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In this paper we construct generalizations to spheres of the well-known Levi-Civita,
Kustaanheimo—Steifel, and Hurwitz regularizing transformations in Euclidean
spaces of dimensions two, three, and five. The corresponding classical and quantum
mechanical analogs of the Kepler—Coulomb problem on these spheres are dis-
cussed. ©2000 American Institute of Physids$S0022-2488)0)05205-1

I. INTRODUCTION

It is well known that the problem of a body moving under the influence of a central force field
with potentialV(r)= — w/r has a singularity at the origin. We refer to this as Kepler problem
This problem is usually posed in three dimensions, but since the motion is always constrained to
a plane perpendicular to the constant angular momentum vector we can reduce it to two dimen-
sions with Newtonian equations of motion and energy integral

dl‘)2 mwo1

d? mo 1 N
dt) v " 2r?

—r=—

T - @

wherer?=r.r, r?(d@/dt) =c andr=(x,y)=(r cosé, rsind). As is well known>? in two di-
mensions the Levi-Civita transformation effectively removes the singularity and rewrites this
problem in terms of the classical harmonic oscillator. In this process the original problem has been
regularized. To achieve the regularization, instead we use the variable defined by

)

With x’ = dx/ds, etc., the original equationd) are

r’ 1
’—Tr’+$r=0, r'—ﬁ=h. (3

r’ —r'.
2r? r

Instead of using the variables,{) it is convenient to make the transformatton

x| |U1 —Uz

y

Uy
uz

or r=L(u)u. (4)

U U

From the explicit form of these relations it follows thdt=2L (u)u’. The equations of motion are
equivalent to
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L ml2=u'-u B mo h
U+Tu—u, E—u'u §u~u. (5)

Consequently we have the regularized equation of motion
u’— Eu= 0
5 .

This is essentially the equation for the harmonic oscillatdr<f0. The solutionu; = a cos@s),
u,= B sin(ws), w*>=—h/2 is equivalent to elliptical motion.

The relationship between the harmonic oscillator and the corresponding Kepler problem can
also be easily seen from the point of view of Hamilton—Jacobi theory. Indeed the Hamiltonian can
be written in the two equivalent forms

H 2 (p2e pd) - [pZ,+pg,+8u] (6)
2 T e g(uzud) T e R
If we now write down the corresponding Hamilton—Jacobi equation via the substitutions
pul—”?ulS:Sula puz_”;qu:Suzv
we obtain
S, S5, t8ur—8E(ui+u3)=0. 7)
This is just the Hamilton—Jacobi equation for a mechanical system with Hamiltonian
H'=pg, +pi,—8BE(Ui+u))
and energy—8u. (This is the pseudo-Coulomb problem, see Refs. 3, and 4. Reference 3 also
obtains(7) as an application of St&el transform theory.
This transformation also achieves a regularization of the corresponding quantum mechanical

problem, which we call thguantum Coulomlproblem. Indeed, the Schiimger equation in the
presence of the potentig(r)= — w/r in two dimensions has the form

vy gy ®)
2 ST ey T
In the coordinatesy(; ,u,), (8) become$
(95, + d5, )@ +{8u+8E(ui+u3)}P=0. 9

Here, (9) has all the appearances of the Sclinger equation in an oscillator potential
V(uq,uy)= —4E(u§~l— u%) and energy=4u. Note that for scattering statte>0 we have the
repulsive oscillator potential and f&=0 the free motion. FOE<0 we get the attractive oscil-

lator potential and the corresponding bound state energy spectrum can be easily computed from
this reformulation of the Coulomb problem, although the weight function for the inner product is
no longer the same>>® (Indeed, the Virial Theorem states that for the Coulomb problem the
change in weight function does not alter the bound state speéjrlitre wave functions have the

form ® = ¢4(u;) @,(u,) where the functiong, satisfy

(9 +ry+8EU) 9, =0, N=12, K1+ r=8xu.
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The bound state eigenvalues are quantized according to

ky=24—2E(2n,+1), \=12, (10)

wheren,,n, are integers. Taking into accolnb(—uy,—u,)=(—1)"""2® (u,,u,) and using
that W(x) is even in variableu: W[x(u)]=W¥[x(—u)] [because two points—{u;,—u,) and
(uq,Uy) in u-space map to the same point in the plamey]], we find from (10) the energy
spectrum of the two-dimensional Coulomb systém

2
n{+n
EN:_M—lZa N: 12 2:0,1,2,....
2 N+§

It is well known that the regularizing transformatio®) that we have discussed for the
Kepler and Coulomb problems in two-dimensional Euclidean spaces are also possible in the case
of three (Kustaanheimo—Stiefel transformation for mappiRg— R3)*!°~*? and five (Hurwitz
transformation for mappin&®s— Rs)**~1° dimensions. The only difference in these cases is that
additional constraints are required. These transformations have been employed to solve many
problems in classical and quantum mechaiigee Ref. 14 and references thejein

As in flat space, the study of the Kepler—Coulomb system in constant curvature spaces has a
long history. It was first introduced in quantum mechanics by &tihger?® who used the fac-
torization method to solve the Sclidinger equation and to find the energy spectrum for the
harmonic potential as an analog of the Kepler—Coulomb potential on the three-dimensional
sphere. Later, two- and three-dimensional Coulomb and oscillator systems were investigated by
many authors in Refs. 21-31.

However, in spite of these achievements the question of finding all transformations that both
generalize the Levi-Civita, Kustaanheimo—Steif€l), and Hurwitz transformations for spaces
with constant curvature and preserve the Kepler—Coulomb and oscillator duality has been open
until now. The answer to this question is a main aim of our paper.

The paper is organized as follows. In Sec. Il we present the transformations that generalize the
flat space Levi-Civita transformation and correspond to the 8yap- S, from complex into real
two-dimensional spheres. We also show that this transformation establishes the correspondence
between Kepler—Coulomb and oscillator systems in classical and quantum mechanics. In Sec. lll,
in analogy with Sec. Il, we construct the Kustaanheimo—Steifel and Hurwitz transformation and
show Kepler—Coulomb and oscillator duality for mappirs — S; and Sgc— Ss, respectively.
Section IV is devoted to a summary and discussion of our findings. In the Appendix we give some
formulas determining the connections between Laplace—Beltrami operators and the volume ele-
ments in different spaces.

IIl. THE TRANSFORMATION ON THE TWO-SPHERE

The potential, which is the analog of the Coulomb potential in quantum mechanics and the
gravitational potential for the Kepler problem, is taken t°5é

S
v=-£_ = (11)

R s?+s3’

where 6,S,,S3) are the Cartesian coordinates in the ambient Euclidean spadr iarttie radius
of the sphere

s-s=si+55+s5=R?.
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(Note thatV=— (u/R)cota where « is the arclength distance fromto the north pole of the
sphere. Furthermore, the leading term in the Laurent series expansiombiout the north pole is
— u/Ra.)

