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Abstract. When is it reasonable, or possible, to refine a one place buffer
into a two place buffer? In order to answer this question we characterise
refinement based on substitution in restricted contexts. We see that data
refinement (specifically in Z) and process refinement give differing an-
swers the original question, and we compare the precise circumstances
which give rise to this difference by translating programs and processes
into labelled transition systems, so providing a common basis upon which
to make the comparison. We also look at the closely related area of sub-
typing of objects. Along the way we see how all these sorts of compu-
tational construct are related as far as refinement is concerned, discover
and characterise some (as far as we can tell) new sorts of refinement and,
finally, point up some research avenues for the future.
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Z, subtyping, Theoretical paper.

1 Introduction

With advent of both the International Standard on Open Distributed Processing
[1] and aspect-oriented programming [2], there has been increasing interest in us-
ing different formalisms to specify different views or aspects of the same system.
Recent work defining operational semantics, using labelled transition systems
(Its), for a variety of formalisms is a step in the direction of integrating differing
formalisms [3-5]. For example the execution of an operation of an abstract data
type ADT or method of an object is modelled by a transition labelled with the
operation or method name. Similarly a program (i.e. a sequence of uses of op-
erations of an ADT) can be modelled using transitions labelled name that call
operations/methods labelled name.

Although different kinds of things (data types, processes or objects) can be
quite naturally given an operational semantics in the form of Its, a potential
problem is that the meaning of a specification, i.e. what the Its can be refined
to, depends upon the kind of thing it represents, as we shall see.

We also note that different kinds of things can be placed in differing contexts.
For example, in [4] ADTs can only be placed in contexts (programs) that are
traces (i.e. sequences) of (calls to) operations, whereas processes can be be placed
in contexts modelled by branching transition systems [6].

Combining these observations we construct two general definitions of refine-
ment of Its that are parameterized on the contexts in which the Its can be placed.
One definition is in the style of process refinement. The other refinement is more



in a state-based style. This latter originates from the idea that A can be re-
fined into C when no user could “observe the difference”. We show when the two
general definitions are equivalent.

We will, for example, give a one place buffer the same lts semantics whether
viewed as a data type or a process. Where the views differ is that as an ADT
the one place buffer can be refined into a two place buffer whereas viewed as
(i.e. placed in the contexts of) a process it cannot. This is understandable given
that, by restricting the contexts in which some thing can be placed, what can
be observed is restricted and consequently we are less likely to “observe the
difference”.

These definitions of refinement can be applied to different kinds of things.
That is to say, the general definition of refinement is made more concrete by
fixing the contexts in which the things are to be placed. Doing this we find that
our notion of refinement of processes, placed in all process contexts, is equivalent
to failure refinement [6] and our notion of refinement of ADTs, placed in all ADT
contexts, is equivalent to singleton failure refinement [4]. These are the results
we would expect.

In our state-based style of refinement, A C C, we restrict the contexts we
place C in to those where A was expected, this restriction of contexts depending
on A being very common in behavioural subtyping. We apply this in the general
setting and then, when we select a universe of contexts for ADTs and then again
for processes, we have definitions of:

ADT refinement related but not equivalent to LOTOS'’s ext [7],
process refinement equivalent to a definition of object-oriented behavioural
subtyping given in [8].

We define the notation for labelled transition systems in Section 2 and review
some definitions of refinement of processes from the literature in Section 2.1. We
introduce our items of interest in Section 3 and then we define two formaliza-
tions, both parameterized by sets of contexts, of what we mean, in general, by
refinement in Section 4.

In Section 5 we use Z to define data types and subsequently define the op-
erational semantics for them based on the guarded interpretation (which models
most closely what is usual in processes, as opposed to the more ‘usual’ Z inter-
pretation of chaos outside of preconditions).

In Section 6 we define the contexts in which we can place ADTs and use this
and the definition of Section 4 to define ADT refinement. Similarly in Section 7
we define the contexts in which we can place processes and use this and the
definition of Section 4 to define process refinement.

We briefly relate our results to subtyping of objects in Section 8 and discuss
how to take this work further, and in Section 9 we give pointers to prior work.

In our conclusions Section 10 we summarise our categorisation, our discov-
eries and set-up agenda for future research.



2 labelled transition systems

In this section we define the notation we will use. It is a combination of notation

from ACP [9] and Z [10]. We assume a universe of observable action names Act,

from which we build Act %' {a@]ac Act}, and then Act™ € Actu {7}

Definition 1 labelled transition systems

A uf (Nodesa, Trana, sa) where sp € Nodesp and Trana def {n—a>m |

n, m € Nodesy N\ a € Act™}.

We lift “~” to sets of transitions and to labeled transition systems in the obvious
way. Any single labeled transition systems will either have transitions labeled
form Act U {7} or transitions labeled from Act U {7} (used as contexts).

Let a € Act and p € Act*. We write p |, for the n'* element of p and p [,
for the first n elements of p. We write p | X for the sequence p with all elements

not in set X removed, so prefiz(p) = {p .| n<|p|}.

