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This paper considers the stability of a horizontal liquid-metal free surface in the
presence of a horizontal alternating magnetic field. A weak formulation is used to
derive a generalized Mathieu–Hill equation for the evolution of surface perturbations.
Previous studies which rely on time-averaging the electromagnetic force over one field
cycle have predicted a generally weak instability, but we find much larger growth rates
near the resonances, where the surface wave frequency is an integral multiple of the
field frequency. The method can be extended to include viscous and ohmic damping;
the former has little effect, while the latter damps all waves except those whose
frequency is close to the field frequency. Growth rates can be closely approximated
by simple algebraic formulae, as can the critical magnetic field strength for the onset
of instability.

1. Introduction
Many metallurgical processes use an alternating magnetic field to control the free

surface of a liquid metal. The field induces current flow in the metal generating a
J × B force which at high frequency penetrates only a narrow surface layer of the
metal. The mean component of the force is then equivalent to a magnetic pressure
which may be used to support or control the shape of a free surface. For example
in electromagnetic casting of aluminium the liquid metal is supported below by
metal already solidified, and laterally by high-frequency alternating fields. Other
applications include electromagnetic levitation and cold crucible melting, and are
reviewed by Sneyd (1993).

Stability of the free surface is important for the success of these applications.
Striations sometimes form on the surface of electromagnetically cast aluminium
ingots with the consequence that a surface layer must be shaved off, and it is believed
that these are due to small-lengthscale MHD instabilities. One of the first theoretical
studies, Sagardia (1974), assumes a perfectly conducting fluid, and concludes that
the magnetic field is stabilizing. Garnier & Moreau (1983) consider the stability of a
plane interface separating an infinitely deep layer fluid of finite electrical conductivity
from an insulating one carrying a uniform alternating magnetic field. Their analysis
also allows for a difference in mean velocity between the layers, thereby including
a Kelvin–Helmholtz instability. Garnier & Moreau assume a high magnetic field
frequency so the Lorentz force can be averaged over one cycle, and the conclusion
again is that electromagnetic effects are stabilizing. However Deepak & Evans (1995)
point out that this result is somewhat misleading, and that an extension of the Garnier
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& Moreau (1983) analysis which does not entirely neglect the wave frequency Ω in
comparison with the field frequency Ω, predicts weak instability. The Deepak & Evans
(1995) paper is also based on the high-frequency assumption but includes viscous
damping, which somewhat reduces the predicted growth rates. Ramos & Castellanos
(1996) consider the Garnier–Moreau problem for a layer of finite depth, so that
reversing the sign of g provides a stability analysis for magnetic levitation. They
include viscosity but take Ω/ω to be zero, thereby suppressing the weak magnetic
instability. A surprising result is that a combination of magnetic and viscous effects
may be destabilizing in magnetic levitation.

In each of the last three references the magnetic Reynolds number Rm is assumed
small so that magnetic field perturbations due to the induced current can be ignored
– a reasonable assumption since in practice Rm is of order 10−2. Nevertheless setting
Rm = 0 ignores the potentially important effect of ohmic damping which could well
represent a more significant energy loss than viscous dissipation. One study which
considers a finite Rm is that of McHale & Melcher (1982). The focus of this work is
however on instability of the induced bulk fluid motion, and a large part of the work
concerns a container with a rigid lid. Free surfaces are also considered but the results
are not significantly affected. A review of stability studies related to electromagnetic
processing of liquid metals has been written by Fautrelle (1991).

In the first part of this paper we reconsider the Garnier–Moreau problem, but with-
out invoking the high field frequency approximation. In §2 a new weak formulation is
used to derive a free-surface evolution equation which takes the form of a harmonic
oscillator forced by a periodic convolution integral. A method of determining growth
rates using Floquet theory is developed in §3, and it is found that the high-frequency
averaging method gives accurate results except for bands of wavelengths near a res-
onance point, at which the natural (unforced) wave frequency is an integral multiple
of the forcing frequency. Near a resonance the growth rates increase typically by an
order of magnitude and can be approximated quite accurately by a simple algebraic
formula.

In §4 we extend the theory to include ohmic and viscous damping (assuming that
both effects are relatively weak). It is found that viscous damping has little effect
except for extremely short wavelengths, while ohmic dissipation completely damps all
instabilities except those near the first resonance point. For a given frequency there
is a critical magnetic field strength BC for the onset of instability, which is given by a
simple approximate formula.

