New Zealand Journal of Geology and Geophysics, 1990, Vol. 33: 89–109 0028–8306/90/3301–0089 \$2.50/0 © Crown copyright 1990 UNIVERSITY OF WAIKATO EARTH SCIENCES REFRINT L'BRARY

89

143 4 5

A review of late Quaternary silicic and some other tephra formations from New Zealand: their stratigraphy, nomenclature, distribution, volume, and age

P. C. FROGGATT

Research School of Earth Sciences Victoria University of Wellington P. O. Box 600 Wellington, New Zealand

D. J. LOWE

Geochronology Research Unit and Department of Earth Sciences University of Waikato Private Bag 3105 Hamilton, New Zealand

Abstract The stratigraphic relationships and distribution of 36 named late Quaternary (≤c. 50000 yr B.P.) silicic tephra formations, erupted from 4 volcanic centres-Okataina, Taupo, Maroa, and Tuhua (Mayor Island)-are presented. The stratigraphy and status of several other named late Quaternary tephras are also discussed. This compilation brings together all the data, currently scattered through many publications, to make tephrostratigraphy more accessible and more easily used. The nomenclature of tephra formations is discussed and some rationalisations are suggested. The term "tephrology" is suggested as an appropriate title for the field of tephra studies. The deletion of grain-size (ash, lapilli), shape (breccia), and lithologic (pumice) terms from all formation names is recommended, as is standardisation on a "Tephra Formation" format. Several tephra layers not previously formally named, or without designated type sections, are defined. The dominant ferromagnesian mineral assemblage of each tephra formation has been compiled as an aid to tephra identification. All available radiocarbon ages (384) on each tephra formation are presented, and each age is assessed for reliability in dating the eruption of that tephra. The standard-deviation weighted mean age of the reliable ages has been determined as the best current estimate of the age of each tephra. At least 10 tephra formations have no reliable ages, and efforts should be made to date these.

Keywords tephra formation; nomenclature; stratigraphy; mineralogy; C-14 ages; pyroclastics; volume

G89012 Received 8 March 1989; accepted 4 October 1989

INTRODUCTION

Quaternary silicic tephras have been studied extensively in New Zealand for over 50 years, leading to a detailed understanding of their stratigraphy, distribution, and processes of eruption. The value of identifiable tephra layers as stratigraphic time-planes has been demonstrated by their role in a great diversity of Quaternary studies. Our present knowledge of tephrostratigraphy is due mostly to the dedicated field work of two people, C. G. Vucetich and W. A. Pullar, and is embodied in three benchmark papers (Vucetich & Pullar 1964, 1969, 1973). Recent additions and amendments to their framework, largely as a result of better exposures, have resolved finer details of stratigraphic relationships. These refinements are scattered through many publications, and there has been an obvious need to produce a definitive review of the stratigraphy of the late Quaternary silicic tephras. Many radiocarbon ages have been published for dating the tephras, especially recently (Hogg et al. 1987), and a compilation and review of all available ages is provided.

Here, we present a compilation of the interfingering stratigraphy of tephras erupted since c. 50 000 years ago from four silicic volcanic centres, namely Tuhua (Mayor Island), Okataina, Maroa, and Taupo (Fig. 1), with a revision of the formal tephra nomenclature as developed in New Zealand. We have also compiled the history of naming of each layer, references to published isopach maps, estimates of the erupted volume, the location of type sections, and all relevant radiometric ages. We present our best estimate of the age of eruption of each tephra. The stratigraphy of andesitic tephras from Taranaki and Tongariro Volcanic Centres has been excluded as further work on them is in progress.

This review is complementary to that of Lowe (1990) which describes the history of tephra studies in New Zealand.

TEPHRA NOMENCLATURE

Tephra

"Tephra" (derived from the Greek tephra ash) is a collective term for all the unconsolidated, primary pyroclastic products of a volcanic eruption. The term, an ancient one used by Aristotle in an account of the eruption on Hiera in the Lipari Islands, was reinstated and first defined by the Icelandic volcanologist, S. Thorarinsson, in his doctoral thesis published in 1944 (Thorarinsson 1944, 1981). He originally described tephra as "all the clastic volcanic material which during an eruption is transported from the crater through the air, corresponding to the term lava to signify all the molten material from the crater" (Thorarinsson 1954, p. 2). The term was subsequently modified by Thorarinsson (1974), and by Howorth (1975) and Schmid (1981), to include all unconsolidated pyroclastic deposits irrespective of their origin or nature of emplacement. This broader, morphological meaning is adopted here because it negates the need to 90

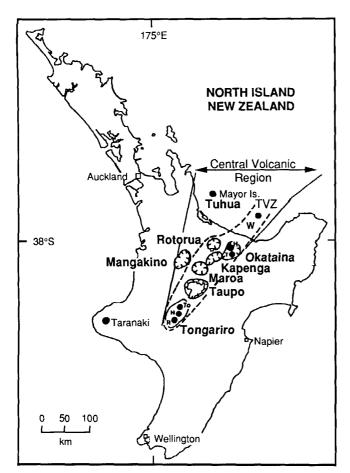


Fig. 1 The central North Island of New Zealand with the volcanic centres from which late Quaternary silicic tephras have been erupted (adapted from Cole 1979 and Wilson et al. 1984). Okataina Volcanic Centre is subdivided into two parts: Haroharo (H) to the north and Tarawera (T) to the south. W, White Island; To, Mt Tongariro; N, Mt Ngauruhoe; R, Mt Ruapehu. Wilson et al. (1986) postulated the existence of "Whakamaru caldera" in the northern Taupo – Maroa area in addition to those shown here.

distinguish pyroclastic flow deposits from airfall deposits, and it encompasses primary pyroclastic deposits generated or emplaced subaqueously or subglacially. Thorarinsson (1974) noted that this usage complements rather than replaces terms such as ignimbrite and welded tuff.

We emphasise that "tephra" denotes essentially unconsolidated material, thus welded (or hardened) pyroclastic materials, of either flow or airfall origin, should not normally be described as "tephra". It is also our intention that unconsolidated pyroclastic deposits that originate from explosions resulting from the interaction of lava with either groundwater (e.g., forming pseudocraters: Thorarinsson 1979) or seawater (e.g., forming littoral cones: Fisher 1968), and thus originating from rootless vents, may be described as tephra.

The adjective "**pyroclastic**" (Greek *pur* fire, *klastos* broken in pieces), a collective term for clastic or fragmentary materials ejected from a volcanic vent (Fisher & Schmincke 1984), is a more comprehensive term than tephra and is not necessarily synonymous with it.

The stratigraphic entity composed of tephra is often loosely referred to in New Zealand as a "tephra" or collectively as "tephras", but "tephra layer" or "tephra bed" is etymologically more correct and this use is encouraged here. Although

New Zealand Journal of Geology and Geophysics, 1990, Vol. 33

tephra as a collective noun may be singular or plural, we consider it sensible that an "s" should be appended to form the plural if it avoids ambiguity. In the derivative terms "tephrostratigraphy" and "tephrochronology" the "a" is replaced with an "o".

Although "tephra" is deliberately defined as a nongenetic term, it has often been found useful to distinguish between three (or more) fundamentally different mechanisms of transport and emplacement of tephra: airfall, pyroclastic flow, and surge. The last term is usually distinguished from fall or flow processes (Wright et al. 1980). Vucetich & Pullar (1973) suggested "fall-tephra" and "flow-tephra" but although these terms were adopted by some workers they have not been widely used. The genetic term "ignimbrite" (see below) adequately suits the products of a pyroclastic flow (e.g., Sparks et al. 1973; Sparks & Walker 1977; Froggatt 1981d), but there is no equivalent word for the airfall phase. "Plinian tephra" or "Plinian pumice" (Walker 1980) may be appropriate in a volcanological sense, but are here regarded as being too specific genetically as stratigraphic terms, requiring the establishment that the eruption was truly Plinian in nature. These terms are then applicable only to tephra from Plinian eruptions and exclude other mechanisms such as phreatomagmatic. The term "airfall tephra" or perhaps "falltephra" or "fallout tephra" are probably still the most appropriate where an indication of genesis is required.

The adjective "tephric" (meaning related to, or of, tephra) has been applied informally to various deposits derived from tephra by reworking or chemical weathering. There is considerable merit in a term that denotes the origin or major constituent of a strongly weathered or secondary deposit, and we find "tephric" preferable to the use of "tephra" for material not of primary origin.

The use of "tephra" for epiclastic sediments dominated by volcanic detritus (e.g., Seward 1976) is not consistent with the definition of tephra as primary volcanic material. Rationalisation of the nomenclature of these types of deposits (Schmid 1981) recommends the use of "tuff" for friable deposits, and tuffaceous sandstone or siltstone for lithified deposits; we suggest that "tephric" (e.g., "tephric sand" or "tephric alluvium") could also be applied to unconsolidated sediments of the sort described by Seward (1976).

Ignimbrite

"Ignimbrite" (Marshall 1932, 1935) is a genetic term for the primary deposit of a pyroclastic flow or flows. The etymology of the term is uncertain (Froggatt 1984) but is probably from the Latin *ignis* (fire) and *imbrex -imbris* (stormcloud), rather than *nimbus* (cloud) which does not contain an "r". As ignimbrite has two common lithological states it is usually convenient to qualify the term with welded or unwelded as appropriate. Welding involves the adhering together of hot, glassy fragments under the influence of a compactional lithostatic load (Cas & Wright 1987). Some ignimbrites, typically known as sillar, may be hardened by vapour phase crystallisation and, although having the appearance of being welded, are better described as cemented (Fisher & Schmincke 1984; Cas & Wright 1987).

Tephra formation

The need for the formal definition of a stratigraphic layer of tephra as a "formation" was argued by Gregg (1961), who also recommended the use of "tephra formation". Formation

naming was adopted by Vucetich & Pullar (1964, 1969, 1973) and adapted to "tephra formation" by Howorth (1975). The products of one eruption sequence may contain coarse, wellsorted airfall pumice, thick unsorted ignimbrite, surge deposits, and distal, thin, fine ash layers. On the scale of a regional geological map such lithological variations may be minor and encompassed by a single formation, but at the millimetre scale of detailed tephrostratigraphical or volcanological studies they are important. By definition, a "tephra formation" is strictly neither a chronostratigraphic nor lithostratigraphic term as defined by the International Stratigraphic Guide (Hedberg 1976), but contains elements of both (Gage 1977). It could be classed as an allostratigraphic unit under the revised North American Code (North American Commission 1985). The base of a tephra formation is essentially an isochronous plane and is of fundamental importance in tephra stratigraphy. The top of a formation may be time transgressive, and may have additions of material from other sources (e.g., loess, andesitic tephra), and is of less importance in a stratigraphic sense. For rhyolitic tephra layers, a tephra formation contains all the primary pyroclastic products of one eruptive episode, each separated by significant time intervals that are often marked by paleosols. It may be divided into named members where appropriate. Andesitic tephra formations in New Zealand have commonly been defined to include the products of more than one eruption and hence may span a considerable time period as a consequence of the more intermittent eruptive nature of these types of volcanoes (e.g., Neall 1972; Topping 1973).

Formations composed of tephra, as defined above, are a special type of formation, but their naming should conform to the accepted stratigraphic guide. A formation name should be composed of geographical and lithological components, and we would argue that tephra is the most appropriate lithological term for these formations. This also emphasises their unique nature, particularly as isochronous stratigraphic marker beds, and distinguishes them from other lithological formations.

Volcanic formation and eruptive episode

Cole (1970a) mapped lavas and pyroclastic deposits (tephra) erupted from Tarawera and demonstrated their coeval nature. He grouped both types of deposits into "volcanic formations". Nairn (1980, 1981, 1986) has mapped coeval lava and tephra in Haroharo caldera as separate formations, but has indicated the close time and genetic links between the tephra and the lava by grouping both into an informal "**eruptive episode**". Such an eruptive episode (e.g., Kaharoa eruptive episode) consists of all the primary volcanic material produced during a relatively short-lived eruption sequence.

Ash, lapilli, and breccia in formation names

The original formal definitions of many late Quaternary tephra layers (Baumgart 1954; Baumgart & Healy 1956; Vucetich & Pullar 1964, 1969) included a grain-size term denoting the dominant or most frequently observed grain size (for instance Kaharoa Ash, Taupo Lapilli), or the dominant grain shape or texture (Oruanui Breccia, Rotoiti Breccia). Since the definition of these, the term "tephra" has gained widespread acceptance and has been incorporated by preference into formation names (e.g., Howorth 1975; Vucetich & Howorth 1976b; Hogg & McCraw 1983).General consensus, together with the continuing use of "tephra", suggests that most of these grain-size and clast shape or textural terms are not appropriate and should be replaced. However, the names of members of formations may contain a grain-size or lithological term if the member is dominantly of this grade or lithology. Such names also serve to distinguish the member status of the deposits from that of formations (denoted by "Tephra").

The opportunity has been taken to rename some tephra layers when recently redefined (e.g., Hinemaiaia Tephra Formation: Froggatt 1981c). We propose here to formally rename those formations with an "Ash" suffix as "Tephra Formation" and those members with a "Breccia" suffix as "Ignimbrite" where appropriate. We also propose to rename Taupo Pumice Formation as Taupo Tephra Formation, because some members of the formation are not pumiceous (e.g., Rotongaio Ash). Our redefined names are listed in Table 1. Other new names are defined below.

Tephrology

No single term adequately describes the scientific discipline currently informally called "tephra studies" (e.g., Self & Sparks 1981). "Tephrostratigraphy" and "tephrochronology", as specialist subjects within "tephra studies", are unsuitable. Consequently, we suggest that "**tephrology**" (Greek *tephra* ash, *logos* discourse or subject of study) may be an appropriate term for the science of "tephra studies", which includes the stratigraphy, chronology, correlation, and petrology of tephra layers.

VOLCANIC CENTRES AND TEPHROSTRATIGRAPHY

The central North Island has had silicic eruptive activity since at least the early Quaternary, but the sites of volcanism have varied with time. A broad, wedge-shaped zone containing all Quaternary volcanism was defined as the *Central Volcanic Region* (CVR) by Thompson (1964). A narrower zone of presently or recently active volcanoes is *Taupo Volcanic Zone* (TVZ) (Healy 1961), and volcanoes within this zone were placed in "volcanic centres" (see below). Subsequently, Rogan (1982) and Wilson et al. (1984)

Subsequently, Rogan (1982) and Wilson et al. (1984) inferred a sixth centre, south of Rotorua, mostly from geophysical evidence, which they named Kapenga Volcanic Centre. However, the activity of this centre and its relationship to Okataina is unclear. Whether any of the late Quaternary eruptives considered here have originated from Kapenga has not been definitively stated, but Earthquake Flat Tephra Formation is a likely candidate, although it has close chronological associations with Rotoiti Tephra Formation from Okataina (I. A. Nairn pers. comm. 1988).

We have included the widespread silicic tephra from Mayor Island (Tuhua Tephra) in this review, so we here propose a seventh centre: **Tuhua Volcanic Centre**, from the Maori name for the island. This centre encompasses all the eruptive vents on the pantelleritic Mayor Island volcanic edifice. Buck et al. (1981) classified all the lavas on the island as Tutaretare Rhyolite Formation and all pyroclastic deposits on the island as the Oira Pyroclastite Formation, both formations constituting the Mayor Island Group. Houghton et al. (1985) named the Ruru Pass Tephra on the island without defining its stratigraphic status, but the stratigraphy of this and other eruptives on the island is currently under review (Houghton & Wilson 1986; B. F. Houghton pers. comm. 1988).

New Zealand Journal of Geology and Geophysics, 1990, Vol. 33

Table 1 The formal stratigraphic name of each tephra formation and members, as proposed here, followed by the abbreviation used for the tephra; references to where the name was first defined or modified; references to isopach maps; the location of the type section (grid references based on the national 1:50 000 map series); the error-weighted mean age and pooled error (old half life basis), and the number of ages (N) in the mean, based on the data in Appendix 1. Provisional estimated ages (italics) are given where no dates are available, or where dates are uncertain. The tephra formations derived from each volcanic centre are listed in stratigraphic order.

