-

View metadata, citation and similar papers at core.ac.uk brought to you by .{ CORE

provided by Research Commons@Waikato

Working Paper Series
ISSN 1177-777X

COMPOSITIONAL SYNTHESIS
OF DISCRETE EVENT SYSTEMS
VIA SYNTHESIS EQUIVALENCE

Robi Malik & Hugo Flordal

Working Paper: 05/2008
May 12, 2008

(©Robi Malik & Hugo Flordal
Department of Computer Science
The University of Waikato
Private Bag 3105
Hamilton, New Zealand

https://core.ac.uk/display/29194856?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

COMPOSITIONAL SYNTHESIS
OF DISCRETE EVENT SYSTEMS
VIA SYNTHESIS EQUIVALENCE

Robi Malik
Department of Computer Science
University of Waikato
Hamilton, New Zealand
robi @s. wai kat 0. ac. nz

Hugo Flordal
Department of Signals and Systems
Chalmers University of Technology
Gothenburg, Sweden
fl ordal @hal ners. se

May 12, 2008

Abstract

A two-pass algorithm for compositional synthesis of modslgervisors for large-
scale systems of composed finite-state automata is propddesifirst pass pro-
vides an efficient method to determine whether a supervisamyrol problem has a
solution, without explicitly constructing the synchrosocomposition of all com-
ponents. If a solution exists, the second pass yieldsvan-approximatiorof the
least restrictive solution which, if nonblocking, is a méahurepresentation of the
least restrictive supervisor. Using a new type of equivedeaf nondeterministic
processes, callesynthesis equivalencea wide range of abstractions can be em-
ployed to mitigate state-space explosion throughout thersthm.

1 Introduction

Modular approaches to supervisor synthesis are of gressitinsupervisory control
theory[1, 13], firstly in order to find more comprehensible supeovigepresentations,
and secondly to overcome the problemstte-space explosidior systems with a
large number of components.

Most approaches studied so far rely on structure to be peavityy users [14, 17]
and hence are hard to automate. Those that can be automatest donsider both
nonblocking and least restrictiveness [6, 8,9, 11, 18lipervisor reductiofil5] has

been used successfully to reduce the size of synthesisetvisgrs, but it relies on a
monolithic supervisor to be constructed first, and thus ieslimited by its size.

A different approach is proposed in [2], whdasguage projectiois used to sim-
plify finite-state machines during synthesis and to coms$tnobodular supervisors. To
ensure that nonblocking and maximal permissiveness aseped, th@bserver prop-
erty andoutput-control consisten@re imposed on the projection.

In [5], the authors present another framework for composdl synthesis, using
abstractions based on a process equivalence callpdrvision equivalenceUsing
nondeterministic automata, the method supports a wideerahgimplifications and
can hide both controllable and uncontrollable events, evkilll ensuring a least re-
strictive result. Yet, there is room for improvement. Duéttoreliance orstate labels
supervision equivalence is not preserved under bisinarigB], which suggests that
this is not the best possible equivalence for reasoning tabymthesis. Furthermore,
the procedure described in [5] produces an efficient reptaen of amonolithicsu-
pervisor, making further analysis of the supervisor trasbime.

This paper introduces another equivalence relation onnaat®, calledsynthesis
equivalence that does not suffer from these drawbacks. Synthesis algmve is
coarser than both bisimulation equivalence and supervisiivalence, and the com-
positional synthesis procedure proposed in this papenmesianodularsupervisor.

This paper is organised as follows. Section 2 introduceatiwot from supervisory
control theory and defines the synthesis procedure for rfenméistic automata used.
Then, section 3 defines synthesis equivalence and predentsain results that lead
to the compositional synthesis procedure. Afterwardgjeed demonstrates the pro-
cedure by applying it to a medium-scale example, and seé&ibfinishes with some
concluding remarks.

2 Preliminaries

2.1 Events and Languages

Event sequences and languages are a simple means to delisciste system be-
haviours. Their basic building blocks aegentstaken from a finitealphabet>.. For
the purpose of supervisory control, the alphabés partitioned into the sef.. of con-
trollable events and the sét, of uncontrollableevents. There are two special events,
the silent controllable event,. and the silent uncontrollable evenf. These do not
belong toX, 3., or X,. If they are to be included, the alphabgts = X U {7, 7.},
Yre =X U{r},and¥; , = ¥, U {r,} are used instead [5].

¥* denotes the set of all finitstrings of the formoy o5 ... o) of events fromx,
including theempty strings. The concatenatiorof two stringss,t € X* is written
asst. A subsetl C X* is called aanguage

2.2 Nondeterministic Automata

System behaviours are represented using finite-state atdoidondeterminismis used
to support hiding, which is essential for the proposed sysithapproach.

Definition 1 A (nondeterministicrutomatonis a 5-tupleG = (Q, %, —, Q%, Q™),

whereX is a finite alphabet of event§) is a set ofstates — C Q x X, x Q is the
state transition relation@? C Q is the set ofnitial states andQ™ C @ is the set of
marked states

Note that silent events are allowed-i even though they are never included in the
alphabet of an automaton. The transition relation is wriiteinfix notationz = v,
and extended to strings B* by letting

xS forallze@; (1)
x5z ifz>yandy > zforsomey € Q . (2)

For state set,Y C Q, X > Y denotes the existence ofc X andy € Y such
thatz > y. Similarly,z — y means that there exists a string: ©* such thatr > ,

andz > means that there exists a stgte @ such that: > y. For an automatoty,
G 3 z meang)’ 3 z. Given this notation, thenarked languagef an automaton is

M(G) = {sex" |G>Qm}. (3)

Definition 2 An automatonG' = (Q, ¥, —, Q% Q™) is deterministicif Q' is a sin-
gleton,z % 3, andz % y, always impliesy; = y,, and— contains no transitions
labelledr, or 7.

