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Abstract

Since 1997 we have been developing a theoretical foundation for general anaesthesia.
We have been able to demonstrate that the abrupt change in brain state brought
on by anaesthetic drugs can be characterized as a first-order phase transition in
the population-average membrane voltage of the cortical neurons. The theory pre-
dicts that, as the critical point of phase-change into unconsciousness is approached,
the electrical fluctuations in cortical activity will grow strongly in amplitude while
slowing in frequency, becoming more correlated both in time and in space. Thus
the bio-electrical change of brain-state has deep similarities with thermodynamic
phase changes of classical physics. The theory further predicts the existence of a
second critical point, hysteretically separated from the first, corresponding to the
return path from comatose unconsciousness back to normal responsiveness. There
is a steadily accumulating body of clinical evidence in support of all of the phase-
transition predictions: low-frequency power surge in EEG activity; increased corre-
lation time and correlation length in EEG fluctuations; hysteresis separation, with
respect to drug concentration, between the point of induction and the point of
emergence.
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1 Introduction

After 20 years working as a clinical anaesthetist, one of us (JWS) had ob-
served that the process of “putting people to sleep”—that is, rendering the
patient controllably and reversibly unconscious via application of anaesthetic
drugs—is neither smooth nor gradual. Rather, the transition into anaesthetic
unconsciousness is both dramatic and abrupt—as if a switch inside the brain
is being flipped to the “sleep” position at a critical drug concentration.

This motivated us to ask whether this biological change of state might be
analogous to the more familiar thermodynamic phase changes of physics, such
as water freezing and ice melting. To investigate this possibility, we adopted
the Liley et al. (1999) continuum model of the cortex, and incorporated the
effect of a general anaesthetic agent into the model by assuming that the
effectiveness of inhibitory synaptic events increases as the concentration of
the anaesthetic increases. We found that, for certain ranges of anaesthetic
concentration, the model predicts the existence of multiple steady states for
brain activity, leading to the possibility that, at a critical level of anaesthetic,
there would be a sudden switch-over from normal levels of cortical activity to
a quiescent, low-firing state.

We then added white-noise driving to the model, simulating the effect of ran-
dom stimulation of the cortex from subcortical sources. Using stochastic calcu-
lus techniques, we computed a theoretical spectrum for the white-noise-driven
cortex in the adiabatic limit of fast inputs and slow membrane response, and
discovered the surprising prediction of a pronounced increase in low-frequency
cortical activity as the point of transition into the quiescent state was ap-
proached. We were gratified to learn, subsequent to those calculations, that
a surge in brain activity during induction of anaesthesia is well-known in the
anaesthetics research community, being described as the drug biphasic effect.
However, prior to our work, there had been no convincing explanation for the
puzzling and apparently paradoxical behaviour that a drug intended to inhibit
brain activity can have precisely the opposite effect at low concentrations.

In this paper we review the progress to date in our development of an anaes-
thetic phase-transition theory (Steyn-Ross et al., 1999, 2001a, 2001b, 2003),
placing its multiple theoretical predictions in the context of some encourag-
ing recent clinical findings. We conclude with a brief discussion of a recent
experimental report that supports the tantalizing speculation that the cycles
of natural sleep might share several of the phase-transition characteristics of
anaesthesia.

2 Macrocolumn Model for the Cortex

The cerebral cortex is the convoluted outer ∼3-mm-thick layer of “grey-
matter” neurons responsible for the higher brain functions such as reason-
ing, awareness, judgement. Because small volumes of neurons are known to
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act cooperatively, it is not unreasonable to model the cortex as a collection
of macrocolumns—organized assemblies of cooperating neurons occupying a
cylindrical volume of diameter ∼1 mm and depth 3 mm, and containing about
100 000 neurons. A macrocolumn schematic is drawn in Fig. 1.

[Fig. 1 about here.]