Formation and members	Symbol	Ref 1	Ref 2	Type section	Age	N	
Okataina Volcanic Centre					10061-		
Tarawera Tephra	Tr		~ .		1886AD		
Rotomahana Mud	Trm	13	24	V16/128206*			
Tarawera Scoria	Trs	13,5	24,32,28,5,40	V16/185257*	770 1 00	15	D . 6
Kaharoa Tephra	Ka	5,13,32	24,32,26,5	V16/174198* ^b	770 ± 20	15	References
Rotokawau Tephra	Rw	13,32	32,2	U15/054336	3440 ± 70	1 21	1 Baumgart 1954
Whakatane Tephra	Wk Ma	27,32 13,32	24,32	V17/322989	4830 ± 20	21	2 Beanland 1981, 1982
Mamaku Tephra	Rm	^{13,52} 32	24,32,20 24,32,20	U16/945315	7250 ± 20 8530 ± 10	45	3 Berry 1928
Rotoma Tephra	Wh	32	24,32,20	V16/141154 V16/141150	11850 ± 60	12	4 Campbell 1986
Waiohau Tephra	Rr	13,22,32	24,32,20	U16/018316	11830 ± 60 13080 ± 50	12	5 Cole 1970a
Rotorua Tephra	Rk	32	24,32,20	V16/141150	13080 ± 30 14700 ± 110	3	
Rerewhakaaitu Tephra	Ok	33	24,32,20	U16/065306	c. 18 000	5	6 Cowie 1964
Okareka Tephra	Te	33	24,55	V16/252179	21100 ± 320	2	7 Froggatt 1981b
Te Rere Tephra	Om	16	16	V15/351361	21100 ± 320 28 220 ± 630	3	8 Froggatt 1981c
Omataroa Tephra		16	16			3	9 Froggatt 1981d
Awakeri Tephra	Aw	33, 16	16	V16/351361	c. <i>29 000</i> 27 730 ± 350 ^d	10	10 Froggatt & Solloway 1986
Mangaone Tephra	Mn Hu	16	16	V15/368461		2	
Hauparu Tephra	Tm	16	16	V15/396548	35 870 ± 1270 c. <i>39 000</i>	2	11 Froggatt et al. 1988
Te Mahoe Tephra Makatu Tanhan	Im Mk	16	16	V15/396548	c. 39 000 c. 41 000		12 Geddes et al. 1981
Maketu Tephra	Ta	16	16	V15/396548	c. 43 000		13 Grange 1929, 1937
Tahuna Tephra Nasaratu Tenhra	Ta Nt	16	16	V16/410256			14 Healy 1964b
Ngamotu Tephra	INC	10	10	V16/410256	c. 45 000		15 Hogg & McCraw 1983
Earthquake Flat Tephra†	D.	23	#	U16/833119*	c. 50 000		
Rifle Range Ash*	Ra		#	· · · · · · · · · · · · · · · · · · ·			16 Howorth 1975
Earthquake Flat Ig.	Ea	38,39,23	Ħ	U16/955279*	50.000		17 Lloyd 1972
Rotoiti Tephra	D .	22.40	04 00 10 41	W15 K02510	c. 50 000		18 Lowe 1986
Rotoehu Ash	Re	33,42	24,33,19,41	W15/623519			19 Lowe 1987
Rotoiti Ignimbrite	Rb	39,42	#	U15/051631			20 Lowe 1988a
Matahi Scoria	Mb	25	#	V16/355390*			20 Lowe 1988a 21 Lowe et al. 1980
Taupo Volcanic Centre							22 Naim 1980
Taupo Tephra	Тр	1,14,9	24,26	U18/798728	1850 ± 10	41	23 Nairn & Kohn 1973
Taupo Ignimbrite	Tpi	1 3,9	32	U18/792617 ^c			
Taupo Lapilli	TI	1	1,32,35	U18/798728			
Rotongaio Ash	Rn	1	1,37,32,44	U18/798728			25 Pullar & Nairn 1972
Hatepe Ash	Hta	9	37,32	U18/798728			26 Pullar et al. 1977
Hatepe Lapilli	Htl	1	1,32,36	U18/798728			27 Taylor 1953
Mapara Tephra	Мр	34	34	U18/798728	2160 ± 25	6	28 Thomas 1888
Whakaipo Tephra	Wo	34	34,20	U18/798728	2685 ± 20	13	29 Self 1983
Waimihia Tephra	Wm	14	24,32	U18/899574*	3280 ± 20	17	-
Waimihia Ignimbrite	Wmi	39		U18/899574			
Waimihia Lapilli	Wml	1	1,24,32,34,36	U18/899574			31 Vucetich & Howorth 1976b
Hinemaiaia Tephra	Hm	8,34,18	8,34,18	U18/743531	4510 ± 20	12	32 Vucetich & Pullar 1964
Motutere Tephra	Mt	8	8	U18/743531	5430 ± 60	3	33 Vucetich & Pullar 1969
Opepe Tephra	Ор	34	34,20	U18/798728	9050 ± 40	10	34 Vucetich & Pullar 1973
Poronui Tephra	Po	34	34	U18/839535	9810 ± 50	3	
Karapiti Tephra	Kp	7,34	7,10,34	U18/798728	9820 ± 80	4	
Kawakawa Tephra	Kk	30	4,24,33,	T17/619830	22 590 ± 230	4§	36 Walker 1981a
Oruanui Ignimbrite	Ou	33,39,11	29,43,44	T17/619830			37 Walker 1981b
Aokautere Ash	Ao	6,30	6,12	T24/343877			38 Grindley 1959, 1960
Poihipi Tephra	Р	31	#	T17/658890	c. 23 000		39 Healy et al. 1964
Okaia Tephra	0	31	31	T17/619830	c. 23 500		40 Walker et al. 1984
Tihoi Tephra	Ti	31	31	T17/575881	c. 46 000		
Waihora Tephra	w	31	#	T17/678866	c. 47 000		41 Walker 1979
Otake Tephra	Oe	31	#	T17/678866	c. 48 000		42 Naim 1972
Maroa Volcanic Centre							43 Self & Healy 1987
Puketarata Tephra	Pk	17,34	17	U17/753902	c.14 000		44 Self & Sparks 1978
Tuhua Volcanic Centre*‡							
Tuhua Tephra	Tu	15,21	15,20	T12/636403	6130 ± 30	10	
Unnamed tephra	14	20	#	112/030403	c. 14 500	10	

* Defined here

No isopach map published

t May derive from Kapenga Volcanic Centre (see text)

ŧ Tephra layers occuring on mainland North Island

Strictly outside Okataina Volcanic Centre-hypostratotype (reference section) defined at a

U15/071442 (Beanland 1981, 1982)

b Hypostratotype defined at V16/175197

Hypostratotype defined at U15/799535 ¢

Ref1 References where first named or formally defined or redefined

Ref2

References where isopach maps published Mean of the 4 charcoal dates in Wilson et al. (1988). Pooled mean of all 16 dates is 20 685±100 yr ş

d See text

At the northern end of TVZ, a group of andesitic to rhyolitic eruptives, including White and Whale Islands, Mt Edgecumbe, and Manawahe, exhibit close affinities to one another and were informally grouped into the "Bay of Plenty volcanic centre" by Duncan (1970). Insufficient is currently known about these volcanoes and their relationships to other areas to justify formalising this term.

Named volcanic centres and the standard abbreviations we propose are shown in Table 2. Cole (1979) and Wilson et al. (1984) have presented the location and extent of each centre, and Fig. 1 is based on their maps.

The post-50 000 year tephra formations erupted from each centre are listed in Table 1. There are no known eruptives from Mangakino in this time range (Wilson et al. 1984). Those from Okataina can be further subdivided according to the site of eruption. Tarawera, Kaharoa, Waiohau, Rerewhakaaitu, and Okareka Tephras are from Tarawera (Vucetich & Pullar 1964; Cole 1970a); the remainder are from the Haroharo complex (Nairn 1981, 1986) to the north.

Detailed mapping of individual tephra layers, supplemented by distal stratigraphic and chronological studies (Vucetich & Pullar 1964, 1969, 1973; Vucetich & Howorth 1976a, b; Howorth 1975; Howorth & Topping 1979; Froggatt 1981a, c; Froggatt & Solloway 1986; Lowe 1986, 1988a, b) has enabled the interbedded stratigraphy of 38 formations from the 4 silicic volcanic centres to be elucidated (Fig. 2).

HIERARCHY OF STRATIGRAPHIC NAMES

The definition of a tephra formation allows for the establishment of members within that formation. With most tephra formations this is unnecessary, but five formations (Taupo Tephra, Waimihia Tephra, Kawakawa Tephra, Rotoiti Tephra, and Earthquake Flat Tephra) have such widespread or distinctive units that definition of members has been found useful. This is especially the case for formations with both airfall and ignimbrite components. Other formations may eventually be subdivided where necessary.

At a broader level, a stratigraphic term encompassing several tephra formations has value. Healy (1964b) proposed an Arawa Group comprising Taupo Subgroup and Rotorua Subgroup (Vucetich & Pullar 1964). This subdivision has not found widespread favour, perhaps being too general for practical use. A useful amalgamation into four subgroups (Fig. 3) delineated by the widespread formations at c. 22 500 and c. 50 000 years ago was proposed by Howorth (1981) and we recommend adoption of this proposal. Formations within each group are shown in Fig. 2. All the formations derived from one eruptive centre (e.g., Okataina, Taupo) are deemed to constitute a group. For example, the Lake Taupo Group

Table 2 Named volcanic centres, the standard abbreviations wepropose, and the authors of the names.

Volcanic centre	Abbreviation	Reference
Tuhua Volcanic Centre	(TuVC)	(this paper)
Rotorua Volcanic Centre	(RVC)	(Cole 1970b)
Okataina Volcanic Centre	(OVC)	(Healy 1962)
Kapenga Volcanic Centre	(KVC)	(Rogan 1982)
Maroa Volcanic Centre	(MVĆ)	(Healy 1962)
Taupo Volcanic Centre	(TVC)	(Healy 1964a)
Mangakino Volcanic Centre	(MkVC)	(Wilson et al. 1984)
Tongariro Volcanic Centre	(TgVC)	(Healy 1964a)

presently comprises Taupo Subgroup, Kawakawa Tephra Formation, and Okaia Subgroup; the Okataina Group comprises Rotorua Subgroup, Mangaone Subgroup, and Rotoiti Tephra Formation.

DEFINITIONS OF NEW NAMES

1. Taupo Tephra Formation comprising Taupo Ignimbrite, Taupo Lapilli, Rotongaio Ash, Hatepe Ash, and Hatepe Lapilli members

Taupo Pumice Formation and some members were named by Grange (1931), but formalised by Baumgart (1954) with the type section at the "Terraces pumice pit". Further members were named by Healy (1964b) and Froggatt (1981d). We consider "pumice" inappropriate for use as a name for a formation of such diverse character and grain size, so we propose Taupo Tephra Formation, as suggested by Froggatt (1979). The member names and their stratigraphic relationships are shown in Fig. 2.

2. Waimihia Tephra Formation comprising Waimihia Lapilli and Waimihia Ignimbrite members

Waimihia Lapilli is a widespread airfall tephra layer, composed of coarse pumice lapilli in the Taupo area, and was first named by Baumgart (1954). Healy (1964b) recognised the multiple nature of the eruption and proposed Waimihia Formation with Waimihia Lapilli as a member. Vucetich & Pullar (1964) recognised the presence of a typically thin fine ash unit above the lapilli, and they referred to the two units as Wm1 and Wm2, respectively. Later, Vucetich & Pullar (1973) recognised the upper ash unit (Wm1) as part of an unwelded ignimbrite of restricted distribution and included it within their Waimihia Formation.

We propose the establishment of Waimihia Tephra Formation, composed of two members: a lower Waimihia Lapilli (Wml) and an upper Waimihia Ignimbrite (Wmi). The type section and type area for "Waimihia Formation" were defined by Healy (1964b) at Iwitahi, east of Taupo. Vucetich & Pullar (1973) designated the De Bretts section, Taupo, as a reference section because the Iwitahi section had been partly destroyed. Within the type area near Iwitahi, a section at Mere Rd (U18/899574*) is suggested as a new type (neostratotype). An additional reference section for Waimihia Ignimbrite is proposed on State Highway 1 at Hatepe Hill (U18/735567).

Waimihia Lapilli is characterised by grey-banded pumice, oxidised lithic clasts, and rare basaltic clasts in the upper half of the deposit. None of these types of clasts appear to be present in the overlying ignimbrite unit.

3. Kawakawa Tephra Formation comprising Oruanui Ignimbrite and Aokautere Ash members

The ongoing nomenclature difficulties of the c. 22 500 year old eruptive products from Taupo require clarification. These products were originally named Oruanui Formation, comprising Oruanui Ash and Oruanui Breccia (Vucetich & Pullar 1969). The recognition of miscorrelations, and the inclusion of an older unit (Okaia Tephra) at the base,

^{*}Grid references are based on the metric 1:50 000 topographical map series NZMS 260.

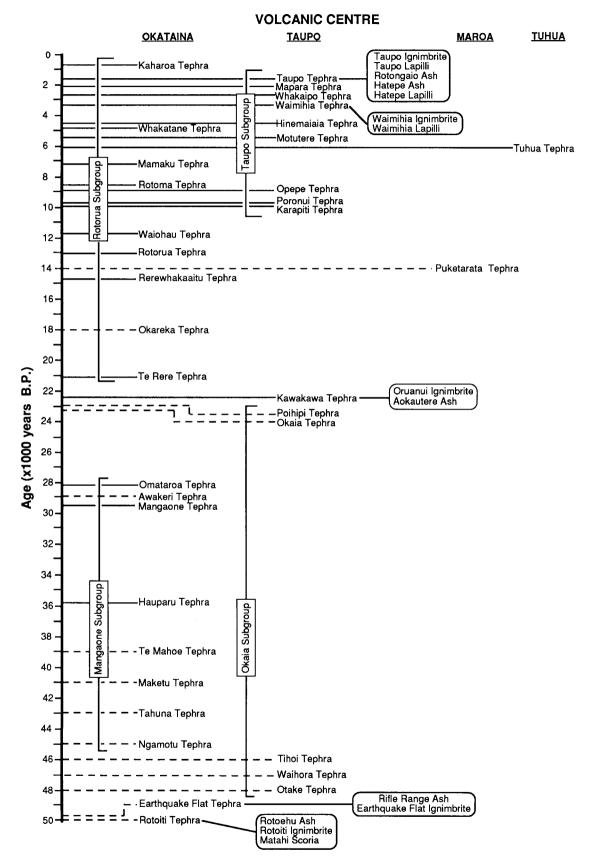


Fig. 2 The stratigraphic relationships of the named late Quaternary silicic tephras in time and space, showing the interfingering of tephras from four volcanic centres and the grouping of some into four subgroups (Taupo, Okaia, Rotorua, and Mangaone). Solid tie lines to the chronology scale are based on mean conventional radiocarbon ages from Table 1 and Appendix 1. Dashed lines indicate no date is available; a relative chronology is suggested from stratigraphic relationships and the degree of paleosol development on undated tephras. The age of c. 50 000 years given for the oldest formation (Rotoiti) is assumed, as discussed in the text.

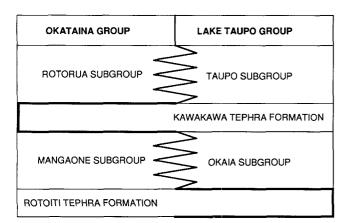


Fig. 3 The hierarchy of group and subgroup names for late Quaternary silicic tephra deposits as proposed by Howorth (1981). The zig-zag line separating the subgroups indicates the spatial and stratigraphic interfingering of the tephra formations. The individual formations within each subgroup are shown in Fig. 2.

led Vucetich & Howorth (1976a) to the definition of Kawakawa Tephra Formation containing three members: Aokautere Ash, Scinde Island Ash, and Oruanui Breccia. Oruanui Breccia was defined by Vucetich & Pullar (1969), Scinde Island Ash was named by Berry (1928) for a layer of ash found at Napier and containing in part accretionary lapilli (for which he coined the term "chalazoidites"), and Aokautere Ash was defined by Cowie (1964) as a bedded unit of fine and coarse white ash, without appreciable accretionary lapilli, at Aokautere, near Palmerston North. Vucetich & Howorth (1976a) correlated parts of the two distinctively different distal ash layers with near-source layers of similar character at the type section on Whangamata Road, and argued that the original names should become member names.

