) expansions around one of the singular points of the differential
equation (the standard power series method,” or the so-called Hill-determinant method’"). The
problem reduces to the solution of the recurrence relations for the expansion coefficients. If one
can express the equation in a form such that the coefficients obey a two-term recurrence relation,
then the corresponding solution can be written in closed or analytic form or in terms of hyper-
geometric functions and we have an exactly solvable problem. Such situations occur when sepa-
ration of variables for superintegrable systems is possible in subgroup type coordinate (spherical,
cylindrical, and Cartesian)52 and often in parabolic type coordinates. This method is also powerful
when separation of variables is possible in nonsubgroup systems of coordinates such as spheroidal
or elliptic types. In this case we arrive at high-order recurrence relations, the subsequent analysis
of which allows us to investigate the behavior of the solution and to determine if polynomial
solutions exist.

There is another general approach for solving the Schrodinger equation by exploring the
Niven-type ansatz,> based on the existence of polynomial solutions. According to this method the
complete solution can be constructed without direct separation of variables and computed in terms
of the zeros of the corresponding polynomial. This method has been used in Refs. 19, 21, and 22
for the investigation of two- and three-dimensional superintegrable systems in Euclidean and
curved spaces. We illustrate the difference between systems that are merely separable and those
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that are superintegrable. Consider the problem of motion in the plane for a charged particle with
two fixed Coulomb centers with coordinates (+D/2,0) (the so-called plane two center problem)

@ @
V/y2 +(x+D/2)> y*+(x-D/2)? .

V(x,y) == (4)
This system is not superintegrable and separation of variables is possible only in two-dimensional
elliptic coordinates [see Eq. (70)]. Upon the substitution v, u;D?)=X(v;D?)Y(w;D?) and the
separation constant A(D), the Schrédinger equation splits into a system of two ordinary differen-
tial equations

&X |DE

17 e cosh” v+ D(a; + ay)cosh v+ A(D) | X =0, (5)
&Y | D’E
d_#/z_ TC052/-L+D(QI_QZ)COS/-L+A(D):|Y:O' (6)

Both Egs. (5) and (6) belong to the class of nonexactly solvable problems. In general polynomial
solutions do not exist even for the case of discrete spectrum E <0 (to be completely correct let us
note that polynomial solutions exist only for special values of parameters «;, a,, and R), and each
of the wave functions X(v;D?) and Y(u;D?) is expressed as an infinite series with a three-term
recurrence relation.

Let us now set a,=0. Then the potential (4) transforms to the ordinary two-dimensional (2D)
hydrogen atom problem, which is well known as a superintegrable systemSS_55 with dynamical
symmetry group SO(3), and admits separation of variables in three systems of coordinates: polar,
parabolic, and elliptic. In this case we can see that the separation equations (5) and (6), namely

d&X |DE

2 + BN cosh” v+ Da; coshv+A(D) |X=0, (7)
Y |DE
d_,u2_ TCOS pm+Daycos u+A(D) |Y=0 (8)

transform into each other by the change w <« iv. Thus separation of variables in elliptic coordinates
for the 2D hydrogen atom gives two functionally identical one-dimensional Schrodinger type
equations with two parameters: coupling constant E and energy A(D) (correspondingly energy and
separation constant for 2D), but one defined on the real and the other on the imaginary axis. In
other words, instead of the systems of differential equations (7) and (8), the problem reduces to
solving only one of the equations (7) or (8) for which the “domain of definition” is the complex
plane. The requirement of finiteness for the wave functions in the complex plane permits only
polynomial solutions (see for details Ref. 56). As a result we obtain simultaneous quantization of
the energy spectrum

i 0.1,2

b= ey "0 LE ©)
and the elliptic separation constant A, (D) where s=0,1,2,...,n (as a solution of an nth-degree
algebraic equation). The polynomial solution is defined by a finite series with three-term recur-
rence relations for the coefficients. They cannot be considered as exactly solvable and can be
investigated only numerically. A similar situation occurs, for instance, in the case of the two-center
problem in three-dimensional Euclidean space (the so-called prolate spheroidal radial and angular
Coulomb wave functions)57 and three-dimensional sphere (Heun wave functions),58 where after
eliminating one of the Coulomb centers the problems reduce to superintegrable systems admitting
only polynomial solutions. These (and many other) examples suggest a deep connection of the
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notion of superintegrability and existence of polynomial solutions of the corresponding
Schrodinger equation.

We note that each of equations (7) or (8) has the form of a one-dimensional Schrodinger
equation with the parameter E and eigenvalue A(D), and could be separately considered in the
regions u € [0,27] or ve[0, ), correspondingly. Then for arbitrary values of constant E [for
example when E,=0 (n— ) the equations (7) and (8) transform to periodic and modified
Mathieu equations, which are nonexactly solvable] the solutions of Egs. (7) or (8) expressed via
infinite series and only on the “energy surface” of the 2D hydrogen atom (9), split into polynomial
and nonpolynomial sectors (each of these sectors is noncomplete) and for fixed number 7, only
some of the eigenvalues A (D) (s=0,1,2,...,n) can be calculated from an nth-degree algebraic
equation. We can say that Egs. (7) and (8) “remember” their polynomial solutions. It is obvious
that the spectrum of Ay(D), (s=0,1,2...,n) and occurrence of polynomial solutions of each of the
equations (7) and (8) coincides with the eigenvalues of separation constants and the wave function
after the reduction to one of the regions w €[0,27] or v €[0, )] for the 2D hydrogen atom.

These phenomena have been intensively discussed in the literature in the late 1980s and called
quasiexact solvability (this term was first introduced by Turbiner and Ushveridze in Ref. 59) and
models of this type called quasiexactly solvable systemséo_(’2 (see also Ref. 63 and references
therein). The crucial example that stimulated the investigation of quasiexactly solvable systems is
the Hamiltonian (1) with anharmonic potential

(6-3)(0-3)

1
V(x)=5w2x6+2[3w2x4+(2,82 7= 28w - Nx? + 25—, (10)
X
where w, B, 6>1/2 and \ are constants. As noticed by many authors,** "% this system admits
polynomial solutions only for special values of constant A=w(2n+1) (n=0,1,2...)

‘I’()C) ~ x25—1/26—(w/4)x4—,8wx2Pn(x2) . (l 1)

There are different approaches to the investigation of quasiexactly solvable systems. In the alge-
braic approach formulated by Turbiner in Ref. 60 quasiexact solvability is explained in terms of a
“hidden symmetry algebra” sl(2,R). [This is not a hidden dynamical symmetry in the usual sense
because the Hamiltonian (12) belongs to the enveloping algebra but is not a Casimir operator. ]
More precisely this means the following: The one-dimensional Hamiltonian (1) after suitable
changes of variable z=£&(x) and “gauge transformation” H=e~*?He“? can be written in the form

H= X Culdy+ > Cul, (12)

a,b=0,+ a=0,x

where the first-order differential operators {J,,J} satisfy the commutation relations for s1(2,R).%

The above mentioned analysis for the 2D hydrogen atom shows that, despite the elegance of
the algebraic approach, the phenomena of quasiexactly solvability has deeper roots than can be
explained via the “one-dimensional” model (12). Other examples are the hydrogen atom and
oscillator problems on two- and three-dimensional spher<3sl9’67 and two-dimensional
hyperboloids,22 which generate not only hyperbolic and trigonometric but elliptic quasiexactly
solvable systems (see also Refs. 68, 56, 69, and 70). We should also mention Lamé polynomials.
They come from separation of variables for the Helmholtz (also superintegrable!) or Schrodinger
equation in elliptic coordinates on the two-dimensional sphere. As also determined in Ref. 37
(without showing the mechanism of this phenomena) some of the quasiexactly solvable systems
can be obtained through dimensional reduction from two- and three-dimensional superintegrable
models with quadratic invariants (second-order superintegrability).