A given neuron is classified according to its effect on the destination nerve
cells that receive its electrical impulses (action potentials): if the incoming
impulse makes a destination cell more likely to fire, then the sending cell is
classified as excitatory ; if the impulse makes the receiving cells less likely to
fire, then the transmitting neuron is inhibitory. The ratio of excitatory to in-
hibitory neurons in the cortex is about 85% : 15%. Excitatory neurons tend
to be arranged with their dendrites (receiving fibres) and axons (transmit-
ting fibres) oriented parallel to one another to form aligned current dipoles,
while inhibitory neurons have their fibres oriented at random with approx-
imately spherical symmetry; consequently it is generally accepted that the
scalp-measured EEG (electroencephalogram) voltage signal is generated by
fluctuations in the spatially-averaged excitatory membrane voltage. Although
the population of inhibitory neurons has negligible direct effect on the EEG,
the inhibitory neurons play a crucial moderating role on the behaviour of the
excitatory population, so cannot be ignored in any physiologically plausible
description of cortical activity.

The Liley et al. (1999) model consists of eight coupled partial differential
equations (PDEs) that describe the interacting behaviours of the excitatory
and inhibitory neural populations within a cortical macrocolumn. The cortex is
represented as a 1-D continuum of macrocolumn mass (i.e., a “cortical rod”).
Because the emphasis is on population-averaged behaviours, no attempt is
made to model the separate time-courses of the 100 000 neurons within a
macrocolumn.

The primary variables of interest are the macrocolumn-averaged excitatory
soma voltage he and inhibitory voltage hi, both of which can vary in time
and space. These population soma voltages are assumed to obey the following
equations of motion:

τe
∂he

∂t
=
(
hrest

e − he

)
+ ψee(he) Iee(he) + ψie(he) Iie(hi) (1a)

τi
∂hi

∂t
=
(
hrest

i − hi

)
+ ψei(hi) Iei(he) + ψii(hi) Iii(hi) (1b)

The symbols τe,i are the excitatory and inhibitory membrane time-constants
(see Table 1 for values). The ψjk (where j, k ∈ {e, i}) are dimensionless weight-
ing factors that account for the fact that the effectiveness of a presynaptic
input Ijk (from a neuron of type j) impinging on a postsynaptic neuron (of
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type k) depends on the signed displacement of the hk soma voltage from the
ionic reversal potential hrev

j ,

ψjk(hk) =
hrev

j − hk∣∣∣hrev
j − hrest

k

∣∣∣ . (2)

For example, for Iee, representing excitatory synaptic input to an excitatory
cell, the ψee weight will be zero if he = hrev

e , and will change sign as he crosses
hrev

e . The weights are normalized with respect to resting voltage so that if an
excitatory cell is at its resting potential hrest

e , then ψee = +1 and ψie = −1,
thus excitatory input Iee will tend to raise the soma voltage, and inhibitory
input Iie will tend to lower the soma voltage.

[Table 1 about here.]

When an action potential from the sending neuron reaches the synapse (the
axon–dendrite junction) connecting it to the receiving neuron, a momentary
flux of neurotransmitter is released into the synaptic cleft, causing a temporary
alteration in the ionic conductance of the receiving neuron. The resulting
current pulse is integrated in the receiving neuron, giving a brief voltage change
referred to as the post-synaptic potential or PSP. Liley models the time-course
for the PSP as an alpha-function impulse of the form γt exp(−γt) where γ
is a rate constant and 1/γ is the time-to-peak; see Fig. 2. These excitatory
(Iek) and inhibitory (Iik) alpha-function PSPs are defined by the following
second-order differential equations,

(
∂

∂t
+ γe

)2

Iee(he) =
[
Nβ

ee Se(he) + φee(he) + pee

]
Geγee (3a)

(
∂

∂t
+ γe

)2

Iei(he) =
[
Nβ

ei Se(he) + φei(he) + pei

]
Geγee (3b)

(
∂

∂t
+ γi

)2

Iie(hi) =
[
Nβ

ie Si(hi) + pie

]
Giγie (3c)

(
∂

∂t
+ γi

)2

Iii(hi) =
[
Nβ

ii Si(hi) + pii

]
Giγie (3d)

The Ge,i are respectively the peak amplitudes (in mV) for the EPSP and
IPSP response functions (see Table 1). The four pjk are spike-rate inputs
(units: s−1) entering the macrocolumn from subcortical sources; the two φee,ei

are long-range (cortico-cortical) excitatory spike inputs from distant macro-
columns elsewhere in the cortex; and the four Nβ

jkSj are the local spike-rate

contributions generated by within-macrocolumn activity. The Nβ
jk constants

are the number of j → k local connections, and the Sj are sigmoidal transfer
functions that map from soma voltage to firing-rate,
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Se(he) =
Smax

e

1 + exp [−ge(he − θe)]
, (4a)

