
Working Paper Series
ISSN 1177-777X

COMPOSITIONAL SYNTHESIS
OF DISCRETE EVENT SYSTEMS
VIA SYNTHESIS EQUIVALENCE

Robi Malik & Hugo Flordal

Working Paper: 05/2008
May 12, 2008

c©Robi Malik & Hugo Flordal
Department of Computer Science

The University of Waikato
Private Bag 3105

Hamilton, New Zealand

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Research Commons@Waikato

https://core.ac.uk/display/29194856?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


COMPOSITIONAL SYNTHESIS
OF DISCRETE EVENT SYSTEMS
VIA SYNTHESIS EQUIVALENCE

Robi Malik
Department of Computer Science

University of Waikato
Hamilton, New Zealand

robi@cs.waikato.ac.nz

Hugo Flordal
Department of Signals and Systems
Chalmers University of Technology

Gothenburg, Sweden
flordal@chalmers.se

May 12, 2008

Abstract

A two-pass algorithm for compositional synthesis of modular supervisors for large-
scale systems of composed finite-state automata is proposed. The first pass pro-
vides an efficient method to determine whether a supervisorycontrol problem has a
solution, without explicitly constructing the synchronous composition of all com-
ponents. If a solution exists, the second pass yields anover-approximationof the
least restrictive solution which, if nonblocking, is a modular representation of the
least restrictive supervisor. Using a new type of equivalence of nondeterministic
processes, calledsynthesis equivalence, a wide range of abstractions can be em-
ployed to mitigate state-space explosion throughout the algorithm.

1 Introduction

Modular approaches to supervisor synthesis are of great interest insupervisory control
theory[1, 13], firstly in order to find more comprehensible supervisor representations,
and secondly to overcome the problem ofstate-space explosionfor systems with a
large number of components.

Most approaches studied so far rely on structure to be provided by users [14, 17]
and hence are hard to automate. Those that can be automated donot consider both
nonblocking and least restrictiveness [6, 8, 9, 11, 18].Supervisor reduction[15] has

1



been used successfully to reduce the size of synthesised supervisors, but it relies on a
monolithic supervisor to be constructed first, and thus remains limited by its size.

A different approach is proposed in [2], wherelanguage projectionis used to sim-
plify finite-state machines during synthesis and to construct modular supervisors. To
ensure that nonblocking and maximal permissiveness are preserved, theobserver prop-
erty andoutput-control consistencyare imposed on the projection.

In [5], the authors present another framework for compositional synthesis, using
abstractions based on a process equivalence calledsupervision equivalence. Using
nondeterministic automata, the method supports a wide range of simplifications and
can hide both controllable and uncontrollable events, while still ensuring a least re-
strictive result. Yet, there is room for improvement. Due toits reliance onstate labels,
supervision equivalence is not preserved under bisimulation [3], which suggests that
this is not the best possible equivalence for reasoning about synthesis. Furthermore,
the procedure described in [5] produces an efficient representation of amonolithicsu-
pervisor, making further analysis of the supervisor troublesome.

This paper introduces another equivalence relation on automata, calledsynthesis
equivalence, that does not suffer from these drawbacks. Synthesis equivalence is
coarser than both bisimulation equivalence and supervision equivalence, and the com-
positional synthesis procedure proposed in this paper produces amodularsupervisor.

This paper is organised as follows. Section 2 introduces notation from supervisory
control theory and defines the synthesis procedure for nondeterministic automata used.
Then, section 3 defines synthesis equivalence and presents the main results that lead
to the compositional synthesis procedure. Afterwards, section 4 demonstrates the pro-
cedure by applying it to a medium-scale example, and section5 finishes with some
concluding remarks.

2 Preliminaries

2.1 Events and Languages

Event sequences and languages are a simple means to describediscrete system be-
haviours. Their basic building blocks areevents, taken from a finitealphabetΣ. For
the purpose of supervisory control, the alphabetΣ is partitioned into the setΣc of con-
trollable events and the setΣu of uncontrollableevents. There are two special events,
the silent controllable eventτc and the silent uncontrollable eventτu. These do not
belong toΣ, Σc, or Σu. If they are to be included, the alphabetsΣτ = Σ ∪ {τc, τu},
Στ,c = Σc ∪ {τc}, andΣτ,u = Σu ∪ {τu} are used instead [5].

Σ∗ denotes the set of all finitestringsof the formσ1σ2 . . . σk of events fromΣ,
including theempty stringε. Theconcatenationof two stringss, t ∈ Σ∗ is written
asst. A subsetL ⊆ Σ∗ is called alanguage.

2.2 Nondeterministic Automata

System behaviours are represented using finite-state automata. Nondeterminism is used
to support hiding, which is essential for the proposed synthesis approach.
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Definition 1 A (nondeterministic)automatonis a 5-tupleG = 〈Q, Σ,→, Qi, Qm〉,
whereΣ is a finite alphabet of events,Q is a set ofstates, → ⊆ Q × Στ × Q is the
state transition relation, Qi ⊆ Q is the set ofinitial states, andQm ⊆ Q is the set of
marked states.

Note that silent events are allowed in→ even though they are never included in the
alphabet of an automaton. The transition relation is written in infix notationx

σ
→ y,

and extended to strings inΣ∗
τ by letting

x
ε
→ x for all x ∈ Q ; (1)

x
sσ
→ z if x

s
→ y andy

σ
→ z for somey ∈ Q . (2)

For state setsX, Y ⊆ Q, X
s
→ Y denotes the existence ofx ∈ X andy ∈ Y such

thatx
s
→ y. Similarly,x → y means that there exists a strings ∈ Σ∗

τ such thatx
s
→ y,

andx
s
→ means that there exists a statey ∈ Q such thatx

s
→ y. For an automatonG,

G
s
→ x meansQi s

→ x. Given this notation, themarked languageof an automaton is

M(G) = { s ∈ Σ∗ | G
s
→ Qm } . (3)

Definition 2 An automatonG = 〈Q, Σ,→, Qi, Qm〉 is deterministicif Qi is a sin-
gleton,x

σ
→ y1 andx

σ
→ y2 always impliesy1 = y2, and→ contains no transitions

labelledτc or τu.

Various operations are used to modify or combine automata. For compositional
synthesis, synchronous composition [1,7] and hiding are the most important.