A second approach, known as analytic, was formulated by Ushveridze (see, for example, Refs.
61-63) and represents a one-dimensional reduction of the Niven-Stieltjes method for solving
multiparameter spectral problems such as the generalized Lamé equation (or ellipsoidal
equation).33 The solution in this method is determined by the zeros of polynomials P,(x). Then
the wave function (11) can be rewritten in the form
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W(x) = x25—1/26—(w/4)x4—[>’wx21—[(x2 —£), (13)
i=0
where the numbers (&;,&,,...,¢&,) satisfy a system of n algebraic equations (see Sec. II C). Ac-

cording to the oscillation theorem, the number of zeros in the physical interval & [0, %) enu-
merates the ground state and first n excitations, described in terms of all zeros (complete solutions
of the systems of algebraic equations and including nonphysical section ¢ € (—%,0]) as

E=45[ﬁw+2é]. (14)

i=1 Si

Two natural questions occur in this approach: what is the physical meaning of the negative zeros
&, and why in the correct formula for the energy spectrum (14) do n zeros of the polynomial
P,(x?) appear?

With this paper we begin an investigation of second-order superintegrable systems on constant
curvature spaces (Euclidean, sphere, hyperboloid and pseudo-Euclidean) based on the superinte-
grability and direct solutions of the Schrodinger equation. We pay special attention to nonsub-
group type coordinates and prove the existence of polynomial solutions for several of these
systems. We demonstrate that quasiexact solvability is directly related with multiseparability of
second-order superintegrable systems, on one hand, and with the presence of polynomial solutions
for these systems on the other.

The first part of this paper is devoted to two (singular anisotropic and singular circular
oscillators) from the four possible superintegrable systems in two-dimensional real Euclidean
space (see, for example, Ref. 19). The other two systems may be transformed (only for the discrete
spectrum) to the singular circular oscillator (for V3) or ordinary shifted oscillator (for V,) systems
by the help of the Levi-Civita mapping,71 so are less fundamental for our purposes. In the second
part of the paper we give some examples of superintegrable systems in three dimensions that
reinforce our definitions of exact and quasiexact solvability. In particular we exhibit a quasiexactly
solvable superintegrable system which is not at the same time exactly solvable in any separable set
of coordinates. In one set of separable coordinates this provides deeper insight into an example of
Ushveridze,” p. 155 (the tenth-order polynomial QES problem) and also leads to a fourth-order
polynomial QES problem in another separable coordinate set. In addition we indicate precisely
how the eigenvalues of the symmetry operators which describe separation can be calculated from
a determinant condition. For these examples we will work with complex superintegrable systems
and not address the relatively simple issue of determining the distinct real restrictions of the
complex spaces. These examples greatly clarify the concepts and show how the extension to N
dimensions can be achieved.

Il. THE SINGULAR ANISOTROPIC OSCILLATOR

Let us first consider the potential (k,>0)

1 K-+
Vi(x,y) = 5(¢)2(4x2 +y2) +kx + 22y24 (15)

the singular anisotropic oscillator. The Schrodinger equation has the form

PR k-1
(—2+—2 Y+ | 2E — 0?(4x> + y?) — 2kyx — - 24 v =0. (16)
dx=  dy y

For k,>1/2 the singular term at y=0 is repulsive and the motion takes place only on one of the
half planes (- <x<%,y>0) or (—% <x< ©,y<0), whereas for 0<k,<1/2 in whole plane
(x,y). The Schrodinger equation separates in two systems: Cartesian and parabolic coordinates.
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A. Cartesian bases

Separation of variables for Eq. (16) in Cartesian coordinates leads to the two independent
one-dimensional Schrodinger equations

&y, )
?+(2)\1—4wx —2kx)if =0, (17)
& -3
—¢22+(2)\2—w2y2— 224>1p2=0, (18)
dy y
where
W(x,ysky, £ky) = iy (xsk) o (y; £ ky) (19)

and A, N\, are Cartesian separation constants with N{+\,=E.

Equation (18) represents the well-known linear singular oscillator system (see for instance
Refs. 72 and 73 and Refs. 10, 20, and 74). It is an exactly solvable problem and has been used in
many applications, for example, as a model in N-body problems,75 or fractional statistics and
anyons.76’77 The complete set of orthonormalized eigenfunctions, (on 1/2) in the interval 0 <<y
< of Eq. (18), can be expressed in terms of finite confluent hypergeometric series or Laguerre

polynomials

20!y,

1/2+ky —1/2wy2Lik2 2 20
o nan) o), (20)

(//nz(y; = k2) =

where N\,=w(2n,+1+k,). We assume that the positive sign at the k, must be taken if k2>% and
both the positive and the negative sign must be taken if 0 <k, < %, so that the polynomials have
finite norm. Let us also note that unlike the potential (15) the wave function is not invariant under
the replacement k, — —k, and splits into two families of solutions that transform to one another
under this change.

The second equation (17) easily transforms to the ordinary one-dimensional oscillator prob-

lem. In terms of Hermite polynomials the orthonormal solutions (in region —o <x < o0) are

2(1) 1/4 e—a)zz — |
iy, (x3ky) = (;) vz"—TllH"'(Vsz)’ z=xt s 21)
where \;=w(2n,+1)—(k}/8w?). Thus the complete energy spectrum is
k2
E=)\1+)\2=w[2n+2ik2]—8—01)2, n=n+n,=0,1.2,... (22)

and the degree of degeneracy for fixed principal quantum number 7 is (n+ 1). Finally note that the
separation of variables in Cartesian coordinates leads to two exactly solvable one-dimensional
Schrodinger equations and the complete wave function may be constructed with the help of
formulas (20), (21), and (19).

B. Parabolic bases
1. Separation of variables

Parabolic coordinates & and 7 are connected with the Cartesian x and y by

x=3(&-), y=én, £eR, 2>0. (23)

The Laplacian and the two-dimensional volume element are given by
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F P 1 F P
A=F+—2=T172(07§2 ﬁ), dv=dxdy=(&+ 7°)dédy. (24)
The Schrédinger equation in parabolic coordinates (23) is
L (P Py e ) ] _
+7]2(a§2+a7])+{2E—w(§4—§772+7])—k1(§ 7) - 7 ¥ =0. (25)

Upon substituting

V(& n) =X(&)Y(n)

and introducing the parabolic separation constant \, the equation (25) splits into two ordinary
differential equations,

d2 2 1
2? (2E§2—w2§6 k g‘*— 4)X=—)\X, (26)
d2 k2 1
d772 <2E772 o’ + kgt - 4)Y:+Ay, 27)

Equations (26) and (27) are transformed into one another by change &< in. We have

V(& mEN) = C(E,NZ(EENZ(in,EN), (28)

where C(E,\) is the normalization constant determined by the condition

fdnf d&(&+ PV (EMEN=1 (29)
0 —00

and the function Z(u;E,\) is a solution of the equation

2_1

d2 2 6 4 2 k2_4
_d_,uz+ O Wkt =2EpuT + ——

)}Z(M;E,)\) =NZ(w;E,N). (30)

Thus, at u € (-, ) we have Eq. (26) and at u € [0,i%)—Eq. (27). Note that in the complex u
domain the “physical” region is just the two lines Im ©=0 and Re u=0, Im > 0. Our task is to
find the solutions of Eq. (30) that are regular and decreasing as u— + and p— i%.

2. Recurrence relations

Consider now the equation (30). To solve it we make the substitution

w k 1,
Z(p;EN) = exp(— M- i#z)m—k%ﬁ(u;ﬂk), (1)

and obtain the differential equation

& 23k k| |d -, -
—f+{ Gt —2wﬂ<l“2+_12)}£+[2EM2+)\]1//=0, (32)
du " 207/ |du
where
- k; - ky
E=E+-—5-w2tk), N=A-—(1%k)). (33)
8w 1)

Passing to a new variable z=u” in Eq. (32), we have
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2

e ko \ldy [1- 1-
Zd_Z2+|:(1ikZ)—wZ(Z+2_al)2):|d_Z+|:EEZ+Z)\:|I//:O' (34)

We express the wave function ¢(z) in the form

WEN) = 2 A(EN?Z. (35)
s=0

The substitution (35) in Eq. (34) leads to the following three-term recurrence relation for the
expansion coefficients A;=A (E,\),

1 k 1 k
(s+D(s+1xk)A, + Z{)\— ;1(2s+ 1 ik2)1|AX+ E[E+ 8—01)2 —w(2sxky) |A,_; =0,

(36)

with the initial conditions A_;=0 and Ay=1.
As shown in the Appendix, the asymptotic behavior of the expansion coefficients A;
=A,(E,\) for large s is A;~ V&V @'/s!, depending on whether s is even or odd, and

[e J'Z s
o) ~ 3 el (37)

Vs !