Si(hi) =
Smax

i

1 + exp [−gi(hi − θi)]
(4b)

Here, θe,i is the inflexion-point voltage for the Se,i sigmoid, and ge,i is the
slope of the sigmoid function at inflexion. These transfer functions model the
voltage-dependent coupling strength between neurons: when the firing rate
is high, the coupling strength is high, and vice versa. In our early papers
we followed Liley in setting the saturated firing rate Smax

e,i = 1000 s−1; more
recently (Steyn-Ross et al., 2003) we lowered these maximum firing rates to a
more physiologically plausible 100 s−1.

The φek long-range inputs from distant macrocolumns (see Eqs (3a–3b)) are
governed by a pair of wave equations,

( ∂
∂t

+ v̄Λee

)2

− v̄2 ∂2

∂x2

φee(he) = v̄ΛeeN
α
ee

(
∂

∂t
+ v̄Λee

)
Se(he) (5a)

( ∂
∂t

+ v̄Λei

)2

− v̄2 ∂2

∂x2

φei(he) = v̄ΛeiN
α
ei

(
∂

∂t
+ v̄Λei

)
Se(he) (5b)

where v̄ is the mean axonal conduction speed, and Λek is the characteristic
inverse-length scale for cortico-cortical connections. Nα

ek is the number of long-
range connections of type e → k. (No equations for φik are required since all
long-range cortical connections are exclusively from excitatory sources.)

3 Anaesthesia Model

In order to bring the effect of anaesthetic agents to the Liley model, we need to
know how general anaesthetic agents operate at the cellular level. There is an
increasing body of evidence that propofol and other commonly-used GABA-
ergic (GABA = gamma-amino butyric acid) induction anaesthetics enhance
the inhibitory effect of the GABA neurotransmitter by holding the chloride
channels of the post-synaptic (i.e., receiving) neuron open longer, allowing a
larger negative charge to accumulate within the cell, thus making it less likely
to fire (Franks and Lieb, 1997). We therefore incorporated anaesthetic effect
by lengthening the duration of the inhibitory post-synaptic potential (IPSP)
by a dimensionless factor λGABA assumed proportional to anaesthetic concen-
tration: this is done by replacing the IPSP rate constant γi in Eqs (3c–3d) by
γi/λGABA. This alteration means that the effectiveness of each inhibitory PSP
event is strengthened as anaesthetic concentration increases.

[Fig. 2 about here.]

5



The second change to the Liley model was to introduce white-noise fluctua-
tions into the four pjk spike-rate fluxes [unit: s−1] entering the cortex from
nonspecific excitatory and inhibitory subcortical sources (see Eqs (3a–3d)).
Thus each pjk term is rewritten as the sum of a mean value plus a stochastic
variation about the mean,

pjk −→ 〈pjk〉+ α
√
〈pjk〉 ξn(t) (6)

where α is a dimensionless scale-factor introduced to ensure that the stochastic
fluctuations always remain small. Each ξn(t) (n = 1 . . . 4) is an independent,
Gaussian-distributed white-noise generator of zero mean and delta-function
covariance,

〈ξn(t)〉 = 0, 〈ξn(t) ξm(t′)〉 = δmn δ(t− t′) . (7)

The ξn(t) carry units of s−1/2. While the motivation for introducing Gaussian-
white-noise driving is primarily mathematical—it allows us to compute a theo-
retical EEG spectrum and to investigate how the spectrum changes in response
to changes in anaesthetic concentration—there is compelling physiological ev-
idence that the cortex seems to require a background “wash” of input noise
to function normally: it has been known for half a century that the conscious
state can only be maintained while the cortex receives an ongoing flux of
non-specific excitatory input from the reticular activating system within the
brainstem (e.g., see p. 815 of Kelly, 1991). This brainstem input can be mod-
elled as the sum of many individual Poisson-distributed neuronal processes,
which, by the central limit theorem, we approximate as Gaussian-distributed
noise.

