
brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Research Commons@Waikato

https://core.ac.uk/display/29195117?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Extracting Text from PostScript

Craig G. Nevill-Manning, Todd Reed and Ian H. Witten
Computer Science Department, University of Waikato, New Zealand

{ cgn, treed, ihw} @cs.waikato.ac.nz

Correspondence should be addressed to:

Craig Nevill-Manning,

Biochemistry Department,

Stanford University,

Stanford, CA 94305-5307

Phone: (415) 723-5976

Fax: (415) 725-6044

Email: cnevill@stanford.edu

Summary
We show how to extract plain text from PostScript files. A textual scan i s

inadequate because PostScript interpreters can generate characters on the page that

do not appear in the source file. Furthermore, word and line breaks are implicit in

the graphical rendition, and must be inferred from the positioning of word

fragments. We present a robust technique for extracting text and recognizing words

and paragraphs. The method uses a standard PostScript interpreter but redefines

several PostScript operators, and simple heuristics are employed to locate word and

line breaks. The scheme has been used to create a full-text index, and plain-text

versions, of 40,000 technical reports (34 Gbyte of PostScript). Other text-

extraction systems are reviewed: none offer the same combination of robustness and

simplicity.

Keywords: PostScript interpreter, text extraction, digital libraries, full-text

indexing, page layout

1 Introduction
It is often useful to be able to extract plain text from PostScript files. For example,

the New Zealand Digital Library* contains a collection of computer science research

reports that is full-text indexed; to create this index it is necessary to extract all

the text from the document files that constitute the originals of the reports.

Similar requirements for recovering plain text from the page description arise in

many applications.

Converting PostScript to plain text is like an optical character recognition process

for which the input is not “optical” but rather an electronic description of a page.

That makes the problem sound trivial, for of course the characters need not be

“recognized” because the document file represents them symbolically, as ASCII codes,

rather than pictorially as ink on paper. However, it is complicated by the fact that

PostScript is more than a page description language; it is a programming language.

* http://www.cs.waikato.ac.nz/~nzdl

Identifying the textual content involves more than conversion from one format to

another—it involves predicting the output of a program.

Moreover, although sometimes it is just the stream of words that needs to be

extracted (for example, for indexing purposes), other applications will need an

approximation to the formatting information so that the text can be reproduced in

different ways. A common requirement is to produce a (necessarily) approximate

representation of a PostScript document in HTML, the hypertext mark-up

language used in the World-Wide Web, and for this, structural features such a s

paragraph boundaries and font characteristics must be identified.

We describe a simple and robust scheme for extracting text from PostScript.

Essentially, it involves modifying the behavior of a PostScript document so that,

when executed, it produces ASCII text rather than pixels on a page. We also describe

heuristics that improve the detection of word and line divisions by employing global

information. Because of differences in character spacing, text with hard-coded line

breaks that correspond to the layout of lines on the page exhibits grotesquely ragged

right margins when displayed on a screen with a different font. Consequently we

have developed simple heuristics to recognize paragraph boundaries, and to solve

other practical problems with the output of the extraction process. However, we

make no real attempt to reconstitute a good approximation to the original page

layout and formatting; that lies beyond the scope of this article.

These techniques have been tested and proven to be robust on a collection of over

32,000 documents from a wide variety of sources (300 FTP sites) that constitute the

computer science research collection in the above-mentioned digital library. Other

public-domain PostScript extraction programs proved to be either very unreliable, or

far too computation-intensive for our purposes. It is worth noting that our scheme is

robust enough to cope with Adobe Portable Document Format (PDF) files* without

any modification at all.

* see www.adobe.com for details

Extracting text from PostScript is challenging both from a fundamental

computational perspective and from a pragmatic programming stance; Section 2

explains why. Section 3 describes how a small PostScript program can perform the

basic task elegantly and reliably. However, it makes simplistic assumptions about

line and character spacing, and Section 4 describes improvements to the basic

algorithm which identify text boundaries more robustly and also solve some other

practical problems that arise. Section 5 compares this technique to others and

situates it in the spectrum of what is available in the public domain.