Then we have for z>0 [the case of Eq. (26)],

Vew) o élwd)’ 2 (@
> T > /> g - &, cosh(gzz) + & smh(512>. (38)

This function does not belong to the Hilbert space. If k; >0 then we must make the replacements
b,——b, and &,——¢&,. This has the effect of replacing z by —z in (37). Now the asymptotic
solution is oscillatory. However, for z<<0 [the case of Eq. (27)] the solution does not belong to the
Hilbert space. The solution we have found is the minimal solution of the three-term recurrence
relations. There is a linearly independent solution, but the coefficients grow more rapidly than the
minimal solution coefficients.

3. Energy spectrum and separation constant

The function Z(u) cannot converge simultaneously at large w for real and imaginary u and
therefore the series (35) should be truncated in order to obtain convergence. The condition for
series (35) to be truncated results in the energy spectrum (22) where now the coefficients A,
=A"(k,, xk,) satisfy the relation

Nk
(s+1)(s+12k)A,, +BA,+wn+1-s)A, =0, ,83=Z—4—1(2s+1¢k2). (39)
w

The three-term recurrence relations (39) represent a homogeneous system of n+ 1 algebraic equa-
tions for n+1 coefficients {A,,A,,A,,...,A,}. The requirement for the existence of a nontrivial
solution leads to a vanishing of the determinant

B() 1+ k2
wn 22+ k
D,(\) = A 22xk) =0. (40)
20 B,y nlntk)
w B
The roots of the corresponding algebraic equation give us the (n+ 1) eigenvalues of the parabolic
separation constant \,(k,,+k,). It is known that all roots for such determinants are real and
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distinct.”® Thus all values of the separation constant are real and can be enumerated with the help
of the integer ¢, namely the values are \,(k;, £k;) =\, (k;, £k;), where 0<g=<n. The degen-
eracy for the n-energy state, as in the Cartesian case, equals n+1.

Note that Eq. (40) is invariant under the simultaneous transformation k; ——k; and A ——A.
Thus if one of the A=\, (k;, £k,) is a root of Eq. (40), then N\=—\,(—k,, £k,) is also a root of the
same equation. We see that for the odd energy state (n-odd) the range of \,,,(k;, £k,) splits into
two subsets )\ilq) and )\fq) connected by the relation xf,lq)(kl’ikz)H—hni/(—kl’ +k,). For n-even,
there exists the additional root \,,(k;, £ky)==N\,,(~k;, £k,), which equals zero when k;=0.

4. Wave functions

We will term the polynomial solutions of Eq. (34), or Eq. (32), as Mk,,(z;k,,+k,), and the
function (31) as Ta,,(z:k;,+k;). [The notation Ta is in memory of Professor V. Ter-Antonyan
(1942-2003).] Then the physical admissible solutions of Eq. (34) have the form

n

Mk, (z3ky, £ ky) = Pz EN) = 2, AM(ky, £ k)2, (41)
5=0

and the corresponding solution of Eq. (31) is

w

k 1,
" ut - _IMZ),U«Z_ksznq(:U“Z;kl’ k). (42)

Tanq(//«;kb k) = exp(— do

Observe that parabolic wave functions (and also Cartesian wave functions) split into two classes
and transform to each other via k, — —k,. In the case k,=0 (when the centrifugal term disappears),
the solution (42) becomes an even and odd parity wave function under the exchange u— —u.

It is known that there exists a direct connection between the quantum numbers ¢ and numbers
of zeros of the polynomial (41) and, therefore, the eigenvalues of the separation constant
Nug(ky, £ky) may be ordered by the numbers of nodes of the wave function Ta,,(u;k;,£k,).
Indeed we will see that these are orthogonal polynomials, hence, all the n zeros of the
Mknq(z;kl,ikz) are situated on the real axis —o <z<<o, and all zeros have multiplicity one.
Assume that the separation constants )\nq(k] ,+k,) are enumerated in ascending order, i.e.,

)\n()(kl’ = k2) < )\nl(kl’ * k2) << )\n,n—l(kl, * k2) < )\n,n(kls + kZ) (43)

Then according to the oscillation theorem,”” the quantum number ¢ also enumerates the zeros of
polynomials Mk, (z;k;, £k,) in the region z>0, or the real axis of . Let us now introduce two
quantum numbers ¢; and g,, which determine the zeros of polynomials Mk, (z;k;,*k,) for z
>0 and z<<0, correspondingly. Then ¢,+¢g,=n, and

)\nql(kl’ + k2) == )\nqz(_ kl’ + k2) (44)

For u=¢ the function (42) gives the solution of Eq. (26), and for w=i7 the solution of Eq. (27).
Thus the parabolic wave function (28) can be written in the following way:

\anlqz(g’ 7]§k|, + k2) = qulqz(kl’ + kZ)Tanql(f;kls + kZ)Tanq2(i7];kl’ + k2) (45)

5. Orthogonality relations and normalization constant

The wave functions (45) as eigenfunctions of Hamiltonians are orthogonal for quantum num-
ber n, or for n#n’,
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f dnf Q&+ IV, (E Tk k)W), (E ik, 2 k) =0. (46)
0 —00

Because the energy spectrum is degenerate there exist additional orthogonality relations for quan-
tum number ¢. Using the equations (26) and (27) it is easy to prove that for ¢, # g, and g, # q3,

f dgTa:q{(f;kl,ikz)Tanql(f;kl,ik2)= J dnTazqé(in;kl,ikz)Tanqz(in;kl,ikz)=0-
o0 0

(47)
Thus we have for g #¢q’,

f d’r’f dg(gz + 772)\1,* 4 ’(5’ 7]§k1’ * kZ)q,nqlqz(g’ 7];k1, + k2) =0. (48)
0 —00

I’quqz

Let us now calculate the normalization constant C,, qz(kl,ikz). From the explicit form of the

wave function ‘I’: 0 qz(f, 7;k,, £k,) and the normalization condition (29), it follows that

n

1 , -
Cug gk k)P 2 (= ALK, £ k)AL (k. £ kAT (Ky, £ ko)A Ky, £ k){F,FL

8 i’ 7 os,s!
s,s".t,t'=0

+ F+1/4F;i/,4} =1, (49)

1t

where

]

<m+t+t'ik2+l

1 1)
+ —*=—
2 474 <k1>m

+1/4
F. = — 50
bt mzzo m! 20 (50)
C. Niven approach
Let us express solutions of the Schrddinger equation (16) in the following form:"
1 1
W(xy) = ol B30y a g (). (51)

From Egs. (20), (21), and (31) follows that the function ®(x,y) is a polynomial (product of two
polynomials) in terms of the variables (x,y?) in Cartesian coordinates and (&, 7?) for parabolic
ones. It satisfies the equation

RD(x,y) =—-2ED(x,y), (52)

where the operator R is

&+ 1+2k d k | o K
=+ M—huy — —dolx+—5 | —-wthk)+—5.  (53)
x=  dy dy 4w” | dx 8w
Taking into account that
Mk,o(2:ky, £ ky) = 23 AV (ky, £ ko)2* =TT (2 - ), (54)
s=0
where ay, €=1,2,...,n are zeros of polynomials Mknq(z) on the real axis —c0 <z< oo, and that in

parabolic coordinates
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2 2
- +
P Gl llC i) 55)
a a
we can choose a solution of Eq. (52) in the form
¥
D(x,y) = Mknql(gz;klv * kZ)Mknqz(_ 7k, 2 ky) = ’€1=1<a_ +2x— a() . (56)
¢

Then from (52) it follows that the zeros «, must satisfy the systems of n algebraic equations

2 1+k k
+( 2)—wa——l ¢=12,....n, (57)

{— s
m#¢ X~ QO ay 20

and for the energy spectrum we again have a formula (22). The system of algebraic equations (57)
contains 7 sets of solutions (zeros) (a(lq),a(f), ,ailq)), g=1,2,...,n and all zeros are real. The
positive zeros a,>0 define the nodes of wave functions for Eq. (26), whereas negative zeros
a, <0 define the nodes of wave functions for Eq. (27).