Definition 3 Let G1 = 〈Q1, Σ1,→1, Q
i
1, Q

m
1 〉 andG2 = 〈Q2, Σ2,→2, Q

i
2, Q

m
2 〉 be

two automata. Thesynchronous productof G1 andG2 is

G1 ‖ G2 = 〈Q1 × Q2, Σ1 ∪ Σ2,→, Qi
1 × Qi

2, Q
m
1 × Qm

2 〉 (4)

where
(x, y)

σ
→ (x′, y′) if σ ∈ Σ1 ∩ Σ2, x

σ
→1 x′, and y

σ
→2 y′ ;

(x, y)
σ
→ (x′, y) if σ ∈ (Σ1\Σ2) ∪ {τc, τu} andx

σ
→1 x′ ;

(x, y)
σ
→ (x, y′) if σ ∈ (Σ2\Σ1) ∪ {τc, τu} andy

σ
→2 y′ .

Definition 4 Let G = 〈Q, Σ,→, Qi, Qm〉 be an automaton, and letΥ ⊆ Σ. The result
of controllability preserving hiding[5], hidinghenceforth, ofΥ from G is

G \!Υ = 〈Q, Σ \ Υ,→!, Q
i, Qm〉 (5)

where→! is obtained from→ by replacing each transitionp
σ
→ q such thatσ ∈ Υ by

p
τc→! q if σ ∈ Σc or byp

τu→! q if σ ∈ Σu.

Hiding removes the identity of the events inΥ and in general produces a nondeter-
ministic automaton.

By introducing concepts ofsubautomataandunionof automata, the set of automata
can be considered as a lattice.
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Definition 5 Let G1 = 〈Q1, Σ,→1, Q
i
1, Q

m
1 〉 andG2 = 〈Q2, Σ,→2, Q

i
2, Q

m
2 〉 be two

automata with the same alphabet.G1 is asubautomatonof G2, written G1 ⊆ G2, if
Q1 ⊆ Q2, →1 ⊆ →2, Qi

1 ⊆ Qi
2, andQm

1 ⊆ Qm
2 .

Definition 6 Let Gj = 〈Qj , Σ,→j, Q
i
j , Q

m
j 〉, j ∈ J be a family of automata all

having the same alphabet. Define
⋃

j∈J

Gj = 〈
⋃

j∈J

Qj , Σ,
⋃

j∈J

→j ,
⋃

j∈J

Qi
j ,

⋃

j∈J

Qm
j 〉 . (6)

2.3 Synthesis

In this paper, synthesis is applied to a single nondeterministic automaton, considered
as aplant. Section 2.4 below shows how traditional control problems involving spec-
ifications[13] can be treated in this formalism. In a “plant-only” control problem, the
objective is to find a subautomaton of a given plant automatonG that is both control-
lable and nonblocking according to the following definitions.

Definition 7 Let G = 〈QG, Σ,→G, Qi
G, Qm

G 〉 andK = 〈QK , Σ,→K , Qi
K , Qm

K〉 be
automata such thatK ⊆ G. K is controllable in G if, for all statesx ∈ QK and
y ∈ QG and for every uncontrollable eventυ ∈ Στ,u such thatx

υ
→G y, it also holds

thatx
υ
→K y.

Definition 8 Let G = 〈Q, Σ,→, Qi, Qm〉. A statex ∈ Q is calledreachablein G
if G → x, andcoreachablein G if x → Qm. The automatonG is called reachable
or coreachable if every state inG has this property.G is callednonblockingif every
reachable state is coreachable.

Such definitions also appear in [5] and extend the standard definitions [13] to the
nondeterministic case considered here. The synthesis computation is done by itera-
tively calculating state setsX ⊆ Q andrestrictingthe automaton to these states.

Definition 9 Let G = 〈Q, Σ,→, Qi, Qm〉. Therestrictionof G to X ⊆ Q is G|X =
〈X, Σ,→|X , Qi ∩ X, Qm ∩ X〉 where→|X = { (x, σ, y) | x, y ∈ X }.

Definition 10 Let G = 〈Q, Σ,→, Qi, Qm〉. Thesynthesis step operatorΘG : 2Q →
2Q is defined by

ΘG(X) = { x ∈ X | For all u ∈ Σ∗
τ,u and ally ∈ Q such thatx

u
→ y

it holds thaty →|X Qm } .
(7)

ΘG(X) contains all statesx ∈ X such that all states reachable fromx by uncontrol-
lable transitions are coreachable withinX . This operator captures both controllability
and nonblocking, and allows for a more succinct descriptionof the synthesis procedure
than previously in [5].

The synthesis step operator is monotonic and has a greatest fixpoint, which turns
out to be the least restrictive controllable and nonblocking subautomaton of a given
automatonG.
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Proposition 1 Let G = 〈Q, Σ,→, Qi, Qm〉. ThenΘG is amonotonicfunction on2Q ,
i.e., for allX, Y ⊆ Q, if X ⊆ Y thenΘG(X) ⊆ ΘG(Y ).

Proof. Let X, Y ⊆ Q be such thatX ⊆ Y , and letx ∈ ΘG(X). Then letu ∈ Σ∗
τ,u

andy ∈ Q such thatx
u
→ y. By definition ofΘG(X), this impliesy →|X Qm. Then,

sinceX ⊆ Y , it follows thaty →|Y Qm. Since this holds for any suchu andy, it
follows by definition thatx ∈ ΘG(Y ). 2

Proposition 2 Let G = 〈Q, Σ,→, Qi, Qm〉. A state setX ⊆ Q is a post-fixpoint
of ΘG, i.e.,X ⊆ ΘG(X), if and only if G|X is controllable inG and coreachable.

Proof. First, letX ⊆ ΘG(X). Furthermore, letx ∈ X , y ∈ Q, andυ ∈ Στ,u be such
thatx

υ
→ y. Thenx ∈ X ⊆ ΘG(X) andx

υ
→ y together imply thaty →|X Qm, which

also meansy ∈ X . Therefore,G|X is controllable inG. Now letx ∈ X ⊆ ΘG(X).

Then, sincex
ε
→ x andε ∈ Σ∗

τ,u, it follows by definition ofΘG(X) thatx →|X Qm.
Therefore,G|X is coreachable.

Second, letG|X be controllable inG and coreachable, and letx ∈ X , u ∈ Σ∗
τ,u,

and y ∈ Q be such thatx
u
→ y. SinceG|X is controllable inG, it follows that

x
u
→|X y. Thusy ∈ X , and sinceG|X is coreachable, it follows thaty →|X Qm.

Since this holds for any suchu andy, it follows by definition thatx ∈ ΘG(X). 2

By classical results of Tarski [16], it now follows that the greatest fixpoint of the
synthesis step operator exists and characterises an optimal synthesis result.

Theorem 3 Let G = 〈Q, Σ,→, Qi, Qm〉. The synthesis step operatorΘG has a
greatest fixpointX̂G ⊆ Q, such thatG|X̂G

is the greatest subautomaton ofG that
is both controllable inG and coreachable. If the state setQ is finite, the sequence
X0 = Q, X i+1 = ΘG(X i) reaches this fixpoint in a finite number of steps, i.e.,
X̂G = Xn for somen ∈ N.