An unwelded ignimbrite, described from drill cores at Wairakei, was named Wairakei Breccia by Grindley (1965). Vucetich & Pullar (1969), in naming Oruanui Breccia, recognised its similarity of stratigraphic position and appearance to Wairakei Breccia. Correlation between the two is now widely accepted (e.g., Self 1983; Wilson 1988). In a detailed volcanological study of the c. 22 500 yr B.P. deposits, Self (1983) referred informally to the whole formation as the Wairakei formation, and has more recently argued for its formalisation (Self & Healy 1987). The term Wairakei is probably invalid for both Wairakei Breccia and Wairakei Formation (Froggatt et al. 1988), having been previously applied to Wairakei Ignimbrite (Beck & Robertson 1955). Wilson (1988) has proposed that Oruanui Formation should be reinstated as the sole formation name, but it, too, has prior usage.

We propose to retain Kawakawa Tephra Formation, as defined by Vucetich & Howorth (1976a) at the Whangamata Road type section (T17/619830). We have renamed Oruanui Breccia as Oruanui Ignimbrite, and propose that Aokautere Ash as defined by Cowie (1964) be used for all the airfall ash within Kawakawa Tephra Formation, including the lower airfall beds at the Kawakawa Tephra type section on WhangamataRoad. This usage is analogous to Rotoehu Ash within Rotoiti Tephra Formation.

Oruanui Ignimbrite is invariably overlain by an erosion surface, in turn overlain by Mokai Sand (Vucetich & Pullar 1969). Mokai Sand is a sequence of aeolian deposits derived from Kawakawa Tephra, which range from coarse well-bedded pumice sands to fine tephric dunes with massive to fine, undulose bedding.

4. Earthquake Flat Tephra Formation comprising Earthquake Flat Ignimbrite and Rifle Range Ash members

Earthquake Flat Breccia Formation has been described and mapped by Grindley (1960), Healy et al. (1964), and Nairn & Kohn (1973). It consists of unwelded, crystalrich pyroclastic flow units with interbedded and mantling biotite-rich airfall tephra units. It was erupted from explosion craters centred on Earthquake Flat to the south of Rotorua. Nairn & Kohn (1973) demonstrated that the Earthquake Flat eruptions immediately followed those of the Rotoiti Tephra Formation (see below), and thus ascribed them the same age. The widespread, biotite-rich, pinkish-grey airfall tephra units were informally named "Rifle Range ash" by Nairn & Kohn (1973).

In line with our proposals for nomenclature of the Rotoiti tephra deposits, we propose that the Earthquake Flat Breccia Formation be renamed Earthquake Flat Tephra Formation, and comprise two members: Earthquake Flat Ignimbrite for the pyroclastic flow deposits and Rifle Range Ash for the intercalated and mantling airfall tephra deposits. Type sections have not previously been designated for these units so we propose the reference sections described in Nairn & Kohn (1973, p. 272) on State Highway 5, 4 km south of Hemo Gorge (U16/955279) for Earthquake Flat Ignimbrite, and at Maleme Road (p. 274) (U16/833119) for Rifle Range Ash.

5. Rotoiti Tephra Formation comprising Matahi Scoria, Rotoehu Ash, and Rotoiti Ignimbrite members

The widespread pyroclastic unit from Okataina, with an estimated age of c. 50 000 years or more (see Chronology section below), has an initial basaltic airfall phase (Matahi Basaltic Tephra: Pullar & Nairn 1972), arhyolitic airfall phase (Rotoehu Ash), and an unwelded ignimbrite (Rotoiti Breccia), which were all grouped under Rotoiti Breccia Formation by Vucetich & Pullar (1969). The relationships between the tworhyolitic phases are complex with the airfall ash found both beneath, and interbedded within, the ignimbrite (Nairn 1972; Walker 1979). We consider the term "Rotoiti Breccia Formation" as inappropriate for such a diverse formation, not withstanding the undesirability of a grain-shape term. Rotoiti Tephra Formation is here proposed, comprising three members: Matahi Scoria, Rotoehu Ash, and Rotoiti Ignimbrite.

TYPE SECTIONS

To formally define a formation, a single outcrop or section must be designated the type section (holotype), and should be supported by a type area and perhaps reference sections (Hedberg 1976). Many of the current names of tephra formations originated before formal stratigraphic nomenclature was formulated. Some formation names have not been formalised and still do not have type sections.

Type sections for all formations, including those newly proposed, are compiled in Table 1. The 10 new sections defined here (Table 3) are based on previously described stratigraphic sections. In addition, a new reference section for Taupo Tephra Formation in support of the type (hypostratotype: Hedberg 1976) is defined on State Highway 1 south of Taupo at U15/799535. Similarly a hypostratotype for Kaharoa Tephra Formation is defined on Crater Road near Mt Tarawera at V16/175197.

OTHER NAMED LATE QUATERNARY TEPHRA DEPOSITS

In addition to the tephra formations listed in Table 1, several other late Quaternary tephra layers, other than those from Tongariro and Taranaki, have been named. Four of these are basalts, and although limited in distribution, have stratigraphic value where found. Other named tephra layers have proved to be correlatives of known tephra formations and the status of these names is discussed here.

Basaltic tephras

(1) Tarawera Tephra Formation

The material erupted from Tarawera on 10 June 1886 was first named Tarawera Ash and Lapilli by Grange (1929, 1931, 1937) for the coarse basaltic tephra, and Rotomahana Mud (Grange 1929; Nairn 1979; Walker et al. 1984) for the phreatic ash. The former unit was renamed Tarawera Basalt (Cole 1970a) as a member of his Tarawera Formation. We propose a Tarawera Tephra Formation comprising **Tarawera Scoria** (Trs) (to replace both Tarawera Ash and Lapilli and Tarawera Basalt) and **Rotomahana Mud** (Trm) members. The term Tarawera Tephra was first proposed by Gregg (1961).

Neither of the members of Tarawera Tephra Formation have been designated type sections. For Tarawera Scoria, we propose the adoption of the section through the southeast wall of the Tarawera Crater (Chasm) opposite Wahanga dome (V16/185257) as the type section. This corresponds to the section described at "Reference site A" by Walker et al. (1984, p. 64), and is near to that described by Cole (1970a, p. 100). The type area is designated as the entire chasm on Mt Tarawera. Proximal deposits of Rotomahana Mud are well exposed in cliffs around the shore of Lake Rotomahana, and we propose the type section to be at V16/128206, a lakeshore cliff section described at "Reference site A" by Nairn (1979, p. 366). The type area extends in a circle of 3 km radius centred on the type section.

 Table 3
 The locations of the 10 newly defined type sections.

 Detailed section descriptions have been published in the references cited.

Tephra Formation	Type section location*	Reference
Tarawera Tephra		
Rotomahana Mud	V16/128206	Naim (1979)
Tarawera Scoria	V16/185257	Walker et al. (1984)
Rangitoto Tephra	R10/808928	Brothers & Golson (1959)
Kaharoa Tephra	V16/174198	Cole (1970a)
Waimihia Tephra	U18/798728	
Rotokawau Tephra	U15/053436	Vucetich & Pullar (1964)
Ohakune Tephra	S20/176974	Houghton & Hackett (1984)
Earthquake Flat Tephra		
Rifle Range Ash	U16/833119	Naim & Kohn (1973)
Earthquake Flat Ig.	U16/955279	Naim & Kohn (1973)
Rotoiti Tephra		
Matahi Scoria	V16/355390	Pullar & Nairn (1972)

*(NZMS 260 grid ref.).

(2) Rotokawau Tephra Formation

A basaltic airfall tephra, originally named Rotokawau Ash, lies between Whakatane and Kaharoa Tephra (Vucetich & Pullar 1964) and was erupted from a line of craters northeast of Rotorua (Beanland 1981, 1982). It is immediately overlain by a Taupo-derived tephra at Holdens Bay (Kennedy et al. 1978), either Whakaipo or Waimihia Tephra (Green 1987). A single reliable radiocarbon age on the formation is 3440 ± 70 yr B.P. (NZ7356: N. M. Kennedy pers. comm. 1988). Other ages are given in Appendix 1. We propose to rationalise the name to **Rotokawau Tephra Formation**, and suggest that the reference section of Beanland (1981) at U15/071442 is adopted as a hypostratotype in support of the section given in Vucetich & Pullar (1964).

(3) Matahi Scoria

The basal member of Rotoiti Tephra Formation, named by Pullar & Nairn (1972), is a basaltic airfall tephra of limited thickness and distribution. We propose altering the name to **Matahi Scoria**. A type section was not designated so we propose that the reference section at V16/355390 (=N77/ 161093 of Pullar & Nairn 1972, p. 448) becomes the type section.

(4) Rangitoto Tephra Formation

Rangitoto Tephra was erupted from Rangitoto Island (Auckland) around 750 years ago (NZ220, 750 ± 50 and NZ222, 770 ± 50 yr B.P.; Grant-Taylor & Rafter 1963). It was informally named Rangitoto Ash by Taylor (1953) and later described by Brothers & Golson (1959). We propose the formal definition of the tephra as **Rangitoto Tephra** Formation (Ro)with the type at the section at "Pig Bay" (in Administration Bay) on Motutapu Island (R10/808928) as described by Brothers & Golson (1959, p. 570).

Ohakune Tephra Formation

A tephra layer of limited areal extent originated from craters near Ohakune (Houghton & Hackett 1984). Near-vent exposures of tuff-ring-forming tephra are found in several large quarries, with distal material in several road exposures. The tephra is a two-pyroxene, olivine, low-silica andesite with SiO, about 56% (Houghton & Hackett 1984). We propose the name Ohakune Tephra Formation (Oh), with the type section in a road cutting at S20/176974 (see Houghton & Hackett 1984, fig. 9), where the stratigraphic position of the tephra beneath Kawakawa Tephra is clear. The type area is within 1 km of this site. Reference sections are located in the quarries west of Ohakune (at S20/175976; S20/174979), as described by Houghton & Hackett (1984). The tephra layer lies within loess overlying fluvial sediment and is closely overlain by Kawakawa Tephra. A single radiocarbon age on charred twigs collected from the coarse lapilli layer in the middle of the formation (the middle Pa+Pb bed of Houghton & Hackett 1984) is 31 500 \pm 300 yr B.P. (WK1260: P. C. Froggatt & D. J. Lowe unpubl. data 1988).

Loisels Pumice

Loisels Pumice (Wellman 1962) is a distinctive, dense, greywhite banded rhyolitic pumice found in beach deposits throughout the east coast of New Zealand and on Chatham Island (B.G. McFadgen pers. comm. 1987). Its identity and relationship to some other sea-rafted pumices was discussed

by Pullar et al. (1977). Loisels Pumice has proved particularly valuable for coastline and archaeological studies (e.g., McFadgen 1985). The pumice is highly vesicular with a honeycomb texture resembling a foam, and has a mineralogy of hypersthene-augite-labradorite. The appearance of the pumice and its glass chemistry (P. C. Froggatt unpubl. data) are unlike anything known from New Zealand volcanoes, and strongly resemble pumice erupted from some Pacific islands (e.g., Metis Shoal: Melson et al. 1970) or the pumice washed ashore from the South Sandwich Island eruption in 1962 (Coombs & Landis 1966). The exact source of Loisels Pumice is unknown, but is probably in the Pacific, judging from ocean current patterns. Radiocarbon ages on material associated with Loisels Pumice are listed in Appendix 1. The ages form two clusters with pooled mean ages of 610 ± 20 yr B.P. and 1250 ± 40 yr B.P. The older cluster of ages are on shell associated with a drift pumice of Loisels-like appearance and chemistry (P.C. Froggatt unpubl. data) from Tokerau Beach, Northland (N. Osborne pers. comm. 1989) suggesting there may be an older drift event. Sea-rafted pumices can be moved again by the sea after their initial deposition on the shore. They should be regarded as less reliable time markers than airfall tephra layers (Pullar et al. 1977).

Status of other named tephra deposits

(1) Ohui Ash, Papanetu Tephra

Ohui Ash (Wellman 1962) found at Ohui Beach on the Coromandel Peninsula is sea-rafted Taupo pumice (Pullar et al. 1977). Papanetu Tephra is distal Karapiti Tephra (Froggatt & Solloway 1986). Both names have lapsed.

(2) Leigh Pumice

Leigh Pumice is a sea-rafted pumice deposit named by Wellman (1962). Because the original type section is in doubt, Pullar et al. (1977) were unable to examine it in relation to other sea-rafted pumices. It thus has uncertain status and no value as a stratigraphic marker, and the name should lapse.

(3) Stent Ash

The Stent Ash (Wellman 1962) is a 1 cm thick, pink fine ash found within estuarine and peaty muds at the mouth of the Onaero River (Neall & Alloway 1986) and other coastal sections in north Taranaki. A sample collected from the central 5 mm of the layer, and sieved to exclude grains coarser than 0.25 mm, has a hypersthene-dominant mineralogy and a glass chemistry typical of a Holocene, Taupo-source tephra (P. C. Froggatt unpubl. data). It is probably Waimihia Tephra, based on stratigraphic grounds and ¹⁴C ages on peat from beneath the tephra at several localities in Taranaki (Alloway et al. 1988; B. V. Alloway and D. J. Lowe unpubl. data).

(4) Named soil-forming "Ash" deposits

A number of terms, including "Tirau Ash", "Mairoa Ash", Waihi Ash", "Gisborne Ash", and "Whangamata Ash", were introduced during reconnaissance soil mapping in central North Island (Grange 1931; New Zealand Soil Bureau 1954). These terms were used to describe the composite parent materials of tephra-derived soils in different regions and are essentially geographical "hold-all" names, not geological formations. Subsequent studies on the parent materials of these soils have identified many of the constituent tephra formations (Pullar & Birrell 1973c; Hogg & McCraw 1983; Lowe 1988a). We thus recommend that the early terms be discontinued to avoid confusion, and suggest that soils with composite tephra parent materials are described instead, for example, as "post-Kawakawa Tephra deposits" or "post 20 000 year old tephra deposits including ... Tephra", as appropriate.

FERROMAGNESIAN MINERAL ASSEMBLAGES

Determination of the dominant ferromagnesian mineral assemblage is the best initial laboratory guide to tephra identification. The relative abundance of each mineral species, determined by point counting, is useful for identification, but experience has shown that the presence (but not absence) of key minerals is of most value. We stress, however, that positive correlations of tephra can commonly only be made using multiple criteria (e.g., Froggatt 1983; Lowe 1988a, b).

The observed mineral assemblages fall into six main groups, first recognised in part by Ewart (1963, 1968, 1971) and developed by Kohn (1973). These assemblages are listed below, with mineral species in usual order of abundance, followed by minerals that may or may not be present in small amounts (\pm). The diagnostic or dominant mineral in each assemblage is underlined:

- (1) <u>hypersthene</u> \pm augite \pm hornblende
- (2) hypersthene + hornblende \pm augite
- (3) hypersthene + hornblende + biotite
- (4) hypersthene + $\underline{cummingtonite} \pm hornblende$
- (5) hypersthene + augite \pm hornblende
- (6) <u>aegirine</u> \pm riebeckite \pm aenigmatite \pm olivine \pm tuhualite

Assemblage 4 (cummingtonite-bearing) is restricted to eruptives from the Haroharo complex within Okataina Volcanic Centre (Ewart 1968), and assemblage 6 is restricted to pyroclastics from Tuhua Volcanic Centre, Mayor Island (Marshall 1932, 1936; Buck et al. 1981; Hogg & McCraw 1983; Lowe 1988a). Tephra layers classified into each group are listed in Table 4. Some tephra formations show a change in mineral assemblage stratigraphically through the deposit and these have multiple listings.

CHRONOLOGY OF THE LATE QUATERNARY TEPHRA FORMATIONS

Age and date

We have used the term "age" rather than "date" for the chronology produced by the isotopic radiocarbon dating method, as recommended by Colman et al. (1987). A "date" is a specific point in time, whereas an "age" is an interval of time measured back from the present. Colman et al. (1987) and the North American Commission (1985) recommended the use of ka and Ma (thousand and million years ago, respectively) for ages, and the use of yr **B.P.** for conventional radiocarbon ages measured from A.D. 1950.