The eigenvalues of the parabolic separation constant can be calculated in the same way via the
operator equation A®(x,y)=AP(x,y) (see for details Ref. 19). A more elegant way is to use

directly the differential equation (34).%> We first rewrite Eq. (34) in the form

d* k \|d k,
4zd—Z2+4 (1+ky) - oz i3 d_z+ 4nwz—;(lik2) Mk, (z;ky, £ k)
= NMk, (z3ky, £ k). (58)

Setting the wave function Mk, (z:k;,£k,) in the form of (54), we arrive at the following result:

ki w1
Nk, 2ky))=4(1 xky)| — + — |, 59
nq( 1 2) ( 2)[400 g a%q)] ( )
(in case of n=0 the sum must be eliminated) where the quantum number g=1,2,...,n labels the

eigenvalue of the parabolic separation constant.

lll. THE SINGULAR CIRCULAR OSCILLATOR

The potential of the singular circular oscillator is (k;,k,>0)

1 1
| bi-y kg
V,(x,y) = sz()c2 +y) + 2 + e (60)

The corresponding Schrodinger equation separates in three different orthogonal coordinate sys-
tems: Cartesian, polar, and elliptical coordinates.

A. Cartesian bases

From the asymptotic ansatz,

1 1
W(x,y) = x2*1y7*2 exp[- w(x + y*) IX ()X (y) (61)

we obtain two independent and identical separation equations
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& 1£2k;\ 0
—+ (— 20+ — l)x— -(1£2k)w [X(x;) =270 X(x), i=1,2, (62)
JZ; X; ox;

L

where x;=x, x,=y, and \;+\,=—FE. As in the case of the singular anisotropic oscillator we assume
that the positive sign of k; must be taken if ki>% and both the positive and the negative sign must
be taken if 0<k;<3.

The last equation is just that for confluent hypergeometric functions. The quantization rule
gives

)\[=_(1)(2nlikl+1), I’li=0,1,2,... (63)

and the solution of Eq. (62) in terms of Laguerre polynomials is X(x;) =Lf‘i(wx?). Thus the
corresponding set of orthonormal eigenfunctions which are normalized in quadrant x>0,y >0 (on

1/4) is
sk * ko 1, L (o) (242 r + +
Wt (x,y) = 2 (0274 () 22 @I (wx?) L2 (w)?), (64)
where
CEkr2k) _ \/ W 1=hop, 1y . (65)
iy F(nlik1+ 1)F(n21k2+1)

From (63) we have

E,=wn+2+k +k), (66)
where n=n;+n,=0,1,2,... is the principal quantum number and the degree of degeneracy is n

+1.

B. Polar bases

Separation of variables in the Schrodinger equation for the potential (61) in polar coordinates

x=rcos¢g, y=rsing, 0sr<o, 0s<¢<22mw (67)

gives us the orthonormal solution in polynomial form

2wn,!
‘I’tﬁ,ﬁ'ikz)(” ) = \/ T szme k’ R (\,zr)(21111k|tk2+1) e—wr2/2 Lif:kltkzﬂ (o r2)q)£’-1_'-k1,1k2)( b),
r =Rl =R2
n,m=0,1,2,... , (68)

B gy = \/(2mik1 thy+ g ! T(gk ko + 1)
" 2l (m+ky+ DI(mxk + 1)

X (cos 2¢), (69)

12%ky (o 124k p(2ko,ky)
(cos @) "“1(sin ¢p) /“Hr2p T

where an“’ﬁ )(x) is a Jacobi polynomial and E=w(2n+k,xk,+2), with n=n,+m and with the same
degree of degeneracy (n+1).

Thus the quantum system (60) is exactly solvable in the Cartesian and polar systems of
coordinates.

C. Elliptic bases
1. Separation of variables

Elliptic coordinates (v, u) connect with Cartesian ones by (0<v<o ,0<u<2mw)
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D D . .
x= By coshvcosu, y= 5 sinh v sin w, (70)

where D is the interfocal distance. The Laplacian and volume element are

8 (&2 + &2) dv Dz( h?2 2u)dvd (71)
—+—, =—/(cos —cos )
Dz(cosh 2v—cos2u) \ d*  Iu’ 8 v werep

The Schrédinger equation with (60) can be rewritten as

e P D2E D*w? 2. Bl
l// 7y 5+ ——(cosh2v—cos 2u) - @ (cosh? 2v—cos? 2u) — ( ! 3 4) + ( ,2 5 4)
071/2 u 4 4 cos”™ sin” u

_{(;%—i)_(@—i)“wo, o

sinh> v cosh? v

and after the separation ansatz

(v, u;D?) = X(v; D} Y(u;D?) (73)

transforms to two ordinary differential equations

X | DE D'’ B2-t o1
—cosh 2v— =2 cosh? 2p— =2 L 1—24 X=-\D?X, (74)

dv2 sinh® v cosh” v

&Y | DE D'’ Bt 2ol
——| ——cos2u- cos? 2+ 4y 2 3 Ly = +\ND?Y, (75)

du 4 64 cos’ o sin’ u |

where A is the elliptic separation constant. These equations can be written in the unit form

d*z D*w? D’E K-5 KB-1
dg(f) + { 08220 - —— cos 2L — ——

64 4 cos’ ( sin’ é’
where at { € [0,27] we have the equation (75) but at { € [0,i%)—Eq. (74). In other words, in the
complex ¢ plane the “physical regions” are only the shaded domains on the two lines Im {=0 and
Re {=0.

For ky,> the centrifugal barrier is repulswe and motion takes place in only one of the
quadrants, as § e[0,m/2], Whereas for 0<k;,< 2 it takes place in the whole region { € [0,27].
For the particular case k;=k,= 2 the equation (76) transforms to the problem of the ordinary
two-dimensional oscillator and has been investigated in detail in Ref. 69. In this paper we have
shown that the solution of Eq. (76) (for k;=k,=1/2) is described by Ince polynomials.®’

In the case where k; and k, are integers, Egs. (74) and (75) coincide with those that have been
found via separation of variables in the Schrodinger equation for the four-dimensional isotropic
oscillator in spheroidal coordinates.”

Z(0) =\DHZ(D), (76)

2. Recurrence relations

Let us now consider the equation (76). First, introducing the function W(Z;D?) according to

2
Z(¢;:D%) = exp[— % cos 25} W(¢:D?), (77)

we have the equation
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&PW Do . _dW | De DE . k-3 k-
—— +——sin2{—+| ——cos2{-——cos"{-——> . ——5,.-N|W=0. (78)
dg 4 dZ 4 2 cos“{ sin“ ¢
For ky=k,=1/2 this is the Ince equation.50
Next the substitution
2 R L 2
W(¢;D7) = (sin £)2*(cos {)2*1U({; D7) (79)
yields the equation
d*U D’w d , .
— +| (1 £2ky)cot £ = (1 = 2k)tan {+ —— sin 2/ | — +[p cos* {-N]U =0, (80)
d¢ 4 d¢
where
’ - D*w D’E D'’
=—[w+k k) —E], N=N+——(1zk)+(1 £k xk)>——— . (81
p 2[0)( 1 ko) ] 2( 1)+ ( 1 £k) 4 64 (81)
Passing to a new variable t=cos” { we find

2 2
(1= + {(1 k) (1=1) = (1 £ k)t + %t(t— 1)

au 1 ~
}E+Z[pt—)\]U:O. (82)

Finally, looking for the solution of the last equation in the form

oo

U(1;D%) = X, A(DY)?,
s=0

(83)
for coefficients A,(D?) we have the three-term recurrence relation
0\ 1 )
s+ D(s+1xkDA, —| s(s+1 2k xky) + Ts+ 1 A+ Z[p+D w(s-1)]A,_, =0,
(84)
with A_;=0 and initial condition Ay=1.