Proof. By the Knaster-Tarski theorem [16], sinceΘG is monotonic by proposition 1,
it has a greatest fixpoint̂XG, which is its greatest post-fixpoint. In combination with
proposition 2, this means thatG|X̂G

is the greatest subautomaton ofG that is both
controllable inG and coreachable. The remainder of the claim again follows according
to [16]. 2

Accordingly, thesynthesis resultfor an automatonG,

supCN (G) = G|X̂G
, (8)

is obtained by restrictingG to the fixpointX̂G (unreachable states can be removed). If
X̂G contains no initial states, there is no feasible solution tothe synthesis problem, oth-
erwisesupCN (G) is the least restrictive solution. Supervisory control theory focuses
on the language of this solution,

M↑(G) = M(supCN (G)) . (9)
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In slight abuse of notation, the aboveM↑(G) denotes both the language accepted by
the least restrictive synthesis result as well as its minimal deterministic recogniser.

If G is deterministic, thensupCN (G) is also deterministic and can be used to
implement asupervisorthat achieves the behaviourM↑(G). In this paper, any nonde-
terministic automaton is anabstractionof an originally deterministic model built using
transformations ensuring that a meaningful supervisor canalso be constructed.

2.4 Translation of Specifications into Plants

A traditional supervisory control problem [13] consists ofa plant G and aspecifica-
tion K, given as deterministic automata. In this context, the following controllability
requirement is used instead of definition 7.

Definition 11 Let G andK be two automata using the same alphabetΣ. K is con-
trollable with respect toG if, for every strings ∈ Σ∗, every statex of K, and every
uncontrollable eventυ ∈ Σu such thatK

s
→ x andG

sυ
→, it holds thatx

υ
→ in K.

Using the nonblocking condition, such control problems canbe representedequiv-
alently only using plants. A specification automaton is transformedinto a plant by
adding, for every uncontrollable event that is not enabled in a state, a transition to
a new blocking state⊥. The following construction from [5] essentially transforms
all potential controllability problems into potential blocking problems, eliminating the
need for explicitly checking controllability.

Definition 12 Let K = 〈Q, Σ,→, Qi, Qm〉 be a specification. Thecomplete plant
automatonK⊥ for K is

K⊥ = 〈Q ∪ {⊥}, Σ,→⊥, Qi, Qm〉 (10)

where⊥ /∈ Q is a new state and

→⊥ = → ∪ { (x, υ,⊥) | x ∈ Q, υ ∈ Σu, x 6
υ
→} . (11)

Proposition 4 Let G, K, andK ′ be deterministic automata over the same alphabetΣ,
and letK ′ be reachable. Then the following two statements are equivalent.

1) K ′ ⊆ G ‖ K⊥ is nonblocking and controllable inG ‖ K⊥.

2) K ′ ⊆ G ‖ K is nonblocking and controllable with respect toG.

Proof. First, assume that 1) holds. Since, by the assumption,K ′ is nonblocking, it
holds thatK ′ 6→ (x,⊥) for every statex in G. Thus, sinceK⊥ is the complete plant
automaton forK, K ′ ⊆ G ‖ K⊥ impliesK ′ ⊆ G ‖ K.

It remains to show thatK ′ is controllable with respect toG. Lets ∈ Σ∗ andυ ∈ Σu

such thatG
s
→ xG

υ
→ yG andK ′ s

→ (xG, xK). SinceK ′ ⊆ G ‖ K⊥, it holds that
K⊥

s
→ xK . Sinceυ ∈ Σu and sinceK⊥ is a complete plant automaton forK, there

exists a statey⊥ such thatK⊥
s
→ xK

υ
→ y⊥. This impliesG ‖ K⊥

s
→ (xG, xK)

υ
→

(yG, y⊥). SinceK ′ is controllable inG ‖ K⊥, it holds that(xG, xK)
υ
→ in K ′.
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Second, assume that 2) holds. Clearly, sinceK ⊆ K⊥, it follows that K ′ ⊆
G ‖K ⊆ G ‖K⊥. Also,K ′ is nonblocking by assumption. It remains to show thatK ′

is controllable inG ‖ K⊥. Let x be a state ofK ′, let y be a state ofG ‖ K⊥, and let
υ ∈ Σu such thatx

υ
→ y in G ‖ K⊥. SinceK ′ ⊆ G ‖ K⊥ is reachable, there exists a

strings ∈ Σ∗ such thatK ′ s
→ x andG ‖ K⊥

s
→ x

υ
→ y. By the definition of‖, it is

clear thatG
sυ
→. Thus, sinceK ′ is controllable with respect toG, it follows thatK ′ sυ

→.
SinceK ′ is deterministic, this impliesK ′ s

→ x
υ
→ y. 2

According to this result, synthesis of the least restrictive nonblocking and con-
trollable behaviour allowed by a specificationK with respect to a plantG—both
deterministic—can be achieved by computingsupCN (G ‖ K⊥).

3 Compositional Synthesis

This section outlines the proposed compositional synthesis procedure and presents the
underlying theoretical results. As discussed in section 2.4, the synthesis problem can
be reduced to the task of finding the supremal nonblocking andcontrollable supervisor
for a deterministic plant

G = G1 ‖ · · · ‖ Gn . (12)

The synthesis calculation presented here is a two-pass procedure. The first pass is
a compositional minimisation where the automata in (12) aresimplified and composed
step-by-step; all intermediate results are stored. The result of this pass is an automaton
representing a highly abstract description of the monolithic behaviour of the supervised
system. In the second pass, this abstract behaviour, in the form of a marked language,
is passed backwards, and used to find a supervisor component to control the part of the
behaviour that was abstracted at each step of the first pass.

In the first pass, the modular plant (12) is simplified step-by-step using a similar
strategy as proposed in [3–5]. At each step, a subsystem of (12) is chosen and modified
in one of the following three ways.

1) A componentGi can besimplifiedand replaced by an equivalent componentG′
i,

provided that the new component issynthesis equivalentto the original compo-
nentGi according to the definition given below.

2) A component can be modified byhiding local events. If Υi ⊆ Σ is a set of events
that appear only inGi, thenGi can be replaced byGi \!Υi.

3) Two or more components can becomposedand replaced by their synchronous
product.