Various operations are used to modify or combine automata. cBmpositional
synthesis, synchronous composition [1, 7] and hiding ageribst important.

Deﬁnition 3 Let Gl = <Q17 Ela 1 Qzla QT) andG2 = <Q27 E27 92 Q%a an> be
two automata. Theynchronous produdaif G; andG; is

GGy = (@1 X Qg,%, UXy, —, in X Q;QT x Qy") (4)

where
(z,y) 5 (2/,y)if o € 21Ny, 251 2/, andy 5o y/';
(.T,y) i) (xlvy) If o€ (21\22) U {TcaTu} a.nd(E i>1 xl;
(z,y) = (x,y) if 0 € (32\Z1) U {7, 7} andy 52 ¢/

Definition 4 LetG = (Q, X, —, Q%, Q™) be an automaton, and & C Y. The result
of controllability preserving hiding5], hiding henceforth, off’ from G is

G\'T = <QaE\Ta_>!aQian> (5)

where— is obtained from— by replacing each transitign- ¢ such thatr € T by
p 5 qif o € B, orbyp 2% ¢if o € 2.

Hiding removes the identity of the eventsThand in general produces a nondeter-
ministic automaton.

By introducing concepts cfubautomatandunionof automata, the set of automata
can be considered as a lattice.

Definition 5 Let Gy = (Q1, 3, —1, Q1, Q™) andGy = (Q2, %, —2, Q%, QT) be two
automata with the same alphabé}tl is asubautomatomf G5, written G; C G, if
Q1 C Q2, =1 C =2, Q] C Q5, andQ7" C Q3.

Definition 6 Let G; = <Qj,2,—>j,Q§-,Q§”),j € J be a family of automata all
having the same alphabet. Define

Uae = Jaem=sU-nyJeJem. (6)

JjeJ jeJ JjeJ JjeJ Jj€J

2.3 Synthesis

In this paper, synthesis is applied to a single nondetestiinhutomaton, considered
as aplant Section 2.4 below shows how traditional control problem@lving spec-
ifications[13] can be treated in this formalism. In a “plant-only” cooitproblem, the
objective is to find a subautomaton of a given plant autométdhat is both control-
lable and nonblocking according to the following definison

Definition 7 LetG = (Q¢, ¥, —a, Q, QF) andK = (Qk, %, —k, QY, Q%) be
automata such thak’ C G. K is controllablein G if, for all statesz € Qx and
y € Q¢ and for every uncontrollable evente 3, , such that ¢ v, it also holds

thatz 2 v.

Definition 8 LetG = (Q,%,—, Q% Q™). A statex € Q is calledreachablein G
if G — x, andcoreachablen G if x+ — Q™. The automatoit is called reachable
or coreachable if every state @ has this propertyG is callednonblockingif every
reachable state is coreachable.

Such definitions also appear in [5] and extend the standdndititens [13] to the
nondeterministic case considered here. The synthesis watign is done by itera-
tively calculating state set§ C) andrestrictingthe automaton to these states.

Definition 9 LetG = (Q, 2, —, Q% Q™). Therestrictionof Gto X C Q is Gix =
(X,E,—>|X,QiﬂX,Qm N X)where— |y = {(z,0,y) |z,y € X }.

Definition 10 LetG = (Q, %, —,Q%, Q™). Thesynthesis step operat@g: 29 —
2@ is defined by

O¢(X) = {z e X |Forallu e 7, andally € Q suchthatr =y (7)
it holds thaty —x Q™ } .

©¢(X) contains all states € X such that all states reachable frarby uncontrol-
lable transitions are coreachable withith This operator captures both controllability
and nonblocking, and allows for a more succinct descripditthe synthesis procedure
than previously in [5].

The synthesis step operator is monotonic and has a greagesinfi, which turns
out to be the least restrictive controllable and nonbloglsnbautomaton of a given
automatorG.

Proposition 1 LetG = (Q, %, —, Q%, Q™). ThenO is amonotonidunction on2€,
ie,forall XY C Q,if X CY thenBg(X) C Og(Y).

Proof. Let X,Y C @ be such thaf\' C Y, and letz € ©¢(X). Thenletu € X7,
andy € @Q such that: % 3. By definition of© 5 (X), this impliesy —1x Q™. Then,
sinceX C Y, it follows thaty —y Q™. Since this holds for any suchandy, it
follows by definition thate € ©4(Y). O

Proposition2 LetG = (Q,%,—, Q% Q™). A state setX C @ is apost-fixpoint
of ©¢, i.e.,, X C O¢(X), ifand only if G| x is controllable inG' and coreachable.

Proof. First, letX C O¢(X). Furthermore, let: € X,y € Q, andv € ¥, ,, be such
thatz = y. Thenz € X C ©¢(X) andz — y together imply thay —|x Q™, which
also meang € X. Therefore G| x is controllable inG. Now letz € X C ©¢(X).
Then, sincer = z ande € X7, it follows by definition of© (X) thatz —x Q™.

T,u?

Therefore|x is coreachable.
Second, letd|x be controllable in and coreachable, and lete X, u € X7,
andy € Q be such thatr % . SinceG|x is controllable inG, it follows that
x ﬂqx y. Thusy € X, and sincels|x is coreachable, it follows that — x Q™.

Since this holds for any suahandy, it follows by definition thatr € ©4(X). |

By classical results of Tarski [16], it now follows that theegtest fixpoint of the
synthesis step operator exists and characterises an dgiintaesis result.