The final model change was to invoke a “homogeneous slow membrane” ap-
proximation in which we assumed (i) that the cortex is spatially homogeneous,
so that the ∂2/∂x2 spatial-derivative terms in Eqs (5) for the long-range spike-
rates φee,ei could be set to zero; and (ii) that relative to the slow time-scale
of the membrane soma at which dendritic inputs are integrated, all synap-
tic inputs can be treated as “fast” variables that have already reached their
steady state. This separation of time-scales (the adiabatic approximation) per-
mits a dramatic simplification from the original Liley model (eight nonlinear
partial differential equations in time and space) to the adiabatic “Waikato”
model—a pair of first-order stochastic ordinary differential equations (i.e.,
Langevin equations) for he and hi that can be solved analytically using tools
from stochastic calculus (Gardiner, 1985). The system equations for the macro-
column are now,
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dhe

dt
= F1(he, hi) + Γe(t) (8a)

dhi

dt
= F2(he, hi) + Γi(t) (8b)

where the F1, F2 are drift terms defined by

F1(he, hi) =
1

τe

{
(hrest

e − he)

+ ψee(he)
[
(Nα

ee +Nβ
ee)Se(he) + 〈pee〉

]
Gee/γe

+ λGABA ψie(he)
[
Nβ

ie Si(hi) + 〈pie〉
]
Gie/γi

}
(9a)

F2(he, hi) =
1

τi

{
(hrest

i − hi)

+ ψei(hi)
[
(Nα

ei +Nβ
ei)Se(he) + 〈pei〉

]
Gee/γe

+ λGABA ψii(hi)
[
Nβ

ii Si(hi) + 〈pii〉
]
Gie/γi

}
(9b)

and the Γe, Γi are diffusive noise terms,

Γe(t) = bee ξ1(t) + bie ξ3(t) (10a)

Γi(t) = bei ξ2(t) + bii ξ4(t) (10b)

whose bjk coefficients, like the F1,2 drift terms, depend on GABA anaesthetic
effect λGABA and (he, hi) soma-voltage coordinate,

bee = ψee(he)α〈pee〉
1
2 Gee

/
γeτe (11a)

bie = λGABA ψie(he)α〈pie〉
1
2 Gie

/
γiτe (11b)

bei = ψei(hi)α〈pei〉
1
2 Gee

/
γeτi (11c)

bii = λGABA ψii(hi)α〈pii〉
1
2 Gie

/
γiτi . (11d)

4 Theoretical Analysis of Model

Our analysis of the resulting anaesthesia model proceeds as follows:

• Identify the distribution of homogeneous steady-state voltages as a function of
anaesthetic effect
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• Determine the small-perturbation stability of these cortical steady states

• Evaluate the white-noise-driven spectrum and correlation time of the homoge-
neous model cortex for small voltage fluctuations about steady-state

• Calculate the spatial covariance predictions for an infinitely-long 1-D rod of cor-
tical mass as a function of anaesthetic effect.

4.1 Distribution of Steady States

We located the steady states of the “homogeneous slow-membrane” cortex by
setting to zero the time-derivatives in Eqs (8) and turning off the white-noise
driving (i.e., setting Γe = Γi = 0). The numerically-determined distribution
of excitatory and inhibitory steady-state voltages (h0

e, h
0
i ) as a function of

anaesthetic effect λ is shown in Fig. 3. For intermediate values of anaesthetic
effect (region II), we found three steady-state solutions; at higher levels (region
I: “coma”) and at lower levels (region III: “anti-anaesthetic” → seizure) only
a single state is available to the brain.

[Fig. 3 about here.]

We analyzed the stability of the steady states, and found that the middle-
branch of region-II is unstable with respect to small perturbations. Therefore
the model predicts that a first-order (i.e., discontinuous) transition to the low-
firing branch can occur at the right-hand knee A3 (LOC: loss of consciousness);
similarly a distinct jump-return from quiescent to active branch can occur at
the left-hand knee Q1 (ROC: recovery of consciousness). Note that the LOC
and ROC critical points correspond to different levels of anaesthetic effect.
In other words, the model predicts a drug hysteresis effect: the patient will
awaken at a lower concentration of anaesthetic than that required to put her
to sleep. This is a significant and testable prediction.

