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The response of a floating ice sheet to an
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The two-dimensional response of a thin, floating sheet of ice to a line load that
accelerates from rest at t = 0 to a uniform velocity V for t � T is determined through
an integral-transform solution of the linearized equations of motion. If T = 0 – i.e. if
the load is impulsively started with velocity V – the solution exhibits singularities at
V = c0, the shallow-water-gravity-wave speed, and V = cmin, the minimum speed for
transverse motion of the ice, but these singularities are avoided by the acceleration
of the load through the critical speeds.

1. Introduction
The problem of a load moving with a uniform velocity V over a sheet of ice floating

on a large body of water has been studied both analytically and experimentally;
see Squire et al. (1996) and the references given therein. The analytical solution
is characterized by singularities associated with V = c0, the shallow-water-gravity-
wave speed, and V = cmin, the minimum speed for transverse wave motion of the ice.
These singularities may be avoided through the incorporation of either dissipation
(Squire et al. 1996, § § 4.2.2, 5.6) or nonlinearity (Pǎrǎu & Dias 2002), but it appears
to have been overlooked that they also can be avoided by allowing for acceleration
of the load through the critical speeds, Miles (1960).

Against this background, we consider here the wave motion induced by the line
load

p(x, t) = Fδ[x − X(t)] (1.1)

and posit the resulting transverse displacement of the ice in the form

η(x, t) =

∫ t

0

G[x − X(τ ), t − τ ] dτ, (1.2)

where δ is Dirac’s delta function, G is a Green’s function (see § 2), and

X(t) =

{
XA(T ) + V (t − T ) (t � T )

XA(t) (0 � t � T ),
(1.3)

which describes an accelerated motion XA(t) from rest at t = 0 to a uniform velocity
V for t � T . (XA(t) = 1

2
At2 for a uniform acceleration A.) It then follows from the

linearity of the boundary-value problem for η that

η(x, t) =

{
ηA(x, T ) + ηV [x − X(T ), t − T ] (t > T )

ηA(x, t) (0 � t � T ),
(1.4)
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where: ηA is given by (1.2) with X(t) = XA(t); ηV is given by (1.2) with X(t) = V t and
describes the motion associated with an abruptly imposed velocity V .

2. Boundary-value problem
The two-dimensional, linearized boundary-value problem for the determination of

the velocity potential φ(x, y, t) and the displacement η(x, t) of a thin (negligible
inertia) sheet of ice that overlies a body of water of depth H is described by Laplace’s
equation

φxx + φyy = 0 (−∞ < x < ∞, −H < y < 0), (2.1)

the kinematic boundary conditions

φy = 0 (y = −H ), φy = ηt (y =0), (2.2)

the initial conditions

φ = η = 0 (t =0), (2.3)

and the dynamical boundary condition

ρ(φt + gη) + D∂4
xη = −p(x, t) (y =0), (2.4)

where ρ is the density of the fluid, −ρ(φt + gη) is the fluid pressure, D is the flexural
rigidity of the ice, and p is the externally imposed pressure.

Introducing the Fourier–Laplace transforms

[Φ, N, P ] =

∫ ∞

−∞
e−ikx dx

∫ ∞

0

e−st [φ, η, p] dt, (2.5)

we obtain

Φyy − k2Φ =0 (−H < y < 0), (2.6)

Φy = 0 (y = −H ), Φy = sN (y = 0), (2.7)

and

sΦ + (g + Dk4/ρ)N = −P/ρ, (2.8)

the solution of which yields

Φ = sN(k sinh kH )−1 cosh k(y + H ), (2.9)

and

N = −(P/ρ)k tanh kH (s2 + k2c2)−1, (2.10)

where

c2(k) =

(
g

k
+

Dk3

ρ

)
tanh kH. (2.11)

Transforming the concentrated, moving load (1.1), we obtain

P = F

∫ ∞

0

exp[−sτ − ikX(τ )] dτ, (2.12)

the substitution of which into (2.10), followed by the invocation of the convolution
theorem for the inverse-Laplace transform of P/(s2 + k2c2), yields (cf. (1.2))

η(x, t) = − F

2πρ

∫ t

0

dτ

∫ ∞

−∞

tanh kH

c(k)
exp{ik[x − X(τ )]} sin[kc(t − τ )] dk. (2.13)
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If X(t) = V t , the τ integral in (2.3) is elementary, and

η(x, t) = − F

4πρ

∫ ∞

−∞

tanh kH

kc(k)
eik(x−V t)

[
eik(c+V )t − 1

c + V
+

eik(V −c)t − 1

c − V

]
dk, (2.14)

which is equivalent to Schulkes & Sneyd (1988, equation (2.7)).