2. Evolution equation
A semi-infinite body of inviscid, incompressible, electrically conducting fluid, occu-

pies the region z < 0 (region 1). The z-axis is taken vertically upwards so the fluid
surface is initially horizontal. In the space z > 0 above the fluid (region 2) there is a
vacuum (or relatively light insulating gas such as air) and a uniform magnetic field

B = B0 cos(ωt)ŷ (2.1)

is applied. Figure 1 shows a diagram of the system. This section is devoted to deriving
an evolution equation for a free-surface perturbation

z = η(x, y, t),

on which we shall base our stability analysis.
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Liquid metal Region 1

Vacuum Region 2

z = 0
z = η

B0 cos (ωt)

Figure 1. Diagram of the system.

The equations we use are Maxwell’s equations, and Ohm’s law for moving conduc-
tor,

∇× B = µ0J ,
∂B

∂t
= −∇× E , J = σ(E + v × B), (2.2)

together with Euler’s equations of motion for an incompressible fluid,

∇ · v = 0, ρ
∂v

∂t
+ ρ(v · ∇)v = −ρgẑ − ∇PT +

1

µ0

(B · ∇)B, (2.3)

where

PT = P +
1

2µ0

B2 (2.4)

is the sum of the fluid and magnetic pressures. Here B, E , J represent the magnetic
field, the electric field and the current density, and σ the electrical conductivity of
the medium; v is the fluid velocity, ρ its density, and g gravitational acceleration.
Equations (2.2) combine to give the magnetic induction equation,

∂B

∂t
= ∇× (v × B) + λ∇2B, λ = 1/(µ0σ), (2.5)

We adopt the approximation made by both Garnier & Moreau (1983) and Deepak
& Evans (1995) that the magnetic Reynolds number Rm is small; consequently the
induction term ∇ × (v × B) is neglected until §4 where we examine electromagnetic
and viscous damping.

2.1. Steady state

In the steady state, the fluid velocity v = 0 and the free surface z = 0 unperturbed.
The magnetic field in the vacuum is given by (2.1) while that in the fluid is found by
solving (2.5), which as a consequence of the small-Rm assumption, reduces to

∂B

∂t
= λ∇2B. (2.6)

Invoking continuity of B across the interface we obtain

B = B0e
Kz cos(ωt+Kz)ŷ, K = (ω/2λ)1/2 = 1/δ, (2.7)

where δ represents the electromagnetic skin depth. The current in the fluid is given by

J = −(B′/µ0) x̂,

where the prime denotes differentiation with respect to z. Since (B · ∇)B = 0 and
v = 0 Euler’s equation (2.3) simply gives

PT = PT0 − ρgz, PT0 = P0 +
1

2µ0

B2
0 cos2(ωt), (2.8)

where P0 is the (constant) pressure at the interface.
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2.2. Perturbed state

We now suppose the interface is perturbed to z = η(x, y, t) say, making the usual linear
wave theory assumption that the derivatives ηx and ηy are small. The displacement η
can be written as a Fourier integral,

η(x, t) =
1

4π2

∫ ∞
−∞
η̂(k, t)eikxdk.

To follow the time evolution of η we study that of a single Fourier component, say

η = h(t)eikx.

This displacement perturbs the magnetic field to B+ b say, and we can write the field
perturbation in the form

b = f(z, t)eikx.

In the non-conducting region 2, ∇ × b2 = 0, so there is a scalar potential ψ(t, z)eikx

for b2 which satisfies Laplace’s equation. Since also b2 → 0 for large z we find

b2 = ∇[ψ0(t)e
ikxe−kz], (2.9)

where ψ0(t) is an arbitrary function of time.
In the conducting region 1, it turns out that we need calculate only the z-component

of the field. Since b1 satisfies (2.6)

∂f1z

∂t
= λ

(
∂2f1z

∂z2
− k2f1z

)
.

This may be solved by taking a Fourier transform in time, writing

f̂1z(z, α) =

∫ ∞
−∞

eiαtf1z(z, t)dt,

to obtain

f̂1z = f̂1z(0, α)e
χz, χ(α) = (k2 − iα/λ)1/2, (2.10)

where the square root branch is chosen so that the real part of χ is positive. To invoke
continuity of magnetic field across the interface we must evaluate B + b on z = η,
using a Taylor series expansion of the first (zeroth-order) term

f1(0, t) + h(t)B′(0, t) = f2(0, t) = Hψ0(t), (2.11)

where we have used (2.9) and defined

H = (ikx , iky , −k).