Simplification and hiding are typically performed together, since it usually is the re-
moval of local events that makes more simplification possible. Composition typically
is only used as a last resort, when no hiding and simplification is possible. For simpli-
fication to work correctly, it must be guaranteed that synthesis results are not changed
despite the simplification. The condition imposed for this purpose issynthesis equiva-
lence.
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Definition 13 Two automataG1 andG2 aresynthesis equivalent, denotedG1 ≃synth

G2 if, for all automataT ,

M↑(G1 ‖ T ) = M↑(G2 ‖ T ) . (13)

Two automata are synthesis equivalent if their synthesisedlanguages are the same
in all possible environmentsT . To justify that simplification and composition steps can
be performed in arbitrary order, the equivalence must be acongruencewith respect to
synchronous composition. This is shown easily:

Proposition 5 Let G1, G2, andH be arbitrary automata. IfG1 ≃synth G2, then
G1 ‖ H ≃synth G2 ‖ H .

Proof. Let T be an automaton. SinceG1 ≃synth G2 it follows that

M↑((G1 ‖H)‖T ) = M↑(G1 ‖(H ‖T )) = M↑(G2 ‖(H ‖T )) = M↑((G2 ‖H)‖T ) ,

i.e.,G1 ‖ H ≃synth G2 ‖ H . 2

A set of rules for calculating abstractions preserving synthesis equivalence can be
constructed in a similar way as in [5]. Bisimulation [10] preserves synthesis equiva-
lence, and most of the simplification rules given in [5] for supervision equivalence also
apply to synthesis equivalence and are used in the example insection 4 below, without
proof.

In the end of the first pass, all automata are composed, producing a single au-
tomaton with only local events. After hiding the last events, only two final results are
possible: either the empty automaton is returned, indicating that the original synthesis
problem (12) has no solution, or a one-state automaton accepting the language{ε} is
returned. This final abstraction is only used to determine whether a solution exists—it
is too abstract to produce a useful supervisor.

A supervisor is calculated in thesecond pass, during which the final result is passed
back through all steps of the first pass. At each step, a modular supervisor component
is obtained using the following result.

Theorem 6 Let G = 〈QG, ΣG,→G, Qi
G, Qm

G 〉 be an automaton, andT = 〈QT , ΣT ,
→T , Qi

T , Qm
T 〉 be a deterministic automaton. LetΣG∩ΣT ⊆ Ω ⊆ ΣG∪ΣT , and write

ΥG = ΣG \ Ω andΥT = ΣT \ Ω. Furthermore letG′ andT ′ be automata such that

G′ ≃synth G \!ΥG ; (14)

T ′ ≃synth M↑(G′ ‖ T \!ΥT ) . (15)

Then

M↑(G ‖ T ) ⊆ M↑(G′ ‖ T ) ‖ M↑(G ‖ T ′) . (16)

Proof. By proposition 10 in the appendix and by synthesis equivalence it follows that

M↑(G ‖ T ) ⊆ M↑(G \!ΥG ‖ T ) ‖ M↑(G ‖M↑(G \!ΥG ‖ T \!ΥT ))

= M↑(G′ ‖ T ) ‖ M↑(G ‖M↑(G′ ‖ T \!ΥT ))

= M↑(G′ ‖ T ) ‖ M↑(G ‖ T ′) . 2
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G1

a b

!u

T1

!u

Figure 1: Controllability counterexample to second inclusion in theorem 6.

This result is used as follows. Assume componentG1 in (12) has been replaced
by G′

1 ≃synth G1 \!Υ1, and a supervisor has been obtained for the abstracted system
G′

1 ‖ T whereT = G2 ‖ · · · ‖ Gn. This supervisor can be simplified after hiding
events local toT , yieldingT ′ ≃synth M↑(G′

1 ‖ T \!ΥT ), and used together withG1

to compute a new supervisor componentM↑(G1 ‖ T ′).
Theorem 6 does not guarantee equality of languages. In general, the behaviour

achieved by the modular supervisors is an over-approximation of the monolithic syn-
thesis result, and an additional nonblocking check is needed to ensure equality. Using
methods of [4], this check can be done without explicitly constructing the synchronous
product, and if it fails, weaker abstractions can be attempted.

The following two examples demonstrate why the second inclusion in theorem 6
does not hold. The first reveals a problem with controllability that can be overcome by
using the “plant version” of a computed supervisor instead of the supervisor itself, i.e.,
by replacingM↑(G ‖T ′) with G ‖M↑(G ‖T ′)⊥ on the right-hand side in (16). How-
ever, the second counterexample shows that similar problems also exist with regard to
nonblocking, and that it can be very difficult to tell in advance which events can be
hidden and which cannot.

Example 1 Consider the automataG1 andT1 in figure 1, wherea andb are control-
lable events, and!u is an uncontrollable event. ThenM↑(G1 ‖ T1) = {a}, viewed
as a language over{a, b, !u}. Furthermore, withG′

1 = G1 \! {a, b}, it follows that
M↑(G′

1 ‖ T1) = ∅, viewed as a language over{!u}. Then, lettingT ′
1 = M↑(G′

1 ‖T1),
it follows thatM↑(G1 ‖ T ′

1) = {a, b}, and therefore

M↑(G1 ‖ T1) = {a}

6= {a, b} = {a, b}∗ ∩ {a, b} = ∅ ‖ {a, b} = M↑(G′
1 ‖ T1) ‖M↑(G1 ‖ T ′

1) .

(17)

Example 2 Consider the automataG2 andT2 in figure 2, wherea andb are control-
lable events, and!u and!v are uncontrollable events. A synthesis equivalent abstraction
G′

2 ≃synth G2 \!{!u} is also shown in the figure. Then lettingT ′
2 = M↑(G′

2 ‖ T2 \!

{!v}) = {aa, ab}, it follows thatM↑(G2 ‖ T ′
2) = G2. This leads to the automata for

M↑(G2 ‖T2) andM↑(G′
2 ‖T2) ‖M↑(G2 ‖T ′

2) = T2 ‖G2 shown in the figure, which
are clearly different.

It is also necessary in theorem 6 that the automatonT , representing the remainder
of the system, is deterministic. This is demonstrated by thefollowing example.
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G2

a

aa

b

!u

!u

T2

a

aa

b

!v

!v

G′
2

a

a a

b

T ′
2

a

a
b

M↑(G2 ‖ T2) M↑(G′
2 ‖ T2) ‖M↑(G2 ‖ T ′

2)

a

a a

b

!u

!u!u

!u

!v

!v

!v

!v

a

a

a

a

a

b

!u

!u

!u

!u
!v

!v

!v

!v

Figure 2: Blocking counterexample to second inclusion in theorem 6.

G3

a a

!u!u!v !v

T3

aa

!u!v

T ′
3

a

!u
!v

Figure 3:T must be deterministic in theorem 6.

Example 3 Consider the automataG3, T3, andT ′
3 in figure 3, wherea is a controllable

event, while!u and!v are uncontrollable events. No events are hidden in this example,
thusG′

3 = G3 andT ′
3 = M↑(G′

3 ‖ T3) as shown in the figure. ThenM↑(G3 ‖ T3) =
M↑(G′

3 ‖T3) = T ′
3. However,M↑(G3 ‖T ′

3) is the empty automaton. This means that
M↑(G3 ‖ T3) 6⊆ M↑(G′

3 ‖ T3) ‖ M↑(G3 ‖ T ′
3).