Half-lives, secular and reservoir corrections

All ages listed and discussed here are "conventional ages" based on the old (Libby) half life of 5568 ± 30 years, rather than the "new" half life of 5730 ± 40 years. We have not converted any ages to new half life, and have determined calendar ages for only two tephra formations. The recent detailed curves and tables of Stuiver & Pearson (1986) or Stuiver & Becker (1986) can be used for this purpose. The ages obtained on shell samples (marine carbonates) have not been corrected for the reservoir effect.

Numerous ages have become available for nearly all the tephra layers erupted within the range of radiocarbon dating (until recently about 40 000 years). Some of these ages have later proved unreliable for dating a specific tephra. In some cases the tephra identity or exact sample location is in doubt; in others, multiple ages or stratigraphic successions of ages suggest that any single age could be anomalous. The availability of paired ages from above and below a tephra, especially in peat or organic lake sediment, has considerably strengthened the available chronology (e.g., Howorth et al. 1980; Lowe et al. 1980; Lowe 1988a).

Published ages are scattered through many papers, some not dealing primarily with tephrostratigraphy, and it is often difficult to locate all ages for a tephra layer and to assess their value. We have listed in Appendix 1 (updated copies are available from either author) details of all the ages available to us (total 384) for each tephra, together with an assessment of the value of each age for dating that tephra. We have then selected the most reliable ages and calculated the pooled mean, weighted by the standard deviation, on each age determination (Ward & Wilson 1978; Gupta & Polach 1985), assuming the ages are normally distributed. The weighted mean (Ap) and the standard error of the mean of the ages (se_{Ap}) are calculated from the individual ages (A_i) and associated errors (se_i) thus:

 $\begin{array}{ll} Ap &= \sum (A_{i} / se_{i}^{2}) / \sum 1 / se_{i}^{2} \\ se_{Ap} &= (\sum 1 / se_{i}^{2})^{-1/2} \end{array}$

Table 1 lists these mean ages and pooled errors and the number of reliable ages used to calculate the mean. Several tephra formations still require further ages, and some of the older tephras from both Okataina and Taupo remain undated (Table 1 and Appendix 1).

AGES OF SOME TEPHRA FORMATIONS

Kaharoa Tephra Formation

The 15 available ages on Kaharoa Tephra (Appendix 1) range from 610 ± 60 yr B.P. (NZ1765) to 980 ± 60 yr B.P.

(NZ7472). The ages are on wood, charcoal, and peat within and bracketing the tephra but there are no consistent differences in age between sample type, nor is there any evidence for a prolonged hiatus in the eruption of Kaharoa Tephra (I. A. Nairn pers. comm. 1984). Consequently, we have treated all ages as valid and representing the same event. They give a pooled mean age of 770 ± 20 years. This age converts to a calibrated (calendar years) date of A.D. 1270 with a 10 range of A.D. 1264–1275 (Stuiver & Pearson 1986).

Taupo Tephra Formation

Healy (1964b) was the first to calculate a weighted mean age for Taupo Tephra of 1819 ± 17 yr B.P., updated to 1820 ± 80 yr B.P. by Froggatt (1981d). Wilson et al. (1980) claimed literary evidence for this eruption in Roman and Chinese records. Objections were raised by Froggatt (1981e), and Stothers & Rampino (1983) demonstrated errors in the translation of the Roman text used by Wilson et al. (1980) and suggested that the literary reference was to a supernova. There is no evidence that the Chinese reference was to an eruption and, furthermore, it is not dated with sufficient accuracy to constrain the age of Taupo Tephra.

Calendar age

The mean radiocarbon age for Taupo Tephra (Table 1) is 1850 \pm 10 yr B.P., based on 41 ages. Conversion of this age to a calendar age is problematic, falling in a period of rapid ¹⁴C fluctuation (multiple curve intercepts) and low curve probability (large error). The curves of Stuiver & Pearson (1986), based on a 20 year tree-ring series, convert this age to A.D. 214 with a 1 σ range of A.D.138–230 after the 30 year hemisphere correction has been subtracted (Stuiver & Pearson 1986). Curve matching of a sequence of ¹⁴C ages on tree rings from trees killed by the Taupo eruption (J. G. Palmer pers. comm. 1988) gives a date of A.D. 177 (1 σ range of A.D. 166–195).

Palmer et al. (1988) deduced that the eruption occurred in mid-late summer, because trees destroyed by the eruption do not show an outer latewood ring. This is substantiated by

Table 4 The dominant ferromagnesian mineral assemblages for the late Quaternary silicic tephra deposits, listed by mineral assemblage (see text), volcanic centre, and relative age.

ASSEMBLAGE 1	ASSEMBLAGE 2	ASSEMBLAGE 3	ASSEMBLAGE 4	ASSEMBLAGE 5	ASSEMBLAGE 6
Hyp \pm aug \pm hbl	Hyp + hbl \pm aug	Hyp + hbl + bio	Hyp + cgt \pm hbl	Hyp + $aug \pm hbl$	Aegirine
Taupo VC	Okataina VC	Okataina VC	Okataina VC	Okataina VC	Tuhua VC
Taupo VC Taupo (all members) Mapara Whakaipo Waimihia (both members) Hinemaiaia Motutere Opepe Poronui	Mamaku Waiohau Rotorua (lower part) Te Rere Omatoroa Awakeri Mangaone Tahuna Ngamotu	Kaharoa Rotorua (top part) Rerewhakaaitu Okareka Earthquake Flat Rotoiti (top part)	Whakatane Rotoma Rotoiti (all members except Matahi)	Hauparu Te Mahoe Maketu	Tuhua
Karapiti	Taupo VC	Maroa VC			
	Kawakawa (both members) Poihipi Okaia Tihoi Waihora Otake	Puketarata			

Clarkson et al. (1988) who examined the forest preserved at Pureora and found fruits and seeds only from early fruiting species.

Kawakawa Tephra Formation

Kawakawa Tephra is the most widespread late Quaternary tephra studied and provides an important timeplane near the nadir of the Last Stadial of the Last Glacial (Vucetich & Pullar 1969). All radiocarbon ages summarised by Vucetich & Howorth (1976a), two ages from Buller Gorge (Campbell 1986; Wilson et al. 1988), and four accelerator massspectrometry ages on pretreated samples from Westland (Hammond et al. 1988a, b) are on organic sediment associated with the tephra layer. These 12 ages have a pooled mean of 20 220 \pm 115 years. Early attempts to date directly the eruption using charred material in Oruanui Ignimbrite have produced four sets of near-infinite ages: >45 000 years, resampled to give 32 320 \pm 1750 yr B.P. (NZ3128 and NZ3211; S. Self pers. comm. 1980); >42100 yr B.P., and >45 600 yr B.P. (NZ4575 and NZ4576; Froggatt 1982a). On detailed examination the material sampled in both cases was found to be charred lignite rather than extant vegetation and thus does not date any eruptive event. A fission-track age on glass sampled from North Canterbury is 20300 ± 7100 years old (Kohn 1979).

Recently, Wilson et al. (1988) dated four samples of fine charcoal fragments from within the deposit itself (Oruanui Ignimbrite), giving a pooled mean of 22 590 \pm 230 yr B.P. This age is significantly older (c. 1290 years) than the optimal pair of ages (21 300 \pm 450 yr B.P.) from Buller Gorge (Campbell 1986). Charcoal is considered to give more reliable ages than peat as the charcoal is formed by the eruptive event itself and is generally less susceptible to contamination. The discrepancy in ages may be due to different sample pretreatment procedures, but the peat and sediment may be mildly contaminated by younger carbon. The effects of various pretreatments on contaminants in samples of organic silt and peat associated with Kawakawa Tephra in Westland are currently being assessed (Hammond et al. 1988a, b).

Mangaone, Awakeri, and Omataroa Tephra Formations

The pooled mean age of 27730 ± 350 yr B.P. for Mangaone Tephra is not significantly different from that of 28220 ± 630 yr B.P. for Omataroa Tephra (Table 1). However, Awakeri Tephra and Mangaone Tephra both underlie Omataroa Tephra stratigraphically (Howorth 1975), and hence are older. If all the ages on Omataroa Tephra are accepted as valid, then some of the younger ages obtained on Mangaone Tephra (i.e. those less than c. 27 000 years ago) are likely to be underestimates. On this basis, Mangaone Tephra may have been erupted c. 30 000 years ago.

Rotoiti Tephra Formation

Several radiocarbon ages on this formation are close to, or beyond, the current limits of the dating technique (McGlone et al. 1984). As several infinite ages have been returned (Appendix 1) and must be regarded as valid ages, the finite ages of c. 42 000-44 000 years are likely to be minima. The preservation of Rotoehu Ash at Mahia Peninsula on a marinecut surface thought to be 54 000 \pm 4 000 years old (K. R. Berryman pers. comm. 1985), and between the second and third loess units on Mamaku Plateau (Kennedy 1987), suggests an age of c. $50\ 000-55\ 000$ years for this formation, by comparison with the oxygen isotope stage chronology.

A U-Th disequilibrium age on whole sample and titanomagnetite separates is c. 71 000 \pm 6000 years (Ota et al. 1989b). However, this age should be regarded as provisional because the isochron from which the age is derived (Ota et al. 1989, fig. 4) is essentially based on only one data point, that of the whole rock sample. The other three points are on the equilibrium line or within two standard deviations of it (C. H. Hendy pers. comm 1989). In addition, analyses of at least two mineral species, and of ²³⁴U as well as ²³⁸U, are desirable in dating pyroclastic deposits such as Rotoehu Ash (Hendy et al. 1980). Other dating methods, such as accelerator mass-spectrometry, low-level scintillation spectrometry, and thermoluminescence dating have not yet produced definitive ages for this formation.

DISTRIBUTION OF LATE QUATERNARY TEPHRA

Isopach maps showing the thickness distribution of most late Quaternary tephras are available. Many of the earlier maps were recompiled and updated by Pullar & Birrell (1973a, b). Maps based on new data for some of the Taupo and Rotorua subgroup tephras and Tuhua Tephra have been published (Walker 1980, 1981 a, b; Froggatt 1981b; Froggatt & Solloway 1986; Hogg & McCraw 1983; Lowe 1988a). Table 1 lists the references to published isopach maps for each tephra. The distribution of some of the late Pleistocene tephras from Taupo is poorly known because of inadequate exposure.

Nearly all the isopach maps show a dominant easterly distribution pattern with only a few tephra deposits (Ka, Mk, Re) having a more northerly aspect. Despite the large volume and widespread distribution of Rotoehu Ash, it has not yet been located south of Taihape and is rarely seen south of Taupo. Its occurrence in Northland is documented in Lowe (1987).

Kawakawa Tephra is the most widely distributed late Quaternary tephra in New Zealand, being found throughout most of the country and in many offshore cores. It is well preserved on the West Coast (Mew et al.1986), Marlborough (Campbell 1979, 1986), Canterbury (Kohn 1979), and Chatham Island where it was locally named Rekohu Ash (Hay et al. 1970; Mildenhall 1976). Glass shards attributed to Kawakawa Tephra have been isolated from loess near Timaru (Eden & Froggatt 1988) and Southland (McIntosh et al. 1988).

ERUPTED VOLUMES OF LATE QUATERNARY TEPHRA

Methods of calculating erupted volumes vary considerably, but all are approximations based on extrapolations of assumed relationships of thickness or volume distribution. All methods require a reliable isopach map from which variations of thickness and volume with distance or area can be calculated. Approximate volumes of many of the late Quaternary tephra deposits (Pullar & Birrell 1973a; Vucetich & Pullar 1973; Howorth 1975; Vucetich & Howorth 1976b) were first calculated from the circular isopach formula of Cole & Stephenson (1972) and are certainly underestimates. A review of methods and a consistent set of calculations were presented by Froggatt (1982b). Other recent calculations, based on a **Table 5** The volume of airfall tephra, ignimbrite, and lava (extrusives) produced during each eruptive episode. Asterisks indicate volumes are estimates only and are not based on calculations from isopach maps or other reliable thickness data. Blank values show that extrusive bodies or ignimbrite have not yet been positively identified for that eruptive episode, or an estimate is currently difficult to determine. Erupted volumes have been converted to magma volumes using densities for silicic airfall tephra, unwelded ignimbrite, basaltic tephra, silicic lava, and silicic magma of 1.0, 1.25, 2.0, 2.3, and 2.3 Mg/m³, respectively.

		Volum	e (km ³)	
Formation & members	Airfall	Ignimbrite	Lava	Magma
Okataina Volcanic Centr Tarawera Tephra	·e			
Rotomahana Mud	<1			
Tarawera Scoria	2			1.5
Kaharoa	5		2.5 0.5	4.0
Rotokawau	0.7			125
Whakatane Mamaku	10 6		9 15	13.5 17.5
Rotoma	12			7.0
Waiohau	18		4	12
Rotorua	7		2 4 1 2 5 8	4.0
Rerewhakaaitu	7		2	5.0
Okareka	8		5	8.5
Te Rere	6* 16	5	ð	11.5
Omataroa Awakeri	2	5		10 1.0
Mangaone	16	6		10
Hauparu	10	Ŭ		4.5
Te Mahoe	0.3			0.1
Maketu	15			6.5
Tahuna	2*			1
Ngamotu Forthauska Elet Tembra	2			1
Earthquake Flat Tephra Rifle Range Ash	2*			1
Earthquake Flat Ig.	-	5*		2.7
Rotoiti Tephra	91	150		120.5
Rotoehu Ash	90			40
Rotoiti Ignimbrite		150		80
Matahi Scoria	1*	1//	40	0.5
Total for Okataina	238	166	49	242.8
Taupo Volcanic Centre		-		
Taupo Tephra	17.5	70	0.2	45.5
Taupo Ignimbrite	12	70		38 5
Taupo Lapilli Rotongaio Ash				0.5
Hatepe Ash	2.5			1.0
Hatepe Lapilli	1 2.5 2 2 2 14			1
Mapara	2			1
Whakaipo	2	-		1
Waimihia Tephra	14	5 5		9.0
Waimihia Ignimbrite Waimihia Lapilli	14	5		3 6.0
Hinemaiaia	3		0.1	1.5
Motutere	ĩ		0.1	0.6
Орере	4			2.0
Poronui	3		0.5	2.0
Karapiti	2		0.5	1.5
Kawakawa Tephra	70	150		112
Oruanui Ignimbrite Aokautere Ash	70	150		82 30
Poihipi	1			0.5
Okaia				3
Tihoi	7 5 1			3.0
Waihora				0.5
Otake	2			1
Total for Taupo:	134.5	225	1.4	184.1
Maroa Volcanic Centre Puketarata	1*		0.1	1
Tuhua Volcanic Centre	-			-
Tuhua voicanic Centre Tuhua	1*			1
Total for Taupo Volcani	c Zone			
(in the last c. 50 000 years		391	50.5	428.9
	·· - ··-			

variety of methods, are given in Froggatt (1981a, c), Froggatt & Solloway (1986), Houghton & Wilson (1986), Nairn (1981, 1986), Walker (1979, 1980, 1981a), Walker et al. (1984), and Wilson et al. (1986).

The current best estimates of volume of airfall tephra, ignimbrite, and lava for each formation, from the references listed above, are given in Table 5 and have also been converted to equivalent magma volumes. The list indicates that the two largest late Quaternary eruptions, volumetrically, were the Kawakawa and Rotoiti eruptive episodes. The total volume of rhyolitic material erupted from TVZ within the last c. 50 000 years is estimated at about 370 km³ of airfall tephra, 390 km³ of ignimbrite, and 50 km³ of extrusive lava, together equivalent to about 430 km³ of magma.

ACKNOWLEDGMENTS

The field knowledge and enthusiasm of Colin Vucetich and the late Alan Pullar has introduced many people to the complexities and value of tephrostratigraphy, and we are grateful for their guidance and for many discussions about tephra nomenclature. I. A. Nairn, R. M. Briggs, J. D. McCraw, and G. P. L. Walker provided useful comments or information for aspects of this work, and J. G. Palmer provided unpublished ¹⁴C ages on his tree-ring chronology on Taupo Tephra. The assistance of Martin Manning and the New Zealand Radiocarbon Dating Laboratory, DSIR, and Alan Hogg of the University of Waikato Radiocarbon Dating Laboratory, have been invaluable in compiling the ages. We are especially grateful to the people listed in the footnote to Appendix 1 for permission to quote their unpublished ages.