Using (2.11) and the fact that ∇ · b1 = 0 we establish the boundary condition

f′1z(0, t) + kf1z(0, t) = ihkyB
′(0, t), (2.12)

which combined with (2.10) gives

f̂1z = − ikyKB0

k + χ
eχzζ̂. (2.13)

Here

ζ = (cosωt− sinωt)h(t), ζ̂ =Ft{ζ}, (2.14)

where Ft denotes the operation of taking the Fourier transform in time.
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2.3. Evolution equation for h(t)

For small-amplitude perturbations, the Euler equation (2.3) takes the form

ρ
∂v

∂t
+ ∇pT =

1

µ0

((b · ∇)B + (B · ∇)b) , (2.15)

where pT is the perturbation total pressure.
In deriving an evolution equation for h(t) our strategy is to use the ‘weak solution’

approach, obtaining information from inner products of (2.15) with suitable test
functions. Specifically we define a test function,

φ =
1

2π
e−ikxekz

with the properties

∇2φ = 0, φ(x, 0) =
1

2π
e−ikx, φz(x, 0) =

k

2π
e−ikx, lim

z→−∞
φ = 0,

and an inner product

〈F , ∇φ〉 =

∫
V

F · ∇φ dV ,

where the volume of integration V is defined to be a unit length of one wavelength
interval, i.e. the region

0 6 k · x 6 2π, 0 6 (k × ẑ) · x 6 k, −∞ < z 6 0.

We now calculate the inner products I1 , I2 , I3 of ∇φ with each of the three terms
in (2.15). The first gives

I1 = ρ

∫
V

v̇ · ∇φ dV = ρ

∫
V

∇ · (v̇φ) dV = ρ

∫
∂V

φv̇ · dS ,

where ∂V is the boundary of V . By periodicity of v and φ, all contributions to the
surface integral vanish, except that from the free surface z = 0, which we denote by
S . Applying the usual kinematic condition,

(vz)z=0 = η̇, (2.16)

we conclude that

I1 = ρḧ/k. (2.17)

The pressure term in (2.15) gives

I2 =

∫
V

∇pT · ∇φ dV =

∫
V

∇ · (pT∇φ) dV =

∫
S

pT∇φ · dS .

Again the only contribution is the integral over the free surface S , so

I2 =

∫
S

pTφz dxdy =
k

2π

∫
S

pT e−ikx dxdy. (2.18)

Because the fluid pressure and magnetic field are continuous across z = η, so is
PT + pT :

PT0 + η
∂PT

∂z
+ pT1 + γ∇2η = PT0 + pT2,

where γ is surface tension, and all terms are evaluated at z = 0. Substituting from
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(2.8) we find

pT1 = ρgη − γ∇2η +
Bby2

µ0

, (2.19)

and substituting (2.19) into (2.18) finally gives

I2 = (ρg + γk2+)h− iky
µ0k

Bf1z. (2.20)

In the last term we have used (2.11) to re-express f2y in terms of f1z .
The inner product from the right-hand side of (2.15) is

I3 = − 1

kµ0

∫ 0

−∞
H · [ikyBf + fzB

′ŷ]ekzdz,

which by means of the identity ikxfx + ikyfy + f′z = 0 simplifies to

I3 =
1

kµ0

∫ 0

−∞
[ikyB(fze

kz)′ − ikyB
′fze

kz]dz.

Integrating the final term by parts we obtain

I3 =
2iky
kµ0

∫ 0

−∞
B(fze

kz)′dz − iky
µ0k

Bf1z. (2.21)

The evolution equation is derived by substituting (2.17), (2.20), and (2.21) into
I1 + I2 = I3:

ḧ+ Ω2h =
2iky
ρµ0

∫ 0

−∞
B(fze

kz)′dz, (2.22)

where Ω = (gk+γk3/ρ)1/2 is the frequency of a gravity–capillary wave of wavenumber
k.

The final step is to express the integral, say IM , on the right-hand side of (2.22) in
terms of h. Substituting for B and fz from (2.7) and (2.13) we find

IM = Ck

∫ 0

−∞
e(k+K)z cos(ωt+Kz)F−1

t {ζ̂eχz}dz,

where the constant

C =
−2k2

yB
2
0K

kρµ0

,

and F−1
t represents an inverse Fourier transform with respect to t. The z-integration

can be carried out explicitly to give

IM =
C

4
[(a0 ∗ h)(t) + e2iωt(a1 ∗ h)(t) + e−2iωt(a−1 ∗ h)(t)],

where the operation * represents the convolution product. The functions a0(t), a1(t)
and a−1(t) are most conveniently defined by their Fourier transforms with respect to
t:

â0(α) =
k(1− i)

κ+ χ(α+ ω)
+

k(1 + i)

κ∗ + χ(α− ω)
, (2.23)

â1(α) =
k(1 + i)

κ+ χ(α− ω)
, â−1(α) =

k(1− i)

κ∗ + χ(α+ ω)
, (2.24)

where κ = k +K(1 + i) and the * denotes a complex conjugate.
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The final form of the evolution equation (2.22) is

ḧ+ Ω2h+ Ω2MΓ

∫ ∞
−∞

[a0(ξ) + a1(ξ)e2iωt + a−1(ξ)e−2iωt]h(t− ξ)dξ = 0. (2.25)

Here M and Γ are dimensionless numbers measuring the strength of the magnetic
field, and the relative importance of surface tension respectively:

M =
B2

0 cos2 θ

2µ0ρgδ
, Γ =

gk

Ω2
,

where θ is the angle between the wavenumber vector k and the applied magnetic
field.