Initially, the requirement for automata to be deterministic is not a problem, since
the input (12) for the synthesis procedure is assumed to consist of deterministic au-
tomata. To iterate the method, it is advisable to allow only deterministic abstractions
while simplifying. YetG, unlikeT , may be nondeterministic in theorem 6, so nonde-
terministic abstractions can be part of the subsystemG, i.e., the system considered for
further simplification.

4 Example

In this section, the proposed synthesis procedure is applied to a part of the “Flexible
Manufacturing System” (FMS) [12]. The model consists of a robotR, a conveyorC ,
a painting devicePD , an assembly machineAM , and two buffersB7 andB8. Work-

10



R AM

C

B7

B8

PD

sr

fr

sfc

ffc sbc

fbc

sp fp

s2

f2

Figure 4: A part of the FMS.

R

!fr

ri

rw

(sr)

B⊥
7

s2

!fr

!fr

!fr

sfc

!fbc!fbc

!fbc

⊥

be

bb

br

C

sfc

!ffc

sbc
!fbc

ce
cf

cb

B⊥
8 sp

!fp

!fp

!fp

!ffc

!ffc

!ffc
sbc

⊥

be
bf

bp

PD

sp !fp

pi

pw

AM

s2

ai

aw

a1

a2

(sa)
(s1)

(!f1)

(!f2)

Figure 5: The automata in the FMS example.

pieces move from the robotR throughB7, C , andB8 to the painting devicePD , and
back throughB8, C , andB7 to the assembly machineAM . Figure 4 shows the interac-
tion of these components, and Figure 5 shows the “plants-only” version of the synthesis
problem. Two specifications in the original example have been transformed into plants
B⊥

7 andB⊥
8 according to proposition 4. In the figures, uncontrollable events are pre-

fixed by exclamation marks,!, and local events have parentheses,(), around them.
Note that all states except⊥ are marked in the buffer plantsB⊥

7 andB⊥
8 . This

permits deadlock in the system with a workpiece inB7 (en route toPD) and another
workpiece inB8 (en route toAM ). To eliminate this fault, only statesbe should be
marked, but the model in figure 5 poses a more challenging synthesis problem.

4.1 First Pass

First of all, eventssr, sa, s1, f1, andf2 in figure 5 are local, which may enable some
simplifications. These events occur inR, which cannot be simplified, and inAM ,
which can be simplified significantly. The only event by whichAM interacts with other

11



B⊥
8 ‖ PD

!ffc

!ffc!ffc

!ffc

!ffc

sbc

⊥

bf .pi

bp.pi

be.pi
be.pw

bf .pw

(sp)

(!fp)
(!fp)

≃synth

HA

!ffc
!ffc

sbc

⊥

a1
a2

Figure 6: The compositionB⊥
8 ‖ PD and its simplificationHA ≃synth (B⊥

8 ‖ PD) \!

{sp, fp}.

R ‖ B⊥
7

s2

s2

sr

sr
sr

sfc

sfc
!fbc

!fbc

!fbc

!fbc
!fbc

!fbc
⊥

ri.be

rw.be

ri.br

rw.br

ri.bb

rw.bb

(fr) (fr)

(fr)

≃synth

HB

s2

sr

sfc

!fbc

!fbc
!fbc

⊥

b1

b2

b3

Figure 7: The compositionR ‖B⊥
7 and its simplificationHB ≃synth (R ‖B⊥

7 ) \!{fr}.
Two transitions must be disabled by synthesis and are crossed out in the figure.

components iss2. Sinces2 is controllable andAM can always silently reach both a
state wheres2 can occur and a marked state,AM can be reduced to an automaton with
a single marked state and a selfloop ons2. This makes events2 entirely superfluous—
in the perspective ofB⊥

7 , AM acts just like an infinite output buffer. In other words,
based on the fact that

AM \!{s1, sa, f1, f2} ≃synth s2
, (18)

AM can be dropped. This, in turn, means thats2 is now a local event inB⊥
7 , but no

simplification can be made there.
At this point, no more simplification can be made, so some automata need to be

composed. A reasonable starting point is to composeB⊥
8 andPD . This makes events

sp andfp local. The result of this composition is shown to the left in figure 6; to the
right is the simplificationHA.

Next, R andB⊥
7 are composed, causingfr to become local. The result of this

composition is shown in figure 7 along with a simplificationHB. Figure 8 shows the
composition ofHB andC , makingsfc andfbc local, and a simplificationHC of the
result. Finally,HA andHC are composed and simplified, see figure 9. At this point, all
events are local and can be hidden. This results in a nonemptylanguage, showing that
a supervisor exists.

In summary, the system in figure 5 is simplified in the following steps. At each
step, the automata in brackets() are composed and simplified, possibly after hiding.

1) R ‖ B⊥
7 ‖ C ‖ B⊥

8 ‖ PD ‖ (AM );

2) R ‖ B⊥
7 ‖ C ‖ (B⊥

8 ‖ PD);
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HB ‖ C

sfc

!ffc

!ffc

sbc

sbc

sbc

⊥
b1.ce

b2.ce

b3.ce

b1.cb

b2.cb

b3.cb

b1.cf

b3.cf

(!fbc)
(!fbc)

(!fbc)

(s2)(s2)

(sr) (sr)(sr)

≃synth

HC

sfc!ffc

sbc

c1

c2

Figure 8: The compositionHB ‖ C and its simplificationHC ≃synth (HB ‖ C ) \!

{fbc, s2, sr}.

HC ‖ HA

sfc

sfc

!ffc

!ffc

sbc

a1.c1

a1.c2

a2.c1

a2.c2

≃synth

H

sfc
!ffc

sbc

Figure 9: The compositionHC ‖ HA and its supervisorH = M↑(HC ‖ HA).

3) (R ‖ B⊥
7 ) ‖ C ‖ HA;

4) (HB ‖ C ) ‖ HA;

5) (HC ‖ HA);

6) H .