2 The problem with PostScript ...
The programming language PostScript is designed to convey a description of a

desired page to a printer1. Extracting text from PostScript files poses problems a t

two quite different levels. The first is at an abstract level. Because PostScript is a

programming language, its output cannot, in principle, be determined by a textual

scan. The second problem is a more pragmatic one. Although almost all actual

PostScript documents have a fairly straightforward computational structure that

makes the output text immediately available, it is fragmented and inextricably

mixed with other text that does not form part of the desired output.

A problem in principle
In principle, the process of extracting text from a PostScript document is not one of

format conversion, but rather a matter of predicting the output of a computer

program. Consider the PostScript sample and output in Figure 1. This admittedly

rather contrived example is a program that displays the sixth number of the

Fibonacci sequence 1, 1, 2, 3, 5, 8, namely “8”. However, the character “8” appears

nowhere in the input document: it is calculated recursively by the fib function. Any

syntactic approach to conversion will be unable to accommodate such input and, to

the extent that it occurs in practice, will be unreliable.

The only way to know the output of a program is to execute it. Thus any robust

scheme for extracting text from PostScript must execute the document using an

appropriate interpreter. Of course, the execution of the document must be altered to

allow the text that is produced to be captured instead of rendered by placing pixels

on the page. This paper describes just such a scheme.

A problem in practice
Most PostScript files do not contain code as subtle as the recursive function of

Figure 1, and this may be regarded as a pathological case. Figure 2 shows excerpts

from a more representative example of a document file, along with the text

extracted from it. Characters to be placed on the page invariably appear a s

parenthesized strings in the source.

An obvious approach to text extraction, used in some conversion programs, is to

extract and concatenate all such strings. There are two problems with this simple

strategy. First, font names, file names, and any other internal string information is

represented in the same way in the file; examples can be seen in the first few lines of

Figure 2. Second, the division of text into words is not immediately apparent: spaces

are usually implicit in the positioning of characters on the page. Text is often

written out in fragments, so that each parenthetical string may only represent part

of a word. Deciding which fragments should be concatenated into words is a difficult

problem. Although simple heuristics might be devised to cover most common cases,

this is unlikely to lead to a robust solution that can deal satisfactorily with the

wide variety of files found in practice.

Another drawback to the general approach of analyzing parenthesized strings in

PostScript files is that it requires modification to handle PDF files, which are

compressed, and contain no readable text.

3 A simple text extractor
Our approach is to modify a document by prepending a small prefix which, when

executed by a standard PostScript interpreter, has the effect of producing ASCII text

in a file rather than pixels on a page. To execute the code, the modified document

can be processed either by a previewer such as ghostscript, or by sending it to a

printer. Details of the procedure are given in the Appendix.

The trick is to redefine the PostScript show operator, which is responsible for

placing text on the page. Regardless of how a program is constructed, any text that

appears on a page passes through this operator (or one of the five variants discussed

below). We redefine show to write its argument, a text string, to a file instead of

rendering it on the screen. When the document is executed a text file is produced

instead of the usual set of physical pages.

We explain the operation by incrementally improving a simple program.

Prepending the line /show { print } def, shown in Figure 3a, to the document of Figure

2 redefines the show operator to print to standard output. The result is shown at the

right of Figure 3a. One problem has been solved: separating what text is destined for

a page from the remainder of the parenthesized text in the input file.

The question of identifying whole words from fragments must still be addressed. The

text in Figure 3a contains no spaces, and needs to be segmented into words. Printing

a space between each fragment results in the text in Figure 3b. Spaces do appear

between each word, but they also appear within words, such as m ultiple and

imp ortan t.

To detect where spaces should be inserted, it is necessary to consider how fragments

are placed on the page. Figure 4 plots the distribution of distance between

fragments, measured in printers’ points,* in one technical report. The peak around

zero corresponds to the fragments being part of the same word, while the broader

hump around 16 corresponds to the inter-word spacing. The latter is spread out by

the variation that occurs in word spacing. This is particularly striking when the

margins are “justified” by adding extra space to pad out short lines. It seems

reasonable from the graph to pick a threshold of about five points, below which

fragments will be concatenated and above which spaces will be inserted.