4.2 Theoretical EEG Spectrum

We linearized the stochastic differential equations (8) about homogeneous
steady state to derive a two-variable Ornstein–Uhlenbeck (Brownian motion)
description for the macrocolumn,

d

dt

[
δhe

δhi

]
= −A

[
δhe

δhi

]
+
√

D

[
ξe(t)

ξi(t)

]
(12)

where the δhe,i are the small excitatory and inhibitory soma-voltage fluctua-
tions about steady state. A is the 2×2 drift matrix evaluated at the equilibrium
point,

A = −

∂F1

∂he

∂F1

∂hi

∂F2

∂he

∂F2

∂hi


eq.

(13)

and D is a diffusion matrix defined such that
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√
D11 ξe(t) ≡ Γe(t) = bee ξ1(t) + bie ξ2(t) (14a)√
D22 ξi(t) ≡ Γi(t) = bei ξ3(t) + bii ξ4(t) . (14b)

After applying the delta-correlation property for the four noise sources (Eq. (7)),
we obtained a diagonal diffusion matrix,

D =

b2ee + b2ei 0

0 b2ie + b2ii


eq.

(15)

We were then able to compute, using standard Ornstein–Uhlenbeck analysis
(Gardiner, 1985), the 2×2 fluctuation spectrum matrix S(ω),

S(ω) =
1

2π
(A + iωI)−1 D

(
AT − iωI

)−1
(16)

where the superscript t signifies matrix transpose and I is the identity matrix.
The S11 element of this matrix returns the fluctuation spectrum for δhe(t), pre-
sumed to be the source of the scalp-measured EEG. [The off-diagonal entries
in the spectrum matrix correspond to the δhe,i(t) cross-spectra; and the S22

entry gives the spectrum for the inhibitory voltage fluctuations δhi(t).]

Using Eq. (16) we calculated the theoretical S11(ω) spectrum. We were sur-
prised by the result: despite the fact that anaesthetic is administered with
the end-goal of inhibiting brain function, our stochastic theory predicted that
as anaesthetic concentration is increased towards a critical value, the brain
response to white noise driving will increase dramatically. It turns out that
this paradoxical boost in brain activity just prior to induction is, in fact,
well-known in the anaesthetics community, and is referred to as drug biphasic
response (Kuizenga et al., 1998, 2001b).

Further, the theory predicts that there will be a second biphasic surge in EEG
power as the patient emerges from unconsciousness, and, consistent with the
drug hysteresis prediction of Fig. 3, that this emergence surge in brain activity
will occur at a lower concentration of anaesthetic than that recorded for the
induction surge. Figure 4 shows the model predictions for changes in EEG
power and spectral content for the induction and emergence trajectories.

[Fig. 4 about here.]

Kuizenga and colleagues have demonstrated convincingly that there are two
biphasic peaks per induction–emergence cycle for patients undergoing propofol
anaesthesia (Kuizenga et al., 2001a). Data from one of Kuizenga’s clinical
experiments is shown in Fig. 5. Anaesthetic drug concentration is measured in
the blood, while the “effect” site is the brain; it takes about 2 min for the drug
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to diffuse across the blood–brain barrier to generate an altered EEG response,
and this delay is clearly evident in Fig. 5(a). Even after compensating for
this diffusion delay in Fig. 5(b), an obvious drug-hysteresis effect remains:
the induction surge in brain activity occurs at a significantly higher propofol
concentration (∼7–8 mg/L) than that (∼1.5–3 mg/L) at which the emergence
surge appears.

[Fig. 5 about here.]

The pronounced increase in low-frequency power as either critical point is ap-
proached (see Fig. 4) is analogous to the critical slowing down phenomenon
that is the hallmark of thermodynamic phase transitions in physics: near tran-
sition the fluctuations become strongly correlated in time. We show in Steyn-
Ross et al. (2001b) that the change in EEG correlation time τ can be quantified
from the frequency spectrum using spectral entropy, Hω, defined

Hω = −
∫ ∞

0
p(ω) ln[p(ω)] dω (17)

where p(ω) is the probability density function for the spectrum. This particular
entropy is a measure of spectral flatness, and is maximum when the spectrum
is white. Thus an increase in correlation time corresponds to a reduction in
spectral entropy. The EEG fluctuation spectrum in our anaesthesia model
is approximately Lorentzian, and we find that Hω ∼ ln[1/τ ]. In Steyn-Ross
et al. (2001b) we prove that this exponential scaling relationship between
correlation time and spectral entropy becomes exact for an ideal Lorentzian
spectrum, giving Hω = ln[2π/τ ]. Thus the approach to anaesthetic transition
can be detected either in the EEG time-domain (increase in correlation time
of voltage fluctuations) or in the frequency-domain (increase in low-frequency
power and decrease in spectral entropy).

