
brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Research Commons@Waikato

https://core.ac.uk/display/29195106?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Melody based tune retrieval over the World
Wide Web
David Bainbridge, Rodger J. McNab and Lloyd A. Smith

Department of Computer Science, University of Waikato, Hamilton, New Zealand.
{D.Bainbridge, R.McNab, L.Smith}@cs.waikato.ac.nz

Topic Categories

Multimedia collections: access to a music archive
Web-based interface.

Abstract. In this paper we describe the steps taken to develop a Web-based version of an existing
stand-alone, single-user digital library application for melodical searching of a collection of music. For
the three key components: input, searching, and output, we assess the suitability of various Web-based
strategies that deal with the now distributed software architecture and explain the decisions we made.
The resulting melody indexing service, known as MELDEX, has been in operation for one year, and the
feed-back we have received has been favorable.

Key words: Music collection · Web-based audio · Distributed architecture · Human computer interaction
design

1. Introduction

To develop a melody-based computer search facility for music, equivalent to the text-based searching
facilities available for the written word, many difficult and challenging problems must be solved
[MSBW97, MSWH96]. In the system developed by McNab et al., a user sings a remembered fragment
of song into a microphone, sets a few search options (such as whether to search for approximate or exact
matches) and then directs the computer to search its database of tunes. To accomplish searching, the
computer system must transcribe the audio signal into symbolic notes, then use this information to
perform "string" matching on a text derived form of the music and musical database. Extending the
availability and accessibility of this program through the World Wide Web raises a new set of interface
problems due to the restrictive communication regime imposed by the medium.

In this paper we describe how an existing stand-alone search program written for the Macintosh
computer was redeveloped as a Web-based service similar in idea to Internet search engines such as
AltaVista. In doing so we demonstrate how many of the restrictions imposed by human computer
interaction design using HTML (Hyper Text Mark-up Language) can be overcome to provide what we
believe to be a useful (and unique) Digital Library resource on the Web.

The structure of the paper is as follows: Section 2 describes the finished Web service and helps set the
context of the problem; Section 3 describes how the audio input and search parameters are entered;
Section 4 describes the modifications necessary to turn a graphically controlled, single-user, stand-alone
search program into command-line controlled, multiple user server; Section 5 describes how we retain
data between separate executions of the software; and Section 6 summaries our experiences with some

concluding remarks.

2. The final product

Figure 1: Default query page.

Figure 1 shows the default query page to the Web-based melody index service. First the filename of an
acoustic sample is entered this is the tune fragment that will be used to perform the search, and can be
a digitized recording of the user singing or playing a tune on a musical instrument. Next the databases to
search are selected. Currently we have four databases: North American/British, German, Chinese, and
Irish folksongs derived from two sources: the Digital Tradition [Gre94] and the Essen collection
[Sch92], totaling 9,400 melodies. The user can elect to search any number of the databases
simultaneously. Alternatively, by clicking on the collection name it is possible to browse the tunes by
title, sorted alphabetically.

With the digitized tune and databases specified, the final stage is to submit the query for processing.
This is accomplished by pressing the "Quick search" button at the bottom of the page. In doing so,
various search options not accessible from this particular query page are set to default values. These are:

Position: only match the start of a tune;

Pitch: classify sequences of notes as up, down, or same rather than exact
intervals;

Rhythm: ignore note durations;

Matching algorithm: a fast, but crude, state matching algorithm; and

Tuning: adapt to user’s own tuning, rather than assume standard frequencies such
as A-440.

When the search button is pressed, all this input information is packaged and sent to our server which
parses the data, activates the appropriate search and sends the result back to the user. The result of
processing Figure 1 is shown in Figure 2.

Figure 2: The result of the query shown in Figure 1.

As with other Internet search engines, our software ranks the returned database entries and formats them
into pages with next and previous links. In this case 74 tunes were found, with Auld Lang Syne (the tune
sung) the top item. By clicking on the "speaker" icon next to a song title the user will hear the piece
played, assuming the browser has been configured properly; by clicking on the "treble clef" icon the user
will be presented with a graphical version of the melody.

Below we detail the design decisions that lead us to this interface.

3. Collecting audio data

The physical task of transcribing a live audio signal is straightforward when the source (the user) and
computer hardware are in the same room. The task becomes much harder when the microphone and
audio processing hardware are thousands of miles apart. Although products such as Live RealAudio
[Rea97] which permits the live transmission of sports commentary, radio shows and the like over the
Internet prove it is technically feasible to do this, we did not wish to become tied to proprietary
software (which can often limit the choice of computer platforms); nor was there, at the time of
implementation, any standard support in HTML or its extensions for audio input.

Our solution was to accept this lack of standardization and instead require users to step outside their
Web browsers to record themselves singing/playing using what ever audio recording software is
available on their computer.