3. Energy spectrum and separation constant

rence relations we find for s7! <1,

In analogy with our asymptotic solution of the recurrence relation for the singular anisotropic
operator in the parabolic basis we use continued fractions. For the minimal solution of the recur-

A

. D? 1
Dotl O 1+0l—+)].
A 4s ’
Thus we have

Vs

(85)

and
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Uleos ) ~ 3~

2
cosk g ~ exp(% cos 2§>. (86)
Therefore we see that for this case the function Z(cos ¢;D?) as {— i% is not normalizable. There
is a linearly independent solution of the recurrence relations, but the coefficients grow even faster.
Hence it follows that the series (83) should be truncated. The condition that the series (83) be
truncated gives us well-known formulas for the energy spectrum (66) and reduces the solution to
polynomials,

n

Uiikl’tkz)(t;l)z) — 2 Aiikl’ikz)(Dz)ts, (87)
s=0

where now the coefficients ASEAiik"ikZ)(DZ) satisfy the following three-term recurrent relations:

2

D
(s+1)(s+likl)A_Y+1+BSAS—Tw(n—s+1)Ax_1:0, s=0,1,...n (88)
with
1 D2 D2 D4 2
B=-7 (2s+1iklik2)2+Tw(Zs—n+4i4k1)—Tw(Ziklikz)— 6:’ +M(D?)

(89)

and A_] :An+l =O.
The recurrence relations (88) become a system of (n+ 1) linear homogeneous equations for the
coefficients A,. Equating the corresponding determinant to zero,

Bo (1 k)
Do 22xk
- A n B (2£ky)
D,(\) = D? =0 90
M) —Tw B.1 nlnxky) ©0)
Do
- 4 IBn

leads to the algebraic equation of degree (n+ 1) which determines the eigenvalues of the elliptic
separation constant )\fl:;kl’tkz)(Dz). The quantum number ¢=0,1,2,...,n labels the (n+1) roots of
Eq. (90) and therefore the degree of degeneracy, as in the polar and Cartesian cases, for the nth
energy state is n+1. It is also known that the corresponding enumeration of the quantum number
g defines the numbers of zeros of the polynomial (87), which has exactly n zeros situated in the
open interval 0 <7< oo, and therefore, the elliptic separation constant )\;tkl’ikZ)(Dz) may be ordered
also by the numbers of the nodes of the eigenfunction of Eq. (76).

4. Wave functions

The condition of finiteness of the solution of Eq. (78) allows the following polynomials:

TR (£ D) = (sin £)2%(cos 743, A1) (D) (cos £)7, o1
s=0

while the corresponding solution of Eq. (76) is

2l (£, p?) = o (PRN0o 2k (£ p2) (92)
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We will denote the polynomials Iﬁ;k"ikz)(é’ :D?) as associated Ince polynomials. In the case of
k1=k,=1/2 these polynomials transform to the four types of ordinary Ince polynomials, which are
even or odd with respect to the changes {——{ and {— {+ .30

At {=pu the wave functions (92) give us the solution of the angular equation (75), and for
{=iv the solution of the radial equation (74). For each of the wave functions, radial or angular,
there corresponds a definite number of zeros which can be represented by two quantum numbers
¢, and ¢,, obeying the condition ¢,+¢,=n. Then the complete elliptic wave function (73) may be
written as

Wik, usD?) = C

iy (2ky, = ko3 D) Zyo 1 (u; DY) 2000+ iv; D), (93)

nqiq,
where Chq, 42(4_rk1 , +k,;D?) is the normalization constant. It could be calculated from the condition

919> 919>

D2 ” 2 +k .+ * +kq .+ 1
Zf va du(cosh? v — cos? ,u,)‘I’(‘kl"k2> (v,/L;Dz)\I’(‘kl"kz)(y,,U,;Dz) =1 (94)
0 0

5. Orthogonality relations

The wave functions (93) as eigenfunctions of the Hamiltonians are orthogonal n# n’,

”/41‘12 nq149;

/2
f f W (4, s DYWL (3, ;D) AV = 0. (95)
0 Jo

Equations (74) and (75) enable one to prove the property of double orthogonality for wave
functions Zf;k"ikz)(g“ :D?), namely

f Zf;’fl’ikz)*(iv;Dz)Zflflzl’tk2)(iv;D2)dV=O, (96)
0 2
/2 o)
f 25 (D) 2525 (DY d =0 97)
0 1

for g, # q| and g, # g5, and therefore when g # ¢/,

© /2
f dVJ du(cosh? v — cos? M)\I’fj;?kz) (v, w; DHWELERD (G, p2) = . (98)
0 0 !

> nq149,

IV. THREE-DIMENSIONAL SPACE

So far we have considered only superintegrable systems in two dimensions. To make clearer
our approach and how it extends to all dimensions, we consider some three-dimensional (3D)
examples.

A. The harmonic oscillator

As is very well known, the Schrodinger equation for the 3D harmonic oscillator (a superin-
tegrable system) is exactly solvable in Cartesian coordinates. We consider it in elliptic coordinates
where the separation equations are QES. We will show explicitly that the polynomial solutions of
the uncoupled 3D problem can be found directly and that the results greatly simplify the deter-
mination of the polynomial solutions of the separated QES equations. In elliptic coordinates the
Schrodinger equation has the form
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[4mi(mi) - E>}
u du

{4\/_ ( P(v) —) - wz(v3—E1v2)}

1
T (w-v)(u—-w)

N
(v-u)(v-w)

P (P |- - |
aw aw

(v=w)(v-u)

where

Ei=ej+ey+e;, PN =(N—e)N—er)(A—e3).

Here the elliptic coordinates are given by

2=(M—€1)(U—€1)(W—€1) 2_(M—€2)(U—@2)(W—€2)

(ey—ex)(e; —e3) ' - (e;—ep)(ex—e3)

)

2_ (u—e3)(v—-e3)(w-e3)
(e3—er)(e3—ey)

The separation equations that describe the solutions of HV=EW are

{4VW\)%< VW%) C N4 (= Byt END) 4+ Lok — Lz]A()\) -0

for N=u,v,w. The operators that describe the separation constants are

o ww /_i< i)_wz s 2]
+(v—u)(v—w){4wp(v)o70 \P(v)av (v’ - Ev?)

_w KA 2 e
+<w—u><w—v>[4 Pt (T ) - E1w>],
and
L= H—W{M%i(\,%g) s uz)]
’ (u=v)(u-w) Ju Ju 1
_utw | o ,ri>_ e 2]
+ -0 |:4\/P(U)av<\P(v)av o’V - Ev?)
u+v

[4\/’%%(\/P(W)%> —w*(w’ - Elwz)] .

(w=u)(w-v)

In order to find square integrable solutions to this problem it is natural to remove an expo-
nential factor according to

V(u,v,w) = exp(— g(u +v+ w))fb(u,v,w).

Then there are polynomial solutions for ®(u,v,w) of the form

Downloaded 23 Oct 2008 to 130.217.76.77. Redistribution subject to AIP license or copyright; see http://jmp.aip.org/ijmp/copyright.jsp



033502-19  Quasiexact solvability and superintegrability J. Math. Phys. 47, 033502 (2006)

D(u,v,w) = l_f[l(u -0)(v-06)w-6,).

The zeros of the polynomials satisfy the relations

4 1
-4+ 2 + 2 =0.
i#j 0;i—0; =1 6—e
It follows that the eigenvalues E and ¢, ¢, of the operators L; and L, can be expressed in the
form
€ =—4PE, +23+4nN2 0,+ | - (1 +4NE, +4E, 2, 0,— 2, 0} |0 - Ey0?,
j=1 Jj=1 j=1

r

G==2r2r+1)-2Q2r+ )E;0+ 40, ,— E,o?,
j=1

where E,=eje,+ese3+e e3 and Ez=e e,e3. Because of the relations among the zeros 6; there are
also alternative expressions available for these eigenvalues. We now turn our attention to calcu-
lating the eigenvalues. Let us first consider the special case r=1. If we choose a basis of functions
of u,v,and w Fy=1,F;=u+v+w,F,=uv+uw+vw, and F;=uvw then we can find solutions

cI)(l/t,l),lft/) =a0F0+a1F1 +a2F2+a3F3.