The prologue in Figure 3c implements this modification. The variable X records the

horizontal co-ordinate of the right-hand side of the previous fragment. The new

show procedure obtains the current x coordinate using the currentpoint operator (pop

* There are 72 points to the inch.

discards the y coordinate), and subtracts the previous coordinate held in X. If the

difference exceeds a preset threshold, in this case five points, a space is printed.

Then the fragment itself is output.

In order to record the new x coordinate, the fragment must actually be rendered. The

line systemdict /show get exec retrieves the original definition of show from the

system dictionary and executes it with the original string as argument. This

renders the text and updates the current point, which is recorded in X on the next

line. The execution of the original show operator is one of the innovations of this

technique over previous ones: it provides a simple and foolproof way of updating

coordinates. This new procedure produces the text at the right of Figure 3c, where

all words are segmented correctly. Line breaks can be detected by analyzing vertical

co-ordinates in the same way and comparing the difference with a fixed threshold.

There is one remaining problem in the text of Figure 3c—a fl ligature is represented

by the § symbol—and we return to this in the next section.

The four variants of the PostScript show command, namely ashow, widthshow,

awidthshow, and kshow, are treated similarly. A procedure is defined to do the work.

It is called with two arguments, the text string and the name of the appropriate

show variant. Just before it returns, the code for the appropriate command is located

in the system dictionary and executed. Figure 3d shows the complete prologue.

Notwithstanding the use of fixed thresholds for word and line breaks, this scheme i s

surprisingly effective on the 40,000 technical reports in the technical report

repository. In the next section, we describe several enhancements that further

improve performance.

4 An improved text extractor
Although the solution developed in the previous section is elegant and robust, it has

several minor problems that can be solved by introducing some heuristics. These

problems include incorrect word-boundary identification when using very large or

very small fonts, the need to distinguish paragraph and line breaks, dealing with

non-ASCII characters, dehyphenation, and page reversal. We address each in turn.

They are implemented in the Python language3 as a post-processor to the PostScript

scheme just described. Because it is necessary to have access to detailed information

on word and line spacing, a simple modification is made to the PostScript prologue

in Figure 3d to provide this information.

Spacing in large and small fonts
The use of a fixed threshold to distinguish inter-word gaps from inter-fragment

ones fails when the text is being printed in a very large or very small font. When

using large fonts, as in titles, inter-fragment gaps are mistakenly identified a s

inter-word gaps, and words are broken up into individual letters. When using small

fonts, as in footnotes, inter-word gaps are mistaken for inter-fragment gaps, and

words are run together.

To solve this problem, we express the word break threshold as a fraction of the

average character width. This width is calculated for the fragments on each side of

the break by dividing the rendered width of the fragment by the number of

characters in it. Examination of histograms of breaks as a fraction of character

width leads to a threshold of 30%, which is effective for a wide range of type sizes.

This modification also eliminates all dependence on the units in which the co-

ordinate system is expressed.

Paragraph vs. line breaks
The line breaks in a PostScript document are designed for typeset text. Plain text

does not always share the same line width, and it is often desirable to wrap lines

differently depending on the situation—for example, the width of the window

containing the text. Paragraph breaks, on the other hand, have significance for the

document’s content and should be preserved.

Paragraph breaks can be distinguished in two ways. The first presupposes that more

space is left between paragraphs than between lines, as in Figure 5a. In this case,

any break exceeding the average line space can be treated as a paragraph break. For

“average line break” we use the most common non-trivial change in y coordinate

throughout the document.

The second way separates paragraphs marked by indentation rather than line

spacing. In Figure 5b, the first line of the second paragraph is indented from the left

margin. This is often sufficient for identifying new paragraphs, but additional

heuristics can reduce the number of mis-identifications. Consider the three lines

numbered to the right of Figure 5b: one at the end of a paragraph and the next two

beginning the subsequent paragraph. For these to signal a paragraph break,

• the second line must be indented relative to the other two;

• the second line must start with a capital letter;

• the third line must be longer than the other two;

• the second line must be almost as long as the third.