Where A is obvious from context, we write: n——m for (n,a,m) € Trana,
n—for 3, .(n,a, m) € Trana and n—+m for oy om, (M, p |1, me), o (miy p i
yMiy1) € Trana An=my A m=miy Al p|=i.

a(A) ¥ {a|n-3m € Tranp}, n(s) & {a| s—}

The traces of A are Tr(A) def {p| SA"L}} and the complete traces of A are

Tre(A) % {p| sa-Dn A (n(n) =@ V| p|= 0)}.

(A)ox def (Nodesa, Tranaysy, sa) where Tranays, def {n—>m | n-S3m €

Trana N a & X }.

A)rx def (Nodesa, Tranip)y,, sa) where Trangay, e mSm|n-Sme
(A)rx {(A)rx

Trana A a € X}U {n—m | n—"3m € Trana A a € X}.
The synchronisation function yx which maps (a, b) — ¢ adds ¢, representing
the synchronisation of a and b, where a and b could be performed concurrently.
We treat the synchronization of z and 7 as giving the observable Z. In detail
(which the reader may skip), in order to do this, and allow the deletion of
unsynchronised 7 actions, we first map them to Z° (so yx contains (z,%) — Z°)
then delete T via d and then rename Z° to T via Renx. All this is brought

together in the following definition (which we say more about in Section 3):
def

~llx - = (- llvx -)9x) Renx
Finally we have refusal sets: Ref(p,C) def {X | 3p.scLss A X C Act —
7(s)} and singleton refusal sets: Ref,(p,C) < {{a} | 3p.scs A a € Act —

m(s)}.

2.1 Some known refinement relations for action-based systems

Hennessy’s “may and must” testing refinement [11] C;.5, is the most constrained
form of refinement we consider. A relaxation is LOTOS’s extensional refine-
ment C.qy [7] which allows feature addition in the form of both alphabet ex-
tension a™ and the addition of new traces Tr* over the original alphabet. We



define C,,,, that only introduces alphabet extension a*, from which we have
gtes.*,:};pro#;ezt-

Each of these can be relaxed by adding the ability to prune nondeterministic
traces, see A C B Figure 1. Adding this ability to Cyesy forms Cpyes; (failure
refinement [6], which is known to be equivalent to must testing refinement [11])
and C pp,o, which is shown Lemma 1 to be equivalent to “weak subtyping” [8].

A _O—b—>0 B /o——q,—»-o [ /c Prune at Trt
/ A [11] test | x x x
TN pro| x X
\o S 7] ext| x
D o—i>0 E _o—i>0 E [6] Ftest|  x X
/ / \\ i8] gpm 5 j \></
— G [ 3] ext
\'\\ N AC| B D E

Fig.1. ACr..B AC.:C ALC,,C,D AL.:CDE

Definition 2 Process refinements. Let New = (a(C) — a(A)):
(A Crest ©) & Tr(A) = Tr(C) AV p.Ref (5, C) C Ref(p,A).
(A Cpro ) & Tr(A) = Tr(Coew) A Vp € Tr(A).Ref(p, C) C Ref(p, A).
(A Cest ©) & Tr(A) € Tr(C) AVp € Tr(A).Ref(p, C) C Ref (p, A).
A EFies-‘. C) - VpRef(p, C) c Ref(p, A)
(A Crpro €) € Tr(A) 2 Tr(Chew) AV p € Tr(A).Ref (p,C) C Ref(p, A)
(A Cpest C) < Vp € Tr(A).Ref(p,C) C Ref(p, A).

All the above are based on refusals Ref (p, X), from [4,12] we see that ADTs
are more appropriately based on singleton refusals Ref;(p, X). Consequently by
replacing Ref(p, X) with Refs(p, X) in the above we have a whole new set of
refinement relations C¥% tailored for ADTs.

Although we have not found references to C peqy or Cpyp they can be seen
as little more than completing the square in Figure 1. More interestingly, we
find (as we shall see) that our definition of ADT refinement corresponds to a
singleton version of C gt i.€. T,y

A Crest Cnew has been used in weak subtyping in [8] where they take as a
requirement of behavioural subtyping that if New = @ then refinement should
be failure refinement. A consequence of this decision, as we shall see, is that a
one place buffer cannot be refined into a two place buffer.

Lemma 1 A EFpra CeA C Fiest CJNew

Proof Step 1. A Crpro C = A Crrest COnew Assume A Cppr, C.

ACrpro C % Tr(A) 2 Tr(Coiew) AV p € Tr(A).Ref(p,C) C Ref(p, A).



1. Vp € Tr(A).Ref(p,C) C Ref(p,A) = VYp € Tr(A).Ref(p,Conew) C
Ref(p, A).
As Tr(A) 2 Tr(Conew) if p & Tr(A) then p & Tr(Cdnew). Hence 2. if p ¢
Tr(A) then Ref(p, Conew) C Ref(p,A).
def

From l.and 2. q VpRef(p, CJNew) C Ref(P; A) = (A C Frest caNew)-

Step 2. A Criest C = dnewA Crpro C .Assume A Cpyeqr C.

(A Crrest Conew) & Vp.Ref(p,Conew) C Ref(p, A).