3. Stability analysis
3.1. Theoretical considerations

The stability of the system depends on whether there exist growing solutions of (2.25).
This is a kind of generalized Mathieu–Hill type equation and the standard results of
Floquet Theory (see e.g. Jordan & Smith 1987) would be valid, provided we could
establish the existence of a finite fundamental set of solutions of (2.25). However, this
matter is not easily settled and Sneyd (1996) gives an example of an equation of the
form

ḧ+ Ω2h =

∫ ∞
−∞
f(ξ)h(t− ξ)dξ

which has infinitely many independent solutions. Such behaviour is however associated
with a singularity in the kernel function f(ξ) at infinity, which is not the case with
(2.25).

Assuming for the moment that a finite fundamental set of solutions of (2.25) exists,
then Floquet theory shows that these solutions can be taken to be of the form

h(t) = eistP (t), (3.1)

where P (t) is periodic with period π/ω. If, for one of the fundamental solutions the
imaginary part of s is negative, then the system is unstable. We proceed by assuming
solutions in the form (3.1). Indeed, quite aside from the question of whether or not
there is a finite fundamental set of solutions, if we can demonstrate the existence of
solutions of the form (3.1) with Im(s) < 0 the system must be unstable, but the largest
growth rate found represents only a lower bound, i.e. there may exist more rapidly
growing solutions of a different form.

3.2. High-frequency limit

Both Garnier & Moreau (1983) and Deepak & Evans (1995) make a high-field-
frequency approximation, assuming ω � Ω. Averaging (2.25) over one field period
π/ω eliminates the final two terms, to give

ḧ+ Ω2h = Ω2MΓ

∫ ∞
−∞
a0(ξ)h(t− ξ)dξ. (3.2)

Taking a Fourier transform of (3.2) yields

ĥ[Ω2 − α2 + εΩ2â0(α)] = ĥf(α) say = 0,
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whose solution is

ĥ = c1δ(α− α1) + c2δ(α− α2),

where the ci are arbitrary constants and the αi are the zeros of f(α). The Fourier
inverse of this solution is

h = c1e
−iα1t + c2e

−iα2t

so the instability growth rate can be estimated from the imaginary parts of the αi.
It can be shown (after a little algebra) that the equation f(α) = 0 is identical to the
dispersion relation (38) in Garnier & Moreau (1983), provided we set U 1 = U 2 = 0,
ρ2 = 0 and evaluate â0 at α = 0.

Finding the αi involves solving a transcendental equation, but if we assume ε small,
then to leading order,

α1 = Ω + 1
2
εΩâ0(Ω), α2 = −Ω − 1

2
εΩâ0(−Ω) (ε = MΓ ).

It can be seen from (2.23) that â0(−Ω) = â∗0(Ω) (where the ∗ denotes the complex
conjugate) so the imaginary parts of the two solutions are equal. The approximate
growth rate σ say is therefore given by

σ = 1
2
Ωε Im {â0(Ω)}. (3.3)

It is pointed out by Deepak & Evans (1995) that Garnier & Moreau (1983) made
the further approximation of setting Ω = 0 in (3.3), which yields σ = 0 since â0(0) is
real. This explains their conclusion that alternating field is not destabilizing. Without
this approximation the conclusion is just the opposite; in all cases we find σ > 0,
although often the growth rates are quite small.

Interestingly, (3.3) can be derived for all frequencies when the field is relatively
weak, i.e. ε small. According to Floquet theory the stability of solutions of (2.25) is
determined by calculating the Floquet matrix, F say, which advances the solution by
one period T = π/ω. In other words, if h(t) is a solution of (2.25) then(

h(t+ T )
ḣ(t+ T )

)
= F

(
h(t)
ḣ(t)

)
for all time t.

The Floquet matrix is readily calculated to order ε using methods developed in
Sneyd (1996), and one obtains

F =

(
eiΩT 0

0 e−iΩT

)
+ 1

2
iεΩ

(
f1 f2

−f∗2 −f∗1

)
,

where

f1 = â0(−Ω)T eiΩT , f2 = 2 sinΩT

[
â0(Ω)

2Ω
+

â1(Ω)

2Ω − ω +
â−1(Ω)

2Ω + ω

]
.