REFERENCES

- Abrahamson, L. 1987: Aspects of late Quaternary stratigraphy and evolution of some coastal embayments on the east Coromandel Peninsula. Unpublished M.Sc. thesis, lodged in the Library, University of Waikato, Hamilton.
- Alloway, B. V.; Neall, V. E.; Vucetich, C. G. 1988: Localised volcanic loess deposits in north Taranaki, North Island, New Zealand. Pp. 1-6 in: Eden, D. N.; Furkert, R. J. ed. Loess: its distribution, geology and soils. Rotterdam, A. A. Balkema.
- Atkinson, I. A. E. 1973: Soils of Taita Experimental Station. New Zealand Soil Bureau bulletin 32.
- Baumgart, I. L. 1954: Some ash showers of the central North Island. New Zealand journal of science and technology B35: 456-467.
- Baumgart, I. L.; Healy, J. 1956: Recent volcanicity at Taupo, New _ Zealand. Proceedings, 8th Pacific science congress 2: 113-125.
- Beanland, S. L. 1981: The Rotokawau eruption. Unpublished B.Sc (Hons) thesis, lodged in the Library, University of Otago, Dunedin.
- Beck, A. C.; Robertson, E. I. 1955: Geology and geophysics. In: Grange, L. I. comp. Geothermal steam for power in New Zealand. Department of Scientific and Industrial Research bulletin 117: 15-19.
- Berry, J. A. 1928: The volcanic ash deposits of Scinde Island with special reference to the pumice bodies called chalazoidites. *Transactions of the New Zealand Institute 59*: 571-608.
- Berryman, K. R.; Hull, A. G. 1984: Guidebook to the North Island scientific excursions. International symposium on recent crustal movements of the Pacific region, Wellington, New Zealand. Royal Society of New Zealand miscellaneous publication series 8.

- Brothers, R. N.; Golson, J. 1959: Geological and archaeological interpretation of a section in Rangitoto ash on Motutapu Island, Auckland. New Zealand journal of geology and geophysics 2: 569-577.
- Buck, M. D.; Briggs, R. M.; Nelson, C. S. 1981: Pyroclastic deposits and volcanic history of Mayor Island. New Zealand journal of geology and geophysics 24: 449–467.
- Campbell, I. B. 1979: Occurrence of Kawakawa Tephranear Nelson. New Zealand journal of science 22: 133-136.
- Cas, R.; Wright, J. V. 1987: Volcanic successions ancient and modern. London, Allen and Unwin.
- Clarkson, B. R.; Patel, R. N.; Clarkson, B. D. 1988: Composition and structure of forest overwhelmed at Pureora, central North Island, New Zealand, during the Taupo eruption (c. A.D. 130). Journal of the Royal Society of New Zealand 18: 417-436.
- Cole, J. W. 1970a: Description and correlation of Holocene volcanic formations in the Tarawera-Rerewhakaaitu region. *Transactions of the Royal Society of New Zealand earth sciences* 8: 93-108.

- Cole, J. W.; Stephenson, T. M. 1972: Calculation of the volume of a tephra deposit. In: Cole, J. W. ed. Distribution of high alumina basalts in the Taupo Volcanic Zone. Geology Department Victoria University of Wellington publication 1: 13-15.
- Colman, S. M.; Pierce, K. L.; Birkeland, P. W. 1987: Suggested terminology for Quaternary dating methods. *Quaternary* research 28: 314–319.
- Coombs, D. S.; Landis, C. A. 1966: Pumice from the South Sandwich eruption of March 1962 reaches New Zealand. Nature 209: 289-290.
- Cowie, J. D. 1964: Aokautere Ash in the Manawatu District, New Zealand. New Zealand journal of geology and geophysics 7: 67-77.
- Dahm, J. 1987: Letter. Soil and water 23: 26.
- de Lange, P. J. 1989: Late Quaternary development of the Kopouatai peat bog, Hauraki Lowlands, and some palaeoenvironmental inferences. Unpublished M.Sc thesis, lodged in the Library, University of Waikato, Hamilton.
- Duncan, A. R. 1970: The petrology and petrochemistry of andesite and dacite volcanoes in eastern Bay of Plenty, New Zealand. Unpublished Ph.D. thesis, lodged in the Library, Victoria University of Wellington, Wellington.
- Eden, D. N.; Froggatt, P. C. 1988: Identification and significance of distal Aokautere Ash in three loess cores from eastern South Island, New Zealand. Pp. 47-58 in: Eden, D. N.; Furkert, R. J. ed. Loess, its distribution, geology and soils. Rotterdam, A. A. Balkema.
- Ewart, A. 1963: Petrology and petrogenesis of the Quaternary pumice ash in the Taupo area, New Zealand. Journal of petrology 4: 392-431.

- Fisher, R. V. 1968: Puu Hou littoral cones, Hawaii. Geologische Rundschau 57: 837-864.
- Fisher, R. V.; Schmincke, H.-U. 1984: Pyroclastic rocks. Berlin, Springer-Verlag.
- Froggatt, P. C. 1979: Stratigraphy, eruptive nature and source of Taupo Tephra Formation. Abstracts, Geological Society of New Zealand annual conference, Nelson. Geological Society of New Zealand miscellaneous publication 26.

- Froggatt, P. C.; Rogers, G. M. 1990: Tephrostratigraphy of high altitude peat bogs along the axial ranges, North Island New Zealand. New Zealand journal of geology and geophysics 33 111-124 (this issue).
- Froggatt, P. C.; Solloway, G. J. 1986: Correlation of Papanetu Tephra to Karapiti Tephra, central North Island, New Zealand. New Zealand journal of geology and geophysics 29:303-313.
- Froggatt, P. C.; Vucetich, C. G.; Howorth, R. 1988: Wairakei Formation. Letter to the Editor. New Zealand journal of geology and geophysics 31: 391-392.
- Gage, M. ed. 1977: Stratigraphic nomenclature in the New Zealand Quaternary. Wellington. National Committee for Quaternary Research, Royal Society of New Zealand.
- Geddes, A. M.; Neall, V. E.; Stewart, R. B. 1981: Recent discovery of the westernmost occurrences of Aokautere Ash and implications for the late Quaternary in Taranaki. In: Howorth, R. et al. ed. Proceedings of tephra workshop. Geology Department Victoria University of Wellington publication 20: 29-32.
- Goh, K. M.; Pullar, W. A. 1977: Radiocarbon dating techniques for tephras in central North Island, New Zealand. Geoderma 18: 265–278.
- Grange, L. I. 1929: A classification of soils of Rotorua County. New Zealand journal of science and technology 11: 219-228.

New Zealand Journal of Geology and Geophysics, 1990, Vol. 33

- Grant-Taylor, T. L.; Rafter, T. A. 1963: New Zealand natural radiocarbon measurements I-V. Radiocarbon 5: 118-162.
 ——1971: New Zealand radiocarbon age measurements -6. New Zealand journal of geology and geophysics 14: 364-402.
- Green, R. C. 1963: Summaries of sites at Opito, Sarah's Gully, and Great Mercury Island. New Zealand Archaeological Association newsletter 6: 57-69.
- Green, B.E. 1987: Weathering of buried paleosols on late Quaternary rhyolitic tephras, Rotorua region, New Zealand. Unpublished M.Sc thesis, lodged in the Library, University of Waikato, Hamilton.
- Green, J. D.; Lowe, D. J. 1985: Stratigraphy and development of c. 17 000 year old Lake Maratoto, North Island, New Zealand, with some inferences about postglacial climatic change. New Zealand journal of geology and geophysics 28:675-699.
- Gregg, D. R. 1961: Stratigraphic nomenclature of late Quaternary pyroclastic deposits in New Zealand. New Zealand journal of geology and geophysics 4: 44–47.
- Grindley, G. W. 1959: Sheet N85-Waiotapu. Geological map of New Zealand 1:63 360. Wellington, Department of Scientific and Industrial Research.

- Gupta, S. K.; Polach, H. A. 1985: Radiocarbon dating procedures at ANU. Handbook, Radiocarbon Laboratory. Canberra, Australian National University.
- Hammond, A. P.; Goh, K. M.; Manning, M. 1988a: Chemical pretreatments for improving radiocarbon dates of organic silts and peats in a gley podzol environment, Graham's Terrace, north Westland. Proceedings New Zealand Society of Soil Science conference Nelson. Pp. 20-21.
- Hammond, A. P.; Tonkin, P. J.; Manning, M. 1988b: Interpretation of radiocarbon dates with respect to a tephra age control in a gley podzol and associated peats: Graham's Terrace, North Westland. Proceedings, New Zealand Society of Soil Science conference, Nelson. Pp. 22-23.
- Harris, W. F. 1963: Paleoecological evidence from pollen and spores. New Zealand Ecological Society proceedings 10: 38-44.
- Hay, R. F.; Mutch, A. R.; Watters, W. A. 1970: Geology of the Chatham Islands. New Zealand Geological Survey bulletin 83.
- Healy, J. 1961: Geology and geothermal energy in Taupo Volcanic Zone, New Zealand. Paper G/28. U.N. Conference on New Sources of Energy, Rome.

- Healy, J.; Schofield, J. C.; Thompson, B. N. 1964: Sheet 5— Rotorua. Geological map of New Zealand 1:250 000. Wellington, Department of Scientific and Industrial Research.
- Hedberg, H. D. ed. 1976: International stratigraphic guide. New York, John Wiley & Sons.
- Hendy, C. H.; Hogg, A. G.; Van der Lee, T. 1980: The prospects of dating tephra and other pyroclastics from the central North Island by uranium-thorium disequilibra. Abstract, Tephra Workshop, Victoria University of Wellington, June 30 – July 1, 1980.

- Hogg, A. G.; McCraw, J. D. 1983: Late Quaternary tephras of Coromandel Peninsula, North Island, New Zealand: a mixed peralkaline and calcalkaline tephra sequence. New Zealand journal of geology and geophysics 26: 163-187.
- Hogg, A. G.; Lowe, D. J.; Hendy, C. H. 1987: University of Waikato radiocarbon dates 1. Radiocarbon 29: 263-301.
- Houghton, B. F.; Hackett, W. R. 1984: Strombolian and phreatomagmatic deposits of Ohakune craters, Ruapehu, New Zealand: a complex interaction between external water and rising basaltic magma. Journal of volcanology and geothermal research 21: 207-231.
- Houghton, B. F.; Wilson, C. J. N. 1986: Explosive rhyolitic volcanism: the case studies of Mayor Island and Taupo volcanoes. New Zealand Geological Survey record 12: 33-100.
- Houghton, B. F.; Wilson, C. J. N.; Weaver, S. D. 1985: The Ruru Pass Tephra, a peralkaline airfall tuff from Mayor Island. New Zealand Geological Survey record 8: 30-36.
- Howorth, R. 1975: New formations of late Pleistocene tephras from the Okataina Volcanic Centre, New Zealand. New Zealand journal of geology and geophysics 18: 683-712.
- Howorth, R.; Ross, A. R. 1981: Holocene tephrostratigraphy and chronology at Tiniroto, Cook County. In: Howorth, R. et al. ed. Proceedings of tephra workshop. Geology Department Victoria University of Wellington publication 20: 41-50.
- Howorth, R.; Topping, W. W. 1979: Rhyolitic late Pleistocene tephras to the south and west of Lake Taupo, New Zealand. New Zealand journal of geology and geophysics 22:759-762.
- Howorth, R.; Vucetich, C. G. 1976: The age of the Rotoiti Breccia Formation. Programme with abstracts, Geological Society of New Zealand annual conference, Hamilton. *Geological* Society of New Zealand miscellaneous publication 23.
- Howorth, R.; Froggatt, P. C.; Robertson, S. M. 1980: Late Quaternary volcanic ash stratigraphy of the Poukawa area, central Hawke's Bay, New Zealand. New Zealand journal of geology and geophysics 23: 487–491.
- Hull, A. G. 1986: Pre-A.D. 1931 tectonic subsidence of Ahuriri Lagoon, Napier, Hawke's Bay, New Zealand. New Zealand journal of geology and geophysics 29: 75-82.
- Kennedy, N. M. 1987: Day 8, Rotorua to Hamilton. Pp. 78-87 in: Milne, J. D. G. ed. Tour guide for international symposium on loess 14-21 February 1987, New Zealand. Wellington, Soil Bureau, Department of Scientific and Industrial Research.
- Kennedy, N. M.; Pullar, W. A.; Pain, C. F. 1978: Late Quaternary land surfaces and geomorphic changes in the Rotorua Basin, North Island, New Zealand. New Zealand journal of science 21: 249-264.
- Kohn, B. P. 1973: Studies of New Zealand Quaternary pyroclastic rocks. Unpublished Ph.D. thesis, lodged in the Library, Victoria University of Wellington, Wellington.
- Kohn, B. P.; Neall, V. E.; Stewart, R. B. 1981: Holocene tephrostratigraphy revisited at Tiniroto, North Island, New Zealand. In: Howorth, R. et al. ed. Proceedings of tephra workshop. Geology Department Victoria University of Wellington publication 20: 60-66.
- Leahy, A. 1974: Excavations at Hot Water Beach (N44/69), Coromandel Peninsula. Records of the Auckland Institute and Museum 13: 29-75.
- Lloyd, E. F. 1972: Geology and hot springs of Orakeikorako. New Zealand Geological Survey bulletin 85.

- Lowe, D. J. 1986: Revision of the age and stratigraphic relationships of Hinemaiaia Tephra and Whakatane Ash, North Island, New Zealand, using distal occurrences in organic deposits. New Zealand journal of geology and geophysics 29: 61-73.

- Lowe, D. J.; Green, J. D. 1987: Origins and development of the lakes. In: Viner, A. B. ed. Inland waters of New Zealand. New Zealand Department of Scientific and Industrial Research bulletin 241: 1-64.
- Lowe, D. J.; Hogg, A. G. 1986: Tephrostratigraphy and chronology of the Kaipo Lagoon, an 11,500 year-old montane peat bog in Urewera National Park, New Zealand. Journal of the Royal Society of New Zealand 16: 25-41.
- Lowe, D. J.; Hogg, A. G.; Green, J. D.; Boubée, J. A. T. 1980: Stratigraphy and chronology of late Quaternary tephras in Lake Maratoto, Hamilton, New Zealand. New Zealand journal of geology and geophysics 28: 481-485.
- Marshall, P. 1932: Notes on some volcanic rocks of the North Island, New Zealand. New Zealand journal of science and technology 13: 198–202.
- McFadgen, B. G. 1982: Dating New Zealand archaeology by radiocarbon. New Zealand journal of science 25: 379-392.
- McGlone, M.S. 1981: Forest fire following Holocene tephra fall. In: Howorth, R. et al. ed. Proceedings of tephra workshop. Geology Department Victoria University of Wellington publication 20: 80-86.
 - ——1983a: Holocene pollen diagrams, Lake Rotorua, North Island, New Zealand. Journal of the Royal Society of New Zealand 13: 53-65.
- McGlone, M. S.; Howorth, R.; Pullar, W. A. 1984: Late Pleistocene stratigraphy, vegetation and climate of the Bay of Plenty and Gisborne regions, New Zealand. New Zealand journal of geology and geophysics 27: 327-350.
- McIntosh, P. D.; Eden, D. N.; Burgham, S. J.; Froggatt, P. C. 1988: Volcanic glass and terrace chronology in the Gore region, Southland. Geological Society of New Zealand newsletter 80: 54-56.
- Melson, W. G.; Jarosewich, E.; Lundquist, C. A. 1970: Eruption of Metis Shoal, Tonga, 1967–1968: description and petrology. Smithsonian contributions to the earth sciences 4: 1–18.
- Mew, G.; Hunt, J. L.; Froggatt, P. C.; Eden, D. N.; Jackson, R. J. 1986: An occurrence of Kawakawa Tephra from the Grey River valley, South Island, New Zealand. New Zealand journal of geology and geophysics 29: 315–322.