Allowing such a variety in recording programs does raise the issue of different audio formats: Sun’s AU
format, Window’s WAV format and so forth. Such differences are dealt with using sox, a general utility
sound exchange program written by Lance Norskog and others [Nor95]. Our core software only

sox transform other formats appropriately.

Figure 3: Default query page using file-upload.

The second issue in allowing users to record acoustic input off-line is the mechanism used by the music
searching software to access this data. A solution that is guaranteed to work for any browser is to request
the URL (Universal Resource Locator) for the acoustic file (Figure 1). A more elegant alternative is to

use the form type "File-upload" as is shown in Figure 3. Using this option a browse button appears to the
right of the text area for Step 1 which, when pushed, causes a file browser popup window to appear.
There the user can traverse their files to locate the desired recording. This eliminates the chance of
typing mistakes that can happen when using the URL entry method.

Unfortunately, file-upload is currently a non-standard extension to HTML; however, many browsers
support this (for instance Netscape 3.0 and above, and Internet Explorer 4.0). Thus, the final layer to file
input is to use CGI (Common Gateway Interface) scripts written in Perl to interrogate a user’s browser
to determine what type and version number it is and consequently if file-upload is supported. This done,
the CGI script generates the appropriate HTML page (Figure 1 or 3).

Figure 4: The advanced query page.

In addition to specifying the acoustic file, to perform a search the user must specify parameters that
control the type of search performed. These input values listed above are more like text searching
options such as case sensitive "on" and stemmed words "off", and can be dealt with in a similar way
using standard HTML form attributes such as radio buttons and pull down menus. These options can be
seen in Figure 4 which shows the advance query page.

4. Searching the database

In the original Macintosh application there is a close integration between the input phase and the search
phase. This integration comes about naturally since the two phases are simply components of a larger
software program. All input data is held in memory and passed as arguments to functions that perform
the search. This direct arrangement is shown in Figure 5.

Figure 5: The relationship between input, search and output components in the stand-alone Macintosh
program is straightforward.

In moving to a Web-based version, the first significant difference is the distributed nature of the
environment that physically separates the logical phases. This is shown in Figure 6, where the computer
handling data input may not even be on the same continent as the computer that performs the search!

Figure 6: The relationship between input, search and output in the Web-based version is complex.

Transmitting input data over such a link is solved by using MIME (Multipurpose Internet Mail
Extensions) types; the asynchronous interaction of the Macintosh based graphical user interface is
replaced with a single submit operation once the data is gathered all of this is provided by standard
HTML. The first thing, however, that the processing software must do is to check that all the data fields
specify valid values. In the event of an erroneous or missing data item, the CGI script generates a Web
page detailing where the mistake has occurred.

Another key difference between the stand-alone and Web version is the move from a single user to
multiple users. The solution here is to restructure the search software so it is harnessed inside a server

program (rather than respond to input requests directly). This is accomplished using a text-based
message passing scheme implemented using Unix sockets [WS91].

Input takes the form of single line requests where the first word defines the requested operation and
subsequent arguments appear where appropriate. Output (described more fully below) often requires
more than one line to transmit all its information; consequently, the token "END" is reserved as a
command word and used as a delimiter to mark the end of such a sequence. It is not necessary to clarify
the type of output being produced since the program generating the input request will know what type of
output data to expect.

5. Displaying the results

In the original Macintosh application there is once again close integration between search and displaying
the results. Lists of matches are held in memory and used to determine what is shown to the user, where
control of the graphics display includes the color of individual pixels. With the move to a Web
environment, the ability to retain data and track state information becomes harder. And while it is true
that HTML is a graphical medium, in its rudimentary form there is no interactive coloring of pixels.

The requirement to graphically display pages of music could be met by using a plug-in product such as
NoteView [Jac97] which allows music to be encoded and sent over the Web at a symbolic level (more
compact than a graphical representation) but still have it displayed graphically by the browser. However,
this would once again tie us to a proprietary product which we want to avoid if possible. Instead we
chose to generate GIF (Graphics Interchange Format) images of music that are then incorporated into
HTML documents.

To retain data in a CGI script, the two main mechanisms are intermediate files and cookies. A cookie is
a bit like an associative array where, if you know the identification key specified at its creation time, you
can access the data elements stored in the array through its text index values. Cookies are an attractive
solution to managing the list of matching tunes returned from a user’s search. Using a cookie, the list
could be stored as a dynamic array of tuple values (tune name, database collection name, percentage
match) which are then retrieved later to generate a specific page of matches (for example, matched items
11-20).

In actual fact, a cookie is implemented as a file. An important difference, however, is that files generated
by a CGI script are on the server side, but the file used in a cookie is on the client (the user) side. This
means it is easy for a CGI script to distinguish between requests made by different users, however it is
this very difference that makes cookies a potential security threat to a user and therefore provided as a
browser option that can be switched off.