Theorem3 LetG = (Q,%,—,Q% Q™). The synthesis step opera®; has a
greatest fixpointX¢; C Q, such thatG %, Is the greatest subautomaton@fthat

is both controllable inG and coreachable. If the state sgtis finite, the sequence
X0 = Q, X"t = ©4(X?) reaches this fixpoint in a finite number of steps, i.e.,
Xa = X™ for somen € N.

Proof. By the Knaster-Tarski theorem [16], sin€g; is monotonic by proposition 1,
it has a greatest fixpoint ¢, which is its greatest post-fixpoint. In combination with
proposition 2, this means thﬂp”(c is the greatest subautomaton@fthat is both
controllable inGG and coreachable. The remainder of the claim again followsraling

to [16].]

Accordingly, thesynthesis resufor an automatoid,

supCN(G) = Gxe (8)

is obtained by restricting’ to the fixpointX (unreachable states can be removed). If
X contains no initial states, there is no feasible solutiathéosynthesis problem, oth-
erwisesupCA (G) is the least restrictive solution. Supervisory controldhefocuses
on the language of this solution,

MUG) = M(supCN(Q)) . (9)

In slight abuse of notation, the aboye ' (G) denotes both the language accepted by
the least restrictive synthesis result as well as its mihohaterministic recogniser.

If G is deterministic, themupCAN (G) is also deterministic and can be used to
implement asupervisorthat achieves the behaviot ' (G). In this paper, any nonde-
terministic automaton is aabstractionof an originally deterministic model built using
transformations ensuring that a meaningful supervisoratsmbe constructed.

2.4 Translation of Specifications into Plants

A traditional supervisory control problem [13] consistsagplant G and aspecifica-
tion K, given as deterministic automata. In this context, theofeihg controllability
requirement is used instead of definition 7.

Definition 11 Let G and K be two automata using the same alphabetk’ is con-
trollable with respect taG if, for every strings € ¥*, every stater of K, and every
uncontrollable event € 3, such thatX’ = 2 andG =3, it holds that: — in K.

Using the nonblocking condition, such control problems lsamepresenteequiv-
alently only using plants. A specification automaton is transforrimtd a plant by
adding, for every uncontrollable event that is not enabted istate, a transition to
a new blocking state.. The following construction from [5] essentially trangfios
all potential controllability problems into potential lgking problems, eliminating the
need for explicitly checking controllability.

Definition 12 Let K = (Q, X, —, Q% Q™) be a specification. Theomplete plant
automatonk * for K is

E* = (QU{L1}3.-.Q.Qm) (10)
whereL ¢ @ is a new state and
-t = s Uu{(@@uvl)|zecQuel,zt}. (11)

Proposition 4 LetG, K, andK’ be deterministic automata over the same alphabet
and letK’ be reachable. Then the following two statements are eqntal

1) K’ C G || K+ is nonblocking and controllable i@ || K.

2) K' C G| K is nonblocking and controllable with respect®o

Proof. First, assume that 1) holds. Since, by the assump#ignis nonblocking, it
holds thatK’ 4 (z, L) for every statec in G. Thus, sinceK; is the complete plant
automaton folk, K’ C G || K impliesK’' C G || K.

It remains to show thak™” is controllable with respect tG. Lets € ¥* andv € X,
such thatG' % z¢ > yg andK’ > (z¢,rx). SinceK’ C G || K, it holds that
K, 2 zk. Sincev € ¥, and sincek | is a complete plant automaton féf, there
exists a statg, such thatk, > zx - y,. ThisimpliesG || K, > (zg,zx) —
(ya,y.). SinceK' is controllable inG' || K, it holds that(z¢,) = in K'.

Second, assume that 2) holds. Clearly, sificeC K, it follows that K/ C
G| K C G| K. Also, K’ is nonblocking by assumption. It remains to show tiRat
is controllable inG || K. Letz be a state of{’, lety be a state o7 || K, and let
v € %, suchthatr % yin G || K.. SinceK’ C G || K, is reachable, there exists a
strings € ¥* such that’ % 2z andG || K, > = % y. By the definition of|, it is

7 Sv

clear that? 2. Thus, sinces” is controllable with respect t@, it follows that/x’ =3,
SinceK’ is deterministic, this implie&” = = = y. O

According to this result, synthesis of the least restreethonblocking and con-
trollable behaviour allowed by a specificatidti with respect to a plan&G—both
deterministic—can be achieved by computingCN (G || K+).

3 Compositional Synthesis

This section outlines the proposed compositional synsh@asicedure and presents the
underlying theoretical results. As discussed in sectidn the synthesis problem can
be reduced to the task of finding the supremal nonblockingcanttollable supervisor
for a deterministic plant

G =Gi|[Gn. (12)

The synthesis calculation presented here is a two-passguoe. The first pass is
a compositional minimisation where the automata in (12)samplified and composed
step-by-step; all intermediate results are stored. Thdtrethis pass is an automaton
representing a highly abstract description of the monialitehaviour of the supervised
system. In the second pass, this abstract behaviour, imthedf a marked language,
is passed backwards, and used to find a supervisor compan@titrol the part of the
behaviour that was abstracted at each step of the first pass.

In thefirst pass the modular plant (12) is simplified step-by-step usingnailsr
strategy as proposed in [3-5]. At each step, a subsysten2pigthosen and modified
in one of the following three ways.

1) A component; can besimplifiedand replaced by an equivalent compon@ht
provided that the new componentignthesis equivalemd the original compo-
nentG; according to the definition given below.

2) A componentcan be modified byding local eventslf T; C X is a set of events
that appear only iiiz;, thenG; can be replaced bg; \: ;.

3) Two or more components can bemposedand replaced by their synchronous
product.