- Mildenhall, D. C. 1976: Exotic pollen rain on the Chatham Islands during the late Pleistocene. New Zealand journal of geology and geophysics 19: 327-333.
- Nairn, I. A. 1972: Rotoehu Ash and the Rotoiti Breccia Formation, Taupo Volcanic Zone, New Zealand. New Zealand journal of geology and geophysics 15: 251-261.
- Nairn, I. A.; Kohn, B. P. 1973: Relation of the Earthquake Flat Breccia to the Rotoiti Breccia, central North Island, New Zealand. New Zealand journal of geology and geophysics 16: 269-279.
- Neall, V. E. 1972: Tephrochronology and tephrostratigraphy of western Taranaki (N108–109), New Zealand. New Zealand journal of geology and geophysics 15: 507–557.
- Neall, V. E.; Alloway, B. V. 1986: Quaternary volcaniclastics and volcanic hazards of Taranaki. New Zealand Geological Survey record 12: 101-137.
- New Zealand Soil Bureau 1954: General survey of the soils of North Island. New Zealand Soil Bureau bulletin 5.
- North American Commission 1985: North American stratigraphic code. Bulletin of American Association of Petroleum Geologists 67: 841–875.
- Ota, Y.; Beanland, S.; Berryman, K. R.; Nairn, I. A. 1988: The Matata Fault: active faulting at the northwestern margin of the Whakatane Graben, eastern Bay of Plenty. New Zealand Geological Survey record 35: 6-13.
- Ota, Y.; Omura, A.; Iwata, H. 1989: ²³⁰Th-²³⁸U age of Rotoehu Ash and its implications for marine terrace chronology of eastern Bay of Plenty, New Zealand. New Zealand journal of geology and geophysics 32: 327-331.
- Palmer, J. G.; Ogden, J.; Patel, R. N. 1988: A 426-year floating treering chronology from *Phyoclladus trichomanoides* buried by the Taupo eruption at Pureora, central North Island, New Zealand. *Journal of Royal Society of New Zealand 18*: 407-415.
- Pullar, W. A. 1970: Pumice ash beds and peaty deposits of archaeological significance near Lake Poukawa, Hawke's Bay. New Zealand journal of science 13: 687-705.
- Pullar, W. A.; Birrell, K. S. 1973a: Age and distribution of late Quaternary pyroclastic and associated cover deposits of the Rotorua and Taupo area, North Island, New Zealand. New Zealand Soil Survey report 1.
- Pullar, W. A.; Heine, J. C. 1971: Ages, inferred from ¹⁴C dates, of some tephra and other deposits from Rotorua, Taupo, Bay of Plenty, Gisborne, and Hawke's Bay districts. Pp. 118–138 *in*: Radiocarbon Users' Conference, 17–18 August 1971, Lower Hutt, New Zealand.

New Zealand Journal of Geology and Geophysics, 1990, Vol. 33

- Pullar, W. A.; Nairn, I. A. 1972: Matahi Basaltic Tephra Member, Rotoiti Breccia Formation. New Zealand journal of geology and geophysics 15: 446–450.
- Pullar, W. A.; Birrell, K. S.; Heine, J. C. 1973: Named tephras and tephra formations occurring in the central North Island, with notes on derived soils and buried paleosols. *New Zealand journal of geology and geophysics 16*: 497-518.
- Pullar, W. A.; Kohn, B. P.; Cox, J. E. 1977: Airfall Kaharoa Ash and Taupo Pumice, and sea-rafted Loisels Pumice, Taupo Pumice, and Leigh Pumice in northern and eastern parts of the North Island, New Zealand. New Zealand journal of geology and geophysics 20: 697–717.
- Rogan, A. M. 1982: A geophysical study of the Taupo Volcanic Zone, New Zealand. Journal of geophysical research 87: 4073–4088.
- Schmid, R. 1981: Descriptive nomenclature and classification of pyroclastic deposits and fragments: recommendations of the IUGS Subcommission on the systematics of igneous rocks. *Geology* 9: 41–43.
- Self, S. 1983: Large-scale phreatomagmatic silicic volcanism: a case study from New Zealand. Journal of volcanology and geothermal research 17: 433-469.
- Self, S.; Healy, J. 1987: Wairakei Formation, New Zealand: stratigraphy and correlation. New Zealand journal of geology and geophysics 30: 73-86.
- Self, S.; Sparks, R. S. J. 1978: Characteristics of widespread pyroclastic deposits formed by the interaction of silicic magma and water. *Bulletin volcanologique* 46: 196-212.
 - —ed. 1981: Tephra studies. Dordrecht, D. Riedel.
- Seward, D. 1976: Tephrostratigraphy of the marine sediments in the Wanganui Basin, New Zealand. New Zealand journal of geology and geophysics 19: 9-20.
- Sparks, R. S. J.; Walker, G. P. L. 1977: The significance of vitricenriched airfall ashes associated with crystal-enriched ignimbrites. *Journal of volcanology and geothermal research* 2: 329-341.
- Sparks, R. S. J.; Self, S.; Walker, G. P. L. 1973: Products of ignimbrite eruptions. *Geology 1*: 115-118.
- Stothers, R. B.; Rampino, M. R. 1983: Volcanic eruptions in the Mediterranean before A.D. 630 from written and archaeological sources. Journal of geophysical research 88: 6357-6371.
- Stuiver, M; Becker, B. 1986: High-precision decadal calibration of the radiocarbon time scale, A.D. 1950-2500 B.C. *Radiocarbon 28*: 863-910.
- Stuiver, M.; Pearson, G. W. 1986: High precision calibration of the radiocarbon time scale, A.D. 1950–500 B.C. Radiocarbon 28: 805–838.
- Taylor, N. H. 1953: The ecological significance of the central North Island ash showers—The soil pattern. Report of 2nd annual meeting New Zealand Ecological Society: 11–12.
- Thomas, A. P. W. 1888: Report on the eruption of Tarawera and Rotomahana, New Zealand. Wellington, Government Printer.
- Thompson, B.N. 1964: Quaternary volcanism of the Central Volcanic Region. New Zealand journal of geology and geophysics 7: 45-66.
- Thorarinsson, S. 1944: Tefrokronologiska studier på Island. Geografiska annaler 26: 1-217.
 - ——1954: The tephra-fall from Hekla on March 29th, 1947.
 Pp. 1–68 in: Einarsson, T.; Kjartansson, G.; Thorarinsson, S. ed. The eruption of Hekla 1947–1948, Part II, paper 3.
 Reykjavik, Societas Scientarium Islandica and the Museum of Natural History.

- Topping, W. W. 1973: Tephrostratigraphy and chronology of late Quaternary eruptives from the Tongariro Volcanic Centre, New Zealand. New Zealand journal of geology and geophysics 16: 397-424.
- Topping, W. W.; Kohn, B. P. 1973: Rhyolitic tephra marker beds in the Tongariro area, North Island, New Zealand. New Zealand journal of geology and geophysics 16: 375–395.
- Vucetich, C. G.; Howorth, R. 1976a: Proposed definition of the Kawakawa Tephra, the c. 20 000 yrs B.P. marker horizon in the New Zealand region. New Zealand journal of geology and geophysics 19: 43-50.
- Vucetich, C. G.; Pullar, W. A. 1964: Stratigraphy of Holocene ash in the Rotorua and Gisborne districts. Part 2. New Zealand Geological Survey bulletin 73: 43–63.

- Walker, G. P. L. 1979: A volcanic ash generated by explosions where ignimbrite entered the sea. *Nature 281*: 642-646.

- Walker, G. P. L.; Self, S.; Wilson, L. 1984: Tarawera 1886, New Zealand—a basaltic plinian eruption. Journal of volcanology and geothermal research 21: 61–78.
- Ward, G. K.; Wilson, S. R. 1978: Procedures for comparing and combining radiocarbon age determinations: a critique. Archaeometry 20: 19-31.
- Wellman, H. W. 1962: Holocene of the North Island of New Zealand: a coastal reconnaissance. Transactions of the Royal Society of New Zealand 1: 29–99.
- Wilson, C. J. N. 1988: Comment on Wairakei Formation, New Zealand: stratigraphy and correlation. New Zealand journal of geology and geophysics 33: 392–394.
- Wilson, C. J. N.; Ambraseys, N. N.; Bradley, J.; Walker, G. P. L. 1980: A new date for the Taupo eruption, New Zealand. *Nature* 288: 252-253.
- Wilson, C. J. N.; Rogan, A. M.; Smith, I. E. M.; Northey, D. J.; Nairn, I. A.; Houghton, B. F. 1984: Caldera volcances of the Taupo Volcanic Zone, New Zealand. Journal of geophysical research 89 (B10): 8463-8484.
- Wilson, C. J. N.; Houghton, B. F.; Lloyd, E. F. 1986: Volcanic history and evolution of the Maroa-Taupo area, central North Island. *In*: Smith, I. E. M. ed. Late Cenozoic volcanism in New Zealand. *Royal Society of New Zealand bulletin 23*: 194-223.
- Wilson, C. J. N.; Switsur, R. V.; Ward, A. P. 1988: A new ¹⁴C age for the Oruanui (Wairakei) eruption, New Zealand. *Geological* magazine 125: 297–300.
- Wright, J. V.; Smith, A. L.; Self, S. 1980: Working terminology of pyroclastic deposits. Journal of volcanology and geothermal research 8: 315-336.

APPENDIX 1

Radiocarbon ages relevent to New Zealand tephra layers

All the radiocarbon ages (in conventional years B.P.) known to us for each tephra formation are listed here. They are given in alphabetical order by tephra formation, then by laboratory and age number. NZ and NZA = gas counter and accelerator mass spectrometry, respectively, at New Zealand Radiocarbon Dating Laboratory, DSIR, Lower Hutt; WK = University of Waikato Radiocarbon Dating Laboratory, Hamilton; Q = Godwin Laboratory, University of Cambridge, Cambridge; GAK = Gakushuin University Radiocarbon Dating Laboratory, Tokyo. All ages are quoted as conventional ages based on the old half life (5568 \pm 30 years). The material dated is listed as \dot{C} = charcoal, CW = charred wood, E = extract from chemical treatment, H = humus, G = gyttya (lake sediment), M = organic mud, P = peat, Po = pollen, Pf = fine peat, Pr = roots in peat, R = residue from chemical treatment, S = soil, SE = seeds, SH = shell, W = wood. The reference where first quoted in full or discussed in relation to the tephra is numbered; the key is below. Our assessment of the value of the age is based on the type of material dated, proximity to the tephra, whether one of a paired set, and whether any doubt about the sample or tephra identity exists. The ratings are 1 = optimal; 2 = useful; 3 = little current value. Ages with ratings of 1 or 2 have been used to calculate error-weighted means which are listed in Table 1. For ages currently unpublished, the sources (pers. comm. 1988 and 1989) are lettered and listed below. In the Comments column, min = sample overlies tephra; max = sample underlies tephra.

- Buck et al. (1981) 1 Campbell (1986) 2 Cole (1970a) 3 Froggatt (1981c) 4 Froggatt (1981b) Froggatt & Solloway (1986) 5 6 7 Goh & Pullar (1977) 8 Grant-Taylor & Rafter (1963) Grant-Taylor & Rafter (1971) 9 10 Green (1987) Green & Lowe (1985) 12 Hay et al. (1970) 13 14 Healy (1964b) 15 Hogg & McCraw (1983) Hogg et al. (1987) 16 17 Howorth & Vucetich (1976) 18 Howorth & Ross (1981) 19 Howorth et al. (1980) Hull (1986) 20 Kennedy et al. (1978) 21
- Sources of unpublished dates:
- P. C. Froggatt a
- B. V. Alloway & D. J. Lowe b
- P. L. Singleton c
- D. J. Lowe & R. M. Newnham d

Kohn et al. (1981) 23 Lowe (1986) 25 Lowe (1988a) 26 Lowe & Green (1987) Lowe & Hogg (1986) Lowe et al. (1980) 27 28 29 McGlone (1983a) 30 McGlone (1981) 31 32 McGlone (1983b) McGlone et al. (1984) 33 Mildenhall (1976) 34 Nairn (1986) Nairn (1980) 35 36 Nairn (1981) 37 Pullar (1970) 38 Pullar et al. (1973) 39 Pullar & Heine (1971) 40 Topping & Kohn (1973) Vucetich & Howorth (1976a) 42

22

- 43 Vucetich & Pullar (1964)

 - N. M. Kennedy
 - D. J. Lowe & A. G. Hogg B. Clarkson
- g ĥ B. V. Alloway

e

f

i

N. Osborne

- Vucetich & Pullar (1969) 44 45 Vucetich & Pullar (1973) 46 Mew et al. (1986) Froggatt & Rogers (1990) 47 48 Wilson et al. (1988) 49 Green (1963) 50 Wellman (1962) 51 52 Leahy (1974) McFadgen (1982, 1985) 53 Houghton et al. (1985) 54 Berryman & Hull (1984) 55 Pullar et al. (1977) Pullar (1973) 56 57 Harris (1963) Houghton & Wilson (1986) 58 Ota et al. (1988) 59 60 Atkinson (1973) 61 Hammond et al. (1988a,b) Dahm (1987) 62 Abrahamson (1987) 63 64 de Lange (1989)
- J. Dahm & A. G. Hogg k I. A. Nairn 1

j

- G. N. A. Wigley & D. J. Lowe z
 - Radiocarbon files, Institute of
 - Nuclear Sciences, DSIR

Tephra formation	Lab	C14 Number	Age (yr B.P.)	Std deviation	Sample type	Assessed value	References	s Collector	Comments
Hauparu	NZ	3404	39,000	5600	М	2	32	Howorth	min (=R5031/1)
Hauparu	NZ	3405	35,700	1300	м	2	32	Howorth	max (=R5031/2)
Hinemaiaia	NZ	3160	4,220	60	Р	1	23	Neall	min
Hinemaiaia	NZ	3161	4,800	50	Р	1	23	Neall	max (min for Wk)
Hinemaiaia	NZ	4574	4,650	80	С	1	4,23	Froggatt	
Hinemaiaia	WK	496	4,490	60	Р	1	23,27,16	Rogers, Lowe, Hogg	max (also min for Wk)
Hinemaiaia	WK	497	4,530	60	Р	1	23,27,16	Rogers, Lowe, Hogg	max (also min for Wk)
Hinemaiaia	WK	541	4,490	70	GGGGP	1	23,16,25	Lowe, Green, Hendy	min
Hinemaiaia	WK	542	4,470	70	G	1	23,16,25	Lowe, Green, Hendy	max
Hinemaiaia	WK	662	4,260	140	G	1	23,16,25	Lowe, Hendy, Ouellet	max (also min for Wk)
Hinemaiaia	WK	663	3,510	150	G	1	16,25	Lowe, Hendy, Ouellet	min (?contaminated)
Hinemaiaia	WK	1336	4,580	120		3	64	de Lange, Crowcroft, Gilmour	min
Hinemaiaia	WK	1337	4,640	110	Р	1	64	de Lange, Crowcroft, Gilmour	max
Hinemaiaia	WK	1437	4,550	100	Р	1	1	Wigley, Edwards, et al.	min
Hinemaiaia	WK	1438	4,490	90	Ρ	1	1	Wigley, Edwards, et al.	max
Kaharoa	GAK	10446	920	100	S	2	59	Ota, Beanland, Berryman	soil overlying Ka
Kaharoa	NZ	10	930	70	w	1	8,43	Baumgart, Vucetich	max
Kaharoa	NZ	872	850	60	P	2	55,36	Cox	peat at Whangarei
Kaharoa	NZ	1765	610	60	С	2	55,36	Cox	charcoal in humus
Kaharoa	NZ	4304	950	60	С	1	36	Nairn	
Kaharoa	NZ	4803	680	85	Р	1	30,36	Lawlor & McGlone	min
Kaharoa	NZ	4804	650	60	Р	1	30,31,36	Lawlor & McGlone	max
Kaharoa	NZ	4991	670	60	C W C C	1	29,36,34	Nairn	
Kaharoa	NZ	4992	1,145	65	W	3	36	Naim	max (from large tree)
Kaharoa	NZ	4993	780	58	С	1	36	Nairn	
Kaharoa	NZ	5087	940	90	С	1	36,34	Nairn & Bishop	
Kaharoa	NZ	5993	630	60	С	1	36	Naim	
Kaharoa	NZ	7472	980	60	Р	1	59	Ota, Beanland, Berryman	max
Kaharoa	WK	1013	710	110	Ρ	1	d	Lowe, Newnham, Lowe	min
Kaharoa	WK	1014	680	130	Р	1	d	Lowe, Newnham, Lowe	max
Kaharoa	WK	1346	660	45	CW	1	f	Lowe	sample in block and ash flow