If we look for eigenfunctions for the operator L; that correspond to this form we obtain the
conditions

(2E3(l)2 + 5E2w + 4E1 + 61)03 + (4E1(D + 6)02 + 4(1)611 = 0,
(= 2E, —4E;w)a; + (£, + wE, + w*E3)a, =0,

(— 2E2 - 4E3(,0)a2 + (61 + (X)Ez + w2E3)a| = O, (— 2E2 - 4E30))a1 + (61 + (UE2 + w2E3)a0 =0.

For these equations to have a nontrivial solution the corresponding determanental condition must
hold viz.

(€1 + 0E; + 0E3) (63 + (4E| + TE,0 + 3E30°) €2 + (14E5E,0° + (24E,E5 + 11 E3) o0
+ (16E,E, + 24E3) 0 + 12E,) €, + E3(20E E + 11 E3) w* + (S5E3 + 18835 + 32 E>Ex) 0
+4E,(6E,E, — 14E;)” + 28E,w) = 0.

For the operator L, the corresponding relations among the a; are

(6 + €2 + Ezwz + 6&)E1)a3 + 40)[12 = O, (6 + €2 +E1(D+ Ezwz)az +4a)a3 = 0,
- (2E2 - 4E3(1))a3 + (— 4E2(1) + 4E1)a2 + (Ez(l)z + 2(1)E1 + €2)d1 = O,

— (2E, —4E;w)a, + (— 4E, + 4E,0)a; + (5 + 2E ;0 + E;0Y)ay =0,

with the determinant condition
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(€y + 20E,| + 0*Ey) (€3 + (140E, + 30°E)) (3 + 30 E3 + 280°E | E, + w?(60E] + 40E,)
+ 1120E, +36){, + 0°E3 + 140°E | E3 + 40*E,(15E7 + TE,) + 0 (72E; + 208E, E, — 343E5)
+ w*(240E7 + 100E,) + 1680wE,) = 0.

This illustrates clearly that our method gives the eigenvalues of L; and L, as solutions of
polynomial equations. If we substitute in this way into the Schrodinger equation itself then we
obtain the conditions

(E+7w)a;=0, j=1,2,3,

(2E2 + 4E3(1))a3 + 4(E] + (,()Ez)az + 2(3 + ZQ)El)al - (E + 360)610 =0

yielding the two eigenvalues —7w and —3w for E. This method has obvious extensions to r
=2,....

Note that if we look for polynomial solution of the separation equations then we obtain
different equations. In particular if we look for solutions of the form A(N)=exp[—(w/2)A](A=c¢) in
the separation equation

——d (| ——2d
VP()\)R( VP()\)KA()\)) + (@ (=N +(E;, = E)\) + LA —£)AN) =0
we obtain the relations

05+ €5(6 + 8WE, + 20°E,) + 4wl + 0*E5 + 0> (8E | E; + 4E3) + w’(12E7 + 26E,) + 28w =0,

6162 + a)(E2 + E3w)€2 + (1)(6E1 + Q)Ez)el + E2E3(1)4 + 0)3(6E1E3 + E%) + (1)2(6E]E2 + 22E3) + 14E2(1)
=0,

where

c=((12+24,) + 6wE,| + 0’E,)/4w.

If we were to pursue this approach further then we would obtain more complicated relations
among the € and €, which could be uncoupled to produce the individual equations for €, and ¢,
respectively. This example shows clearly how study of the full 3D superintegrable system yields
results for solutions of the separation equations that could not easily be obtained from a direct
study of the separation equations themselves.

B. Ushveridze’s separation of variables example

A critical further example is that studied by Ushveridze on p. 115 of Ref. 63. He takes two
copies of an ordinary differential QES problem (polynomial potential of order 10) and combines
them to form a single 2D partial differential equation from which the original ordinary differential
equations can be obtained by separation of variables. However, the partial differential equation
that he obtains is merely separable, not multiseparable. In particular it is not superintegrable. Here
we show the increased insight and greater simplicity obtained by using three copies of the QES
problem to form a 3D superintegrable system. We proceed as follows. Consider the Schrodinger
equation HV =EWV where
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1 &#
H:m[a 5 = 30K7u'" - 48k ke’ = (245 + 3k s +
1
+—
W= u?)(v? - w?)
1 - w!o 8 2 6, P(L-p)
T W o) —uz){& 7 = 30kiw ™ = 48k kow® = 8(2k + 3kik3)w” + 5 = |

p(l p)}
bt

P
[a S - 36k2010 - 48k k,v® — 8(2K2 + 3k ko)t + s (1-p)
U

This equation is clearly separable in the u,v,w coordinates. Passing to Cartesian coordinates z
=iyvw and

x+iy =50’ + W +vPw?) - ot e wh), x—iy=5P + 02+ W),

we can recognize the Hamiltonian operator in the form

H= iz + i iz 36k3(2(x — iy)® — 4(x* + y?) — 22) + 48k ky(3(x — iy)* = (x + iy))
Jx=  dy” Iz
— 16(2K2 + 3k ks) (x + iy) — ’%. (99)

This in turn can be recognized as essentially the complex Euclidean space superintegrable
system with nondegenerate potential

)
V=a(z> = 2(x—iy)* + 4(> + y?) + BQ2(x + iy) = 3(x — iy)?2) + y(x + iy) + 2—2, (100)

in which the six basis second-order symmetry operators can be taken in the form

H:ﬁ+£+£+l

S1=(3,=id)2+f1, S,= B+ fr Sy={d.Ja+ili}+f3, (101)

1 . i . . :
S4 = 5{]3,(9)( - l&y} - Z((?x + l(i’y)2 +f4, SS = (Jz + 111)2 + 21{&Z,J1} +f5,

where {A,B}=AB+BA, the J; are the angular momentum operators, €.g., J3 =xdy—yd,, and the f;
are appropriate functions. There is a quadratic algebra generated by these symmetries. This is a
direct consequence of the observation that this potential is an example of a nondegenerate poten-
tial in three dimensions.””

The separation equations for the Schrodinger equation have the form

— = 36k — 48Kk koS — 8(2K3 + 3k k5)NO + pl - N )+E)\4+€2)\2+€3 AN =0,

N2

essentially, Ushveridze’s 1D QES problem. The operators with the separation constants as eigen-
values are
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2 2
vTt+w & 2 2 P( -p)
Lzzm{& 5 — 36kju'” — 48k kou® — 8(2k5 + 3k k3)u® + ——— "
u® + w? [ & p(1-p)
S — 36k — 48k kv’ — 8(2k3 + 3k k3)v® + ———
02— ) (W= w?) | o> 17U (2k; 1k3)v 2
Lt +U

s p(1-p)
+ —36kTw'0 — 48k kyw® — 8243 + 3k ky)w® + ———
w2 =) (W? - u?) { aw? " = 8( W’ w?

(102)
and
- p(1-p)
Ly= — =36l -4 8 _ g(2)2 6
= 2 _vz)(u ){ =36k~ 48k e~ 8(215 + 3k kg )u +
> 1
W=D @2 -w?) _2_36]‘2 . 48k1k208—8(2k§+3k1k3)v6+p( zp)
(v —-u )(U -w?) »
’ [ S = 36— 48k g — 8212 + 3k + 2 p)].
(W —-U )(W —u? )
(103)

In searching for finite solutions of HV=EWV we write
W(u,v,w) = expk, (u® + v° + W) + ky(u* + v* + w*) + ky(u? + v + W) (wow)? P (u,v,w),
where
d(u,v,w) = (> - t9j)(v2 - ¢9j)(w2 -0).
j=1
The zeros of the polynomials satisfy the relations

2r+1
rw 12Ky~ der O — kg + D

i jFEi i Y

=0.