Simplification and hiding are typically performed togeth&nce it usually is the re-
moval of local events that makes more simplification possiklomposition typically
is only used as a last resort, when no hiding and simplificatgossible. For simpli-
fication to work correctly, it must be guaranteed that sysitheesults are not changed
despite the simplification. The condition imposed for thisgose issynthesis equiva-
lence

Definition 13 Two automata>; andG, aresynthesis equivalendenoted>; ~gynth
G, if, for all automatdr’,

MUGLIT) = MU(G2||T). (13)

Two automata are synthesis equivalent if their synthedeeguages are the same
in all possible environmentE. To justify that simplification and composition steps can
be performed in arbitrary order, the equivalence must beragruencevith respect to
synchronous composition. This is shown easily:

Proposition5 Let G1, G2, and H be arbitrary automata. Iy ~gntn G2, then
Gl H H zsynth G2 H H.

Proof. LetT be an automaton. Sin€g; ~gynn G2 it follows that
MG H)||T) = MU(GL[(H || T)) = M(Gs || (H|T)) = M (G2 || H) || T)
i.e.,Gl || H ~synth Gg || H. O

A set of rules for calculating abstractions preserving bgsis equivalence can be
constructed in a similar way as in [5]. Bisimulation [10] peeves synthesis equiva-
lence, and most of the simplification rules given in [5] fopswision equivalence also
apply to synthesis equivalence and are used in the exampéztion 4 below, without
proof.

In the end of the first pass, all automata are composed, piglacsingle au-
tomaton with only local events. After hiding the last evemwtsly two final results are
possible: either the empty automaton is returned, indigatiat the original synthesis
problem (12) has no solution, or a one-state automaton tingepe languagéc} is
returned. This final abstraction is only used to determinetivr a solution exists—it
is too abstract to produce a useful supervisor.

A supervisor is calculated in treecond passluring which the final result is passed
back through all steps of the first pass. At each step, a modufgervisor component
is obtained using the following result.

Theorem 6 LetG = (Qq, X¢, — ¢, QL. QE) be an automaton, artd = (Qr, S,
—p, QE;F, Q7) be a deterministic automaton. 8¢ "X C Q C EgUXp, and write
Yo =3¢ \QandYr = Xp \ Q. Furthermore le€’ andT’ be automata such that

GI synth G \!TG) (14)
T/ :synth MT(GI H T \!TT) . (15)

Then
M@ T) ¢ MUG|T) | MG |T). (16)

Proof. By proposition 10 in the appendix and by synthesis equivaéinfollows that
MIGT) € MG\ Y |T) || MI(GIMIG\Te | T\iTT))

MG | T) | MUG | MG [T\ YT))

= MIG|T) || MUG|T). 0o

Gl T

Figure 1: Controllability counterexample to second in@usn theorem 6.

This result is used as follows. Assume compon@&ntin (12) has been replaced
by G} ~nn G1 \1Y1, and a supervisor has been obtained for the abstractedrsyste
G| || T whereT = Gz || --- || G,. This supervisor can be simplified after hiding
events local tdl', yielding 7" ~gynn M'(G} || T \1 Y1), and used together witf¥;
to compute a new supervisor compongt (G, || T).

Theorem 6 does not guarantee equality of languages. In gerlee behaviour
achieved by the modular supervisors is an over-approxanadf the monolithic syn-
thesis result, and an additional nonblocking check is neé¢alensure equality. Using
methods of [4], this check can be done without explicitly stoacting the synchronous
product, and if it fails, weaker abstractions can be attewchpt

The following two examples demonstrate why the second #iatuin theorem 6
does not hold. The first reveals a problem with controll&pthat can be overcome by
using the “plant version” of a computed supervisor instefthe supervisor itself, i.e.,
by replacingM (G || T) with G || M1 (G || T")* on the right-hand side in (16). How-
ever, the second counterexample shows that similar prabédso exist with regard to
nonblocking, and that it can be very difficult to tell in adeanwhich events can be
hidden and which cannot.

Example 1 Consider the automata; andT; in figure 1, wherex andb are control-
lable events, ant: is an uncontrollable event. Thekt' (G, || Ty) = {a}, viewed
as a language ove, b, lu}. Furthermore, withG} = G; \1{a, b}, it follows that
MG, || Ty) = 0, viewed as a language ovflu}. Then, lettingl} = M1 (G} || T}),
it follows that M1 (G4 || T}) = {a, b}, and therefore

MGy || Th) = {a} (17)
{a,b} = {a,0}*N{a,b} = 0 {a,b} = MU(G} | T) || M (G| T}).

Example 2 Consider the automata; andT5; in figure 2, wherex andb are control-
lable events, antd: and!v are uncontrollable events. A synthesis equivalent akistrac
GY ~gyntn G2 \1{!u} is also shown in the figure. Then lettiig = M (G} || T \i
{lv}) = {aa, ab}, it follows that M (G5 || T4) = G». This leads to the automata for
MGy || To) and M1 (GY || To) || MT (G2 || Th) = Tz || G2 shown in the figure, which
are clearly different.

It is also necessary in theorem 6 that the automdtprepresenting the remainder
of the system, is deterministic. This is demonstrated bydliewing example.

Figure 3:T must be deterministic in theorem 6.

Example 3 Consider the automatal;, 75, andT} in figure 3, where: is a controllable
event, whilely and!v are uncontrollable events. No events are hidden in this pl@am
thusG% = G3 andT} = MT(G% || T) as shown in the figure. Themt (G5 || T3) =
MI(GY || Ts) = T4. However, M1 (G5 || T) is the empty automaton. This means that
M(Gs || Ts) & M (G || Ts) | MT(Gs | T3).