In the last two constraints it is the text length that is measured, not the distance

between margins. The first line terminates a paragraph, and will not usually

extend to the right margin, while the second one is indented. While certainly not

infallible, these rules work well in practice.

Non-ASCII characters
When producing ASCII text from PostScript some character translation i s

inevitable because the character sets used in documents are much richer than the

ASCII set. In technical documents, the most common use of unusual glyphs is in

mathematical formulas. These include some ASCII characters—for example,

variable names and digits—and some other symbols—Greek characters, integral

signs and the like. The latter must either be approximated in ASCII, or deleted. We

decided to flag unknown characters with a question mark because there can be no

truly satisfactory character representation of mathematical formulae.

Other commonly-used glyphs include ligatures, bullets, and printer’s quotes.

Ligatures are specially joined and kerned combinations of characters such as fi and fl

that are rendered as a single glyph. This occurs very frequently in TEX output—

indeed, an example appears in Figure 3—and since this is common in our

environment we recognize such symbols and map them to their two-character

equivalent. Bullets and printers’ quotes (“ ‘ ’ ” rather than ' ") are recognized in the

same manner.

Dehyphenation
When documents are justified to a fixed right margin, words are often hyphenated.

We reverse this process by detecting hyphens at the end of a line and concatenating

the fragments on either side of the break. Admittedly this can remove the hyphen

from a compound word that straddles a line break, but such situations are rare.

Dehyphenation does not work across page breaks because headers and footers

separate the last line of one page from the first line of the next.

Page reversal
The pages of PostScript documents often appear in reverse order. This is for

mechanical convenience: when printers put pages face up on the output tray, the

first page produced is the last page in the document. The Adobe document

structure2 defines a convention for specifying page ordering, but it is rarely followed

in actual document files.

In order to detect page order, several heuristics were considered but rejected on

grounds of unreliability. Our final solution is to extract numbers from the text

adjacent to page breaks. These are usually page numbers, and one can tell if a

document is reversed by checking whether the sequence is increasing or decreasing.

This is fairly reliable because even though some numbers in the text are erroneously

identified as page numbers, the decision is made on a global, majority, basis.

5 Other schemes
This system was developed as a solution to a practical problem that other systems

failed to solve. Here we briefly describe similar schemes. The first two attempt

extraction by a textual scan, while the remainder make use of a PostScript

interpreter.

ps2ascii.pl This is a widely-used Perl script4 that extracts parenthesized text

from a PostScript file.

ps2txt This is a stand-alone C program that extracts parenthesized text

from a PostScript file. It also includes some special code to deal

with files generated by the dvips program.

ps2a Written entirely in PostScript, this system requires psh, a

component of the NeWS windowing system—although it could run

using ghostscript or a printer. It is a rather complex program, and

is optimized to perform with output from TEX. Like the system

described in the present paper, it does execute the original show

operators in the PostScript input.

pstotext This system, from Digital Equipment Corporation, includes

components in both PostScript and C. Although very comprehen-

sive, is it correspondingly complex, and extremely slow to execute.

It succeeds in tracking font changes and does an excellent job of

conversion.

ps2ascii This program, which is included with the standard ghostscript

distribution, is complex but, in our experience, not at all robust.

ps2ascii [ucf] This variant of the ghostscript ps2ascii was developed at the

University of Central Florida. It includes components in both

PostScript and Perl.

ps2ascii [jhu] This variant of ps2ascii was developed at Johns Hopkins

University to convert journal articles to HTML. It strives to

preserve the formatting of the original PostScript document.

However, it is designed exclusively for documents with a format

specific to certain journals of the Johns Hopkins University Press,

and recognizes—and gives special attention to—PostScript files

that were generated with a specific software package

(QuarkXPress). A table containing numerous parameters is used

to aid conversion, and can, in principle, be modified for new

formats.