4.3 Numerical Simulations

In order to verify the numerical correctness of the model predictions, we ran
nonlinearized stochastic simulations of both the full Liley equations and the
simplified adiabatic equations, and were able to confirm the number and na-
ture of the steady states (Wilcocks, 2001; Steyn-Ross et al., 2001b) as a func-
tion of anaesthetic effect. A simulation started on the unstable mid-branch of
Fig. 3 would “fall off” the potential hill there, and would settle, with equal
probability, into either the “active” upper branch or the “quiescent” lower-
branch potential valley.

Figure 6 shows a time-series generated by a simulation of the adiabatic equa-
tions that was started on the top-branch of Fig. 3 near A1, with anaesthetic
effect λ slowly increasing from 0.3 to 2.3 during the course of the run. It nicely
illustrates the growth in fluctuation amplitude as the A3 induction point at
λ = 1.53 is approached. Fourier analysis of these fluctuations (not shown)
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confirms quantitatively the theoretical prediction of spectral redistribution
towards zero frequency on approach to the critical point.

[Fig. 6 about here.]

4.4 Spatial Covariance of EEG

Our three earlier papers (Steyn-Ross et al., 1999, 2001a,b) assumed a homo-
geneous cortex in which the anaesthetic properties of a single macrocolumn
could be taken as a proxy for the entire cerebral cortex. This is a “single-
electrode” theory in the sense that the overall average state of the cortex can,
in principle, be determined by a single electrode pair—one wire located in the
intracellular fluid to define the zero reference, and the sensing wire located in
the “population average” excitatory neuron.

In our most recent paper (Steyn-Ross et al., 2003) we have made a first step
towards a multiple-electrode theory by modelling the cerebral cortex as an
infinite 1-dimensional rod of macrocolumn “mass.” We now explicitly allow
(weak) spatial variation in the system by retaining the ∂2/∂x2 terms in the
long-range coupling from distant macrocolumns distributed along a rod. We
refer to this treatment as “spatio-adiabatic” since we continue to assume an
adiabatic separation of time-scales in which synaptic inputs are fast processes,
so can be replaced by their steady-state values.

This inclusion of a spatial dimension alters the F1,2 drift terms of Eqs (9),
which now read,

F ′
1(he, hi) =

1

τe

{
(hrest

e − he)

+ ψee(he)
[
(Nα

ee +Nβ
ee)Se(he) +

1

Λ2
ee

∂2φe

∂x2
+ 〈pee〉

]
Gee/γe

+ λGABA ψie(he)
[
Nβ

ie Si(hi) + 〈pie〉
]
Gie/γi

}
(18a)

F ′
2(he, hi) =

1

τi

{
(hrest

i − hi)

+ ψei(hi)
[
(Nα

ei +Nβ
ei)Se(he) +

1

Λ2
ei

∂2φi

∂x2
+ 〈pei〉

]
Gee/γe

+ λGABA ψii(hi)
[
Nβ

ii Si(hi) + 〈pii〉
]
Gie/γi

}
(18b)

Similarly, because the cortex is now driven by 1-D spatio-temporal white noise,
the delta-correlation property of Eq. (7) must be rewritten to include a delta-
function over 1-D space,

〈ξn(x, t)〉 = 0, 〈ξn(x, t) ξm(x′, t′)〉 = δmn δ(x− x′) δ(t− t′). (19)
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This extra delta-function implies that the ξ(x, t) noise sources now have di-
mension length−1/2 · time−1/2, so we choose to scale the ξ(x, t) by

√
`, where `

is the effective length of the macrocolumn “cell”, here taken as ` = 1 mm. This
ensures that the product

√
` ξ(x, t) has units of s−1, independent of space. [For

the case of 3-D spatio-temporal white noise ξ(~r, t), the appropriate product
would be