Fortunately, it is not necessary to resort to cookies to store a list of matched tunes CGI scripts using
server-side files are more than adequate. When a new search is started, a unique file name is generated,
in which the results of the search are stored, and a web page with up to the first 10 matches generated.
Subsequent requests for next or previous pages are encoded as URL with the appropriate CGI arguments
embedded in it, for example:

http://www/cgi-bin/meldex/hitpages?lower_index=10&filename=27674_882226100.data

After a specified amount of time the data file is deleted.

Storing user preferences (state information) on the server side is more problematic. This requires the
generation of a unique filename based on the user’s name a tricky task when not all browsers set this
information and certain computer configurations do not even require the user to log in before accessing
the Web. In this situation cookies are best, and we use cookies to store a user’s preferred audio type for
playback.

The first time a user clicks on the speaker icon (Figure 2) for playback, a new page is generated that
offers a variety of audio formats. Once the user has selected one of these, that choice is stored in a
cookie and the requested tune is played. Subsequent clicks on a speaker icon will automatically use this
file type to play the melody. Of course just because a user has chosen a particular audio file type does
not mean they always want this, and options exist to revisit the "audio file type" page.

If a user chooses to have cookies disabled in their browser, the worst that happens is that each time they
click on a speaker icon to hear a piece, they will have to pass through the intermediate page where they
select the type of audio file they want.

6. Conclusions

In this paper we have described how a single-user, stand-alone melody based tune retrieval system was
adapted to work over the Web. While it is near impossible to provide a Web service that is identical to
the original product, it is possible to develop an interface which in the context of Web
interfaces reduces the cognitive load placed on the user. Examples of this include the use of the HTML
form type "file-upload" to select an acoustic recording and cookies to record the user’s preferred audio
file type for playback.

The resultant user interface is similar in appearance to Internet search engines, and significant effort has
been spent in program design to ensure this comparability exists. In fact our architecture design
conforms to a more general structure designed for the New Zealand Digital Library project
(http://www.nzdl.org/) that accommodates text, music and other multi-media collections such as oral
history [MWB97].

In reaching as broad a range of users as possible, our experience is that software should avoid using
platform specific plug-ins and proprietary software, relying on only the lowest common denominator. In
situations where a non-standard extension is used to improve the interface, the software’s functionality
must not be compromised if the extension is missing for a particular user. Our use of file-upload and
cookies meet this criteria. Hopefully standardization will improve in the future, allowing more dynamic
applications.

At the time of writing (December ’97) the melody index service has been in operation for one year and
all the feedback we have received has been positive.

MELDEX can be accessed via the URL "http://www.nzdl.org/meldex".

Footnotes

 This will change in time. For instance, the latest version of Java Media Framework API (currently
in beta form) carries support for both recording and playback of sound.

 We supply a help page with advice on software products to permit audio recordings and links to
freely available programs for common computer platforms.

References

[Gre94] Greenhaus, D. (1994) About the Digital Tradition. "http://www.deltablues.com/".

[Jac97] Jacobson, M.N. (1997) Nightingale Version 3: Integrated notation software for the
Macintosh computer, Jazz Player, No. 2, pp. 29-31.

[Nor95] Norskog, L. (1995) SoX: Sound eXchange Home Page "http://www.spies.com/Sox/".

[NSBW97] McNab, R.J., L.A. Smith, D. Bainbridge and I.H. Witten (1997) The New Zealand Digital
Library MELody inDEX , D-lib Magazine,
"http://www.dlib.org/dlib/may97/meldex/05witten.html".

[MSWH96] McNab, R.J., L.A. Smith, I.H. Witten and C. Henderson (March 1996) Towards the
digital music library: tune retrieval from acoustic input, Proc. ACM Digital Libraries
Conference, Bethesda, Maryland, pp. 11-18.

[NWB97] McNab, R.J., I.H. Witten and S.J. Boddie (1997) A distributed digital library architecture
incorporating different index styles, Department of Computer Science, University of
Waikato, Hamilton, New Zealand (in preparation).

[Rea97] RealNetworks Home Page (1997) "http://www.real.com/".

[Sch92] Schaffrath, H. (1992) The ESAC databases and MAPPET software, Computing in
Musicology, Vol 8., W. Hewlett and E. Selfridge-Field (eds), Menlo Park, California:
Center for Computer Assisted Research in the Humanities.

[WS91] Wall, L. and R.L. Schwartz (1991) Programming Perl, O’Reilly & Associates.

Dr. David Bainbridge, Lecturer
Department of Computer Science, University of Waikato, Hamilton, New Zealand
Email: davidb@cs.waikato.ac.nz

Last modified: Tue Dec 15 16:25:59 NZDT 1997