6 Conclusions
We have presented a simple, elegant and robust scheme for extracting text from

PostScript. The heuristics it uses to reconstitute word spacing and paragraphing,

and to restore other small aspects of the text, work well although they are obviously

not infallible. Quantitative evaluation is not really meaningful because everything

depends on how the PostScript is generated in the first place, but a large-scale

sample from a wide variety of sources can be viewed in the New Zealand Digital

Library collection of computer science research reports. *

In future we will address the extraction of further structural information from

layout, ranging from section headings to bibliography entries. We anticipate that

deficiencies will inevitably continue to emerge as new documents, with new layout

styles, are encountered, and we will have to address them by evolving the system

constantly. In order to prevent it developing into a large, unstructured tangle of

heuristic hacks, which will rapidly become unmaintainable, we propose to

investigate the application of machine learning techniques to infer a rule set from

example reports. Whenever a new format is encountered, we would augment the set

of training examples to include it and relearn the set of rules from scratch.

Meanwhile, our heuristic system already does a good job of extracting text and

rudimentary structure from PostScript documents.

References
1. Adobe Systems Incorporated (1985) PostScript language reference manual. Addison

Wesley, Reading, Massachusetts.

2. Adobe Systems Incorporated (1989) Document structuring conventions. Addison
Wesley, Reading, Massachusetts.

3. Lutz, M. (1996) Programming Python. O’Reilly and Associates, Sebastopol,
California.

4. Wall, L., Christiansen, T. and Schwartz, R.L. (1996) Programming Perl.
O’Reilly and Associates, Sebastopol, California.

* http://www.cs.waikato.ac.nz/~nzdl

Appendix: Obtaining the extraction system
The simplest way to employ this scheme is to copy the prologue from Figure 3d,

prepend it to a PostScript file by hand, and run it through a PostScript interpreter.

Ghostscript is an excellent public-domain interpreter, and is available from

www.cs.wisc.edu/~ghost. Once it is installed, save the prologue above in a file

called prescript.ps, and type

% gs -q -dNODISPLAY -soutfile=outfile prescript.ps infile.ps -q

where infile.ps is the PostScript file, and the text is to go into outfile.

An intriguing option exists on a Macintosh, or any other system that provides a

mechanism for receiving data from a direct connection to a PostScript printer: the

interpreter in the printer itself can be used. On the Macintosh, use BBEdit

(www.barebones.com/bbedit.html) to open the PostScript file, paste in the

prologue, send the file to the printer, and capture the returned text. Because the

showpage operator is redefined, the printer will not output any pages.

To take advantage of the improvements described in Section 4, download the prescript

system from the ‘technology’ link on the New Zealand Digital Library page

(www.cs.waikato.ac.nz/~nzdl). This consists of an augmented prologue, prescript.ps,

and a Python script, prescript.pl, that implements the heuristics described in

Section 4.

Figure Captions

Figure 1 A PostScript program that prints a character that does not occur in the
text of the program
(a) program
(b) rendered output

Figure 2 A PostScript document and the text extracted from it

Figure 3 Simple and complex ways of producing text from PostScript
(a) printing all fragments rendered by show
(b) putting spaces between fragments
(c) putting spaces between fragments more than 5 points apart
(d) extension to other PostScript show operators

Figure 4 Distribution of inter-fragment distances

Figure 5 Two styles for paragraph breaks
(a) additional space
(b) indentation

a
/fib {
 dup
 1 eq { }
 { dup 2 eq { pop 1 }
 { dup 1 sub fib exch 2 sub fib add }
 ifelse }
 ifelse
} def

(Fib[6] =) show 6 fib () cvs show

b

Fib[6] = 8
Figure 1 A PostScript program that prints a character that does not occur in