Initially, the requirement for automata to be determimissi not a problem, since
the input (12) for the synthesis procedure is assumed toistoofsdeterministic au-
tomata. To iterate the method, it is advisable to allow ordtedministic abstractions
while simplifying. YetG, unlikeT’, may be nondeterministic in theorem 6, so nonde-
terministic abstractions can be part of the subsystéme., the system considered for
further simplification.

4 Example

In this section, the proposed synthesis procedure is apfia part of the “Flexible
Manufacturing System” (FMS) [12]. The model consists of batoR, a conveyorC,
a painting device”D, an assembly machiné)M , and two buffersB; and Bs. Work-

10

Figure 5: The automata in the FMS example.

pieces move from the robdt throughB7, C, andBs to the painting devicé’D, and
back throughBs, C, andBy to the assembly machine) . Figure 4 shows the interac-
tion of these components, and Figure 5 shows the “plantg-@atsion of the synthesis
problem. Two specifications in the original example haventesnsformed into plants
B# and B¢ according to proposition 4. In the figures, uncontrollablergs are pre-
fixed by exclamation marks$, and local events have parenthegg¢saround them.
Note that all states except are marked in the buffer plant8+ and Bg-. This
permits deadlock in the system with a workpiece3p (en route toPD) and another
workpiece inBg (en route toAM). To eliminate this fault, only statds. should be
marked, but the model in figure 5 poses a more challengindnegig problem.

4.1 First Pass

First of all, events,., s, s1, f1, andf in figure 5 are local, which may enable some
simplifications. These events occur Ry which cannot be simplified, and iA M,
which can be simplified significantly. The only event by whith/ interacts with other

11

Figure 6: The compositioig- || PD and its simplification{s ~syunn (Bs || PD) \u
{sp, fp}-

Figure 7: The compositioR || B and its simplification/p ~qynin (R || B7) \1{f+}.
Two transitions must be disabled by synthesis and are atasgsn the figure.

components is,. Sincess is controllable andd M can always silently reach both a
state where, can occur and a marked state)/ can be reduced to an automaton with
a single marked state and a selfloopsan This makes event, entirely superfluous—
in the perspective oB+, AM acts just like an infinite output buffer. In other words,
based on the fact that

AM \!{Slvsavflan} 2synth\n Sy (18)

AM can be dropped. This, in turn, means thais now a local event irB>-, but no
simplification can be made there.

At this point, no more simplification can be made, so someraata need to be
composed. A reasonable starting point is to comp@geand PD. This makes events
sp and f, local. The result of this composition is shown to the left ijufie 6; to the
right is the simplificationf,.

Next, R and B+ are composed, causinfj to become local. The result of this
composition is shown in figure 7 along with a simplificatifiz. Figure 8 shows the
composition ofHg and C, makingss. and f. local, and a simplificatiorf{c of the
result. Finally,HH4 and Hs are composed and simplified, see figure 9. At this point, all
events are local and can be hidden. This results in a nondanmjyage, showing that
a supervisor exists.

In summary, the system in figure 5 is simplified in the follogisteps. At each
step, the automata in brackéjsare composed and simplified, possibly after hiding.

1) R| Bz || C| Bs || PD || (AM);
2) R|| By || C|| (Bs || PD);

12

Figure 8: The compositioitis || C and its simplificationHc ~gyntn (Hg || C) \1
{fbca 52, Sr}-

Hc || Ha

ap.Cq

~
S/ —synth

ajp.Co

Figure 9: The compositiofic || H4 and its supervisoH = M (Hc || Ha).

3) (R B7) || C|l Ha;
4) (Hgp || C) || Ha;

5) (He || Ha);

6) H.

4.2 Second Pass

In the second pass, theorem 6 is applied to each step of thpdss, potentially pro-
ducing a supervisor component for each simplification sfpe starting point is the
final resultd of all the simplification steps, shown in figure 9, which carcbasidered

as the first supervisor component. In this case, it achieaest festrictive nonblocking
supervision of the last composition, since

H = M'(He || Ha) - (19)

To find a supervisor component for the previous step 4), whigrg C is simplified,
events not inHg || C can be hidden front/. However, all events iti/ are shared and
no simplification is possible. Usinglc ~synth (Hp || C) \1 { foe, 52, s} and (19) in
theorem 6, it follows that

MU ((Hp || C) || Ha)
C MI(He || Ha) | M (Hp || C || H)
=H|M\(Hp| C| H). (20)

The supervisor computed at this stage

13

Figure 10: The supervisa$; = M'(Hg || C || H) and its abstractio] ~synn
St\it{ fre}-

Figure 11: The supervisd¥y = M'(R || B+ || S7) and the abstractio], ~syntn
(S1[1S2) \i{s2, fr}-

= M(Hp || C | H) (21)

is shown in figure 10. Since no events have been hidden, islibitH || .S; = S;, and
the new supervisa$; includes the previous supervishr. Thus,H can be dropped. A
nonblocking check reveals that equality holds in (20), i.e.