To first order in ε the eigenvalues of F are

λi = e±iΩT [1± 1
2
iεΩT â0(∓Ω)].

The two eigenvalues give identical growth rates

σ = T−1|λi − 1| = 1
2
ΩεIm{â0(Ω)},

which is the same estimate as (3.3).
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A B

Real axis

Figure 2. Contour C in the complex plane.

3.3. General method of analysis

Assuming a solution of the form (3.1) we write

h(t) = eist

n=N∑
n=−N

αne
2inωt =

n=N∑
n=−N

αne
isnt say,

where sn = s+ 2nω and N represents a suitable truncation level for the Fourier series.
Substitution into (2.25) and equating Fourier coefficients gives

[Ω2 − s2n]αn + Ω2ε[αnâ0(−sn) + αn−1â1(−sn) + αn+1â−1(−sn)] = 0.

This system of equations can be written in the form

Aα = 0, αT = (αN , αN−1, . . . , α−N),

where A is a tridiagonal matrix, the three elements along row n being,

Ω2εâ1(−sn),

Ω2 − s2n + Ω2εâ0(−sn),
Ω2εâ−1(−sn),

The condition for this system to have a non-trivial solution for α is

det(A) = F(s) = 0. (3.4)

Instability growth rates are therefore obtained as zeros of F(s). Note that if we
take N = 0, we recover the equation f(s) = 0 for the high-frequency approximation
discussed above.

Equation (3.4) turns out to be somewhat difficult to solve numerically. Various
methods were tried but the most reliable was based on the well-known result

∆Cargf(z) = 2π(N − P )

for the change in argument of an analytic function around a closed contour C, see
e.g. Titchmarsh (1939, §3.4). Here N is the number of zeros and P the number of
poles of f(z) inside C. The chosen contour is shown in figure 2, and consists of the
straight line segment Im(s) = b, completed by a large semi-circle in the lower half of
the complex plane.
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Figure 3. Comparison with results of Deepak & Evans (1995) (crosses). δ = 0.0081 m,
f = 6283.2 Hz, ε = 10.9.

Since F(s) ≈ s4N+2 as |s| → ∞ , the change in argument of F(s) around the semi-
circle AB is (4N + 2)π. The number n(b) of zeros of F(s) lying below the line AB is
therefore given by

nb = 2N + 1− ∆ABarg(F(s)).

The change in argument in F(s) is readily calculated by stepping along AB, but if
this line passes close to a zero the argument may change rapidly. Thus it was found
necessary control the step length to prevent any increment in the argument exceeding
0.2 radians. A bisection method was used to locate the value of b, say bc, at which
nb becomes zero; bc then equals the largest negative imaginary part of any zero, and
hence the growth rate of the instability.

To check the method figure 3 shows a comparison of our results with those of
Deepak & Evans (1995). The solid line represents our calculations and the crosses
selected points on the graph (b) in Deepak & Evans (1995) figure 4. It can be seen
that the agreement is quite good, given that the comparison points were estimated
from a rather small graph.

Typical results are shown in figure 4 as graphs of growth rate versus k for a
given applied frequency ω and dimensionless field strength ε. In all cases we took
ρ = 2 × 103 and γ = 0.7. For comparison the growth rate predicted by the high-
frequency approximation (3.3) is shown as a dashed line. The most remarkable feature
of the graphs is a series of sharp peaks in the growth rate, which occur near resonance
points where the gravity–capillary frequency is an integral multiple of the applied
frequency:

Ω = mω, m = 1, 2, 3, . . . .

(The positions of the resonances are marked by vertical dotted lines.) Even at the
relatively low frequency of 8 Hz the approximation is remarkably accurate, except
near the resonances, and improves (as expected) as the frequency increases.

In order to understand the growth-rate peak near the resonance points we assume
that ε is small. To leading order in ε the matrix A is diagonal, and the zeros are given
by

s = −2nω ± Ω, −N 6 n 6 N.
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Two zeros corresponding to n = n1, n = n2 are equal if

Ω = (n1 − n2)ω,

i.e. if we are at a resonance point. It appears therefore that the imaginary part of
nearly coincident zeros grows very rapidly in the vicinity of a resonance point, but is
relatively small everywhere else.