4.2 Second Pass

In the second pass, theorem 6 is applied to each step of the first pass, potentially pro-
ducing a supervisor component for each simplification step.The starting point is the
final resultH of all the simplification steps, shown in figure 9, which can beconsidered
as the first supervisor component. In this case, it achieves least restrictive nonblocking
supervision of the last composition, since

H = M↑(HC ‖ HA) . (19)

To find a supervisor component for the previous step 4), whereHB‖C is simplified,
events not inHB ‖ C can be hidden fromH . However, all events inH are shared and
no simplification is possible. UsingHC ≃synth (HB ‖ C ) \!{fbc, s2, sr} and (19) in
theorem 6, it follows that

M↑((HB ‖ C ) ‖ HA)
⊆M↑(HC ‖ HA) ‖M↑(HB ‖ C ‖ H)
= H ‖M↑(HB ‖ C ‖ H) . (20)

The supervisor computed at this stage

13



S1 s2sr

sr srsr

sfc

sbc

sbc

!fbc

!fbc ⊥

(!ffc)

(!ffc)

S′
1 s2

sr

sr

sfc

sbc

!fbc

Figure 10: The supervisorS1 = M↑(HB ‖ C ‖ H) and its abstractionS′
1 ≃synth

S1 \!{ffc}.

S2

sr

sr

sfc

sbc

!fbc

(fr)

(fr) (s2)

S′
12 sr

srsr

sfc

!ffc

!ffc

sbc

!fbc

Figure 11: The supervisorS2 = M↑(R ‖ B⊥
7 ‖ S′

1) and the abstractionS′
12 ≃synth

(S1 ‖ S2) \!{s2, fr}.

S1 = M↑(HB ‖ C ‖ H) (21)

is shown in figure 10. Since no events have been hidden, it holds thatH ‖S1 = S1, and
the new supervisorS1 includes the previous supervisorH . Thus,H can be dropped. A
nonblocking check reveals that equality holds in (20), i.e.,

M↑(HB ‖ C ‖ HA) = H ‖M↑(HB ‖ C ‖ H) = H ‖ S1 = S1 . (22)

The supervisorS1 is passed back to the previous simplification step 3), whereR ‖
B⊥

7 is simplified. Using the fact that eventffc is not used inR ‖ B⊥
7 , it is possible to

simplify S1 preserving synthesis equivalence to

S′
1 ≃synth S1 \!{ffc} . (23)

This automaton is also shown in figure 10. UsingHB ≃synth (R ‖ B⊥
7 ) \!{fr} and

S′
1 ≃synth S1 \!{ffc} = M↑(HB ‖ (C ‖ HA) \!{ffc}) in theorem 6, it follows that

M↑((R ‖ B⊥
7 ) ‖ (C ‖ HA))

⊆ M↑(HB ‖ C ‖ HA) ‖M↑(R ‖ B⊥
7 ‖ S′

1)
= S1 ‖M↑(R ‖ B⊥

7 ‖ S′
1) (24)

The new supervisor component

S2 = M↑(R ‖ B⊥
7 ‖ S′

1) (25)
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S′

s2 (sbc)

(sr)

Figure 12: The abstractionS′ ≃synth (S1 ‖ S2 ‖ B⊥
8 ‖ PD) \!Υ used in the final step

of the second pass.

is shown in figure 11. So far, two modular supervisors have been computed,S1 andS2,
and their composed behaviour needs to be considered for the back-processing of the
remaining simplification steps. Since (24) also is nonblocking,

M↑(R ‖ B⊥
7 ‖ C ‖ HA) = S1 ‖M

↑(R ‖ B⊥
7 ‖ S′

1) = S1 ‖ S2 . (26)

In the preceding step 2), the compositionB⊥
8 ‖ PD has been simplified. This au-

tomaton does not use the supervisor’s eventss2 andfr, so a simplified automatonS′
12,

shown in figure 11, can be used in this step. UsingHA ≃synth (B⊥
8 ‖ PD) \!{sp, fp}

and
S′

12 ≃synth (S1 ‖ S2) \!{s2, fr}
= M↑(R ‖ B⊥

7 ‖ C ‖ HA) \!{s2, fr}
= M↑(HA ‖ (R ‖ B⊥

7 ‖ C ) \!{s2, fr}) (27)

in theorem 6, it follows that

M↑((B⊥
8 ‖ PD) ‖ (R ‖ B⊥

7 ‖ C ))
⊆M↑(HA ‖ R ‖ B⊥

7 ‖ C ) ‖ M↑(B⊥
8 ‖ PD ‖ S′

12)
= S1 ‖ S2 ‖M↑(B⊥

8 ‖ PD ‖ S′
12) . (28)

It turns out thatM↑(B⊥
8 ‖PD ‖S′

12) = B⊥
8 ‖PD ‖S′

12 (11 states) andS1 ‖S2 ‖S′
12 =

S1 ‖ S2, i.e., no additional supervision is needed in this step. A nonblocking check
of (28) ensures equality, and thus

M↑(B⊥
8 ‖ PD ‖ R ‖ B⊥

7 ‖ C )
= S1 ‖ S2 ‖M↑(B⊥

8 ‖ PD ‖ S′
12)

= S1 ‖ S2 ‖ B⊥
8 ‖ PD ‖ S′

12

= S1 ‖ S2 ‖ B⊥
8 ‖ PD . (29)

In the final step to be back-processed, 1),AM has been simplified according to (18).
All events excepts2 are local and can be hidden from the supervisorS1‖S2‖B⊥

8 ‖PD ,
producing a three-state abstractionS′ shown in figure 12. Using (18) and

S′ ≃synth (S1 ‖ S2 ‖ B⊥
8 ‖ PD) \!Υ = M↑(B⊥

8 ‖ PD ‖ R ‖ B⊥
7 ‖ C ) \!Υ , (30)

whereΥ = Σ \ {s2}, in theorem 6, it follows that

M↑(AM ‖ (B⊥
8 ‖ PD ‖ R ‖ B⊥

7 ‖C ))
⊆M↑(B⊥

8 ‖ PD ‖ R ‖ B⊥
7 ‖ C ) ‖M↑(AM ‖ S′)

= S1 ‖ S2 ‖ B⊥
8 ‖ PD ‖M↑(AM ‖ S′) . (31)
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Again, it turns out that no additional supervision is neededbecauseM↑(AM ‖ S′) =
AM ‖ S′ (12 states) andS1 ‖ S2 ‖ S′ = S1 ‖ S2, and the system is nonblocking. Thus,

M↑(AM ‖ B⊥
8 ‖ PD ‖ R ‖ B⊥

7 ‖ C )
= S1 ‖ S2 ‖ B⊥

8 ‖ PD ‖M↑(AM ‖ S′)
= S1 ‖ S2 ‖ B⊥

8 ‖ PD ‖ AM ‖ S′

= S1 ‖ S2 ‖ B⊥
8 ‖ PD ‖ AM . (32)

Therefore, adding the modular supervisor componentsS1 and S2 to the FMS sys-
tem produces the least restrictive nonblocking behaviour.This result has been ob-
tained without ever considering automata larger than twelve states, although there are
184 reachable states in the synchronous product of the six automata in figure 5.