1. Vp.Ref(p, Conew) C Ref(p,A) = Tr(A) 2 Tr(Conew) -
2. Vp.Ref (p, COnew) C Ref(p,A) = Vp € Tr(A).Ref(p,Conew) C Ref(p,A).
As New = (a(C) — a(A)) then Ref(p,Conew) € Ref(p,A) = Ref(p,C) C

Ref(p,A). Hence ¥ p € Tr(A).Ref(p,C) C Ref(p,A). Hence from 1. and 2.

Tr(A) 2 Tr(Conew) AV p € Tr(A).Ref(p,C) C Ref(p,A) &' ACppr C.

3 Things and contexts of interest

Our ‘things’ could be abstract data types, processes or even objects, all of which
we introduce and consider later. Both things and the contexts in which we place
them are given a labelled transition system semantics. Different kinds of things
can be placed in different sets of contexts. The use of different sets of contexts
for different kinds of thing can be seen in [4, 8].

Placing ‘thing’ T in a context X is written [T]x and must model the syn-
chronization between actions of things such as method m and actions of contexts
such as calling method m, i.e. .

The resulting synchronized actions may be private, i.e. T actions. Any action
of the context that is not private is observable by an “independent observer”. A
consequence of this is that although communication between thing and context
may be unobserved (7) it is easy to amend any context by adding actions that
make observable any of the unobservable synchronizations. Consequently, we will
treat the synchronization of  and 7 as giving the observable Z. In order to allow
the deletion of unsynchronized T actions we use _ ||x — def (< llyx -)05)Renx
(see Section 2 above).

We assume that all observable actions of T require synchronization with
some other thing in order to be performed. We can only view our things via
their synchronization with the context and we can view all synchronization with
the context. Hence, no observable action of T can be performed on its own
(formalised by (~)d4¢t). So, we have

Tx € (T llamy X)bact

Further, we assume that we can wait long enough so that if something ob-
servable will eventually happen we do see it. This amounts to an observation
being a complete trace (the set of observable traces is not prefix closed).

Hence
Obs([T]x) & Tre([T]x).



Assumption 1 (a) Things and their contexts can be given a lts semantics. (b)
The kind of a thing can be characterized by the set of contexts it can be placed in.
(¢) A thing’s actions can only be executed in synchronization with actions from
the context. (d) All synchronizations of a thing with actions from the contezt are
observed. (e)All that we can observe are the complete traces of context.

4 Refinement, observation and contexts.

Refinement is a step in the construction of an implementation from a specifica-
tion. The refinement of A (something abstract) into C (something more concrete)

will be written A C C. We allow the C to have new operations not found in A,

New % a(C) — a(A). We will formalize refinement in two related styles:

Action-based style where the observation of an execution of [A]lx is inter-
preted as success or failure and refinement is based on a preorder represent-
ing improvement.

State-based style refinement based on “substitutability”, C being a refine-
ment of A when the substitution of A, in a context where A was expected, by
C, cannot be observed.

The first style is a small modification of Hennessy’s [11], and when applied
to processes it gives the same refinements as Hennessy’s. This style generates
different refinements depending on the preorder used.

The second style appears [13, 14, 5, 15, 8] as behavioural subtyping and hence
could be thought of as object refinement. The “not being able to tell’ will be
formalized as subset of observations. In the case when the contexts are programs
this becomes equivalent to the definition of data refinement as subset of the
relational semantics of programs as found in [16-18]. For data refinement where
operations are undefined (and so can have any behaviour, sometimes referred to
as chaos) outside pre-conditions the restriction of programs to those where A was
ezpected is redundant But, for data refinement where operations are guarded it
is this restriction that permits feature addition.

Because of the links between the two styles of definitions we will apply the
notion of “where A was ezpected’ to the first style, thereby introducing the
feature addition permitted by the second style. When applied to ADTs this will
result in a refinement weaker than LOTOS’s ext refinement.

4.1 Action-based refinement

We are going to place A in a context []x and observe then via Obs([A]x).
Depending upon the context we interpret an observation as being a success
or failure. For concurrent and distributed systems there are a huge number of
contexts that can be constructed. It is useful to construct a “core” set of contexts
from which we can infer what we might see had we placed the thing in a context
not in the core set.



A single observation of a thing T in a context X is a complete trace of
[T]x and will be interpreted as T (success) if and only if it is also a complete
trace of the context X. Being interested in nondeterminism we assume that
an observation consists of a set of single observations of the same thing and
context. Such observations are given one of the following three interpretations:
{T}—always succeed; {T, L}—may succeed or may fail; and {L}—always fail.

There are three powerdomains on the two point lattice T > L (see Figure 2).
We are only interested in two of them: we will ignore the Hoare powerdomain!
and use the other two powerdomains to impose a preorder on the observations.

Smyth
i Eghi— Milner Hours

L S R S S {T}r\:_,fr‘l}‘_z_{”

2

Fig. 2. Power domains

Definition 3 . Obs([Al;) % 7re((Al,)

T S I([A]g;) =4 apEObs([A],) -p € :Frc(.',l':)
L € I([Alz) € 3,cobs(qa).) -P € prefis(Tre(z))
Obs([Cla) 2 Obs([Al:) = I([Cl) > I([Al:) V (I([Als) = I(Clz) A
Obs([A]z) 2 0bs([C].))
ACC ¥ v, (;.0bs((Cl,) 2 Obs([AlL). .

and nothing else is in I([A];).