This problem is easily transformed into a much simpler one via the transform

ui—uj
2u3

sy=iyui+us+us

. usus
Sy=i \/u71+ u27+ ugz- e (12
3

Sa= U+ us+ui-|u +M
3 1 2 3 3 2U3 ’
or in matrix form
iu; —iu 0
(S 1 2 u
1 Jui+ustusl|. _ 1
SZ = |U2 |U1 0 U2 . (13)
2U3
S3 Uy U, 2ug|lUs

The advantage of this transform is the Euler identity
ST+ 85+ 85=(u+u5+u3)?, (14)

from which we see that the point=(uq,u,,us) lies on the complex “sphere’S,:: u§+ u%
+u§=D2 with the real radiu®D if s=(s;,S,,S3) lies on the real spher8, with radiusR, and
R=D2

In the general case the two-dimensional complex sp8grenay be parametrized by four real
variables(the constrainuer u§+ u§:D2 includes two equations for real and imaginary parts
The requirement of reality of the Cartesian variabdeads to two more equations and the
formula(12) corresponds to the mapping from a two-dimensional submaniésldurface in the
complex sphereS,: (four-dimensional real spageo the sphereS,. To verify we introduce
ordinary spherical coordinates @j:

s;=Rsinycosg, s,=Rsinysing, sz=Rcosy. (15
From transformatiorf12) we have

S3 1(u3 D. 1

R 2\D" 4,

Putting s;= R cosy in formula (16) we getuz=De'* and then the corresponding points on the
complex spheré,c are

u;=Dy1—e?¥ cosg, u,=D1—e?¥ sing, uz=De'X, (17

where O<y<, 0<¢p<47w. Note that the transformatio(il2) is not one to one; two points
(—uq,—us,uz) and (uq,U,,u3) on the sphere in-space correspond to one point on the sphere in
s-space. Thus, when the variablas, (u,,u3) cover the sphere in-space, the variables cover
the sphere irs-space twice.

Let us now introduce nonhomogeneous coordinates accordifg to
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u.
o D?=R, i=1,2. (18)

_ i(ug—u; _ iug-Up
S1=m=F— =, S=FT— . 19
! X us+us 2 ust+us (19
MY 2D2
In the contraction limitD — o we obtain
o ww%
S1=i—%—, $=il-Up, (20

which coincides with the flat space Levi-Civita transformatidh up to the additional mapping
Ui—>e" (w/4)‘/?'ui .
The relationship between the infinitesimal distances is

us+uj
2
us

(u-du)?
u3

du-du

ds-ds=(u?+u3+uj) +3(u-du)?. (21)

Thus, when restricted to the sphere, the infinitesimal distances are related by

us+us
2
usz

ds~ds_
===

du-du, (22

and we see that as in flat space the transformdti@nis conformal.

A. Classical motion

Just as in the case of Euclidean space, the classical equations of motion under the influence of
a Coulomb potential can be simplified. The classical equations are

§=—(58s-VV, (23

where the first term on the right-hand side is the centripetal force term, corresponding to the
constraint of the motion to the sphere, and the potential satisfies

s-VV=0. (24

Here,5= (d/dt)s. [In studying(23) and(24) we initially regard the coordinatesas unconstrained
and then restrict our attention to solutions on the sphédrethe case of potentialll) these
equations become

2
%qz—s,—('s-é)—%%zg)w, i=1,2,
d? LM
Ws3=—sg(s~s)+§(si+—sg)m,
subject to the constraints
s s=R? (25)

and its differential consequences
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s:5=0, s-5+55=0.
From the equations of motion we immediately deduce the energy integral
15.5+V=E. (26)
We choose a new variablesuch that

dr 1 u%
dt  D? u?+u?

In terms of the variables andu;, the equations of motion can now be written in the form

[ 2D* i
(u)?+ (up)?+(uj)?>—2D2 E+ﬂ2 +—|E- —Mz)zo, (27
D us D
i i
ui+2| E+ D—’é)ulzo, us+2| E+ D—'U;)uzzo, (28)
, (7 2D* i
U3+2 E+ F)Ug—u—g _F =0, (29)

subject to the constraini-u=D? and its differential consequencesu’ =0, u-u”+u’-u’'=0,
whereu =du; /dr. These equations are equivalent to the equations of motion we would obtain by
choosing the Hamiltonian

4

D
(Ui +ud+ul)+—

1 i
_ T /n2 2 2\ _
H_Z(pul+pu2+pu3) E+ D2 U3

i
E— D—“z) , (30)

regarding the variables; as independent and using the variablas time. In fact, to solve the
classical mechanical problem from the point of view of the Hamilton—Jacobi equation, we use the

relation
1 M S3
T2 2 2y~ _
2P P P "R Uz e ¢
2 2 .
_ Us 1 5 2 e A
pitTEaY: 2Dz(pulerquLpus)— oz tE +ug E- 52 =0, (31

together with the substitutiorm,i= aSldu; and Ps;= 33/ ds; to obtain the Hamilton—Jacobi equa-

tions
3S 2+ dS\? [dS\? 2u s; SE—0 2
7 o5 Tl TR e 42
85)2+ SV ) p g e 1) 33
duy AUy dug D? u3 D?) (33

This last equation can be solved by separation of variables in the spherical coordinates on the
complex spheré&,c (17).
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Re x

FIG. 1. DomainG={0< Rey=<m;0< Im y<w} on the complex plane of.

B. Quantum motion

If we write the Schrdinger equation on the sphere for the Coulomb poteiitial

S3
v szl + 522

and use the transformatida2), we obtain[see formula/A3)]

Lawt|es” ¥ =0 34
SANV T Bt =0, (34)

1A ey w?D? uf+u§ =0 (35
— _|_ — = ,
27! 2 uj
where
i
£=2ip, w2:2<E—D—”2). (36)

Thus we see that the Coulomb problem on the real sp&gie equivalent to the corresponding
guantum mechanical problem on the complex spH&xe with the oscillator potentialHiggs
oscillatoft?%2% and energy Pu, but with an altered inner produ¢see the Appendix
Let us consider the Schilimger equation(35). Using the complex spherical coordinatds)
we obtain
1 9 a1 9y ex

- siny—+ —=— —
Siny dx X(?X Sln2X 10

+[w2D4—i£D2 ]<p=o. (37

siny
To solve Eq.(37) we first complexify the Coulomb coupling constaatby settingk=iu in the

formulas for€ and w,

k
E=2Kk, w2=2(E—F>. (39

Further, we analytically continue the variabjento the complex domaiiG: 0<Rey<w and 0
<Im y<« (see Fig. 1 and pass from the variabjeto 9, defined by

eX=cosd. (39
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For reald this substitution is possible if Re=0 or Rey=m and Imye(0%), which corresponds
to the motion on the upper 9= 7/2) or lower (7m/2<J=< ) hemispheres of the real sphere.
In any case condition&9) and (38) translate the oscillator problem from the complex to the real
sphere with spherical coordinates,/2). In these coordinates we can rewr(8Y) in the form

e 4T e winty - 20 Lo 40
sind 90"V 59 T SiF 9 902 ( T D)= ogs (V=0 (40
Using the separation of variables ansatz
am(¢f2)
P(9,¢)=R(I) 2n m=0,£1,+2,..., (41)
a
we obtain
NIRRT VI il AL P 42
snodo"Vas T @D gy sire| R0 (42)

The corresponding solution regular at the poitits 0,7/2 takes the forrh
Rn m(9)=Cp m(v) (sin®)!™ (cos®)** Y3,F (=, ,n + v+ |m[+1; | m|+ L;sir? 9)

(n)!|ml!