the text of the program
(a) program
(b) rendered output

...
getinterval dup(Display)eq exch 0 4 getinterval(NeXT)eq or}{pop false}
...
(/usr/users/eksl/oates/papers/96/mlc/final/paper.dvi)
...
(Abstract)98 973 y Fr (Finding)e(structure)i(in)e(m)o(ultiple)h(streams)
f(of)f(data)98 1018 y(is)30 b(an)e(imp)q(ortan)o(t)h(problem.)64
b(Consider)30 b(the)98 1064 y(streams)19 b(of)e(data)h(\015o)o(wing)
g(from)f(a)g(rob)q(ot's)h(sen-)98 1110 y(sors,)f(the)g(monitors)g(in)
g(an)f(in)o(tensiv)o(e)i(care)g(unit,)98 1155 y(or)f(p)q(erio)q(dic)
j(measuremen)o(ts)f (of)e(v)n(arious)h(indica-)98 1201 y(tors)k(of)
g(the)g(health)h(of)e (the)i(econom)o(y)m(.)41 b(There)98 1247 y(is)17
b(clearly)h(utilit)o (y)g(in)f(determining)h(ho)o(w)d(curren)o(t)98
1292 y(and)g(past)h(v)n (alues)g(in)g(those)g(streams)h(are)e(related)
98 1338 y(to)22 b(future)h(v)n(alues.)45 b(W)m(e)22 b(form)o(ulate)
g(the)h (prob-)98 1384 y(lem)17 b(of)f(\014nding)i(structure)g(in)g(m)o
(ultiple)g(streams)98 1429 y(of)f(categorical)i(data)e(as)h(searc)o(h)g
(o)o(v)o(er)g(the)g(space)98 1475 y(of)24 b(dep)q(endencie)q(s,)30

Abstract
Finding structure in multiple streams of data
is an important problem. Consider the
streams of data flowing from a robot’s sen-
sors, the monitors in an intensive care unit,
or periodic measurements of various indica-
tors of the health of the economy. There
is clearly utility in determining how current
and past values in those streams are related
to future values. We formulate the prob-
lem of finding structure in multiple streams
of categorical data as search over the space
of dependenceies, unexpectedly frequent or

Internal data in
parentheses Word fragments No spaces

Figure 2 A PostScript document and the text extracted from it

a /show { print } def Findingstructureinmultiplestreamsofdataisanimportant
problem.Considerthestreamsofdata§owingfromarobot'
ssensors,themonitorsinanintensivecareunit,orperiodi
cmeasurementsofvariousindicatorsofthehealthofthee
conomy.Thereisclearlyutilityindetermininghowcurrenta
ndpastvaluesinthosestreamsarerelatedtofuturevalues

b /show { print () print } def Finding structure in m ultiple streams of data is an imp
ortan t problem. Consider the streams of data §o wing
from a rob ot's sensors, the monitors in an in tensiv e
care unit, or p erio dic measuremen ts of v arious
indicators of the health of the econom y . There is
clearly utilit y in determining ho w curren t and past v
alues in those streams are related to future v alues

c /X 0 def

/show {
 currentpoint pop
 X sub 5 gt { () print } if
 dup print
 systemdict /show get exec
 currentpoint pop /X exch def
} def

Finding structure in multiple streams of data is an
important problem. Consider the streams of data
§owing from a robot's sensors, the monitors in an
intensive care unit, or periodic measurements of
various indicators of the health of the economy. There
is clearly utility in determining how current and past
values in those streams are related to future values.

d /X 0 def

/protoshow {
 currentpoint pop
 X sub 5 gt { () print } if
 dup print
 systemdict exch get exec
 currentpoint pop /X exch def
} def

/show {/show protoshow} def
/kshow {/kshow protoshow} def
/widthshow {/widthshow protoshow) def
/ashow {/ashow protoshow} def
/awidthshow {/awidthshow protoshow} def

Figure 3 Simple and complex ways of producing text from PostScript
(a) printing all fragments rendered by show
(b) putting spaces between fragments
(c) putting spaces between fragments more than 5 points apart
(d) extension to other PostScript show operators

0

100

200

300

400

500

600

700

-5 0 5 10 15 20 25

Gap length

F
re

qu
en

cy

Figure 4 Distribution of inter-fragment distances

a Finding structure in multiple streams of data
is an important problem.

Consider the streams of data §owing from a
robot's sensors, the monitors in an intensive
care unit, or periodic measurements of

b Finding structure in multiple streams of data is
an important problem.
 Consider the streams of data §owing from a
robot's sensors, the monitors in an intensive
care unit, or periodic measurements of various
indicators of the health of the economy. There is

1
2
3

Figure 5 Two styles for paragraph breaks
(a) additional space
(b) indentation