This definition of refinement depends on :

1. the set of contexts used []
2. and what preorder > we apply to our interpretations I([_],)

Hennessy [11] uses a “success state” approach in which tests formalize the
notion of observation. A special action w is introduced and use to decorate the
success states {s— | s € Succ}. Then a test (an execution of a process in a
context) is interpreted as being a success when it reaches a success state (when
w is observed).

Here end states (7(n) = @) can be viewed as our success states, but whereas
Hennessy only allows w to be visible, we allow the observation of the whole trace
of executed actions. These two treatments can be shown (see Lemma 11 later)
to result in the same refinement relation when applied to processes. But, as we
now demonstrate, the two treatments define different refinements when applied
to ADTs.

Applying the “success state” approach to ADTs (where contexts are traces)
we interpret a test as being a success if the context reaches a success state.
Clearly this is equivalent to restricting contexts to pw and treating only w as
visible, Obsy(-) def Obs(2)T(Act—{w})- Using this definition of observation we
! The Hoare powerdomain has been used [11] to define ‘may’ testing, which is equiva-

lent to trace refinement. Here we can achieve the same results by restricting the lts
used to represent both things and contexts



can see that A and C in Figure 3 are observationally equivalent. But they are
not observationally equivalent using our definition of observation as completed
traces.

I e ¢ Obs([Alasew) = {a,ab,abew)
4 Obs([Clapew) = {a,abew}
<ﬂ_m s?“_ho {g;:’sﬂ(l([‘ﬁ]ﬂw% = {{w{})} = ggsngg%w)
s ([Aase) = {w, ()} = Obsy ([Clasw)
N N0 o Oban([Alutec) = {0} = Obs(Clanes)

Fig. 3. Obs(A) # 0bs(C) but Obsy (A) = Obsy (C)

Although the “success state” approach seems a perfectly reasonable way to
define refinement we do not pursue this here.

4.2 Contexts where A is expected

Our state-based notion of refinement is going to be based upon “substituting”
A with C in contexts where A was expected. Here we will formalize this idea and
apply it to our action-based definition of refinement.

Definition 4 A C C iff C may be used in any context where A was expected,
without the client being able to tell.

Our contexts for things T are [T]x def (T |lar) X)dact- Note the context
synchronizes on actions of T and then all unsynchronized actions get deleted

(0Act)-

Assumption 2 Contexts where A is expected can only synchronize with (call)
actions of A

Consequently: 4 € {(- llatay X)dace | X € lts}.

Assumption 3 That A must fail in a certain context whereas C' might succeed
is not to sufficient to distinguish A from C.

Hence “contexts where A is expected” are not contexts where A must fail.

Definition 5 “contexts where A is ezpected”
HA € {law) X)dact | X € Tts AT((- llagay X)dac) # {L}} -

Definition 6 AC4 C =V (1..0bs([Cla) 2 Obs([AlL).

Prior to restricting the contexts, our two definitions of refinement, applied
to processes, will be the same as two of Hennessy’s testing refinements. When
we apply this definition, with restricted contexts, to ADTs and processes we will
find that our definitions of refinement are very similar to that of LOTOS’s ext
refinement.



4.3 State-based refinement

Early work [16] defines refinement as subset on the relational semantics and
quantifies over all contexts (programs). This can be rephrased as: for all inputs
(contexts), we must have a subset of outputs (what can be observed). In a similar
fashion we define refinement by explicitly defining contexts []4 or [] and use
subsets of observations.

Definition 7 A Cstare C =V o;.0b5((Cla) C Obs([Al,).

AChue C = Ve -0b5(Cla) € Obs([AL).

[Plz = {([ds, 0) | 0 € Obs(Pla),[Je € ]} ATk C% [Clr C[AlR
[PI# = {([Jss0) | 0 € Obs([Pla), [ e € 4} ACACE [CQACAlL o

Clearly A Cgpate C & ACgr C and A gg,ute C&s A E}% C Definition 7 is, by
design, closely related to Z data refinement [4].

It is easy to see that if we assume the Smyth powerdomain and use the
previously computed contexts then the above definitions are a characterization
of our previously defined action-based refinements.

Once we have restricted the contexts to contexts where A is expected, as

>
in Definition 6, then ¢>{1} is redundant. Consequently using the restricted
relations in Figure 4 will have the same effect as using the powerdomains.

Smythge Egli— Milnerg..

Q—z—{f)i F—=2—{1} Q"Lz—{ T(Z}} {1}

Fig. 4. Restrictions of powerdomains

Lemma 2 Assume the Smyth powerdomain
ACACHACE,;, CESACAC

Proof  Second equivalence is obvious. For first equivalence:

1. By definition if Obs([C]a) 2 Obs([A]a) then I([C],) > I([A]ls) V (I([A]a) =
I([Cla) A Obs([Ala) 2 Obs([Cla)). As if I([C],) > I([A]a) then from Figure 4
0bs([Cla) C Obs([A],). Consequently if Obs([C],) > Obs([A]4) then Obs([C],) C
Obs([Ala)-

Yig.erga -0bs([Cla) 2 Obs([A]a) = Obs([Cla) C Obs([A]a)

2. Similarly V| ; ¢ ja-0bs([Cla) C Obs([Ala) = Obs([Cla) > Obs([A],)

From 1. and 2.