=Con ") G T (51 M (cosd)* ¥2PY™ ) (cos 2) (43
r !

with energy spectrum given by

1 1/2
€= 5pzl(n+1)(n+2)+(2v-1)(n+1)], V=(w2D4+ 7l (44)
whereCnrm(v) is the normalization constarﬁ’,ga'ﬁ)(x) is a Jacobi polynomial,=0,1,2,... is

the “radial,” and n=2n,+|m| is the principal quantum number.
To compute the normalization consta(h;rm(v) for the reduced system we require that the

wave function(41) satisfy the normalization conditiofsee the Appendjx

us+us

D? =
-5 fsz Ynmiby m—z— dv(u)=D* fo Rn,mRymSinx dx=1, (45)
c 3
where the open diamon(>) means the complex conjugate together with the invergien
—x, e, ¥ (x,0)=¢*(— x,¢). [We choose the scalar product@$ ¢ because for reab? and
£ the functiony© (x, ) also belongs to the solution space(8?).]
Consider now the integral over conto@rin the complex plane of variablg (see Fig. 1,

™ T+
§ RnrmRr?rm sinydxy= fo RnrmRr?rmSin)( dy+ f RnrmR,?rmSinX dyx

w

joo 0
+f Rn, mRy mSinX dx+f Rn,mRy mSinx dx. (46)
| oo

i

Using the facts that the integrand vanishes3¥X and thatRnrm(X) is regular in the domai®
(see Fig. 1, then according to the Cauchy theorem we have
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m+io

joo
O H O H
fo RnrmRnrmsm)(dX_ JW RnrmRnrmszdX

w
& P —
JO RnrmRnrm siny dy=

. oo
=[1-e¥mt* 1’2>]f R mRY 1 siny dy. (47)
O r r
Making the substitutiorf17) in the right integral of Eq(47), we find
™ . /2
f R, mRr?msinXdX=[1—e2'“(”+1’2)]J [Rp m]? sind tarf 9 d . (48)
0 r r 0 r
Using the following formulas for integration of the two Jacobi polynomfals:
1 24BN (n+ a+1)T(n+ B+1)
)@ Br p(@B) (V12 x —
f_l(l X)) Py ) X = B DniT (Nt at B+ 1)’
1 29°PT(n+ a+1)I'(n+ B+1)
— %) B-17 paB) (v )12 x —
we find
2 —v(v+2n,+|m[+21) (n,+|m)!'T(|m|+n,+v+1)
Irq 2T 1) : (49
DY1- 1(2n,+|m|[+1) (n)'T(n,+v+1)

Cnrm(V): (|m|)|

The wave functionj(9,¢)= zpnrm(ﬁ,go) is then given by Eqsi4l), (43), and(49).
Now we can construct the Coulomb wave functions and eigenvalue spectrum. From transfor-

mation
o m( D, @+ 27) =€y (D, ) (50

and the requirement of2periodicity for the wave functiongtl) we see that only even azimuthal

angular momentum states of the oscillator correspond to the reduced system. Then, introducing

new angular and principal quantum numb&tsandN by the condition

N=0,1,2,.., |M|=0,1,2,.N, (51

n=2n,+|m|=2n,+2|M|=2N,

comparing(38) with expression44) for the oscillator energy spectrum, and puttikg i, we

find the energy spectrum for reduced systems,
N(N+1) w?

En= - . 52

This formula coincides with that obtained from other methods in works Refs. 21, 26, and 27.
Transformingd back to the variable by (39), we see that44) and(38) imply

MR
, o= .

N+ 3

1

J’__
N2

v=ioc—

Using

IT(1/2+|M|+io)|? (—1)Ml ,
(=M Tzt @ coshor [T'(1/2+ |M|+i0)|?,
(53

L(1/2+|M|+io)
L(1/2—|M|+io)
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we easily get from41), (43), and(49) the eigenfunction of Schdinger equatior(34),

W (X, @) =Crm(a)e  XNTIMIZi0) (gjn )M

X ,F N+[M|[, [M|+i +1 2|M|+1; 1—e?x ete (54)
- , o+ 5, ; l—eX | —,
201 2 277_
where now
2IM| [(N+ 3)%+ a?](N+|M])!
Cum(o)= e’™2IT(IM|+1/12+i0)]| . (55)
NM R(2[M[)! 7(N+ H(N—=|M]|)! IT(MI |

By direct calculation it may be shown that the Coulomb wave functieh satisfies the normal-
ization condition

T 2m
jo SInXdX 0 d‘P\I’NM\PﬁmzﬁNN'éMM'-

Thus, by reduction from the two-dimensional quantum oscillator on the complex sphere we have
constructed the wave function and energy spectrum for the Coulomb problem on the two-
dimensional real spherg,. Formula(54) for Coulomb wave functions on the two-dimensional
sphere is new.

Now let us consider the flat space contraction. In the contraction Rnite the energy

spectrum for finiteN goes to the discrete energy spectrum of the two-dimensional hydrogen
atonf®

’uz
lim Ey(R)=— ———, N=0,1,....
R0 2(N+ 1?2

In the limit R—oo, putting tany~x~r/R, wherer is the radius-vector in the two-dimensional
tangent plane and using the asymptotic formiflas

i i 1 o 2ur
lim ,F.{ =N+|M|, [M|+ic+ 5;2|M|+1; 1—e?X|=,F,;| —N+|M|, 2|M|+1; ,
R—x 2 1
x—0 ’
I'x+a
lim |T(x+iy)|e™Y]y|¥2 %= 27, lim ( )—z“’f’ (56)

I'(x+pB) ’

ly|—c0 7z

we obtain the well-known Coulomb wave function with correct normalization factor

fim V()= 2 (JNEIMDYf 2pr Ml exp — ur/(N+1/2)]
R—® (N+%)3/2 N—|M|)! N+% (2||\/||)!
x—0
o] N M 2 2 ) 57)
1\2w