106

New Zealand Journal of Geology and Geophysics, 1990, Vol. 33

(Continued from previous page)

ormation	Lab	C14 Number	Age (yr B.P.)	Std deviation	type	Assessed value	References	Collector	Comments
(arapiti	NZ	1372	9,780	170	W	1	40,6	Topping	min
(arapiti	NZ	1373	9,700	210	P	1	40,6	Topping	min
arapiti arapiti	NZ NZ	1374 4847	9,790 9,910	160 130	W C	1	40,6 5,6	Topping Froncett	max
arapiti awakawa	NZ	4847	20,670	300	w	1	5,6 39,8,44,42	Froggatt Berry	
awakawa	NZ	330	20,000	500	P	ż	8,44,42	Deny	ìn Hinuera Fm alluvium
awakawa	NZ	373	39,600	2000	P	ž	8,13	Mutch	peat 0.3 m beneath Rekohu Ash
awakawa	NZ	520	20,500	430	Р	1	9,44,42,60	Pohlen, Harris	max
awakawa	NZ	521	21,900	510	Р	1	9,44,42,60	Grant-Taylor	min
awakawa	NZ	522	35,000	1700	Р	3	9,44,42		peat 1.5 m beneath tephra
awakawa	NZ	1056	19,850	310	W	1	39,36,42	Naim	- · · · · ·
wakawa	NZ	3103	20,100	400	Ŵ	1	33	.	Rekohu Ash
wakawa	NZ	3128	>45,000	0	P	3	z	Self	lignite?
wakawa	NZ	3211	32,320	1750	P	3	Z	Self	repeat of NZ3128
wakawa	NZ	4575	42,100	5190	ç	3 3	a	Froggatt	lignite?
wakawa	NZ NZ	4576 6557	>45,600 15,600	0 250	Ċ P	3	a 46	Froggatt Moar	lignite? contaminated
wakawa wakawa	NZ	7144	21,300	450	P	2	2	Campbell	max
wakawa	NZ	7373	21,300	460		2	48	Campbell	min
wakawa wakawa	NZA	239	15,204	239	Ē	2 3	40 61	Hammond	lipids from NZA262
wakawa wakawa	NZA	239	13,146	1428	Ē	3	61		umic acids from NZA262 (=4b in ref 61)
wakawa wakawa	NZA	240	14,458	364	Ē	3	61	Hammond	lipids from NZA262
wakawa	NZA	256	8,710	300	Ē	3	61	Hammond	hydrolysate from NZA262
wakawa wakawa	NZA	258	7,772	267	Ē	3	61	Hammond	fulvic acid from NZA262
wakawa	NZA	262	12,563	366	Р Ш Ш Ш Ш Р Ш Ш Ш Р	3	61	Hammond	untreated peat
wakawa	NZA	263	17,898	336	Ŕ	3 3	61	Hammond	residue from NZA262
wakawa	NZA	264	5,975	248	Ë	3	61	Hammond	HCI:HF pretreatment
wakawa	NZA	269	13,869	246	E E	3	61	Hammond	humic acid from NZA262
wakawa	NZA	270	17,517	462	Ř	š	61	Hammond	residue from NZA262
wakawa	NZA	271	12,523	170	R	3	61	Hammond	residue from NZA262
wakawa	NZA	287	12,079	344	Е	3	61	Hammond	hydrolysate from NZA262
wakawa	NZA	293	18,807	377	R	2	61	Hammond	HNO3 hydrolysis of NZA262
wakawa	NZA	328	11,870	122	P	3	61	Hammond	untreated (min)
wakawa	NZA	329	19,635	331	R	2	61	Hammond	HNO3 hydrolysis of NZA328
wakawa	NZA	335	15,240	510	Po	3	61	Hammond	pollen from NZA262
wakawa	NZA	371	15,540	240	R	3	61	Hammond	HNO3 hydrolysis
wakawa	NZA	372	20,670	470	R	2	61	Hammond	HNO3 hydrolysis
wakawa	NZA	373	19,170	480	R	2	61	Hammond	HNO3 hydrolysis
wakawa	Q	2665		450/430	Ç	1	48	Wilson	charcoal in ig.
wakawa	Q	2666		410/380	ç	1	48	Wilson	charcoal in ig.
wakawa	Q	2667		470/440	Ç	1	48	Wilson	charcoal in ig.
wakawa	Q	2668		580/540	ç	1	48	Wilson	charcoal in ig.
isels	NZ	354	640	50	000000	2	49,52	Golson	below Ls
isels	NZ	396	799	40	Š	2	50,52	Wellman	below Ls
pisels	NZ	631	520	40	C SH	3	50,52 50,52	Wellman Wellman	above Ls, but long-lived tree
pisels	NZ	632	700	60 50	SH W	2 3	50,52 50,52	Wellman	above Ls well below Ls
pisels visels	NZ	651 1206	930 450	50 40	SH		50,52 51,52	Leahy	above Ls
oisels Visels	NZ NZ	1296 1297	450 520	40 40	SH	2 2	51,52	Leahy	above Ls
oisels oisels	NZ	4726	973	40 40	SH	3	1,J2	Enright, Osborne	shell above Ls
oiseis oiseis	NZ	4720	1,233	28	SH	3	1	Enright, Osborne	shell below Ls
pisels	NZ	7291	1,030	60	SH	š	ł	Enright, Osborne	shell bank seaward of Ls
isels	NŽ	7560	1,360	45	SH	3	i	Enright, Osborne	shell below Ls
visels	NZ	7568	726	74	SH	3 3	i	Enright, Osborne	shell with Ls
pisels	NZ	7613	1,441	34	SH	3	i	Enright, Osborne	shell above Ls
isels	NZ	7648	2,383	54	SH	3	i	Enright, Osborne	shell with mixed Ls and Taupo Pumice
isels	NZ	7649	1,449	52	SH	3	i	Enright, Osborne	shell with Ls
isels	WK	874	780	165		2	63	Abrahamson	in paleosol below Ls
amaku	NZ	719	8,050	105	Ċ	2	39,9	Pullar	max (paleosol on Rm)
amaku	NZ	1152	7,050	77	C C C E	1	39,45,7	Pullar, Birrell	
amaku	NZ	1399	7,760	135	Е	2	7	Goh	extract of NZ1452
amaku	NZ	1400	7,730	135	R	2	7	Goh	residue of NZ1452
amaku	NZ	1401	6,430	135	RERCCCCP	2 2 2	7	Goh	extract of NZ1453
amaku	NZ	1402	7,410	135	R		7	Goh	residue of NZ1453
amaku	NZ	1452	8,030	150	Ç	1	7	Goh	
amaku	NZ	1453	7,440	150	ç	1	7	Goh	
amaku	NZ	4310	7,390	110	č	1	36	Naim	
amaku	NZ	4311	7,620	110	č	1	36	Nairn	
amaku	NZ	4542	6,340	100	Ř	3	a	Froggatt	Poukawa: ?contaminated
lamaku	NZ	4939	7,440	70	C C P	1	36	Naim	
amaku	NZ	5033	7,340	140	E E	1	36	Nairn Singleton	underlies ash
amaku	NZ	6741 7020	6,880	60 75	P	1 3	C C	Singleton	overlies ash; root contam.
amaku	NZ	7029	4,740 6,360	75 90	P	5	C C	Singleton Singleton	underlies ash; ?contam.
amaku	NZ NZ	7030 7039	4,640	90 70	P	23	c	Singleton	overlies ash; root contam.
amaku amaku	NZ	7039	4,640	70	P	3	c	Singleton	overlies ash; root contam?
amaku	NZ	7043	4,440 6,980	90	P	1	č	Singleton	underlies ash
amaku	NZ			90 80	ć	1	k	Naim	dates dome collapse ?
lamaku lamaku		7557	7,660 6,830	80 90	Ğ	1	12,16,25	Lowe, Green	min
CARTISINE	WK	227		90 90	G		16,25	Lowe, Green	contaminated
	WK	228	8,170	90 80	G	3 2 3 3	16,25	Lowe, Green	max
lamaku	WK	524	7,920	80 70	6	4		Lowe, Green	min (max for Tu; thick sample)
lamaku lamaku	11/12	525	5,800	150	č	3	16,25 16,25	Lowe, Green, Hendy	max (not adjacent to tephra)
lamaku lamaku lamaku	WK	E # 7				ت	10.20	Lono, Gloch, Holluy	
lamaku lamaku lamaku lamaku	WK	547	7,980		ĕ	ā		Lowe Hoga Lane	
lamaku lamaku lamaku lamaku lamaku	WK WK	562	5,850	70	G G P G	3	16	Lowe, Hogg, Lane	min (not adjacent to tephra)
lamaku lamaku lamaku lamaku lamaku lamaku	WK WK WK	562 570	5,850 7,200	70 120	G	3 1	16 16,25	Lowe, Green, Hendy	min (not adjacent to tephra) max
amaku amaku amaku amaku amaku	WK WK	562	5,850	70	P G G G	3	16		min (not adjacent to tephra) max min

(Continued on next page)

(Continued from previous page)

.

.

-

Tephra ormation	Lab	C14 Number	Age (yr B.P.)	Std deviation	type	Assessed value	References	Collector	Comments
Aamaku	WK	626	8,030	330	G	3		owe, Green, Boubee, Bergin	max (diluted; thick sample)
lamaku	WK	1269	7,060	120	P	1	64	de Lange, Champion	straddles tephra
lamaku	WK	1271	7,030	100	P	1		le Lange, Crowcroft, Gilmour	straddles tephra
angaone	NZ	866	21,900	400	c	3	39,9	Pullar, King	contaminated with roots
langaone	NZ	867	26,300	700	c	3	39,44	Pullar	contaminated with roots
langaone	NZ NZ	868	30,100	1300	ç	1	39,32	Pullar	
angaone	NZ	1132 1556	29,400 26,100	800 800	S C E	1	39,32 32	Pullar, Juene	
angaone angaone	NZ	1610	26,800	1400	Ĕ	1 2	32		extract of NZ1556
langaone	NZ	1611	25,000	700	Ř	2	32		residue of NZ1556
langaone	NZ	1812	35,300	2200	ö	1	32		103000 01 102 1050
langaone	NZ	1859	31,400	1500	č	ź	32		(=R4803)
langaone	NZ	1944	33,300	2000	č	ī	36,34	Naim	(=11-1000)
langaone	NZ	3406	27,000	1000	P	i	32	Howorth	(=R5031/3)
langaone	NZ	3407	31,000	2100	P	i	32	Howorth	(=R5031/4)
lapara	NZ	157	2,270	55	С	1	39,8,14	Healy	(
lapara	NZ	178	2,100	100	С	1	8,14	Healy	
lapara	NZ	1068	2,010	60	Р	1	9,45,39	Pullar	min
lapara	NZ	1069	2,150	50	P	1	9,45,39	Pullar	max
lapara	WΚ	1289	2,130	60	Р	2	64	de Lange, Rosenberg	straddles tephra; ident uncertain
lapara	WΚ	1503	2,230	50	Р	1	1	Wigley	max
otutere	NZ	3950	5,680	130	Р	1	4,19,23	Howorth	min
lotutere	NZ	3951	5,370	90	Р	1	4,19,23	Howorth	max
lotutere	NZ	4846	5,370	90	Ç	1	4,23	Froggatt	
hakune	WK	1260	31,500	300	С	1	a,f	Froggatt	charcoal in distal tephra
Dira	NZ	370	8,390	135	W	1	8,53	Brothers	underlies Ruru Pass Tephra (ref 58)
ira	WK	105	8,000	70	CW	1	1	Buck	underlies Ruru Pass Tephra (ref 58)
mataroa	NZ	876	27,900	850	c	1	9,39,32,44	Cox	see ref 32
mataroa	NZ	1136	29,700	1500	M	1	39,32	_Pullar, Kohn	min
mataroa	NZ	1147	27,900	1200	м	1	39,32	Pullar, Holmes	max
pepe	NZ	185	8,850	1000	ç		45,39,8,43,14		
pepe	WK	229	7,650	160	G G	3	16,25	Lowe, Green	compressed contam. sample
pepe	WK	230	9,370	210	G	1	12,16,25	Lowe, Green	max
pepe	WK	492	8,710	80	Р	1	27,16	Rogers, Lowe, Hogg	min
pepe	WK	520	8,930	100	9 9 9 9 9 9	1	16,25	Lowe, Green	max
pepe	WK	521	8,670	110	G	1	16,25	Lowe, Green	min
pepe	WK	707	8,700	130	G	1	16,25	Lowe, Hendy, Ouellet	max
pepe	WK	713	8,990	220	G	2	16,25	Lowe, Hendy, Ouellet	straddles tephra
pepe	WK	1000	7,910	70	P	3	47	Rogers	? too young
pepe	WK	1291	9,060	110	P	1	64	de Lange, Rosenberg	max
pepe	WK	1292	9,050	120	P	1	64	de Lange, Rosenberg	min
pepe	WK	1320	8,390	280	P	3	64	de Lange, Champion	straddles tephra (too young)
pepe	WK	1335	9,600	70	ç	1	a,f	Froggatt	sample in ignimbrite
oronui	WK	351	10,160	130	Pr	1	27,16	Rogers, Lowe, Hogg	max (coarse roots from WK352)
oronui	WK	352	9,960	90	Pf	1	27,16	Rogers, Lowe, Hogg	max (fine peat residue from WK351
oronui	WK NZ	491	9,560	80	P S	1	27,16	Rogers, Lowe, Hogg	min
uketarata	NZ	5391 220	9,180	170 50	<u>с</u> н	3	a 8	Froggatt	contaminated
angitoto	NZ	220	750 770	50 50	SH	2	о 8	Brothers	in sand beneath ash
langitoto lerewhakaaitu	NZ	716	14,700	200	0000	1		Brothers	completin Ok Teahan
lerewhakaaitu	NZ	1554	12,460	160	ž	3	9,44,39,45	Pullar	sample in Ok Tephra
Rerewhakaaitu	NZ	1607	12,400	160	ž	3	Z		
lerewhakaaitu	WK	237	14,700	220	Ğ	1	z 25,16,28	Lewo Groop	min
lerewhakaaitu	wĸ	238	14,700	180	Ğ	1	16,25,28,12	Lowe, Green	min
lotoiti	NZ	200	>43,900	0	мw	1	39,17	Lowe, Green Pullar, Kohn	max N70/540
lotoiti	NZ	ŏ	27.900	1500		3		Pullar	N78/542
lotoiti	NZ	ő	23,200	850	R E		17 17		residue of N77/553
lotoiti	NZ	ŏ	23,200 33,700	2300	Č	3 3		Pullar Pullar	extract of N77/553
lotoiti	NZ	643	>41,000	2300	w		17	Pullar	N77/553
lotoiti	NZ		×41,000 44,000	5300	P	2	9,39,32,44 9,39,32	Thompson	in underlying paleosol
lotoiti	NZ	877 1126	44,000 41,700	3500 3500	Ŵ	1		Cox	95% prob. >43,700
lotoiti	NZ	4303	41,700 >40,400	3500	č	1 2	39,32	Nairn	Main
otoiti	WK	4303	>40,400	0 0	č	2	36	Nairn Owe Green Boubee Bergin	Naim max (basvily diluted)
lotokawau	NZ	7356	>35,000	70	G P	1	16 l e	owe, Green, Boubee, Bergin Kennedy	max (heavily diluted)
otokawau	WK	939	2,260	70	P	3	10	Green, Lowe, Hogg	min (centern)
otokawau	WK	940	2,200	60	P	3			min (contam.)
otokawau	WK	940 941	2,820	60	P	3	10 10	Green, Lowe, Hogg Green, Lowe, Hogg	max (contam.)
otokawau	WK	941	2,300	60	P	3	10	Green, Lowe, Hogg Green, Lowe, Hogg	max (contam.)
otokawau	WK	942 943	2,700	130	Pr Pr	3	10	Green, Lowe, Hogg Green, Lowe, Hogg	min (contam.) rootlets from WK939-942
lotoma	NZ	943 719	2,380 8,050	105	C	2	9,39	Breen, Lowe, Hogg Pullar	min (in paleo on Rm - max for Ma)
lotoma	NZ	1199	7,330	235	ž	1		Funar	min (in paieo on run - max for Ma)
otoma	NZ				ž		39,38,45	Maim	
		1943	8,830	90 120	ž	1	36	Naim	
otoma	NZ	1945	8,860	120	Š.	1	36,35,12	Naim	
otoma	NZ	3089	7,040	250	5	2	<u>′</u>	No:	
	NZ	6020	8,745	41	Š	1	z	Nairn	
otoma	NZ	6021	8,671	52	ç	1	Z		
lotoma lotoma		6022	8,652	52	č	1	z		
lotoma lotoma lotoma	NZ	6023	8,765	53	ç	1	Z		half at the set
lotoma lotoma lotoma lotoma	NZ			41	Ç	1	z		boiled in water
lotoma lotoma lotoma lotoma lotoma	NZ NZ	6024	8,733			1	Z		boiled in water
lotoma lotoma lotoma lotoma lotoma lotoma	NZ NZ NZ	6024 6025	8,772	53	ç				
otoma otoma otoma otoma otoma otoma otoma	NZ NZ NZ NZ	6024 6025 6026	8,772 8,744	53 36	c	1	z		
lotoma lotoma lotoma lotoma lotoma lotoma lotoma lotoma	NZ NZ NZ NZ	6024 6025 6026 6027	8,772 8,744 8,795	53 36 53	000	1	Z Z		
otoma otoma otoma otoma otoma otoma otoma otoma otoma	NZ NZ NZ NZ NZ NZ	6024 6025 6026 6027 6028	8,772 8,744 8,795 8,623	53 36 53 42	00001	1 1 1	Z Z Z		
otoma otoma otoma otoma otoma otoma otoma otoma otoma otoma	NZ NZ NZ NZ NZ NZ	6024 6025 6026 6027 6028 6029	8,772 8,744 8,795 8,623 8,504	53 36 53 42 139	C C C E E	1 1 1	Z Z Z Z		extract of NZ6028
otoma otoma otoma otoma otoma otoma otoma otoma otoma otoma	NZ ZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZ	6024 6025 6026 6027 6028 6029 6030	8,772 8,744 8,795 8,623 8,504 6,749	53 36 53 42 139 53	ссосшос	1 1 1 1	Z Z Z Z Z		washed hot NaOH
otoma otoma otoma otoma otoma otoma otoma otoma otoma otoma otoma otoma	NZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZ	6024 6025 6026 6027 6028 6029 6030 6031	8,772 8,744 8,795 8,623 8,504 6,749 8,145	53 36 53 42 139 53 199	00000000	1 1 1 1 1	Z Z Z Z Z		
otoma otoma otoma otoma otoma otoma otoma otoma otoma otoma	NZ ZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZ	6024 6025 6026 6027 6028 6029 6030	8,772 8,744 8,795 8,623 8,504 6,749	53 36 53 42 139 53	0000000000000000000	1 1 1 1	Z Z Z Z Z		washed hot NaOH