MI(Hp || C || Ha) = H || M'(HE | C || H) = H || Sy = 51 . (22)

The supervisof; is passed back to the previous simplification step 3), wiieje
B3 is simplified. Using the fact that everfif. is not used inR || B, it is possible to
simplify S preserving synthesis equivalence to

Si 2synth Sl \'{ffc} . (23)

This automaton is also shown in figure 10. UsiHg ~.yun (R || B#) \i {f.} and
S1 ~gynth S1 \it{fre} = M (Hp || (C || Ha) \t{fs}) in theorem 6, it follows that

MI((R || B7) || (C || Ha))
C M(Hg || C || Ha) || MY(R || B7 || 1)
=S| MI(R | BF || S7) (24)

The new supervisor component

S» = MI(R| By | 57) (25)

14

Figure 12: The abstractiof’ ~, ., (S1 || S2 || By || PD) \1' Y used in the final step
of the second pass.

is shown in figure 11. So far, two modular supervisors havelbeenputedS; andsS,,
and their composed behaviour needs to be considered forattlefirocessing of the
remaining simplification steps. Since (24) also is nonbilogk

MR | By || C || Ha) = S1[| M'(R || By || $7) = 1| Sz (26)

In the preceding step 2), the compositiBg || PD has been simplified. This au-
tomaton does not use the supervisor's eveptnd f,., so a simplified automata$} ,,
shown in figure 11, can be used in this step. Usihg~yutn (Bs || PD) \i{sp, f»}

and
S1o ~synth (S1 1| S2) \it{s2, fr}
=MU(R| Bz || C| Ha) \i{s2, fr}
= MU (Ha || (R B7 || C) \it{s2, f+}) (27)

in theorem 6, it follows that

MI((Bg | PD) || (R | Bz |)
CMU(Ha[|R| By || C) || M!(Bg | PD| Siy)
=S || S2 | MT(Bg || PD || S1,) - (28)

Itturns out thatM T (Bg- || PD || S;,) = Bg || PD || S}, (11 states) and || S2 || S, =
S1 || S2, i.e., no additional supervision is needed in this step. Ahbocking check
of (28) ensures equality, and thus

M1 (Bg | PD | R|| B || C)
=S1|| Sz [| MT(Bg || PD || 81)
=S1|| S2 || By || PD | S5,
=518 Bg | PD. (29)

In the final step to be back-processed,A)/ has been simplified according to (18).
All events except, are local and can be hidden from the supervigaf Sz || By || PD,
producing a three-state abstractighshown in figure 12. Using (18) and

S gynen (St [S2 | By || PD)\i'Y = M (B || PD | R|| Bz || €) \i T, (30)
whereY = X\ {s2}, in theorem 6, it follows that
MI(AM || (Bg || PD | R|| Bf || ©))

CMU(Bg || PD || R|| B7 || C) | MT(AM || S)
=S1 || S2 || By | PD || MT(AM || S") . (31)

15

Again, it turns out that no additional supervision is neededauseV ' (AM || ') =
AM || S’ (12 states) and; || Sz || S” = S1 || S2, and the system is nonblocking. Thus,

MI(AM || By | PD | R|| B || C)
=51 || 82| Bg || PD || MT(AM || S")
=S1|| Sz || By || PD || AM || S
=S1||S2 || By [| PD || AM . (32)

Therefore, adding the modular supervisor componéhtand S; to the FMS sys-
tem produces the least restrictive nonblocking behavidihis result has been ob-
tained without ever considering automata larger than tevetates, although there are
184 reachable states in the synchronous product of the sixreta in figure 5.

5 Conclusions

A two-pass procedure for compositional synthesis of madelpervisors for discrete
event systems has been presented. The strength of thisdpiredées in that, at each
step of the second pass, the method accessesldezthinformation—given by the
intermediate result visited—arglobal information—given by the abstraction of the
monolithic behaviour passed back. This allows for the sgsithof specialised super-
visor modules for individual synthesis problems, foundalibc using knowledge about
the global system to ensure least restrictiveness.

While the algorithm can accurately determine whether a sigary control prob-
lem is solvable without constructing the full synchronousduct, the supervisor re-
turned may be an over-approximation of the least restactiwlution and is not auto-
matically nonblocking. A nonblocking check is needed tofoamcorrectness of the
result, and if this check fails, the procedure needs to tamesl using weaker abstrac-
tions. It is yet an open question how information from théef@inonblocking check
can be used to guide the search for more appropriate abstract

The framework of synthesis equivalence has the potentialvercome several
weaknesses of previous approaches to compositional sisthiere is no need for
state labels [5], making bisimulation-based simplificasipossible; there is the possi-
bility to hide controllable and uncontrollable events; d@hd use of nondeterministic
automata paves the way for better abstractions than piojebased methods [2, 6].

Appendix: Proof of Theorem 6

This appendix contains the proof of a result about the @tstiip between synthesis
and hiding, which forms the main part of the proof of theoremThe proof of the
main result (proposition 10) uses two lemmas and a corgléangl is preceded by some
definitions needed only in the proofs.

Let M C ¥* be a language. Therefix-closureof M is

M = {seX*|ste Mforsometex*}. (33)

16

Let @ C X. Natural projectionP,: ¥* — Q* is the operation that removes
all events not inf2 from a string. This operation is naturally extended to ofgem
languages as wellnverse projectiondefined for Ianguages?,z‘l: 2" 2% inserts
events inX \ Q2 into all strings at all possible positions. It is well-knotirat for every
languageM C ¥*,

M S PilPy(M). (34)
LetG = (Q, %, —, Q% Q™) be an automaton. A sequence
0 S B DBy, (35)

of transitions inG' such thatrg € Q' is called gpathin G. Another transition relation
= C Q x ¥* x Q is defined such that = y denotes the existence of a strihg ¥*
such thatPs(t) = s andx 4 y. That is, denotes a path witexactlythe events irs,
whereas> denotes a path with. andr, events shuffled with the eventsén

Given a languageM C X*, an automaton acceptingt can be constructed using
Nerode equivalencdwo stringss;, so € ¥.* areNerode equivalentith respect toM,
denoteds; =, so if, for everyt € 3, it holds thats; ¢t € M if and only if sot € M.
Clearly, =, is an equivalence relation on the stringsih. Furthermore, a language
M C ¥* can be patrtitioned into the set efjuivalence classes

[slm = {seX" | s =ms} (36)

imposed by= . Then the minimal deterministic automat6in,, acceptingM is con-
structed asiyg = (M/=pm, 5, —, {[elm}, M/ =m) whereL/ =y = {[s]m |
s e LY and[s|y > [so] s Wheneveso € M.