In the case for larg® andN such thatN~kR, (wherek is constantwe obtain the formula for
continuous spectrunE=k?/2. Now taking into account that~ u/k and using the asymptotic
relation (56), we have
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lim VR gy ( )—\ﬁe"“’2k|I‘(|M|+1/2+i /k)|&r)‘we*ikr

R | NMAOEITN HET2IMD!

x—0
el v 21 o1 2ik o 58
><11| |+?+E' | |+ er\/ﬁa ()

which coincides with the formula for the two-dimensional Coulomb scattering wave function in
polar coordinate®®

lll. THE THREE- AND FIVE-DIMENSIONAL KEPLER-COULOMB PROBLEMS

In complete analogy with the three- and five-dimensional Euclidean case, the corresponding
regularizing transformations exist for the Kepler and Coulomb problems in spheres of dimension
three and five. Indeed if we consider motion on the sphere of dimemsitihren the classical
equations of motion in the presence of a potential are(@®t (24) again, where now

S=(S1,--,Sn+1)s (59
subject to the constraints
s-s=R? (60)
and its differential consequences
s5=0, S-5+5.5=0.
If we choose our potential to be

S
V=— Ko Sntr (62)

R A\ S%J’_..._i_ﬁ’

these equations assume the form

d? .. M SiSn+1 .

Wsj_ —5;5-5— R (552 i=1,...n, (62
d? M
gESn+1= ~SneiS St R(s 92 (63

The energy integral again has the fo(&6).
We are patrticularly interested in dimensiams 3,5. We deal with each of these cases sepa-
rately.
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A. Generalized KS transformation

Forn=3 we choose the; coordinates in five-dimensional space according to

. UaUz+UaUy
s1=i\us+us+ud+ui+us —
5
. UpUz—UqUy
Sp=i\Uus+us+ud+ui+us —
5
(64)
2 2 2 2
_ uf+us—us—ug
Sg=iuitui+ui+ui+ui —————,
2us
2 2 2 2
uf+us+u5+uj
Sp= Uit ustuitui+ud(ug+ —————|.
2ug
The basic identity is
S2+ 85+ 55+ 5= (U+ U3+ u5+ui+ud)?,
and the basic relationship for the infinitesimal distances is
D2
d§+d§+d§+ds§:—F{(u§+u§+u§+uﬁ)[du§+du§+du§+dui+du§]
5
+(ug dug—uzduy+u, du; — ug duy)?}, (65)

where the constraint for mapping between the three-spliét_el:si2=R2 and the complex four-
sphere=?_, u?=D? is clearly

usduz—uzduy+u,du;—uy du,=0. (66)

In this section we will use the Eulerian spherical coordinates on the complex four-spfere

a+ a+
ulzD\/l—ez'XcosgcosTy, u2=D\/1—e2'Xcos§sinTy,
o — o —
uz=D1—e?X singcosTy, u4=D\/1—e2'Xsin§sinTy, (67)
U5: DeiX,

where the ranges of the variables are given by
Osy=m, O0=s8s7m, O=sa<2m, O0sy<4m.
The corresponding spherical coordinatesSrare
s;=RsinysinBcose, s,=RsinysinBsinea,

s3=RsinycosB, s,=Rcosy.
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1. Classical motion

In analogy with our previous analysis we choose a new varialalecording to

dr 1 ué
dt  DZ Wrul+ud+ud

In the u coordinates the equations of motion can be written as

i 2D* i
(U2 (Uh)2+ (Uf) 2+ (u)) 2+ (ug)2—2D? E+5'“2 +—2—< Dﬁz):o'
" M .
u+2(E+D2 =0, j=1.2,34, (69)

i 2D* i
ul+2| E+ DMZ) u—g(E—ﬁ):o,

subject to the constraints

5
> (Uup+(up?)=0, usus—Uzu,+UyU;—Ugus=0.
k=1

Note that Eq(68) is compatible with these constraints. Here, the Kepler problem on the sphere in
three dimensions is equivalent to choosing a Hamiltonian

4
i
(U2+us+us+ui+ud)+—| E—- S'uz (69)

i
E+ 2,

1
H=S(pg,+P3, + P, PL, + P~ =z

regarding the variables; as independent andas time. The only difference is that there is now
the constraint

u4pu3_ u3pu4+ Uzpul_ ulpu2: 0
In terms of the Hamilton—Jacobi formulation we have the relation

1 M Sy

2 2 2 2
(P2 +pi+pi+pl)-c
2 ( psl pSZ p33 p54) R S% + Sg + S%

ug

1
557 (P, T P4, + PL, PG, + PLy)

o

With the usual substitutions, the corresponding Hamilton—Jacobi equations are

é (as) ey 2 S
k=1 \ I8¢ R si+s5+s5

T 2 22112
ui+us+us+uyg

D? M
E+ (u1+u2+u3+u4+u5)+ E-=2
uz D

=0, (70
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or
1 O (4S\2 [D? i i
) (a_uk> ué( _D_MZHE Dﬁéﬂzo’ (0
and the constraint has become
L-S=0, (72
where operatoL is
i i u i (73

L=Up———U;——+Us——
2ou;  tou,  Youg  Sduy

Equation(71) can be solved by separation of variables in the spherical coordit@fe®n the
complex spher&, .

2. Quantum motion

The associated quantum Kepler—Coulomb problem on the sphere corresponding to the poten-
tial (61),

1
§A§>\P+

S
E+%—4)‘If=0, (74)

Vsi+s5+5s5

translates directly tgsee formula/A10)]

%Af,“)qwr(g— wZZDZ u§+u§u+§u§+u§ =0 (75)
with the constraint
L-®=0, (76)
where L is given by(73),
W =ui4D, (77)
and
szzm—alz, w?’D?=2ED?—2iu+ 4i2. (79

Here A andA(") are Laplace—Beltrami operators on the sph&gandS,c, respectively.
Consider the Schobnger equation(75) in complex spherical coordinat¢67). We have

e ? gxsittx 2 +| w2D%—i£D? e + - d=0 79
sir? x dx s! Xy T |? ! siny ' sifx| (79

where the operatdr? is defined in(A8). We complexify the anglg to the domairG (see Fig. 1
by the transformatior(39), such that?d e[0,7/2] and also complexifyu by settingk=iu in
expression fo€ and w?. Then Eq.(79) transforms to the Schdinger equation for the oscillator
problem on real spherg,.

We make the ansatz
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O(9,,8,7)=(siN®)” FZ(ND7, m(@.B,7), (80)
where
Do m(@By)=mMedy o (8) 2 (81)
is the Wigner functiori® satisfying the eigenvalue equation
L2Df, m (@B )=/ (/+1)Dp o (@.B,7), (82

and normalization condition
o , 1 22
Dmi'mé(a’ﬁ' Y)Dml,mz(ayﬂ’ ) gsmﬂdﬂ dady= >2/+1 Sy 5m1m15m2m’- (83

2
Then the functiorZ() satisfies
d2

R

26D%+ W2D*+ oD (Z/H)Z_%z—o 84
© 4] cosd si? & e &4

The corresponding solution regular @t 0,7/2 and energy spectrum are given by

Z, /(9)=constsin®)* (cos®)"" V2,F (=N, n+2/+v+2;2/+2;sif 9),  (85)

= %z[(m1)(n+4)+(2v—1)(n+2)], (86)

wherev=(0?D*+ )2 n=2n,+2/=0,1,2,... is the principal quantum number. The other quan-
tum numbers are

n=01,..n, 2/=01,..n, mm=—/,—/+1,.../-1/.