V[_]"E{_]A -0bs([Cla) 2 Obs([Aa) & Obs([Cla) € Obs([A]a)

ACACe Yig.er4 -0bs([Cla) € Obs([A]a) o

Because what can be observed in one context may restrict what can be ob-
served in other “similar” contexts, and because refinement quantifies over a



universe of contexts, we can show that, even without restricting the contexts,
some of the powerdomain is redundant.

Lemma 3 IfAl,) = {L} A I((Cl,) # {L} I([C],)=I([A],) then Obs([Ala) %
0b5([Clpa)

Proof

As I([A],) = {1} then p & Obs([A],) and as I([C],) # {L} then p €
Obs([C],). Hence Obs([C],) € Obs([A],) i.e. Tre([C],) € Tre([A],). Select an
a such that pa ¢ Tr°([C],s) hence Tr¢([Cl,.) = Tre([Cl,). As I([Al;e) = {L} =
I([C]pa) and Obs([A],a) 2 Obs([C,a) we have Obs([A]pa) Z Obs([Clya)-

Lemma 4 Assume the Smyth powerdomain
A C CeA Estate‘:’ A ER C.

Proof From Lemma 2 and Lemma 3 °

Thus refinements based on both the Smyth powerdomain and the Egli-Milner
powerdomain reduce nondeterminism, but refinements based on the Egli-Milner
powerdomain (which will be a restriction of refinements based on the Smyth
powerdomain) will also increase the likelihood of success.

An advantage of Definition 7 is that it is based on subsets of observations
and not a more abstract interpretation of the observations and an (Z) improve
relation. On the other hand, starting from a definition of 2 we find that: 1—
[]4 the set contexts where A is expected can, based on stated assumptions, be
computed; and 2—we have not excluded the Egli-Milner powerdomain. Hence we
have not excluded testing refinement C;.s [11] nor have we excluded LOTOS’s
extensional refinement C ..y [7].

Summary Our action-based definition of refinement C depends upon:

1. what set of contexts [-] we use
2. what powerdomain we use—Smyth or Egli-Milner

The set of contexts [] we use defines what kind of thing we model e.g.
ADTs, processes etc.. If we use the Smyth powerdomain then we can characterize
refinement as a subset of observations. Based on the stated assumptions we can
compute the contexts “where A is expected” ([]1). If we restrict ourselves to
these contexts we have refinement C#4 which permits “feature addition”.

Our relational or state-based refinement C gyt starts with a definition of
the contexts “where A is expected” ([]4). If we choose the same set as those
computed in the action-based style then, by Lemma 4, our state-based refinement
has been proven to be the same as the action-based refinement with the Smyth
powerdomain.



5 Using Z to define data types

We might refer to a one place buffer as a data type, whether the buffer was
empty or not. As an alternative we will follow the convention from the world of
processes and regard a data type to define both its operational behaviour and
an initial state. Thus, for us, strictly speaking, an empty one place buffer is a
different data type from a full one place buffer.

—_Tpb
—Opb __State
State_________ st;
’—st;
__init
it AState
AState
st=s
st=s
. —in
S | AState
AState -
. st=s Ast =5
st=sAst' =e V (st =5 A st' =e)
—out — —out
AState AState
st=eAst =3 st=e A st' =g
V (st =81 Ast' =s)

Fig. 5. Z-ADT Opb and Tpb

5.1 Two interpretations of Z actions

The normal interpretation of Z operational schemas, that they are undefined
(i.e. specify arbitrary behaviour) outside their preconditions, has been given
a relational semantics zg[Ju in [17]. Another interpretation (variously called
behavioural, abortive or guarded) is given a relational semantics zg[-], in [4]. A
detailed comparison of refinement of both interpretations of Z operations can be
found in [19]. Unless stated we will assume the guarded interpretation.

5.2 Z abstract data types

The state-and-operations style of Z specification can be interpreted as an ADT-
specification style, but Z offers no structuring mechanisms to formalize this.
Consequently we use the notation of [18].

Data types consist of a single state schema, an initialising operation schema
and a set of operation schemas.



A ¥ (Statea, inita, Opa)

5.3 From data types to lts

We can assume the guarded semantics for a Z ADT A giving the lts z[A],, the
semantics from [20-22] simplified by not having value passing.

1. Nodes” % Statea StartA & inita A Statea

2. z[]; Tran” def {z—sy | (n € Opa) A = € Statea A n A y € State))}.