To demonstrate this we truncate the system of equations to N = 1 so that we are
dealing with a 3× 3 matrix A. The diagonal elements written to leading order and in
dimensionless form are

(1 + s′ − 2w)(1− s′ + 2w), (1 + s′)(1− s′) (1 + s′ + 2w)(1− s′ − 2w),

where s′ = s/Ω and w = ω/Ω. At the first resonance w = 1 the zeros s′ = ±1
are repeated, and we consider in detail the behaviour of the former zero in this
neighbourhood, writing

s′ = 1 + εδs, w = 1 + εδw.

The equation det(A) = 0 can now be written to first order in ε in the form∣∣∣∣∣∣∣
2ε(δs − 2δw) + εâ0(Ω) εâ−1(Ω) 0

εâ1(−Ω) −2εδs + εâ0(−Ω) εâ−1(−Ω)

0 εâ1(−3Ω) −8

∣∣∣∣∣∣∣ = 0.

Dividing the first two rows of the determinant by ε and then letting ε → 0 we find
that δs satisfies a quadratic with solution,

δs = δw − 1
2
iâ0I ± 1

2
[(2δw − â0R)2 − |â−1|2]1/2, (3.5)

where the âi coefficients are all evaluated at Ω and the subscripts R , I indicate real
and imaginary parts. The corresponding growth rate −εIm(δs) is also shown as a
dashed curve in figure 4. Clearly, the growth rate corresponding to this zero is usually
negative, but increases rapidly near a resonance point, outstripping the growth rates
yielded by the other zeros. Equation (3.5) shows that maximum growth rate occurs
at δw = −â0R/2, a point lying slightly to the left of the resonance point. A possible
interpretation of this result is that the presence of the magnetic field modifies usual
gravity–capillary dispersion relation so that

Ω → Ω(1− εâ0R/2). (3.6)

The graphs in figure 4 show that as ε becomes smaller, the resonance point and point
of maximum growth rate tend towards coinciding, as expected. The maximum growth
rate can also be predicted from (3.5) to be (|â1|2 − â0I )/2. This is much larger than
typical values away from the resonance point, since the real parts of the âi coefficients
are generally much larger than the imaginary parts (cf. (3.3)).

It is easily verified that the other repeated zero s′ = −1 gives an identical growth
rate. The behaviour at other resonance points can be described by quadratic equations
using similar methods, but the algebra becomes a lot more complicated, since to deal
with the resonance Ω = nω one needs to consider a (2n+ 1)× (2n+ 1) determinant.

We have presented exact results for only relatively low-frequency fields. At higher
frequencies the simple approximation (3.3) gives very good results, and resonances
are less of an issue since they occur at high frequencies for short-wavelength waves
which will be heavily damped by viscosity and ohmic dissipation – the subject of the
next section.
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Figure 4 (a, b). For caption see facing page.

4. Damping
There are two mechanisms for energy loss which we expect to somewhat reduce

the growth rates calculated in the previous section – viscosity and ohmic dissipation.
To obtain a tractable problem we assume that the flow associated with the passage
of the wave approximates that of a simple gravity–capillary wave, i.e. that magnetic
and viscous forces are relatively weak. To make this condition more precise we can
write

v = vP + vR,

where the first term is the purely potential flow which would be associated with the
wave in the absence of rotational forces, while the second is the magnetically-driven
rotational component. The magnitude of vR can be estimated by taking the curl of
(2.15), and vP = O(Ωh). The ratio

vR/vP = O(ε)
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Figure 4 (a–d). Graphs of growth rate σ versus wavenumber k. The dashed lines plot the
non-resonant approximations (3.3) and (3.5).

(cf. (2.25)) and our analysis therefore depends crucially on the assumption ε � 1.
This assumption will be valid for most industrial applications.

4.1. Viscosity

Including viscosity brings two changes to our previous equations. The first is the
addition of a viscous term to our fluid motion equation (2.15) which becomes

ρ
∂v

∂t
+ ∇P = j × B + J × b+ µ∇2v, (4.1)

where µ is dynamic viscosity. The second is to the boundary conditions at the free
surface: in addition to the usual kinematic condition, zero stress at free surface implies

wx + uz = 0, −P + 2µwz = γηxx, (4.2)

where for simplicity we consider a wave travelling in the x-direction, with wavenumber
(k, 0, 0), v = (u , 0 , w), and the subscripts x and z represent partial derivatives. (Any
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viscous modification to the evolution equation must of course be independent of the
direction of k.)