Thus the wave functio® (9, a,8,y) normalized under the conditiaisee the Appendjx

iD? dv(u)

T on S4c®”r/m1m2q)r?r/m1m2(ui"'u%"'u%"'ui)—éz (87

has the form

2/+1 ,
(Dnr/mlmz(ﬁ-aaﬁ-7):Cnr/(V) Z_WTRn,/(ﬂ)Dml,mz(ava)’) (88)
with

Ry, /()= (sin®)* (cosd)"* Y2 Fy(=n,, N +2/+v+2;2/+2;si 9), (89
c _\/; [(=iv)(v+2/+2n,+2)](2/+n,+D!T(2/+v+n,+2) 90
n V)= g (1—eZ™)(/+n,+D)[(2/+1)!(n)! T (v+n,+1) (%0

We now construct the wave function and energy spectrum for the Siclger equatior{74).
The corresponding wave functioki(s) connecting with® (u) by formula(77) is independent of
the variabley and 27 periodic in« (the transformationv— o+ 27 is equivalent to the inversion
u——u;, i=1,2,3,4). The constrain6) in the spherical coordinaté7?) is equivalent to
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07_7 ’ (Dnr/mlmz(ﬁva@ﬁa Y= mzq)nr/mlmz(ﬂva-/g, y)=0

and we havem,=0. From 2r periodicity we get that” andm; are integers. Then, upon intro-
ducing the principal quantum numbsi=(n,+/)+1=n/2+1 and using expressiofr8), we
obtain the energy spectrum of the reduced system

_ NZ2—1  u?

W—W, N=1,2,..., (91)

wherek=i . This spectrum coincides with that obtained from other metf%és?
Returning fromd to the variabley, observing that

and using the relationgr(;=m)

D’ ( o am 41
ol @B, =(~ D)™\ 5 Y n(Ba), (92

we obtain the wave functionsvith correct normalizationfor the reduced system in the form

- (—1" o
U mlx,B,@) =D e'X’2<I>nr/mo<x,a,/3,v>=ch/(o)(sma)/e la(N=/~ia)
X Fi(=N+/+1,1+/+ic; 2/+2; 1-e 2X) Y| (B,a), 93)

where

. _2/+1em/2 (N2+02)(N+/)!
A= %7501 N 2aN(N—/—1)!

T (1+/+io)|.

This solution is identical to that given for the Coulomb eigenfunctiorSgin Refs. 23 and 25.
Note that in Ref. 25 it already has been shown that the funé¢88ncontracts afR— e into the
flat space Coulomb wave function for discrete and continuous energy spectrum.

B. Generalized Hurwitz transformation

The analogous problem in five dimensions can be realized via the variables

(99

Downloaded 23 Oct 2008 to 130.217.76.77. Redistribution subject to AIP license or copyright; see http://jmp.aip.org/jmp/copyright.jsp



J. Math. Phys., Vol. 41, No. 5, May 2000 Coulomb-oscillator duality in spaces of . . . 2645

1/2 .

9
i
— 2 2 2 2 2 2 2 2 2
Ss= ( kz,l uk) Fug (UL HUZ U UG Ug - UG~ U Up),

1 8
Ug+ =— >, U2/,
° zugkzl k)

9 12
_ 2
56_( E Uk)
k=1

which satisfy

6 9 2
> sf=(2 ui) : (95
=1 /=1

The relation between the infinitesimal distances on the five-dimensional sphet’_, s’=R?
and the eight-dimensional complex sph&g: =7 , u?’=D?, (R=D?) is

9
1 -1
§j§=:l dsjz:u_g (gl Ui)/z:l du§+ a)%-ﬁ- (1)§+ w% , (96)

where
w1=Ugdu;+uzdu,—u, dus—u; duy—ugdus—u; dug+ug du;+ug dug,
w,=Uzdu;—u,du,—u; dug+u, duy—u; dus+ug dug+us du;— ug dug,
w3z=Uydu;—uy duy,+u, dug—uzduy+ug dus— us dug+ug du;— u, dug,
and the constraint for mappirgsc— Sg corresponds to
=0, 1=1,2,3.

Following Ref. 16(see also Ref. )8wve can supplement the transformati@a) with the angles

1 2u4U, 2U3Uy

ay=5| arctan———- +arctan———| €[ 0,2m),
2 uz—us uz—u?
1742 37 Usg

2 arct §+u§ v 0 9
=2 arctaf —-—— T,
Bh Uf-f—ug S ] (97)

1 2uU4U, 2U3Uy,

vy=7| arctan———-; —arctan——-—| €[ 0,4m).
2 uz—us uz—uj
17Uz 37 Uy

The transformationg94) and(97) correspond t®gc— Sg=S5® S;. If we now choose the spheri-
cal coordinates 015 as

. o B . .
sl+|32=Rsmxsmﬁcosge'(“”)’z, Ss=Rsiny cosd,
; ; ; B a2
s3+|s4=Rszsmﬁsm§e vie, sg=Rcosy.

then the correspondin@onorthogonal spherical coordinates on the eight-dimensional complex
sphere take the formD?=R)
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ayt vy
S ,

O
u;=D1—e?x cosEcos%co >

0 ay+
u,=D\1—e?x cosgcos%sin A 5 H

’}’H

0}
uz=DV1— ez'Xcoszsm%cos 5

u,=DV1—e?¥cos~ sm%sm 27H
uSZDWSing cosgcos%coswaningsin%cos%aHjLyH :
(98)
usszsing cosgcos%sin%—singsin%sin%amLyH :
u7=Dmsing(sin§cos%COSW— cosgsin%cosw :
u8:D\/msing(singcos%sinw+cos§sin%sinw :

ug=De'X,

wherey e[0,7], 9e€[0,7], a€[0,27], Be[0,7], andye[0,4r].