5.4 7 relational semantics and data Refinement

Data refinement, forward simulation and backward simulation are defined in [16].
Later on, Z data refinement [10] is defined and in [17] shown to be equivalent to
forward simulation of [16]. We use data refinement as defined in [16-18] and think
of forward and backward simulation to be techniques to compute refinement.
Data refinement of A is defined on programs, i.e. sequences p of ‘calls’ of op-
erations. Each operation a is given a relational semantics p[a] and the semantics

of the programs p 4f 2122...onadata type is constructed from the relational
semantics plus an initialization and finalization relation. Where operations can-
not perform input and output the construction is simply relational compositions
[A]z = inito gfa']o g[a?]...o final. What can be observed of any program is
defined by the finalising operation. Slightly different ways to define the relational
semantics of programs (that use operations with input and output) can be found
in the literature. For details see [17,18,4].
Having defined the semantics of a program, [A,]z, refinement is defined:

ACz C = V,ep,, [Cllz C 4]z

For us there are two important questions: 1—what is the set of programs
Prog?; and 2—what does finalising make observable?

When a program terminates finalising, as in [17,18,4], returns the output
sequence of values (where blank _ is returned where no value is output by an
operation). This contrasts with the approach taken in [23] where the refusal set
is taken as observable.

But how programs that do not terminate are treated varies. We note that in
[4] finalising returns a sequence of the same length as the sequence of operations
that did not terminate. We write [[A],]z, for the relational semantics, defined
in [4], of program p using data type A.

ACz C L Ve, [[C]2 C [14],]2-

Clearly, knowing the program p and how many operations terminated (n)
we can infer the complete observational trace p [,. Had [4] defined finalising
to return L only when a program does not terminate, then, by Lemma 4, the
definition of observation, would appear?, to correspond to Hennessy’s “success
state” definition (see Section 4.1 above).

? The proof of Lemma 2 still applies but no the proof of Lemma 3 and henceLemma 4.




6 Sequential data types

An informal and common argument exists that a two place buffer Tpb is a
refinement of a one place buffer Opb because “replacing a one place buffer with
a two place buffer cannot be noticed” (see Figure 5). Similarly Opbdel Figure 6
can be seen as Opb with a delete feature added and hence we would like Opbdel
to be a refinement of Opb. We consider these arguments further below.

z[Tpblg

S [Opb] 5 Test 5.z [Opbdel] ;
i ojit '“\\O /""“"\ i back
(*o/ <m AN, e ‘A@Z@ P

Fig. 6. Opb Ci.,; Tpb Opb C#,,; Opbdel

ADT refinement In order to apply our approach from Section 4 we need to
define the contexts in which ADTs can be placed.
def —
H = {Cllaw p)dact | p€ Act'}.

We use these contexts throughout (see Section 6) and apply Definition 5 to
compute “contexts where A is expected” to be:

4 = {(C llaa) 9)0ct | 51 a(A) € Tr(A)}
Now we can define ADT reﬁr}ement as:

ACprC & ACCandACpmC & ACAc
Assuming the Smyth powerdomain then from Lemma 2 and Lemma 4 we

have:

ACpr C& V[_]_‘e{_} -0bs([Cla) C Obs([A]a)-

ACpm Cs V[_]ue[_]g .0bs([Cla) € Obs([A,)-

Data refinements on Z We use the semantic mappings from Z to Its to give
either a guarded or undefined interpretation to the operations.

ef

% Al Cora [Cly
Although Opb Zpr Tpb and Opb Zpr Opbdel, the restriction on contexts

with Cpr4 prevents z[Opb], being placed in contexts (programs) such as in;in

and in;del. So, we have our desired results: Opb Cppa Tpb and Opb Cppa

Opbdel.

A gDTg & déf I[Aﬂy Cor |IC]]Q and A EDTQ"' C

Lemma 5 ACpr C& ALCEL C
Proof ACprC = Vi . .0bs([Cla) C Obs([Al)

1. V[—]uel—] .ObS([C]n) g Obs([A]a) < A E%‘ C:

Let [Ja € (llagc) p)0act and p % 51 a(C) and o € Obs([Cla).

If p= o then o € Tr(C) and from A C$, C we have 0 € Tr(C) = 0 € Tr(A).
hence we know that o € Obs([A].)

else if p [n= o then (4 [4,{p |n+1}) € Refs(C).



hence (p [n,{f |n+1}) € Refs(A) and o € Obs([A],).
2.ACpr C= ALCEH CIf (p,{a}) € Ref,(C) then p € Obs([C],.) and
P € Obs([A]PG) 50 (P: {a}) € Refs(A) ®

Lemma 6 ACpra C& ALY, C

Proof  The difference between this and Lemma 5 is that both sides of the
equivalence are restricted to traces of A. Hence if p € Tr(A) the above proof
holds and if p & Tr(A) there is nothing to show. °

Comparing Z refinement on relational semantics Cz, and operational
semantics C pr,. In [4] they establish the following:

Lemma 7 ACz, C& AL C
Proof [4] °
Lemma 8 V, .[[C],]z, C [[A],]z, < Obs([Cla) C Obs([A]a)

Proof In context p, final from [4] returns n blanks when n operations have
terminated. Clearly this is true if and only if p |,, will have been observed in our
formalization. °

Lemma9 ACz Co A Eory C.

Proof From Lemma 5 and Lemma 7 or Lemma 8 and definitions. °

Because of the very close relation between Cp7, and Cz, (see Lemma 8) we
know how to amend the definition of C Zg S0 as to permit feature addition with
the guarded semantics.