In the following, a languageé\1 is identified with its automatofi/r, and nota-
tions such as synchronous composition are applied to layeguas well. In this no-
tation, M = means that the automatd#,, contains transitions for the string or
in other words that € M. By the same abuse of notatiaM ' (G) does not only
represent the minimal deterministic automaton acceptiedanguage of the synthesis
resultsupCN (G), but also that language.

Lemma7 LetG = (Qq. S¢s — ¢ @4, QF) be an automaton, and [€t= (Q, X,
— 5, Q%, Q) be a deterministic automaton. Lét= Xg U7, let¥r C Q C 3, and
YTa =3¢ \ Q. Then, for all strings’ € Q* and for all states € Q¢ andzr € Qr
such that

’

supCN' (G \i1Y¢ | T) & (zg,x7) (37)
it also holds that R
(za, [s]) € Xeypmi(e\re|T) - (38)
Proof. Write
Sr = MI(G\Tg|T); (39)
X* = 05, (Qa x Sr/=s;) - (40)

17

To prove the claim, it is established by induction brthat, for all s’ € Q*, for all
za € Qg, and for allzr € Qr such that (37) holds, it follows that

(za,[s']) € X*. (41)

The inductive base fdt = 0 holds sinceX® = Q¢ x Sr/ =s,.. Now lets’ € Q*,
za € Qag, andxr € Q7 such that (37) is satisfied. From (37) it follows that there
existss € £* such thatP(s) = s" and

G| Sr = (zg,[5]) . (42)

It only needs to be shown that this path is not removed by ggmhlLet: € X7, such
that
G| Sr = (26, [s']) = (ya, [s'u]) (43)

wherePq (u) = u'. ThenSy % and sincél" is deterministic it follows from (37) that

there existyr € Qr suchthaG\\Y¢||T % (g, xT) N (ya, yr). By controllability
of supCN (G \1 Y¢ || T') this implies

supCN (G \1 T || T) é; (G, zT) é; (ya,yr) - (44)

SincesupCN (G\/Y ¢ ||T) is coreachable, there existe Q*, z¢ € QF%, andzr € Q7
such that

’

supCN (G \1 T || T) LN (xG,) N (ya,yr) L (2, 27) - (45)

By inductive assumption, for all the states along this pla¢ine are corresponding states
in X}, for example(yg, [s'u’]) € X* and(z¢q, [s'ut']) € X*. Therefore, and accord-
ing to (43), there exists € ¥* such that

G || Sr % (26 [s) 2 (6. [su]) x (26, [s'u't]) (46)
Now it follows that(z¢, [s']) € Og s, (X*) = XFF1. |
Corollary 8 LetG = (Qq. X¢, — ¢, QL. Q%) be an automaton, and 18t = (Q,

Yr, =7, Qb Q) be a deterministic automaton. Lét= S Uy, letXr CQ C X,
andY g = X \ Q. For all paths insupCN (G \1 Y¢ || T)

(I%,I%) g ('révx%“) % o g (Igv'x%) (47)
there existsy, . .., s, € X* such thatPg(s;) = o; and
(2%, []) 2 (a5, [Pals1)]) 3 - 2 (2, [Pals1 - sn)]) (48)

is a path insupCN (G || MT(G \1 Y || T)).
Proof. The claim follows by applying lemma 7 to all states along ththd47). Since

all its states are contained in the state set of the synthesistsupCN (G || MT(G \,
Tq || T)), it follows by definition ofsupCN that the path also is contained. ad

18

Lemma 9 Let G be an automaton, and |&tbe a deterministic automaton. LEt=
YgUXr, letEr CQC X, andYq =g \ Q. Then

MG T) € MUGMUG\TGIT)). (49)

Proof. Once again, writéSst = M1 (G \| ¢ || T), and denote the state set®f by
Qcn = St/ =s,.. Consider the following set of statesGf|| Sr,

X = {(z¢,[5]) € Qar x Qen | supCN (G \i T | T) 3 {wa} x Qr} . (50)

X is a post-fixpoint 0B s, -
To see this, lefzg, [¢]) € X, i.e.,

’

supCN'(G\i1T¢ | T) = (zg,=7) (51)

for somezr € Q. Clearly, there exists € ¥* such thatP,(s) = s’ andG || Sp =
(zg, [s]). Itis to be shown thatrg, [s']) € O¢)s,.(X). Letu € ¥7 , andyg € Q¢
such thaGG || St = (za,[5']) = (ya, [s'u']) whereu' = Pq(u). By (51) and sincd”’
is deterministic, it follows that

’

G\ Ye || T = (za,2r) = (Yo, yr) (52)

for some statgr € Qr. SincesupCAN (G \\Y¢ || T) is controllable, it follows by (51)
that

supCN (G \1 T || T) é; (g, zT) é; (ya,yr) - (53)

SincesupCN (G \1 Y¢ || T') is coreachable, there exists € Q, z¢ € Q¥, and
zr € Q7 such that

’

supCN (G \iTe || T) = (va, 21) % (e yr) = (260 2r) - (54)
According to corollary 8, there existse ¥* such thatP,(t) = ¢’ and
supCN (G || 81) 3 (wa, [5]) % (e, [s'w']) & (e [su't]) . (65)
By construction ofX (50) and using (54) it also holds that
supCN (G || S1) 2 (w6, [s']) 2 (ya, [0]) S x (26, [s'u't']) (56)
and(zg, [s'u't']) € QF x Q%,. Sinceu € ¥, was chosen arbitrarily, it follows that