The first extra term in the evolution equation for h(t) arises from the inner product
of our test function ∇φ with the viscous term in (4.1). This can be written

−µ
∫
V

(∇× ξ) · (∇φ)dV = µ

∫
V

∇ · (∇φ× ξ)dV

where ξ = (uz − wx)ŷ is vorticity. Using the divergence theorem, the first of (4.2) and
the kinematic free-surface condition (2.16), the last integral reduces to

−2µ

∫
S

(k2ηtφ)dS = −2kµḣ. (4.3)

The viscous boundary condition modifies the pressure term in the evolution equa-
tion. The second of (4.2) shows that the pressure perturbation on the free surface
(p)z=0 contains an extra term 2µwz . At this point we use our assumption that fluid
velocity differs only slightly from that of a simple gravity–capillary wave, and replace
wz by kw = kη̇. Substitution into (2.18) gives an extra term 2kµḣ. In deriving the
evolution equation (2.22) each of the inner products is multiplied by k/ρ, so the final
effect of this contribution and that from (4.3) is to add the term

4νk2ḣ (4.4)

to the left-hand side of (2.25) where ν is kinematic viscosity. (An equivalent result is
derived in §348 of Lamb 1932.)

Including the term (4.4) in the evolution equation (2.25) and time averaging as in
§3.2 we find that the growth rates are the zeros of

Ω2 + 4iανk2 − α2 + εΩ2â0(0) = 0.

This equation is similar to (43) in Ramos & Castellanos (1996), but does not include
the mixed visco-magnetic term because of our weak-field approximation.

4.2. Ohmic damping

The physical basis of this damping mechanism is ohmic dissipation due to electric
currents induced by the fluid motion. We need therefore to consider the full induction
equation (2.5), which for the field perturbation is

∂b

∂t
= ∇× (v × B) + λ∇2b. (4.5)

The magnetic term in the evolution equation is still given by (2.22) since only the
solenoidal condition ∇ · b = 0 and the boundary condition (2.12) were used in the
derivation, so we need to calculate only the z-component of b or fz .

Assuming the flow to approximate that due to an irrotational wave we can write

v = ∇V , V = ḣk−1eikxekz,

and substitution into (4.5) produces

∂fz

∂t
= ikyBḣe

kz + λ(f′′z − k2fz).

Substituting from (2.7) and taking a Fourier transform in time yields

f̂′′z − χ2f̂z = −c0[e
κzζ̂+ + eκ

∗z ζ̂−], (4.6)
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where

c0 =
ikyB0

2λ
, ζ̂± =Ft{e±iωtḣ}.

The differential equation (4.6), the Fourier transform of (2.12), and the condition that
fz vanish as z →∞ are used to determine fz . The expression f′z + kfz = f say, which
appears in (2.22) is given by

f̂ = iKkyB0ζ̂e
χz +

c0(κ+ k)

κ2 − χ2
(eχz − eκz)ζ̂+ +

c0(κ
∗ + k)

κ∗2 − χ2
(eχz − eκ

∗z)ζ̂−. (4.7)

Now this solution for f is substituted into (2.22) to determine the new form of the
magnetic term. The first term in (4.7) simply reproduces the magnetic term in (2.25).
To evaluate second and third terms we perform the z-integration explicitly and invert
the Fourier transform in terms of a convolution product to obtain

εCDΩ

∫ ∞
−∞

[d0(ξ) + d1(ξ)e2iωt + d−1(ξ)e−2iωt]ḣ(t− ξ)dξ, (4.8)

where

d̂0(α) =
iβ1

κ+ χ(α− ω)
− iβ1

κ∗ + χ(α− ω)
+

iβ∗1
κ+ χ(α+ ω)

− iβ∗1
κ∗ + χ(α+ ω)

,

d̂1(α) =
β2

[κ+ χ(α− ω)]2
, d̂−1(α) =

β∗2
[κ∗ + χ(α+ ω)]2

,

and

β1 =
k2(k + κ)

2K(k +K)
, β2 = 1 + k/κ, CD =

Ωδ

kλ
.

4.3. Evolution equation

When the viscous damping term (4.4) and the magnetic damping term (4.8) are now
included in the evolution equation (2.25) we find

ḧ+ 4νk2ḣ+ Ω2h+ ε

∫ ∞
−∞

[a0(ξ) + a1(ξ)e2iωt + a−1(ξ)e−2iωt]h(t− ξ) dξ

+εCD

∫ ∞
−∞

[d0(ξ) + d1(ξ)e2iωt + d−1(ξ)e−2iωt]ḣ(t− ξ) dξ = 0. (4.9)

As a first approximation we can perform the high-frequency analysis described in
§2.2, and obtain growth rates given by

σ = 1
2
εΩIm{â0(Ω)} − 2νk2 − 1

2
εCDΩRe{d̂0(Ω)}. (4.10)

Also the exact method of §2.3 can be applied to (4.9). As before growth rates are
determined by solving

det(A) = F(s) = 0,

where A is a tridiagonal matrix, the three elements along row n being

Ωε[Ωâ1(−sn) + iCDsnd̂1(−sn)],

Ω2 − s2n + 4iνk2sn + Ωε[Ωâ0(−sn) + iCDsnd̂0(−sn)],

Ωε[Ωâ−1(−sn) + iCDsnd̂−1(−sn)],
where sn = s+ 2nω.
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Figure 5. Graphs of growth rate σ versus wavenumber k when viscous and ohmic damping
are included. The solid curve represents the exact growth rate, and the other two curves the
approximation (4.10). The dotted curve takes account of viscous damping only, and the dashed
curve viscous and ohmic damping.