AC%, C € Ve, Iz € [z

JFrom Lemma 8 and definitions we can conclude A Q’Z"y C& ACpp C

LOTOS’s ext refinement also permits Opb C.y; Tpb and Opb C,..: Opbdel,
but our definition is less restricting in two ways: 1—it permits pruning, see
Figure 1; and 2—it is characterized by singleton failure semantics, not failure
semantics.

7 Processes in sequential branching contexts

Processes in general can be placed in either branching or concurrent contexts.
We are going to consider a only sequential branching contexts.

A process can prevent a context from starting to execute an operation (ac-
tion), whereas ADTs cannot prevent a context (program) from calling an oper-
ation, but it may be that the called operation will not terminate.

Because processes can be placed in more contexts than ADTs, we should
expect process refinement to be different from ADT refinement (Test in Figure 7
is not an ADT context).

Consequently, we find a two place buffer to be a refinement of a one place
buffer and, further, our definition of refinement, on processes, is going to be
different from C peq.
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Fig. 7. Opb C..t Tpb but Obs([Tpb]res) Z Obs([Opb]rest)

Refinement of Process in sequential contexts on lts In order to apply
our approach from Section 4 we need to define the contexts in which processes
can be placed.
B = {Clla) P)oact | p € Tis)
We use these contexts throughout Section 7 and apply Definition 5 to compute
“contexts where A is expected” to be:
4 = {C llaa) 2)3act | T(p) N Tr(A) # 2}

It can easily be seen (see Lemma 10) that we could have used {(~ [|a(a)
P)0act | true} without affecting the refinement relation. This means that for
processes, i.e. branching contexts, Assumption 3 has no effect on the definition
of refinement. This is not very surprising as Assumption 3 originated from the
state-based intuition of refinement and its relevance to process refinement is

tenuous.
ACpC € ACCandACpC % ACAcC

Assuming the Smyth powerdomain then from Lemma 2 and Lemma 4 we
have:
ACp C oV ey -0bs([Cla) C Obs([Ala).
AEps C& V) ey, -0bs([Cla) C Obs([Ala).

Lemma 10 [ 4 = {(- la(ay P)dace | Tre(p) N Tr(A) # @} is a core set of
contexts for [JA" = {( laa)y P)Oact | true}

Proof We need to show that if [], € [J4" — [J# then we can infer what
0bs([-]z) would be from the observations of [_]. To do this we build a context

T + a where “4+” is choice®. 5.4, def 8¢ and Tran,, def Trang U {(sx,a,z) |
{(ss,a,z)} = Tran,}.

Let a € 7(A) then a & Obs([Alz), Obs([Al.) % {a} and [A], € [A]4 A
[Alz+a € [A]2. As Obs([Alz+4) = Obs([A]z)UObs([A],) and Obs([A]lz)NObs([A]4) =
@ we know Obs([A];) = Obs([Alz+a) — Obs([Ala). °

Lemma 11 ACp C & A Cppeer CC

# Althought we could have used choice from ACP we, for brevity of definition, use
that from [24]



Proof A LCp C = A Cpyes C follows from the observation that Hennessy’s
“essential tests” [11] are all contained in our process contexts [-].
ACp C < A Cpeest C follows directly from folklore monotonicity of failure

refinement with respect to the basic process operators ([25, 11]).
®

Lemma 12 ACps C= ACpp, C

Proof Let p; (¥X) be the smallest context such that s—3s' AV, .s'——
(or use ACP’s sequential compositions “;” and choice “+7).

We need to prove 1. AC C = Vo € Tr(A).Ref(C,0) C Ref(A,0)

Using contexts p; (£X) where p € Tr(Conew) A X C a(Clnew) we can
see that p € Obs(C) = p € Obs(A) hence Vo € Tr(Conew).-Ref(Conew,0) C
Ref (A, o).

and 2. AC C = Tr(A) = Tr(Conew)

As failure refinement implies trace refinement ([11,6]) from Lemma 11 above
we have: AC C= Tr(A) C Tr(Conew)

Finally we prove: AC C = Tr(A) D Tr(Conew)

Use contexts p where p € Tr(Cénew) p € Obs([C],) and by assumption
p € Obs([A],) hence p € Tr(A) °

Lemma 13 ACpp, C= ALCp, C

Proof

From Lemma 1 A Crpro C & A Criest CoONew-

From Lemma 11 A Cpyest Conew < A Cp Coyew.

From Lemma 10 the only differance between the contexts use in the definition
of Cp and those in the definition of C p, is that one can synchronise with actions
that do not appear in either A or Céyey. Consequently A Cp Conew < A Cp,
CJNew

As Obs([Coneu]?) =" Obs((COnew lla(ay P)Oact). Because New Na(A) = @
we know: 0bs((Conew llagay P)0et) = OB((C llagay P)oc)

Hence from definition A Cp, Conew < ACp, C °

8 Objects (without sharing)

There is no single definition of what constitutes an object nor a single definition
of what constitutes the contexts in which they can be placed. In a similar situ-
ation to that for non-deterministic data types, the definition of data refinement
is parameterised on the set of contexts in which an object can be placed ([26]),
i.e. programs that use the object. In that case there is one set of contexts per
definition of refinement, unlike here where the set of contexts depends upon the
individual thing A that is being refined.