1. Classical motion
The Kepler—Coulomb potential on the five-dimensional spiSgraas the form

M Se
R /@il 2.2 (©9
Vs +s5+55+55+ 52

V=—

As before we can define a new coordinatsuch that

dr 1 u3
qAr D2S8 2
dt D“=_,u;

The corresponding equations of motion are given by

53

° [ 2D? i
3, wr-fer o))

w2 E+ Dﬂz) 0, k=1,...8, (100
. i 2D? 7
U9+2 E+ F)Ug ug D2 :0,
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subject to the constraints

9

9
Zl uz=D?, El u,ul=0, 2 (U U+ (ul)?) =0,

UgU1 +U3Uy— UsUs— UgUy— Uglg — U7Ug+ UgUs+ UsUg=0,
! ! ! ! ! ! ! !
UgU; — UgqUs— UgU3+ Uply— U7Ug+ Uglg+ UsUs— UgUg=0,
UpU7 —UqUjy+ UgUs— UsUy+ UgUg — UsUg+ Ugus— U7ug=0.

These equations of motion are equivalent to what we would obtain by choosing the Hamil-
tonian

. 9 D
£+ | 3 o2 Uf( '5‘2) (10

9
1
H=3 2 Pl -

regarding the variables; as independent and usingas time. The associated constraints are
UgP1+U3Pa—UzP3—U1Ps— UgPs—U7Pg+ UgP7+ UspPg=0
UgP1— UgP2—U3P3+UzPs— U7Ps+ UgPet UsP7— UgPg=0, (102

UyPq—UgPa+ UgP3—UzPs+ UgPs— UsPg+ UgPz—U7Pg=0

If we wish to solve this problem from the point of view of the Hamilton—Jacobi equation we
use the relation

6
ISk > E
- K _
23178 R[S+ sa+si+si+sl

ug

1 9
L 2
- 8 Z[ZDZ/Z]_ pu/

-1 Ug

i
-

9
+E
D2 ;gé

D2
+ —
U

=0.

The corresponding Hamilton—Jacobi equations are

S\?
Js;

2 Se

—E=0, (103
Rt sitsits

2 (s

i

D2 i
52 E| 2 u/+—z E- 52| =0, (104

2, ) -

subject to the constraints

aS ) aS N ) N ) aS

Uy~ FtUg—— —Up———U;——U —u +u +u =0,
4ou;  %au, Zguz  tau, Saus  Taug  Caus;  Cdug

aS S aS S S S S aS

Ug=—— —Ug—— —U;—— +Uy—— —U;—— +Ug——+U =0,
Sau; Mou, Yaus Y2ou, Yaus "YU, T YSou,  Yeaug
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aS aS aS S ) aS aS S

Up———U;—— + Uy~ —Ug—— + Ug=— — U — + Ug—— — U7 — =0.
2ou; tou,  Youz  Sau,  Cdug  Cdug Cau; ! dug

2. Quantum motion
The Schrdinger equation for the five-dimensional quantum Coulomb problem

+£ %
R \s{+s3+s3+s;5+52

v=0 (105

1
SALW

transforms to the eight-dimensional oscillator equafi®ee the Appendijx

221
g_

1
SAPD+

8
Z ) (106)

with constraints
T,®=0, (107

where the operator is given by formula(A13),

. 6 - 5 15
E= Z'M_F , 0°D“=2|DE-2iu+ 32/’ (108
and
W= (ug) %D, (109
Considering the oscillator equatigh06) in complex spherical coordinat€98) we get(see the
Appendiy
e 3x 9 D ex M?2
ix - 4 2 - —
St x &Xe3 sin x % + iED sinX+ Sy ®=0, (110
where the operatd\r?I2 has the form
. 1 9 g L2 J?
2 —_—— ——
=P 0365 956 0 L0 (113
S5 cos'
and
J=L+T, J?=L2+T2+2L-T. (112

As before, we make the complex transformati{@8) and also complexify parametgrby putting
k=iu. We make the separation ansatz

CD:R(ﬁ)Z(a)G(a!va;aH!BH!YH)! (113)

whereG is an eigenfunction of operatots?, T2, andJ? with eigenvalued (L+1), T(T+1),
J(J+1), respectively. Correspondingly the wave functiofp) is the eigenfunction of operator

M?2 with eigenvalue\ (A +3). Because there is- T interaction the eigenvalue equation

J2G(a,B,7ian B, yi) =3+ 1)G(a,B,7:au Br vh) (114

Downloaded 23 Oct 2008 to 130.217.76.77. Redistribution subject to AIP license or copyright; see http://jmp.aip.org/jmp/copyright.jsp



J. Math. Phys., Vol. 41, No. 5, May 2000 Coulomb-oscillator duality in spaces of . . . 2649

cannot be separated in variables 8, y; ay,B4 ,yn) but we can apply the rules for the addition
of angular moment& andT and, following Ref. 18 express as a Clebsch—Gordan expansion

Gimr= > (MILM;TU)Dy (@B ND{ o (an B vh), (115

M=m'+t’

where JM|Lm;Tt) are the Clebsch—Gordan coefficients. Note that the funcﬁzqfr‘,i’,%:Tt satisfy
the normalization condition

272

2T+1

272
2L+1

J;)dQ J;l dQHGim;TtGi’tﬂn’fT’t’: 5JJ’5LL’5TT’ 5MM’5mm’ 5“/ . (116)
H

If we substitute ansatd 13 into the Schrdinger equatiori110), then after separation of variables
we obtain the differential equations

1 d - dz 2 2L(L+1) 23(3+1) o n
s gae ™ g T MM T 70050 T Trcose |40 (117
1 d _70dR+ D261 02D 4AN(A+3) w?’D* o 118
s o dosn Oggt|( O DI GFe  coge| % (118
with real parameters
E=| 2k 6 ’D?=2| D%E—2k+ 15 119
|2 pz| @D DES2K gaz) (19

Consider Eq(117). Taking the new function by (8) = (sin 6)*?Z(6) we obtain the Pschl—Teller
equation. Then the solutiof( G)EZf\L(G) orthonormalized by the condition

f Oﬂsz( 0)Z)5* (6)sir® 6d6= 6, (120

has the form

(2N +3)(N+J+L+2)I(A—L—J)!

JL —
A= N 52 22 T T3 )i (n = I+ L+ D))

(1—cos6)’

><(1+cosa)LszeL“'z“1>(cos9), n,=0,1,2. .., (122

where\ is quantized a3 —L—J=n,.
Let us now turn to the quasiradial equatittl®. Settingw ()= (sin9)~"?R(9), we can
rewrite this equation in the Bohl-Teller form
d2

a0zt

D26+ 2D4+4_9 _(2)‘+3)2_‘l‘_ w?D*|
@ 4 Sin? 9 cod |V

0. (122

Solving this equation we have following expression for quasiradial funcﬁdn%)ERnrA(e):

R (6)=(sin®)?* (cosd)** Y2,F (—n,, ne+v+20+4; 2\ +4;sif 9), n,=0,12,...
(123

with energy levels given by

Downloaded 23 Oct 2008 to 130.217.76.77. Redistribution subject to AIP license or copyright; see http://jmp.aip.org/jmp/copyright.jsp



2650 J. Math. Phys., Vol. 41, No. 5, May 2000 Kalnins, Miller, and Pogosyan

&= %ﬂ(n+1)(n+8)+(2v—l)(n+4)], n=0,12, .., (124

wherev=(w?D*+ 2)¥2 and principal quantum number
n=2(n,+A)=2(n,+ny+L+J).