In figure 5 we show some typical results taking ρ = 2 × 103, λ = 1, γ = 0.7, and
ν = 10−6 in SI units. The approximation (4.10) predicts that ohmic damping has the
dramatic effect of completely stabilizing the system (cf. McHale & Melcher 1982).
As expected however this approximation fails in the vicinity of the resonance points,
where the exact method predicts an unstable band of wavelengths. This band becomes
narrower as the field strength decreases, or as ω increases, but the maximum growth
rate increases with ω.

To gain further insight, we plot in figure 6 both real and imaginary parts of s
versus k when there is no damping (cf. figure 4). Generally the oscillatory frequency
is much greater than the growth rate, which partly explains the strong damping. It
can be seen that close to the resonance point the mode of maximum growth changes,
and the oscillation frequency is much smaller.
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Figure 6. Graphs of Im(s) (lower curve) and the corresponding Re(s) (upper curve) versus
wavenumber k, for the mode with maximum growth rate. δ = 0.5 m, ω = 8 rad s−1, ε = 1.0.

Behaviour near the resonance points can be estimated using the method of §2.3,
and the new form of (3.5) is

δs = δw + 1
2
i(S/ε− â0I + CDd̂0R)± 1

2
[(2δw − â0R − CDd̂0I )

2 − |â−1|2]1/2, (4.11)

where S = 2νk2/Ω is the dimensionless parameter of viscous damping. As before the
maximum growth rate occurs slightly away from the resonance point, where

δw = 1
2
(â0R + CDd̂0R)

and the maximum growth rate is

εδs = 1
2
ε[|â−1|+ â0I − CDd̂0R]− 1

2
S. (4.12)

This expression is linear in ε, and is negative when ε = 0 because of viscous damping.
There is therefore a minimum or critical ε = εc say, necessary to induce instability,
given by

εc = S/(|â−1|+ â0I − CDd̂0R)

The corresponding critical value of B0, Bc say = (2εcµ0ρgδ/Γ )1/2. A graph of Bc
versus ω is shown in figure 7. Figure 8 plots maximum growth rate against ω for
various values of M. Note that the maximum growth peaks move slightly to the right
as ε decreases; this a consequence of the resonant frequency shift described by (3.6).

5. Conclusions
Previous theoretical work on the instability of a liquid-metal free surface induced

by a parallel alternating magnetic field has been extended in two main directions.
Relaxing the usual high-frequency assumption has highlighted the importance of
resonance; generally growth rates are small, but increase dramatically near the reso-
nance points where Ω = mω. Abandoning also the approximation Rm = 0 has shown
that ohmic damping is much more effective than viscous dissipation in limiting wave
growth. Indeed all modes are suppressed except for a narrow band of wavenumbers in
the vicinity of the first resonance point (at least in the case of relatively weak fields).



82 Y. Fautrelle and A. D. Sneyd

101

ω (rad s–1)

B
c 

(T
es

la
)

0.001

0.010

0.100

102 103 104 105

0.1000

Figure 7. Graph of critical magnetic field strength Bc versus ω.
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Figure 8. Graphs of maximum growth rate versus ω. The number beside each curve is the value
of the magnetic field strength parameter M.

The weak method of formulation leads to a single generalized Mathieu–Hill equa-
tion describing the evolution of the free surface. This provides relatively simple
methods of estimating growth rates, which can in most cases be approximated by
algebraic formulae.

It would be interesting to compare our theory with experiment, but the data
presently available relate to somewhat different systems. Hull, Wiencek & Roe (1989)
have studied experimentally electromagnetic levitation of a liquid metal layer, and
the Rayleigh–Taylor instability. Our results are at least consistent with their finding
that the metal layer is most unstable when the wavenumber vector is perpendicular
to the applied field. In our analysis this would correspond to setting θ = 1

2
π, giving

M = 0 so that waves are purely hydrodynamic (cf. (2.25)).

This paper was partly conceived when one of the authors (Y. F.) was visiting the
Mathematics Department of the University of Waikato. The support and hospitality
of this university is gratefully acknowledged.
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