Solving these equations we see that the eigenvalues of the operators H, L,, and L; have the form

E=- (30 +24r + 12p)k1 - 16k2k3, 62 =- 4k% - (12+ 167)](2 - 24](]2 0‘,
Jj=1

€3=—(2+8r+4p)ky— 16k, >, 6;— 24k, 2. 6.
Jj=1 j=1

Because of the relations among the zeros there are many other expressions for these eigenvalues.
If we look for solutions of the form

O (u,v,w) =agGy+a,Gy +a,G, + a3Gs,
where Gy=1, G1=u2+v2+w2, G2=u202+ wWw?+v*w?, and Gy =u’vw?, i.e., second-order polyno-
mial solutions, and substitute this expression into the eigenvalue equations, we obtain the follow-
ing polynomial equations for the eigenvalues:

(E+ k(54 + 12p))*(E + k,(30 + 12p)) =0,
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(€3 + 2k (4p + 1) + 4K3) (€3 + (12K3 + (68 + 24p)k,) €5
+ (192K ks + 16(2p + 7)(6p + 13)k3 + 32k3k,(6p + 17) + 48Kk3) €,
+64(17 + 6p)kok + 768k k3 + 64(2p + 7)(6p + 13)kk3 + T68(2p + T)k koks
+64(2p +3)2p +1)%k3 - 1152(2p + i3 =0,

(€3 + 2k3(p + 1))(€3 + 2(6p + k53 + 4(6p + 11)(1 + 2p)k3€5 + 8(1 + 2p)2(12k, + 2pk3 + 5k3))
=0.
On the other hand, if we study the separation equations individually and look for a solution of
the form
AN) = exp(k N + koA + kAN (N = ¢)

in the above separation equation then we obtain different relations

03+ (4hy (10 + 4p) + 8k3) € + 24k, €5 + 163 + 8(4kok + 6k k3)(5 + 2p) + 16k3(2p + 7)(2p +3) =0,

0l +2(2p + 1), + (4ky(2p +7) + 4K3) €5 + 48k, (1 + 2p) + 8koks(2p + T)(2p + 1) + 8(1 + 2p)k;3
= 0,

where

1
c=- Ikl(4k2(p +7) + 43+ £y).
The above computation extends in an obvious manner to the computation of polynomial solutions
of any order. There is a clear relationship with Ushveridze’s equation on p. 115 of Ref. 63 through
the correspondence a=6k,, b=4k,, c=2k;, and s=(2p+1)/4.

We now look for solutions determined by other second-order constants of the motion and
corresponding (possibly separable) coordinate systems. First consider our basic equation HW
=EW written in terms of different coordinates {é=x+iy, p=x—iy, z. We can find nonseparable
solutions in these coordinates of the form

V= exp(Z VIN+ (ky + 3K,y

f { 3k (ky+3k,8)  E(= OKCE + Ok kot + 6k ey + 4K2) + E]d )
T+ G+ 36,07 O+ (e + 3K,8)) ¢

1
2 Pty 2
Xexp(=3kz7)ZL, "2(6k,z°),
where

E=E-6k;(4n+2p+1)

and L, (¢) is a Laguerre polynomial. It is clear that the above ¢ integral can be calculated in terms
of elementary functions but we prefer the form given as it is more compact. This possibility for an
explicit solution comes about from the existence of a symmetry of the form p37+ f.

If we choose new separable coordinates u,v,z defined by
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x+iy=—%(u—v)2, x—iy=u+v

then the Schrodinger equation has the separable form

1

J
HY = { [(a — 14413u* = 96k kout® + 16(2K3 + 3k ks)u )

p(

u-—uv
4 3 2 2 (92 2 2 )
— — 144Kk30* — 96k kyv® + 16(243 + 3k ks)v? | | + 3 36K+ V=EV.

v
(104)

The symmetry operator L associated with separation in these coordinates is of the form

1

u-—-v

d
LV = [ L;(a— — 144ku* — 96k, kyu® + 16(2k; + 3k1k3)u2)
u

i 3 2 2
b S — 144K20* = 96k kv + 16(2K3 + 3k k3)0> | | W
1%

Searching for finite solutions using these coordinates, we see that they can be taken in the form
k2
Y= exp(4k1(u3 +0%) + 2k, (u® + v?) - 2(k_2 + k3) (u+ v)>H;=o[(u - 6)(v-6,)]
1
1
Xexp(— 3k;z2)z"L] " 2(6k,2%).

For solutions of this kind these zeros satisfy

— 2kiky — 2K + 4k, k220+12 =0.
i=1 i=1 J#Fi 0 0
The eigenvalues of L and H’ have the form
KoKk, ; K
N.=- 4; - 8k_ —4k5—4(1+2r)k, — 24 0;, E.=16kyk;+ 16k— =24(r + Dk,
1 1 i=1 1

and E=E,+6k,(4n+2p+1).

It is clear that we can find solutions of the form given above but with a choice of polynomial,
say ¢ uv +c,(u+v)+cjy for illustration. The resulting polynomial equation for the eigenvalues of L
is

(NKT + 4kThs + 4ok + 4k + 8kykaka) (KIN? + 8K7(2kok + 3k + 2k sk + k3)N)
— 96ks3k; — 48kak| + 6415k ky + 16k3kT + 1283ksk; + 64kak ks + 64kok; + 96kikoks

+ 64kSk ks + 16k5 = 0.

These are finite solutions, clearly different from those given previously. The above analysis can be
extended in an obvious manner to yield polynomial solutions of any order.

Note that for this last coordinate system we have given an example of a QES problem with a
quartic potential, something hitherto not known to be possible (as mentioned in Ushveridze’s
book). Indeed the separation equations have the form
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e
(ﬁ — 144k70* — 96k k€3 + 16(2k5 + 3k k3) | €2

k2
—{16k2k3 + 16k—3 +6k;(4n—4dr+2p=3) ¢ + )\,}A(«?) =0,
1

where A=U,V and €=u,v. There are typically r+1 solutions

k2
A) = exp<4k1€3 + 2k, 6% - 2<k—? + k3) V4 )Hlfzo(g_ 6,

of this equation, with corresponding eigenvalues Aix),s= 1,...,r+1. It is clear from our definition
of QES that if we look for series solutions then the recurrence relations involved will contain more
than three terms. The analysis then proceeds in analogy with what has been demonstrated for the
case of three terms and the requirement of polynomial solutions (to within a factor) is a conse-
quence of the solutions generated in this manner being well behaved at the regular singular points.

It is clear that in higher dimensions there are many examples which generalize the examples
occurring in Ref. 63. The utility of the use of partial differential operators, rather than ordinary
differential operators, is evident. Finally, we note in the superintegrable example presented here,
though our system is multiseparable there are no separable coordinates in which the separated
equations are each exactly solvable.

V. CONCLUSIONS AND SUMMARY

We have demonstrated that solutions of the Schrodinger equation for the potential V; may be
constructed via separation of variables in two different ways. Using Cartesian coordinates we
arrive at two independent exactly solvable equations (17) and (18), each of them representing a
one-dimensional nonparametric spectral problem where the Cartesian separation constants A; play
the role of energy. To obtain solutions in the form of Laguerre and Hermite polynomials, both
separation constants are quantized and as a result the energy spectrum for the two-dimensional
Schrodinger equation is obtained. For the second separable system which uses parabolic coordi-
nates the solution method is more complex. We have shown that the separation procedure reduces
to an ordinary differential equation for real and imaginary variables. It has been proven that the
requirement of convergence for solutions of Eq. (30) at the singular points w=+0% and u=i% leads
to only polynomial solutions (42) with the restriction for the energy spectrum E in the form (22)
and for a fixed energy (or quantum number n) gives the spectrum of the separation constant as the
root of an nth-degree polynomial equation. In contrast to the solution in Cartesian coordinates the
coefficients of the polynomial solutions satisfy three-term recurrence relations and cannot be
written in explicit form in general. For this reason we refer to the equation (30) as quasiexactly
solvable.