(za, [s']) € Og)sy (X).
Hence, X is a post-fixpoint of the monotonic operatéx;s,., and therefore is

contained inXGHST, the greatest fixpoint 0B s,.. To complete the proof, let €
MI(G || T). Then there exists a path

(¢, 27) = (v, ap) 2 - 7 (2§, 27) (57)

19

in supCN (G || T') such thats = Py(oy - - - 0y,), @and

(2 2) 7 (ag,2p) 2o T (2 o) (58)
whereo] = o, for o; € QU {r.,7,} ando; € {7, 7,} otherwise, is a path in
supCN' (G \1 T || T). By construction ofX (50), it follows for all states along this
path that(z};, [Po(o1 -+ 0y)]) € X € Xg)s,- Then

(2 [e]) 7 (26, [Pa(o)]) B - 7 (2, [Palor - - on)]) (59)
is a path ilsupCN (G || St), i.e.,s € M1 (G || St). O

Proposition 10 Let G = (Qg, Xq, —a. QL, Q%) be an automaton, and 18t =
(Qr, S, —1, Q%, Q7)) be a deterministic automaton. LBt= X U X7, letSg N
YrCQCy andwriteYg =X\ QandYr = X7\ Q. Then

MI@|T) © MI(G\Ye|T) || MG | MG\ TG | T\ Tr)). (60)
Proof. First note that by (34),
MUG|IT) € Pg'Pyy MI(G|T) = Po'MI G\ Y| T), (61)
and second, it follows using lemma 9 that

MG T) € MIG|MI(G\iYe|T))

C PPy MG MG\ TG | T))
= PMIG MG\ Ye || T\ TT)) . (62)
Equations (61) and (62) together imply (60). o

References

[1] Christos G. Cassandras and Stéphane Lafortimioduction to Discrete Event
SystemsKluwer, September 1999.

[2] Lei Feng and W. Murray Wonham. Computationally efficisnpervisor design:
Abstraction and modularity. 1Rroceedings of the 8th International Workshop
on Discrete Event Systems, WODES 'Péges 3-8, Ann Arbor, MI, USA, July
2006.

[3] Hugo Flordal. Compositional Approaches in Supervisory Control—with IApp
cation to Automatic Generation of Robot Interlocking Palec PhD thesis, De-
partment of Signals and Systems, Chalmers University ofifelogy, Goteborg,
Sweden, October 2006.

[4] Hugo Flordal and Robi Malik. Modular nonblocking ver#itton using conflict
equivalence. IfProceedings of the 8th International Workshop on Discreter
Systems, WODES '0pages 100-106, Ann Arbor, MI, USA, July 2006.

20

[5] Hugo Flordal, Robi Malik, Martin Fabian, and Knitkesson. Compositional
synthesis of maximally permissive supervisors using stigien equivalence.
Discrete Event Dynamic System§3(4):475-504, 2007.

[6] Richard C. Hill and Dawn M. Tilbury. Modular supervisocpntrol of discrete-
event systems with abstraction and incremental hieraatfionstruction. In
Proceedings of the 8th International Workshop on Discreteerif Systems,
WODES '06 pages 399-406, Ann Arbor, MI, USA, July 2006.

[7] Charles Antony Richard HoareCommunicating sequential process&eries in
Computer Science. Prentice-Hall, 1985.

[8] Feng Lin and W. Murray Wonham. Decentralized control adrdination of
discrete-event systems with partial observati&@EE Transactions on Automatic
Control, 35(12):1330-1337, December 1990.

[9] Petra Malik, Robi Malik, David Streader, and Steve Reevislodular synthesis
of discrete controllers. IfProceedings of the 12th IEEE International Confer-
ence on Engineering of Complex Computer Systems, ICECCBageés 25-34,
Auckland, New Zealand, 2007.

[10] Robin Milner. Communication and concurrencySeries in Computer Science.
Prentice-Hall, 1989.

[11] Max H. de Queiroz and José Eduardo Ribeiro Cury. Modsigervisory control
of large scale discrete event systems. In R. Boel and G. 8tsai, editors,
Discrete Event Systems, Analysis and Confrabes 103-110. Kluwer, 2000.

[12] Max H. de Queiroz, José Eduardo Ribeiro Cury, and W. fdyiVonham. Mul-
titasking supervisory control of discrete-event syste@iscrete Event Dynamic
Systemsl5(4):375-395, 2005.

[13] PeterJ. Ramadge and W. Murray Wonham. The control afélfe event systems.
Proceedings of the IEEE7(1):81-98, January 1989.

[14] Raoguang Song and Ryan James Leduc. Symbolic synthegiverification
of hierarchical interface-based supervisory control. Pioceedings of the 8th
International Workshop on Discrete Event Systems, WOD& $des 419-426,
Ann Arbor, MI, USA, July 2006.

[15] R. Su and W. Murray Wonham. Supervisor reduction focoige-event systems.
Discrete Event Dynamic Systemd(1):31-53, January 2004.

[16] Alfred Tarski. A lattice-theoretical fixpoint theoreamd its applicationsPacific
Journal of Mathematics$(2):285-309, 1955.

[17] Kai C. Wong and W. Murray Wonham. Modular control and atination of
discrete-event systemBiscrete Event Dynamic Syster$3):247—297, October
1998.

21

[18] Knut Akesson, Hugo Flordal, and Martin Fabian. Exploiting madity for syn-
thesis and verification of supervisors. Rroceedings of the 15th IFAC World
CongressBarcelona, Spain, July 2002.

22