As with the work on non-deterministic data types [26], what constitutes re-
finement of objects depends upon the language used to define them. For example




[21] considers refinement of objects defined using a version of Object-Z that has
a pre ‘command’ which when applied to an operation returns its boolean guard.
Consequently [21] allows more contexts than we have and his object semantics
is the more discriminating ready trace [9].

Definitions for refinement of shared objects such as [8,13] start by defining
models for non-shared objects. The non-shared objects are modelled as processes.
That is to say they do not restrict the contexts to being programs. In [8] the
resulting definition of refinement of the non-shared objects is the same as our
definition of refinement of processes.

If we assume that non-shared objects like ADTs can only be called by pro-
grams, i.e. traces of operations, then it would be reasonable to apply our defini-
tion of ADT refinement on these non-shared objects.

9 Refinement in the literature

For a survey on the unification of Z with process algebras see [27].

Initially it was thought that Z data refinement and failure refinement were
the same [28]. Then this was shown not be the case, i.e. that Cz#C pyes;, and
singleton failures refinement C%,,,, was defined ([4]) and shown equivalent to
Cz.

Data refinement, described in [17, page 241], uses the restricted contexts
“every program of P(A)”. Because the semantics mean an operation is unde-
fined outside of its precondition, this restriction is redundant. Data refinement,
described in [18], uses all contexts (programs) and the semantics says an oper-
ation is not undefined outside of its precondition. Of the two definitions only
refinement of the undefined semantics [17] permits feature addition.

For us the important insight of [4] was that data types could only be placed in
sequential contexts. Here we have extended the work of [4] by considering “fea-
ture addition” and shown differences between refinement with feature addition
of processes (i.e. branching contexts) and ADTs (i.e. sequential contexts).

When we are considering the refinement not of individual operations but of
the whole ADT /process then nondeterminism may still be unwanted, i.e. we may
wish it to be designed away, yet the pruning of traces may not be desirable. Def-
initions of refinement that reflect this are testing refinement [11] and LOTOS’s
extension refinement [7]. These forms of refinement reduce nondeterminism and
the set of contexts in which the process will not terminate.

The definition of refinement found in [5] does not restrict the “contexts where
A is expected” to a(A), consequently a feature (action) addition like a + b Z
a+ b+ cis not a refinement, whereas in ours and the definition in [14] it is.

In [5] they say “we’d like the two place buffer to be a subtype of a one place
buffer” and they place their buffers in branching contexts. Like them we find this
problematic. The solution suggested in [5] is that actions that are “not offered”
are given an undefined semantics not a guarded semantics. Here we define data
types that cannot be placed in branching contexts and for which a two place
buffer is a refinement of a one place buffer. We give a separate definition of



processes that can be placed in branching contexts and for which a two place
buffer is not a refinement of a one place buffer.

Nierstasz [14] defines subtyping in an equivalent way to extension refinement
and obtains the result: Sequential clients (contexts), satisfied by an abstract ob-
ject, will be satisfied by a subtype (refinement) of it. For concurrent (branching)
contexts this result does not follow, whereas we restrict the contexts in which
our processes can be placed.

In (8] several refinement definitions are given on the denotational semantics.
Weak subtyping, for not-shared objects, is equivalent to our Cpa. But if we
assume that not-shared objects can only be placed in sequential contexts then
we would choose C ppra=LC4,., as our definition of behavioural subtyping. Their
other definitions safe, optimal and optimistic subtyping are for shared objects
and extend weak subtyping by treating actions, of the sharing object, as (1)
internal actions(other versions can be found in [18,13].

10 Conclusion

We have provided a common framework in which to compare some of the many
definitions of refinement/subtyping.

In doing so we have come across a new definition of refinement of abstract
data types A Cj,,, C that is slightly weaker than LOTOS’s extension. This
definition of refinement can also be seen as a slight weakening of A C%,,,, C
singleton failure semantics [4] which permits feature addition.

By formulating refinement of A in terms of improving the observation of “A
in a context” and defining improvement as a preorder on the observations, we
have compared the refinement of data types and processes. We then related our
definitions of refinement to definitions found in the literature and showed some
are minor improvements.

Finally we turn to our future agenda:

Value passing As data type operations cannot select the value returned, a
program that calls pop on a stack must accept the value returned. A program
cannot call pop(1) so that it is executed only if the value on the top of the
stack is 1. Consequently, because we use the semantic mapping from Z to lts
of [20-22], we would need a singleton version of the semantics in [29] rather
than singleton failure of [4].

Mix guards with undefined Within the framework we have used this could
be introduced in the semantic mapping from Z to lts and without changing
our definition of refinement on lts.

Egli-Milner powerdomain The definitions of data refinement in the litera-
ture all correspond to the use of the Smyth powerdomain. We are currently
considering situations where the restrictions of the Egli-Milner powerdomain
might be of advantage.

Shared Objects There are many definitions of a shared object and its contexts.
There are also many definitions of refinement of shared objects. It would be



interesting to see if our approach could relate definitions of refinement to the
contexts in which they may be placed.
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