3. Numerical results
In order to obtain detailed results from (2.13) numerical methods are necessary.

This equation can be written in the form

η(x, t) = − F

2πρ
F−1

k Q(k, t), Q(k, t) =
tanh(kH )

kc(k)

∫ t

0

e−ikX(τ ) sin[kc(t − τ )] dτ, (3.1)

where F−1
k represents the inverse Fourier-transform operator with respect to the

variable k. Numerical calculation of Q(k, t) is not altogether straightforward. In
computing the Fourier inverse a large range of k values must be used, which requires
the integration of rapidly oscillating functions. Special methods can be used, but here
we consider the simpler case in which the acceleration (or deceleration) of the source
is uniform. Then Q(k, t) can be expressed in terms of Fresnel integrals as follows.

For an accelerating load X = 1
2
At2, where A is a constant, the integral in (3.1) can

be written in the form
1

2i
[I (c)eickt − I (−c)e−ickt ]

where

I (c) = (k/β) exp(iγ 2)[F ((β(t + α))) − F (γ )].

Here α = c/A,γ = (1
2
kA)1/2, and the function F (x) is defined by setting

F (x) =

∫ x

0

exp(it2) dt

and can be defined in terms of Fresnel integrals,

F (x) =
√

π/2(C(x
√

2/π) − iS(x
√

2/π),

in the notation of Abramowitz & Stegun (1964). For the decelerating load
X(t) = V t − 1

2
At2 we find

I (c) = (k/β) exp(iγ 2)[F ∗((β(t + α))
)

− F ∗(γ )],

where the star denotes the complex conjugate, and now α = (V + c)/A.
Figures 1(a)–1(d) show the time development of the wave system due to line loads

moving with constant (or zero) acceleration. As in Schulkes & Sneyd (1988) we
present the results in the form of mesh plots of the surface elevation in the (x, t)-
plane. The x-axis is placed in the immediate foreground, and the second horizontal
axis represents time. In each case the surface is shown in a frame of reference moving
with the load. We use dimensionless units in which the velocity, length and time scales
are

v0 = cmin, η0 =
F

ρc2
min

, t0 =
η0

cmin

, (3.2)

respectively. Here cmin is the minimum phase velocity. For example in experiments
carried out by Takizawa (1978) the ice thickness was 0.14 m, with cmin ≈ 5 m s−1. The
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Figure 1. Time development of the wave system due to line loads: mesh plots of the
surface elevation for (a) constant subcritical velocity v′ = 0.4, (b) constant supercritical velocity
v′ = 1.17, (c) constant acceleration 0.0784 to a final speed v′ = 2.0, (d) initial speed v′ = 0.4,
then constant deceleration to rest at time t ′ = 1275.

load was 350 kg, and assuming a load width of 1 m the length and times scales would
be η0 = 14 cm and t0 = 0.028 s. A prime – for example v′ – is used to denote the
non-dimensionalized variables.

Figure 1(a) shows the wave pattern created by a load impulsively accelerated to
a subcritical speed v′ < 1.0. which then continues at constant speed. This is similar
to figure 7 of Schulkes & Sneyd (1988). Shorter, faster, waves propagate before the
source, and slower, longer, waves behind. Figure 1(b) is similar, but now the speed
is supercritical with v′ > 1.0. Here the difference in wavelength between the forward
and backward waves is more pronounced, as in figure 8 of Schulkes & Sneyd (1988).
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Figure 1(c) shows the effect of a load starting from rest, then moving with a
constant acceleration a′ = 0.0784 to a maximum velocity of approximately 2ccmin. The
most noticeable difference is that the wave amplitude increases more slowly because
the load speed is increasing. In figure 1(d) the load accelerates impulsively to a speed
0.4ccmin/2 then decelerates uniformly, coming to rest at time t ′ = 1275. At this point
the waves have radiated away from the load, and the steady-state deflection begins
to evolve.

4. Conclusions
In this article we have developed a method of calculating the deflection of a

uniform floating ice sheet in response to a load moving at varying speed. Numerical
Fourier-transform inversion can be used to visualize the ice-sheet deflection. We find
no noticeable effect as a load accelerates through the critical speed ccmin. This is
to be expected since the displacement due to a load travelling at constant speed
ccmin grows linearly with time (Schulkes & Sneyd 1988). For loads moving with non-
constant acceleration special methods may be necessary to evaluate rapidly oscillating
integrals.

This work was supported in part by the Office of Naval Research Grant N00014-
92-J-1171.
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