Thus, the full wave functionb is the simultaneous eigenfunction of the Hamiltonian and

commuting operatord?, J2, L2, T2, J;, L3, andT5. The explicit form of this function satis-
fying the normalization conditiofisee the Appendjx

8

iD® dov(u)
g2t | O @IS, =1
is
J(2L+1)(2T+1)
(I)‘r]‘l:_):rMmt: Cnr)\(V) 277_2 Rnr)\(ﬁ) ZiL( 0) Gim;Tt(a!Bv Yy !BH IVH)i (125)

whereR, \(¥9) is given by formula(123) and

4 \/iv(v+2)\+2nr+4)r(27\+V+nr+4)(nr+2)\+3)!

“@r91 VD21 n () T(wrn v ) - 20

Cnr)\(V)
Let us now construct the five-dimensional Coulomb system. The constraints tell us

T2P(u)=T(T+1)P(u)=0 (127

and therefore the oscillator eigenstates span the statesTwithandL=J. For L=J the Jacobi
polynomial in(121) is proportional to the Gegenbauer polynoral

(A4L+2)I (A +1)!
P12+ 1)(cosh) = FESES e C2-% ¥ cose), (128

and we obtain

(sin§)?- C2-%,¥%(cosh). (129

3) (2N +3)(A—2L)!

I, oy — _o2L+1 b
H0)=2,(6)=2 F(2L+2 TN F 2L+ 2)1

Then from properties of Clebsch—Gordan coefficienfdM|Lm’;00)= 83 Sy and using
ngo(aH B ,vn) =1 we see that the expansi¢hlb) yields

G oo @B Vian B, Y) =D o (. 8,7) S50 Sy - (130

Thus, the function® now depends only on variablesi(6,«,3,y). Observing thatk=n4+ 2L
=0,1,2,. .. ,n, introducing the new principal quantum numb¢+ (n,+\)=n/2=0,1,2,..., and
settingk=iu, we easily get from the oscillator energy spectr{ir24) the reduced system energy
levels

_ N(N+4) wu?
NTT2RT T 2(N+2)%°

(131

Noting that v=io—(N+2) and taking into account the formuld$23 and (125-(130), we
finally have the solution of the Schiimger equatior{105 as
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LA . — N 3/2 J3/2i LA .
W (X0 03@,B,y) =D e D (X0, B,y)

o 20+1
=Nnr(0-) Rnr)\(ﬁ) ZL)\(H) me’m/(avB!Y)i (132)

whereZ,,(6) is given by(129 and

R a(x)=(siny)* e N2 5B (= N+ X, N+ 2+ 0520 +4; 1Y), (133

222702 [[(N+2)2+ g2 (N+ N+ 3)!
(2N +3)! 2R°m(N+2)(N—X\)!

Np(0)= IT(N+2+i0)). (134

Thus, we have constructed the wave function and energy spectrum for the five-dimensional Cou-
lomb problem. In the contraction limiR—< for finite N we get the formula for the discrete
energy spectrum of the five-dimensional Coulomb probtém,

2

lim EN(R)Z—W, N:O,l,... .

R— o

Taking the limitR—< and using asymptotic formulas as (56) we get from(132) to (134)

L 2L+1
Iilm Vo mm (X050, B,7) =R (1) Z1,(6) me,mr(a.ﬁ,v) (139
with
4u>%  J(N+N+3)1[ 2pur | Mem #/(NT2) 2ur
Ra(D= 1727 VT (Nor \NT2) (anaayr thel -T2 4gm

which coincides with the five-dimensional Coulomb wave function obtained in Ref. 37.

IV. SUMMARY AND DISCUSSION

In this paper we have constructed a series of mapp8gs->S,, Sic— Sz, andSge— S5,
that generalize those well known from the Euclidean space Levi-Civita, Kustaanheimo-Steifel,
and Hurwitz transformations. We have shown, that as in case of flat space, these transformations
permit one to establish thedrrespondenceetween the Kepler—Coulomb and oscillator problems
in classical and quantum mechanics for the respective dimensions. We have seen that using these
generalized transformatior{42), (64), and(94) we can completely solve the quantum Coulomb
system on the two-, three-, and five-dimensional sphere, including eigenfunctions with correct
normalization constant and energy spectrum.

For the solution of the quantum Coulomb problem, we first transformed the @obey
equation to the equation with oscillator potential on the complex sphere. Then, via complexifica-
tion of the Coulomb coupling constapt (x=Ze€?) and the quasiradial variabe this problem
was translated to the oscillator system on the real sphere and solved.

It is interesting to note that the complexification of constaet/R and the quasiradial vari-
able were first used by Barut, Inomata, and Jufflkierthe path integral approach to the Coulomb
system on the three-dimensional sphere and hyperboloid, and further were applied to two- and
three-dimensional superintegrable systems on spaces with constant cutValiitee substitution
used in Ref. 24,

éX=—cothB, Be(—w,x), (136)
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is correct as an analytic continuation to the regieaRe y<7 and —»<Im=0 and translates the
Coulomb quasiradial equation with variabjeto the modified Pschl-Teller equation with vari-

able B. It is possible to show that there exists a connection betw@86) and generalized
Levi-Civita transformations on constant curvature spaces. Indeed, for instance, along with the
mappingS,c— S, we can determine a mappiktpc— S5, i.e., from the two-dimensional complex
hyperboloid to the real sphere:

s2+s5+s5=(u3—u?—u3)?

This transformation has the form

2 2
s =i VU= 2 up—uz
1—| U3 ul UZ' 2u3 1

. uup
Ss,=i\u3—us—us- o (137

2 2
ui+u;

53: \/U3—U1—U2~(U3— 2u3

and translates the Schiinger equation for the Coulomb problem on the sphere to the oscillator
problem on the complex hyperboloid. Then the substitu{i36) transforms the oscillator prob-
lem from the complex to the real hyperbolid, a solution well known from Refs. 30 and 29.

The method described in this paper can be applied not judtlidbut to many Coulomb-type
potentials. In particular the generalized two-dimensional Kepler—Coulomb problem may be trans-
formed to the Rosokhatius system on the two-dimensional sphere.

As we have seen, in spite of the similarity of transformatiofsand (12) on the sphere and
Euclidean space there exist essential differences. Equati@s(64), and (94) determine the
transformations between complex and real spheres or in ambient spaces a m@pping
— Ry, for p=1,2,4. Evidently these facts are closely connected to Hurwitz thetftawtording
to which the nonbijective bilinear transformations satisfy the identity

S24s5+ -+ +87=(Ui+ U+ - +ud)? (139

only for four pair of dimensions:f(n)=(1,1),(2,2),(3,4), and (5,8)which corresponds to a
mappingR,,— R, 1 for p=1,2,4, respectively.