On the other hand, the substitution of the formula for the energy spectrum into Eq. (30) gives
rise to the equation

d’ K B-3
— s+ @l kgt | T - oldn+422k) [+ =5 ] | Z,(0) = A2, (w),
dw 4w M

(105)

which on the real axis completely coincides for k; =4 Bw” and 1+k,=248, with the one-dimensional
spectral problem (10), and is called a quasiexactly solvable problem. Now it is easy to understand
the origins of the occurrence of quasiexactly solvable systems. The requirement of convergence
just in real space (which is possible to determine following Ref. 37 as the dimensional reduction)
in the vicinity of singular points pu==+ requires that there are polynomial solutions of the form
(41). We also can shed light on the mystery of the zeros of the polynomial P,(x?). Indeed, the
substitution of the wave function (11) into the Schrodinger equation with potential (10) leads to

Downloaded 23 Oct 2008 to 130.217.76.77. Redistribution subject to AIP license or copyright; see http://jmp.aip.org/ijmp/copyright.jsp



033502-26  Kalnins, Miller, and Pogosyan J. Math. Phys. 47, 033502 (2006)

the differential equation for polynomial P,(x?) in the same form as Eq. (58) (in variable x*>=z), but
with the difference that the physical region of Eq. (58) is the whole real axis z € (-, %), and
therefore all zeros (for positive and negative x?) of P,(x?) correspond to the zeros of two-
dimensional eigenfunction of singular anisotropic oscillator in parabolic coordinates.

The situation is repeated in the case of the second potential (60). We have determined that the
separation of variables in two-dimensional elliptic coordinates leads to a Schrodinger type equa-
tion (76) in the complex plane and the requirement of convergence at the point {=0,27 and ¢
=jo requires polynomial solutions and defines the energy spectrum (66). As a consequence trigo-
nometric and hyperbolic quasiexactly solvable systems (see potentials 5 and 8 in Ref. 61) are
generated in the form

ox (@ TR o
— + || —+a@n+2+k *k;)|cosh® v— — cosh® v— ———+ S +MN[X=0,
dv? 4 4 sinh® v cosh” v

d’y o’ o? K-t 2_1
— - <—+a(2n+2iklik2)>cos2,u——cos4,u+ e 2t (Y =0,
dw 4 4 cos” u  sin” u

where a=D?w/2. Thus we have established that an integral part of the notion of quasiexact
solvability is the reduction of superintegrable systems to one-dimensional problems.

Indeed, we can express our observation in the form of the following hypothesis: All quantum-
mechanical problems which are expressible as one-dimensional quasiexactly solvable systems can
be determined via separation of variables in an N-dimensional Schrédinger equation for superin-
tegrable systems.

This analogy prompts us to use the term quasiexact solvability for the equations of type (30)
or (76), defined in the complex plane and which are not exactly solvable but which admit poly-
nomial solutions. Thus we suggest calling quantum mechanical systems first-order quasiexactly
solvable if the polynomial solution of the one-parametric differential equation of the kind of
Schrodinger equation or N-dimensional equation after separation of variables is defined through
recurrence relations which must always contain three terms or more and the discrete eigenvalues
can be calculated as the solutions of algebraic equations. According to this definition systems (30)
and (76) are first order quasiexactly solvable.

In three dimensions we have provided even more striking examples of 1D QES problems
obtained as restrictions from superintegrable systems. We exhibited a quasiexactly solvable super-
integrable system which is not at the same time exactly solvable in any separable set of coordi-
nates. In one set of separable coordinates we obtain Ushveridze’s tenth-order polynomial QES
problem and in another set a fourth-order polynomial QES problem. We have shown how the
eigenvalues of the symmetry operators which describe separation can be calculated from a deter-
minant condition. These examples, and more to come on other manifolds and in higher dimen-
sional spaces, indicate that our modified definition of QES systems can be extended to
N-dimensional spaces and fine tuned to distinguish between the number of parameters in the
systems. These matters will be taken up in other papers in this series.
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APPENDIX: ASYMPTOTIC BEHAVIOR OF COEFFICIENTS

To understand the behavior of the solutions of relations (36) for large s we use continued
fractions theory.81 Setting
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(A1)

(s 1) ( ky s 1) (a ky s )
INN-+-MNzx=+-+- 'l ——=+-+1
w \2 2 2 2 2 20 2 2
flo)= E s k, s a ks 1\’
F(—+1>F(i—2+—+1>F(—i—2+—+—>
2 2 2 20 2 2 2

where I'(z) is the gamma function, we can write the recurrence relation (36) in the standard form

1
§S_bs"'gs+l,
(A2)
1 k 1 k k
F(£+—>F<i—2+£+—>r(ii—2+£+1>|:—)\+—1(2s+1ikz)]
b_\/z 272) \T27272) 20”272 o
o k k 3 ’
@ F<£+1)F(i—2+£+1>f‘<ii—2+£+—>23
2 2 2 20 2 2 2

where a=—(E+k,/(8w?))/2. Note that

o
(—J_rk2+s+1>

fo+ DA = e 1)

Stirling’s formula for the gamma function I'(z)=z""2e=\2m(1+0(1/z)) as |z| — o with |arg z]|

<1, gives f(s)=—y'm(l +0(1/s)) and bszi(k2/2w\"a)(1 +0(1/5)). In the following we take
k=<0, ko, \,E real and w>0. Without loss of generality we can assume b, is positive for suffi-
ciently large s since, otherwise, we could make the replacements b, — —b,, &— —¢&,.

Since Xb,=%, it is a consequence of the Seidel-Stern theorem that the formal continued
fraction expressions for the & converge,

Moreover, standard continued fraction theory tells us that

A(S)

£ = limﬁ, (A3)

n—o

AN (1 A9\ (o
BY) Vo) \Bp) \1) (A9

AY AV (AL,
@ | =bnes\ i [ o ) n=L
Bn Bn—l Bn—2

Furthermore the relation A”B'Y A" B =(~1)"" holds for all n=0, which implies

where

and
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Ay A _ o
B(S) B(S—)l B(S)IBS) '

n n

This result in turn implies that the sequence A(s)/ B(s) is, for large s and n, monotone increasing in
n and goes to & in the limit, whereas AY /an .1 is monotone decreasing in n and goes to & in
the limit. For example,

2n+1

% Iﬁ _ b2n+2+s

w2 Do Doviaes (A5)
Bgn)+2 B(Zn) B211BZn+2

It follows from (A3), (A5) that

"By D BS)BS.,

Simple estimates using the recurrence relations (A4) give

n
Y) >1 +b3+12 b2m+s’ BZn+l = 2 b2m+l+S'

m=1 m=0
Substituting these results into the identities

n

<S) = E b2m+sB(2Sn)1—1’ 2n+1 - E b2m+s+132m

m=1 m=0

we get refined upper bounds for B(Y) B(;)+2 We can approximate the sum =/, _ 1/ m by the integral

eV \rx)dx and use similar appr0x1mat10ns to get an upper bound for the series (A6),

* d
fl<m]| =
0o Vy+s(y +1)

for positive constants «; independent of s. This shows that |&,| is uniformly bounded in s. Since
E1=—b,+1/€ and b,—0 as s— o it is also true that |1/&| is uniformly bounded in s.
It follows from (A2) that

— gs—l - (bv + és—l)(l - bs—lés—l)
1 _bs—lgs—l .

Now choose s, so large that b, <b, and b &, <1 for all s=s,. Note from this identity that if
gsl_, >1 for some s;>s, then & 41 >§S _1>1. Thus the sequence §s1+2k—1 is monotonically in-
creasing for all k=0. Since |&| i 1s bounded it follows that in this case lim;_.., §Sl k-1 =&, exists,
and &,>1. Since &, ,=—b,+1/&, b,—0 as s—o0 and |1/£,| is uniformly bounded in s, then the
sequence fslﬂk is also convergent, lim;_,., gfﬁ”‘ & where 0<&_<1.

The other possibility is that é<1 for all s=s,. Since 1/§,—§&,.1=b;—0 as s—, and 1/&
=1, &, =1 for all s=s, it follows that lim,_,,, §=&,=& =1. Thus in all cases the sequences &,
and &, converge.

We conclude that

§s+1 - gs—l

§+

— =S DE = (1+0(11s5)),  &é.=1,
depending on whether s is even or odd.
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