√
V ξ(~r, t) where V is the nominal volume of the cellular unit.] Thus

the bjk coefficients appearing in the diffusion matrix (Eq. 15) and defined in
Eqs (11) are redefined for the 1-D cortex as

bjk −→
√
` bjk. (20)

To quantify the degree to which the voltage fluctuations at separated points
x and x′ on the cortex are correlated, we calculated the theoretical steady-
state spatial covariance G(x, x′) under the assumption that the covariance
depends only on the separation |x − x′| of the sensing electrodes (and not
on their absolute positions x and x′). Because of the presence of the space-
derivative terms, this calculation cannot be done directly in x-space. Instead,
we Fourier transform the Langevin equations to wavenumber q-space (thus
∂2/∂x2 → −q2), compute the wavenumber covariance G̃(q, q′), then Fourier
invert to retrieve the x-space covariance G(|x − x′|). The resulting spatial
covariance is predicted to be the difference of two exponential decays in space,

G(|x− x′|) = a1L1 exp(−|x− x′|/L1)

− a2L2 exp(−|x− x′|/L2) (21)

where the values of the a1,2 and L1,2 coefficients are determined by the chosen
operating point on the trajectory of steady states shown in Fig. 3. L1 and
L2 can be interpreted as correlation lengths since each gives the electrode
separation at which its respective exponential has decayed to 1/e times its the
zero-lag maximum.

Figure 7 shows the predicted variation in L1 and L2 as a function of anaesthetic
effect for both the induction and emergence trajectories. The significant result
is the increase in correlation length as the critical points are approached. This
means that EEG fluctuations are predicted to become much more correlated
in space on approach to induction (I) of unconsciousness, and again for the
return path on approach to emergence (E) back into consciousness. We also
note that the bottom-branch correlation lengths are larger than that for the A1

state of (presumed) normal consciousness, thus the unconscious state is more
ordered, so is expected to have lower entropy ( =⇒ fewer microstates available
to the cortex). This prediction of a reduction in cortical entropy is consistent
with our earlier (Steyn-Ross et al., 2001a) statistical mechanics treatment of
the anaesthetic phase transition in which we assume that anaesthetic effect
can be mapped to an inverse thermodynamic temperature.
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[Fig. 7 about here.]

We ran numerical simulations of the spatio-adiabatic equations, computing
the spatial covariance for the voltage fluctuations. We demonstrated that,
after averaging the results over a sufficiently large number of runs, the simula-
tion covariance estimates converged to the linearized theoretical prediction of
Eq. (21) (Whiting, 2003; Steyn-Ross et al., 2003). This is illustrated in Fig. 8.

[Fig. 8 about here.]

There is recent clinical support for the model predictions of increased cor-
relation length and increased correlation time near the anaesthesia transition
points. E. R. John and colleagues (John et al., 2001) analyzed the EEG changes
for 176 patients undergoing general anaesthesia for a range of different anaes-
thetic agents, and found a marked increase in EEG coherence (normalized
cross-spectral density for separated points x, x′) just prior to loss of conscious-
ness (LOC), and again at recovery of consciousness. (He also reported a large
increase in low-frequency power on approach to LOC—thus confirming the
biphasic drug response reported earlier by Kuizenga et al. (1998) and others.)

5 Summary and Future Work

We have developed a mean-field model that describes the bulk electrical changes
in the cerebral cortex induced by a GABAergic general anaesthetic agent. The
primary prediction is that there will be first-order phase transition in the pop-
ulation average neuron voltage at a critical level of anaesthetic concentration.
Heralding this step change in brain state will be a pronounced increase in
low-frequency power of the EEG signal—this is the “critical slowing down” of
classical phase transitions, identified as the “biphasic effect” in the anaesthet-
ics literature. Because the trajectory of cortical steady states forms a reverse-S
shape with an unstable mid-branch, the emergence path out of unconscious-
ness cannot retrace the induction path into unconsciousness: there will be a
hysteresis separation between the induction and the emergence critical points.