5 Conclusions

A two-pass procedure for compositional synthesis of modular supervisors for discrete
event systems has been presented. The strength of this procedure lies in that, at each
step of the second pass, the method accesses bothlocal information—given by the
intermediate result visited—andglobal information—given by the abstraction of the
monolithic behaviour passed back. This allows for the synthesis of specialised super-
visor modules for individual synthesis problems, found locally, using knowledge about
the global system to ensure least restrictiveness.

While the algorithm can accurately determine whether a supervisory control prob-
lem is solvable without constructing the full synchronous product, the supervisor re-
turned may be an over-approximation of the least restrictive solution and is not auto-
matically nonblocking. A nonblocking check is needed to confirm correctness of the
result, and if this check fails, the procedure needs to be restarted using weaker abstrac-
tions. It is yet an open question how information from the failed nonblocking check
can be used to guide the search for more appropriate abstractions.

The framework of synthesis equivalence has the potential toovercome several
weaknesses of previous approaches to compositional synthesis: there is no need for
state labels [5], making bisimulation-based simplifications possible; there is the possi-
bility to hide controllable and uncontrollable events; andthe use of nondeterministic
automata paves the way for better abstractions than projection-based methods [2,6].

Appendix: Proof of Theorem 6

This appendix contains the proof of a result about the relationship between synthesis
and hiding, which forms the main part of the proof of theorem 6. The proof of the
main result (proposition 10) uses two lemmas and a corollary, and is preceded by some
definitions needed only in the proofs.

Let M ⊆ Σ∗ be a language. Theprefix-closureof M is

M = { s ∈ Σ∗ | st ∈ M for somet ∈ Σ∗ } . (33)
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Let Ω ⊆ Σ. Natural projectionPΩ : Σ∗ → Ω∗ is the operation that removes
all events not inΩ from a string. This operation is naturally extended to operate on
languages as well.Inverse projection, defined for languages,P−1

Σ : 2Ω∗

→ 2Σ∗

, inserts
events inΣ \ Ω into all strings at all possible positions. It is well-knownthat for every
languageM ⊆ Σ∗,

M ⊆ P−1
Σ PΩ(M) . (34)

Let G = 〈Q, Σ,→, Qi, Qm〉 be an automaton. A sequence

x0
σ1→ x1

σ2→ · · ·
σn→ xn (35)

of transitions inG such thatx0 ∈ Qi is called apath in G. Another transition relation
⇒ ⊆ Q × Σ∗ × Q is defined such thatx

s
⇒ y denotes the existence of a stringt ∈ Σ∗

τ

such thatPΣ(t) = s andx
t
→ y. That is,

s
→ denotes a path withexactlythe events ins,

whereas
s
⇒ denotes a path withτc andτu events shuffled with the events ins.

Given a languageM ⊆ Σ∗, an automaton acceptingM can be constructed using
Nerode equivalence. Two stringss1, s2 ∈ Σ∗ areNerode equivalentwith respect toM,
denoteds1 ≡M s2 if, for every t ∈ Σ∗, it holds thats1t ∈ M if and only if s2t ∈ M.
Clearly,≡M is an equivalence relation on the strings inΣ∗. Furthermore, a language
M ⊆ Σ∗ can be partitioned into the set ofequivalence classes

[s]M = { s′ ∈ Σ∗ | s′ ≡M s } (36)

imposed by≡M. Then the minimal deterministic automatonGM acceptingM is con-
structed asGM = 〈M/≡M , Σ,→, {[ε]M},M/≡M〉 whereL/≡M = { [s]M |

s ∈ L} and[s]M
σ
→ [sσ]M wheneversσ ∈ M.

In the following, a languageM is identified with its automatonGM, and nota-
tions such as synchronous composition are applied to languages as well. In this no-
tation,M

s
⇒ means that the automatonGM contains transitions for the strings, or

in other words thats ∈ M. By the same abuse of notation,M↑(G) does not only
represent the minimal deterministic automaton accepting the language of the synthesis
resultsupCN (G), but also that language.

Lemma 7 Let G = 〈QG, ΣG,→G, Qi
G, Qm

G 〉 be an automaton, and letT = 〈QT , ΣT ,
→T , Qi

T , Qm
T 〉 be a deterministic automaton. LetΣ = ΣG∪ΣT , letΣT ⊆ Ω ⊆ Σ, and

ΥG = ΣG \ Ω. Then, for all stringss′ ∈ Ω∗ and for all statesxG ∈ QG andxT ∈ QT

such that
supCN (G \!ΥG ‖ T )

s′

⇒ (xG, xT ) (37)

it also holds that
(xG, [s′]) ∈ X̂G‖M↑(G\!ΥG‖T ) . (38)

Proof. Write

ST = M↑(G \!ΥG ‖ T ) ; (39)

Xk = Θk
G‖ST

(QG × ST /≡ST
) . (40)
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To prove the claim, it is established by induction onk that, for all s′ ∈ Ω∗, for all
xG ∈ QG, and for allxT ∈ QT such that (37) holds, it follows that

(xG, [s′]) ∈ Xk . (41)

The inductive base fork = 0 holds sinceX0 = QG × ST /≡ST
. Now lets′ ∈ Ω∗,

xG ∈ QG, andxT ∈ QT such that (37) is satisfied. From (37) it follows that there
existss ∈ Σ∗ such thatPΩ(s) = s′ and

G ‖ ST
s
⇒ (xG, [s′]) . (42)

It only needs to be shown that this path is not removed by synthesis. Letu ∈ Σ∗
τ,u such

that
G ‖ ST

s
⇒ (xG, [s′])

u
→ (yG, [s′u′]) (43)

wherePΩ(u) = u′. ThenST
s′u′

=⇒, and sinceT is deterministic it follows from (37) that

there existsyT ∈ QT such thatG\!ΥG‖T
s′

⇒ (xG, xT )
u′

⇒ (yG, yT ). By controllability
of supCN (G \!ΥG ‖ T ) this implies

supCN (G \!ΥG ‖ T )
s′

⇒ (xG, xT )
u′

⇒ (yG, yT ) . (44)

SincesupCN (G\!ΥG‖T ) is coreachable, there existt′ ∈ Ω∗, zG ∈ Qm
G , andzT ∈ Qm

T

such that

supCN (G \!ΥG ‖ T )
s′

⇒ (xG, xT )
u′

⇒ (yG, yT )
t′

⇒ (zG, zT ) . (45)

By inductive assumption, for all the states along this path there are corresponding states
in Xk, for example(yG, [s′u′]) ∈ Xk and(zG, [s′u′t′]) ∈ Xk. Therefore, and accord-
ing to (43), there existst ∈ Σ∗ such that

G ‖ ST
s
⇒ (xG, [s′])

u
⇒ (yG, [s′u′])

t
⇒|Xk (zG, [s′u′t′]) . (46)