For transformations between real spaces of constant curvature the situation is more compli-
cated, and more interesting. For example, the two-dimensional transformation on the hyperboloid

is
e v
N uéiu%iu%us_:z’ (139
Sz= U3+ Ui+ U3 (u3_U§2-:::§
and

s2—s?—s5=(us*us+u3)? (140
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Thus, the upper and lower hemispheres of the real sphere or the upper and lower sheets of the
two-sheet hyperboloid in-space map to the upper and lower sheets, respectively, of the two-sheet
hyperboloid ins-space.

The next example is the transformation

2 .2
us;—u

2 2 2 1 2

S;=\usjtus—u ,
1 1 2 3 2U3

uu
s,= JuZ+uZ—ul. 111_32 (141

2,2
us+u
2 2 2 1 2
S3=+U7j+us5—us-|u ,
3 1 2 3 ( 3 2U3
and
s?+s5—s5=(us+us—u3)? (142

Here the one-sheet hyperboloid irspace maps to the one-sheet hyperboloid-space. From
transformationg139 and (141) (using the methods as in Sec) It is easy to show that in the
contraction limitD — oo this transformation goes to the real Levi-Civita transformatiom to the
translationu;—v2u;) (4). This shows that the method of this article can be adapted to treat a
Kepler—Coulomb system on the two- and one-sheet hyperboloids.

Finally, note that in this article we do not discuss two important questions. First is the
correspondence between integrals of motion for Kepler—Coulomb and oscillator systems. Second
is the connection between separable systems of coordifradesnly sphericalunder mappings
(12), (64), and(94). This investigation will be carried out elsewhere.
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APPENDIX: TRANSFORMATION FORMULAS

We present some differential aspects of the generalized Levi-Civita, KS, and Hurwitz trans-
formations. These calculations are related to those in Refs. 15 and 18 for flat space.
1. Transformation S,-—S,

The Laplace—Beltrami operator on thesphere in complex spherical coordinatég) is

(2) 1 2 2 2
Au =F[(ul&uz_uzaul) +(u3ﬂu2_u2f9u3) +(u3‘9ul_u1‘9u3) ]

2i 1 9 d 1

= —ssinye Y — —siny—+ —— —
DZSII’]Xe siny aXSInX&X sirt y de?|’

(A1)

while the usual Laplace—Beltrami operator on shephere in spherical coordinateg, ) has the
form
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@_ 1L ) , ;
As = RT[(S:U?SZ_ 32(731) + (33(952_ 321953) + (53(931— 51(953) ]

11 9 a+ 1 4 .
R\ siny ax "™ ox sy ag?)” (A2)

The two Laplacians are connected through

2
_—_A2)
ug+us D2Au ' (A3)

AgZ): _

The volume elements in- ands-spaces are

2

iD® .
dv(u)I—Te'dedcp, dv(s)=R?sinydyde (A4)
and
2,2
1 1T U;
=dv(s)=— —5—dv(u). (AB)
R u3

We have(the variablep runs the from 0 to 4)

D2 ud+us
J cedo(s)=— 5 [ = do(u). (AB)
S, Sac Uz

2. Transformation S,.—S;

The Laplace—Beltrami operator on thesphere in §,«,8,y) coordinates is

A@O_2 G ix e g S Sir? +_r;L2 A
upzSIMXE G o & ST X G T S ) A
where
. t 9 o d cosa J
1=1i| cosa co ’Baa s'naalg sin dvy)’
-y t p d sina d A8
2=i| sinacotp—— COS 8™ Sing ay)’ -
Ly=—i ’
3_ Iaal
and
Ez__82+t&+?— : 2 ’ +&2 e
-l COE% 575|772 003,30_7% 9a2] | (A9)

while the usual Laplace—Beltrami operator on thgphere in §,8,«) coordinates is

@ |~ 7 LA LA T
A= Re| Sy ax SmZXaX t ity 2g2 TP et S B a2

1l 1 o6 . 9 1(&2 J 152)
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The two Laplace—Beltrami operators are connected by

1 Jd | d J i12)
smz)(smzﬁ ﬁy(__ Cosﬁ%)}e( g

and the operator acting on functions of variablgsg, «) is

2i . 1
Aff):FsinXe*(?"’z)X 7 icoty |+

DA+

2 2 2 2 2
u 1 1 3 ujtus+usz+uy
AP)=—uf? —2—2%—2 AW - |24+ ———— s 2 (A1
s Us uf+us+us+us|D D* 4 us Us (A10)

The volume elements 08,, andS; are given by

D4 .
do(u)=— Tez"( siny sinBd ydBdady, duv(s)=R3sir ysingdydgda,

where

ULFUBEUSTUE T ) d (ALD
ug v 2D2 v Y.
Integration overye[0,47] gives

iD2 ul+ui+ui+u?
J dv(S)=——J Lo 28 M),
S3 2m Sac Usg

3. Transformation Sg-— Ss

The Laplace—Beltrami operator on thesphere in §,39;«a,8,v,ay,B4,Yy) coordinates is

e Six g 3 1 1 9 d

ix
S|n4)(&)(e3 sin X& Slnz)( Sln?’ﬂ&ff}sm319 I

u

2i :
A®)= pzsinxe ™

. I 3
4 L2+2L-Tsin2§+Tzsin2§

a Sir? ’ (AL2)
where operatot is given by(A8) andT is
. . d . J  cosay J
1=i| cosay co BH& sinay—— c7,3H SinBy 97’
1—il s . d d sinay J AL3
>=I| sinay co ,BHE COSaHE SinBu 9y’ (A13)
Tym—i—"
e : &aH

The Laplace—Beltrami operator on the five-dimensional sphergitt;(,8,7) coordinates is

@ | L a0 1 L 0 oy 412 AL
sm“)(a)( Xﬁx Sir? y sin31‘}c719$ a% st 9 (A14)
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The Laplace—Beltrami operators are related by

2i 9 1 2L-T+T72|
8 _ < (5i12) | ~AAGB) L |2 (3i/2)
Ay D2 5Sinye” DA+ 6i cotX) SIP % 5 €
cog =
2
and the operator acting on a function of variablgs; «, 8, y) is
1 uj 18
A(S):_u3/2 -9 A(B)_ __2 )} _3/2 (A15)
s D? 58 W p?| 12" 3 us i<
i=1
The volume elements 08¢ and S5 have the form
dv(u)=—8D8*Xsir® y sir® 6dy dodQ dQ,
dv(s)=R%sin* y si® 6dy dodQ,
where
dQ= 3sinBda dBdy. (A16)
We have
12 16
—52 2 dv(u)= o5 du(s) dy, (A17)
ugi<
and integration over the variableg,(, 8, ,vy) gives the formula
iD®
fss"‘dv(S)z ﬁ IZ U (A18)
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