By analyzing a 1-D model of the cortex we have established that spatially-
separated electrodes should register increasingly correlated EEG signals in the
vicinity of the critical points. Model results suggest that the unconscious state
is characterized by voltage fluctuations that are more strongly correlated—
both in time and in space—than is the case in the normal conscious state,
leading to the prediction that cortical entropy will be lower when unconscious,
and higher when conscious. Our construction of a thermodynamics analogy
presumes that anaesthetic acts like an inverse temperature, reducing cortical
excitability to bring about a more ordered state.

The clinical anaesthesia results surveyed here (Kuizenga et al., 1998, 2001a,b;
John et al., 2001) provide good supporting evidence for all of the major EEG-
change predictions of the anaestheto-dynamic phase transition theory.
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Extension to Natural Sleep

The point of contact between natural sleep and our phase-transition theory of
anaesthetic sleep is provided by clinical reports of work by Destexhe, Contr-
eras and Steriade (Destexhe et al., 1999) investigating sleep cycles in a cat as
the animal transits between slow-wave sleep (SWS) and rapid-eye-movement
(REM) sleep (also known as paradoxical or dream sleep). Their EEG mea-
surements show pronounced increases both in low-frequency power and in the
cortical “space constant” (correlation length for EEG fluctuations) as the ani-
mal approaches the SWS-to-REM transition point. These dramatic changes in
natural-sleep EEG patterns have persuasive similarities to the cortical changes
predicted by our first-order phase-transition model for anaesthesia. This mo-
tivates us to examine the possibility of generalizing the theory to construct a
phase-change description for transitions between the stages of natural sleep.
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Fig. 1. Schematic representation of the connective topology within a cortical macro-
column. Only four of the ∼100 000 neurons are shown. Triangles are excitatory
(pyramidal) cells which receive excitatory input via apical dendrites (e.g., connec-
tion type 5) and basal dendrites (1, 7); and inhibitory input directly at the cell body
(3). Circles are inhibitory (stellate or basket) cells receiving input from dendritic
connections (2, 4, 6) and at the cell body (8). Excitatory output from the macrocol-
umn is via trunk-lines (axons) shown bold. The symbol φe,i represents e→ e, e→ i
input from distant macrocolumns, and pjk represents input from the subcortex (e.g.,
thalamus and brainstem). (For clarity, we have omitted pie and pii exogenous inputs
corresponding to connection types 9 and 10 respectively.)
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Table 1
Symbol definitions and model constants for the 1-D Liley neural macrocolumn.

Symbol Description Value Unit

e, i (as subscript) excitatory, inhibitory cell populations

he,i population mean soma voltage mV

τe,i membrane time constant 0.040, 0.040 s

hrest
e,i cell resting potential −70, −70 mV

hrev
e,i cell reversal potential (Nernst potential) 45, −90 mV

Iee,ie total e→ e, i→ e voltage input to excitatory synapses mV

Iei,ii total e→ i, i→ i voltage input to inhibitory synapses mV

ψjk weighting factors for the Ijk inputs (j, k ∈ {e, i})

pee,ie exogenous (subcortical) spike input to e population 1100, 1600 s−1

pei,ii exogenous (subcortical) spike input to i population 1600, 1100 s−1

φee,ei long-range (cortico-cortical) spike input to e, i populations s−1

Λee,ei characteristic cortico-cortical inverse-length scale 0.040, 0.065 (mm)−1

EPSP, IPSP excitatory, inhibitory post-synaptic potential mV

γe,i neurotransmitter rate constant for EPSP, IPSP 300, 65 s−1

Ge,i peak amplitude of EPSP, IPSP 0.18, 0.37 mV

e (e.g., Eqs (3, 11)) base of natural logarithms 2.71828...

Nβ
ee,ei total number of local e→ e, e→ i synaptic connections 3034, 3034

Nβ
ie,ii total number of local i→ e, i→ i synaptic connections 536, 536

Nα
ee,ei total number of synaptic connections from distant

e-populations 4000, 2000

v̄ mean axonal conduction speed 7000 mm s−1

Se(he), Si(hi) sigmoid function mapping soma voltage to firing rate s−1

Smax
e , Smax

i maximum value for sigmoid function 100, 100 s−1

θe,i inflexion-point voltage for sigmoid function −60, −60 mV

ge,i sigmoid slope at inflexion point 0.28, 0.14 (mV)−1

` length of macrocolumn “cell” 1 mm
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