Now it follows that(xG, [s′]) ∈ ΘG‖ST
(Xk) = Xk+1. 2

Corollary 8 Let G = 〈QG, ΣG,→G, Qi
G, Qm

G 〉 be an automaton, and letT = 〈QT ,
ΣT ,→T , Qi

T , Qm
T 〉 be a deterministic automaton. LetΣ = ΣG∪ΣT , letΣT ⊆ Ω ⊆ Σ,

andΥG = ΣG \ Ω. For all paths insupCN (G \!ΥG ‖ T )

(x0
G, x0

T )
σ1⇒ (x1

G, x1
T )

σ2⇒ · · ·
σn⇒ (xn

G, xn
T ) (47)

there exists1, . . . , sn ∈ Σ∗ such thatPΩ(si) = σi and

(x0
G, [ε])

s1⇒ (x1
G, [PΩ(s1)])

s2⇒ · · ·
sn⇒ (xn

G, [PΩ(s1 · · · sn)]) (48)

is a path insupCN (G ‖M↑(G \!ΥG ‖ T )).

Proof. The claim follows by applying lemma 7 to all states along the path (47). Since
all its states are contained in the state set of the synthesisresultsupCN (G ‖M↑(G \!

ΥG ‖ T )), it follows by definition ofsupCN that the path also is contained. 2
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Lemma 9 Let G be an automaton, and letT be a deterministic automaton. LetΣ =
ΣG ∪ ΣT , let ΣT ⊆ Ω ⊆ Σ, andΥG = ΣG \ Ω. Then

M↑(G ‖ T ) ⊆ M↑(G ‖M↑(G \!ΥG ‖ T )) . (49)

Proof. Once again, writeST = M↑(G \!ΥG ‖ T ), and denote the state set ofST by
QCN = ST /≡ST

. Consider the following set of states ofG ‖ ST ,

X = { (xG, [s′]) ∈ QG × QCN | supCN (G \!ΥG ‖ T )
s′

⇒ {xG} × QT } . (50)

X is a post-fixpoint ofΘG‖ST
.

To see this, let(xG, [s′]) ∈ X , i.e.,

supCN (G \!ΥG ‖ T )
s′

⇒ (xG, xT ) (51)

for somexT ∈ QT . Clearly, there existss ∈ Σ∗ such thatPΩ(s) = s′ andG ‖ ST
s
⇒

(xG, [s′]). It is to be shown that(xG, [s′]) ∈ ΘG‖ST
(X). Let u ∈ Σ∗

τ,u andyG ∈ QG

such thatG ‖ ST
s
⇒ (xG, [s′])

u
→ (yG, [s′u′]) whereu′ = PΩ(u). By (51) and sinceT

is deterministic, it follows that

G \!ΥG ‖ T
s′

⇒ (xG, xT )
u′

⇒ (yG, yT ) (52)

for some stateyT ∈ QT . SincesupCN (G \!ΥG ‖ T ) is controllable, it follows by (51)
that

supCN (G \!ΥG ‖ T )
s′

⇒ (xG, xT )
u′

⇒ (yG, yT ) . (53)

SincesupCN (G \! ΥG ‖ T ) is coreachable, there existst′ ∈ Ω∗, zG ∈ Qm
G , and

zT ∈ Qm
T such that

supCN (G \!ΥG ‖ T )
s′

⇒ (xG, xT )
u′

⇒ (yG, yT )
t′

⇒ (zG, zT ) . (54)

According to corollary 8, there existst ∈ Σ∗ such thatPΩ(t) = t′ and

supCN (G ‖ ST )
s
⇒ (xG, [s′])

u
⇒ (yG, [s′u′])

t
⇒ (zG, [s′u′t′]) . (55)

By construction ofX (50) and using (54) it also holds that

supCN (G ‖ ST )
s
⇒ (xG, [s′])

u
⇒ (yG, [s′u′])

t
⇒|X (zG, [s′u′t′]) (56)

and(zG, [s′u′t′]) ∈ Qm
G × Qm

ST
. Sinceu ∈ Σ∗

τ,u was chosen arbitrarily, it follows that
(xG, [s′]) ∈ ΘG‖ST

(X).
Hence,X is a post-fixpoint of the monotonic operatorΘG‖ST

, and therefore is

contained inX̂G‖ST
, the greatest fixpoint ofΘG‖ST

. To complete the proof, lets ∈

M↑(G ‖ T ). Then there exists a path

(x0
G, x0

T )
σ1→ (x1

G, x1
T )

σ2→ · · ·
σn→ (xn

G, xn
T ) (57)
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in supCN (G ‖ T ) such thats = PΩ(σ1 · · ·σn), and

(x0
G, x0

T )
σ′
1→ (x1

G, x1
T )

σ′
2→ · · ·

σ′
n→ (xn

G, xn
T ) , (58)

whereσ′
i = σi for σi ∈ Ω ∪ {τc, τu} and σ′

i ∈ {τc, τu} otherwise, is a path in
supCN (G \!ΥG ‖ T ). By construction ofX (50), it follows for all states along this
path that(xi

G, [PΩ(σ1 · · ·σi)]) ∈ X ⊆ X̂G‖ST
. Then

(x0
G, [ε])

σ1→ (x1
G, [PΩ(σ1)])

σ2→ · · ·
σn→ (xn

G, [PΩ(σ1 · · ·σn)]) (59)

is a path insupCN (G ‖ ST ), i.e.,s ∈ M↑(G ‖ ST ). 2

Proposition 10 Let G = 〈QG, ΣG,→G, Qi
G, Qm

G 〉 be an automaton, and letT =
〈QT , ΣT ,→T , Qi

T , Qm
T 〉 be a deterministic automaton. LetΣ = ΣG ∪ ΣT , let ΣG ∩

ΣT ⊆ Ω ⊆ Σ, and writeΥG = ΣG \ Ω andΥT = ΣT \ Ω. Then

M↑(G ‖ T ) ⊆ M↑(G \!ΥG ‖ T ) ‖ M↑(G ‖M↑(G \!ΥG ‖ T \!ΥT )) . (60)

Proof. First note that by (34),

M↑(G ‖ T ) ⊆ P−1
Σ PΣ\ΥG

M↑(G ‖ T ) = P−1
Σ M↑(G \!ΥG ‖ T ) , (61)

and second, it follows using lemma 9 that

M↑(G ‖ T ) ⊆ M↑(G ‖M↑(G \!ΥG ‖ T ))

⊆ P−1
Σ PΣ\ΥT

M↑(G ‖M↑(G \!ΥG ‖ T ))

= P−1
Σ M↑(G ‖M↑(G \!ΥG ‖ T \!ΥT )) . (62)

Equations (61) and (62) together imply (60). 2
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