(Continued on next page)

108

New Zealand Journal of Geology and Geophysics, 1990, Vol. 33

(Continued from previous page)

Tephra formation	Lab	C14 Number	Age (yr B.P.)	Std deviation	Sample type	Assessed value	References	Collector	Comments	
Rotoma Rotoma	NZ NZ	6034 6035	8,754 8,510	53 111	CECE	1	Z Z		hot NaOH extract hot NaOH	
Rotoma	NZ	6036	8,595	52	č	1	z		Na4PO7	
Rotoma	NZ NZ	6037	9,509	281	E	3	z		extract Na4PO7	
Rotoma Rotoma	NZ	6310 6362	8,904 8,610	41 52	C R	1	Z Z		residue Na4PO7	
Rotoma	NZ	6371	7,406	135	E	3	z		extract Na4PO7	
Rotoma Rotoma	NZ NZ	6385 6399	8,759 8,696	52 102	R E	1	z z		residue Na4PO7 extract Na4PO7	
Rotoma	NZ	6410	8,233	51	R	i	z		residue Na4PO7	
Rotoma	NZ	6753	8,662	52	Ŗ	1	z		residue Na4PO7	
Rotoma Rotoma	NZ WK	6761 229	8,373 7,650	113 160	E G	1 3	z 16,25	Lowe, Green	extract Na4PO7 min (reworked sed. not adjacent to tephra)	
Rotoma	WK	493	5,440	170	Pr	3	27,16	Rogers, Lowe, Hogg	min (coarse roots from WK494: contam.)	
Rotoma Rotoma	WK WK	494 495	7,380 7,560	80 100	Pf P	3 2	16,27 16,27	Rogers, Lowe, Hogg Rogers, Lowe, Hogg	min (fine peat residue of WK493: contam.) min (?contam.)	
Rotoma	WK	522	8,370	90	G	1	16,25,12	Lowe, Green	max	
Rotoma	WK WK	523	8,350	100	G G	1	16,25,12	Lowe, Green	min	
Rotoma Rotoma	WK	548 611	8,030 5,510	200 70	P	3 3	16,25 16	Lowe, Green, Hendy Shaw	min (reworked sed not adjacent to tephra) min (sample not adjacent to tephra)	
Rotoma	WK	705	7,520	130	G	2	16,25	Lowe, Hendy, Ouellet	min (sed. rate low)	
Rotoma Rotoma	WK WK	706 711	7,920 8,000	130 170	G G	2 2	16,25 16,25	Lowe, Hendy, Ouellet Lowe, Hendy, Ouellet	max (sed. rate low) straddles tephra	
Rotoma	WK	932	7,720	70	Р	2	10	Green, Lowe, Hogg	min	
Rotoma	WK	933	9,820	210	G	2	10	Green, Lowe, Hogg	max	
Rotoma Rotoma	WK WK	934 935	9,890 7,560	180 70	G P	2 2	10 10	Green, Lowe, Hogg Green, Lowe, Hogg	max min	
Rotoma	WK	936	8,520	80	Ŵ	1	10	Green, Lowe, Hogg	underlies tephra	
Rotoma Rotoma	WK WK	937 938	8,560 8,530	80 80	WW	1	10 10	Green, Lowe, Hogg Green, Lowe, Hogg	within tephra overlies tephra	
Rotoma	WK	1270	8,510	100	P	1	64	de Lange, Champion	straddles tephra	
Rotoma	WK	1293	8,310	110	P	1	64	de Lange, Rosenberg	max	
Rotoma Rotorua	WK NZ	1319 1186	8,240 13,150	70 300	P C	1 2	64 40	de Lange, Rosenberg Topping	min beneath ?Rr	
Rotorua	NZ	1187	12,350	220	č	2	40	Topping	in tephra overlying ?Rr	
Rotorua	NZ NZ	1615 4183	13,450 6,650	250 0	ç	1 3	21,35,36 z	Naim Goh		
Rotorua Rotorua	NZ	4185	12,810	580	CCCCG	1	z	Goh		
Rotorua	WK	235	12,900	310	G	1	16,25	Lowe, Green	min	
Rotorua Rotorua	WK WK	236 511	12,600 13,450	230 120	G G	2 1	16,25 16,12,25	Lowe, Green Lowe, Green	max (too young?) max	
Rotorua	WK	512	12,800	150	G	1	16,25	Lowe, Green	min (thick sample)	
Rotorua	WK WK	529 530	13,300 12,950	110 110	MP P	2 2	16 16	Lowe, Hogg, Lane Lowe, Hogg, Lane	max (tephra ident. uncertain) min (tephra ident. uncertain)	
Rotorua Rotorua	WK	530	12,950	230	Ġ	3	16,25	Lowe, Green, Hendy	max (sed reworked)	
Rotorua	WK	573	12,350	210	G	3	16,25	Lowe, Green, Hendy	min (sed reworked)	
Taupo Taupo	WK NZ	1502 1	1,890 1,820	50 150	Р С	1	14.8	Wigley Baumgart	max	
Taupo	NZ	3	1,970	150	čc	1	14,8	Taylor		
Taupo	NZ NZ	4 37	1,920	150 60	с с	2 1	14 14,8	Taylor Schofield	water sorted	
Taupo Taupo	NZ	37	1,780 1,800	70	č	1	14,8	Schofield		
Taupo	NZ	82	2,040	50	cw	2	14,8	Banwell	log in cave	
Taupo Taupo	NZ NZ	158 159	1,760 1,750	80 80	с w	1	14,8 14,8	Grant-Taylor Grant-Taylor		
Taupo	NZ	160	1,300	80	Ŵ	Ś	8	Cameron	not adjacent to tephra	
Taupo	NZ NZ	161	1,780 1,830	80 70	cc	1	14,8	Healy Healy		
Taupo Taupo	NZ	162 163	1,840	50	č	1	14,8 14,8	Healy		
Taupo	NZ	164	1,890	70	w	1	14,8	Healy		>
Taupo Taupo	NZ NZ	165 168	1,900 1,980	70 40	W W	1	14,8 14,8,43	Healy Vucetich		
Taupo	NZ	170	1,800	50		1	14,8	Gregg		
Taupo	NZ NZ	172 173	1,800 1,750	100 50	0000	1	14,8 14,8	Vucetich, Cross Healy, Thompson	doubtful strat.	
Taupo Taupo	NZ	174	1,800	100	č	1	14,8	Healy, Thompson		
Taupo	NZ	175	1,850	100	С	1	14,8	Healy		
Taupo Taupo	NZ NZ	176 183	1,960 1,840	70 70	C C	1	14,8 14,8	Healy Gibbs		
Taupo	NZ	502	1,770	70	P	i	9,39	Pullar	min	
Taupo	NZ NZ	503	1,900	60 75	P W	1	9,39 9,39	Pullar Pullar	max	
Taupo Taupo Taupo	NZ	524 525 869	1,775 2,101 1,995	75 60	Ŵ	2 2	9,39 39	Pullar Pullar	stump below Tp	
Taupo Taupo	NZ	1059 1060	1,870 2,090	60 60	P P	1	37,39,9 37,39,9	Pullar, Kohn Pullar, Kohn	min max	
Taupo Taupo	NŽ NZ	1548 3121	1,840 1,680	50 70	C P	1 3	56,7,21 55	Pullar	min (?too young)	
Taupo	NZ	5531	1,890	70	С	1	z	Wilson		
Taupo Taupo	NZ NZ	5610 5611	1,790 1,735	65 65	PW W	2 2	20 20	Hull Hull	sample surrounds NZ6511 tree in situ	
Taupo	NZ	7013	1,600	55	Р	2	с	Singleton	3 cm slice straddles tephra	
Taupo	NZ	7442	1,795	55	SE	1	g 59	Clarkson Ote Received Borevers	seeds from peat	
Taupo Taupo Taupo	NZ WK		1,850 1,730	60 60	P G	1 2 3	59 16,25,28,12 16,26			
Taupo Taupo Taupo		928	2,040 1,870	50 60 80	W C P	1	16,26 f d	McCabe, Lowe, Hendy Lowe Lowe, Newnham, Lowe		
Taupo	WK	1015	1,690	80	٢	1	a	Lowe, Newman, LOWE	e min (Continued on next page	A
									(continued on next page	/

(Continued from previous page)

.

ephra prmation	Lab	C14 Number	Age (yr B.P.)	Std deviation	type	Assessed value	References	Collector	Comments
aupo	WK	1016	1,790	80	Р	1	d	Lowe, Newnham, Lowe	max
aupo e Rere	WK	1094 523	1,800	50	W C	1	j,62		in situ tree trunk in Taupo Pumice alluvium
e Rere	NZ NZ	5171	20,700 21,500	450 450	č	2 1	44 36	Vucetich, Pullar Nairn	misident. as Ok (ref. 36) underlain by Kk
uhua	NŹ	333	5,370	450 54	P	3่ 3	8,57	Harris	max (tephra ident. uncertain)
uhua	Ŵĸ	77	6,340	190	ĊW	1	1	Buck	max (topina laona anoonany
lhua	WK	106	6,280	70	Р	1	16,15	Hogg, Lowe, Gaylor	max
ihua	WK	214	6,210	70	G	1	16,25,28	Lowe, Green	max
hua	WK	241	6,070	80	Р	1	16,15	Hogg, Lowe	min
hua hua	WK	242	6,440	80	P	1	16,15	Hogg, Lowe	max
hua	WK WK	243 244	6,710 6,060	80 80	Р Р	3 1	16,15 16,15	Hogg, Lowe Hogg, Lowe	max: thick sample
hua	WK	505	5,800	90	Ġ	1	16,25	Lowe, Green, Hendy	min min
hua	WK	525	5.800	70	Ğ	ż	16,25	Lowe, Green	max: also min for Ma (thick sample)
hua	WK	1019	5,280	130	Р	3	d	Lowe, Newnham, Lowe	min (sample not adjacent to tephra)
hua	WK	1317	6,130	100	P	1	64	de Lange, Rosenberg	min
hua	WK	1318	6,440	120	Р	1	64	de Lange, Rosenberg	max
umihia	GAK	10461	2,920	220	SH	2	54	Daving a d	shells under tephra
aimihia aimihia	NZ NZ	2 179	3,440 3,420	70 70	C C	1 1	8,14,45	Baumgart	
imihia	NZ	180	3,420	90	č	1	8,14,39 8,14,45	Healy Healy	
imihia	NZ	289	3,400	100	w	i	8	Eider	
imihia	NZ	504	3,170	80	P	i	9,39,45	Lidor	min
aimihia	NZ	505	3,440	80	P	1	39,45,9		max
aimihia	NZ	1061	3,270	65	Ŵ	1	9,37,39	Pullar, Kohn	max
aimihia	NZ	1062	3,130	65	w	1	9,37,39	Pullar, Kohn	min
imihia	NZ	3947	3,280	110	P	1	19	Howorth	min
umihia	NZ	6702	3,590	70	P	2	h	Alloway	max: thick sample
aimihia aimihia	NZ WK	7237 498	3,580 3,250	70 70	Р Р	1 2	47	Rogers Description Lange	max
aimihia	WK	499	2,910	60	Pr	2	23,27,16 27,16	Rogers, Lowe, Hogg Rogers, Lowe, Hogg	max min (control from W/KEOO)
aimihia	WK	500	3,040	50	Pf	2	27,16	Rogers, Lowe, Hogg	min (coarse roots from WK500) min (fine peat residue from WK 499)
aimihia	WK	610	3,660	70	P	3	16		sample not adjacent to tephra; also min fo
aimihia	WK	1032	3,870	110	Р Р	2	b	Alloway	max: 1 cm slice (? too old)
aimihia	WK	1259	3,940	70	P C	2	b	Alloway	max: 1 cm slice (? too old)
liohau	NZ	568	11,250	200		1	39,9,3,45	Cole	
aiohau	NZ	878	11,100	210	w	1	39,9,45	Pullar	
aiohau	NZ	1135	11,800	150	ç	2	39	Pullar, Birrell	sample in Rk
liohau liohau	WK WK	233 234	12,200 12,500	230 190	G	1	12,16,25	Lowe, Green	min
aiohau	WK	515	12,300	200	0000P000000	1	12,16,25 12,16,25	Lowe, Green Lowe, Green	max max
liohau	WK	516	12,300	190	Ğ	1	12,16,25	Lowe, Green	min
aiohau	WK	531	12,800	110	P	Ś	16	Lowe, Hogg, Lane	straddles tephra (ident. uncertain)
aiohau	WK	574	11,700	270	Ġ	Ĩ	16,25	Lowe, Green, Hendy	max
aiohau	WK	575	11,800	230	G	1	16,25	Lowe, Green, Hendy	min
aiohau	WK	708	10,220	160	G	3	16,25	Lowe, Hendy, Ouellet	min (too young – ?low sed. rate)
aiohau	WK	709	11,570	130	G	2	16,25	Lowe, Hendy, Ouellet	max
aiohau	WK	714	11,840	340	G	1	16,25	Lowe, Hendy, Ouellet	min
aiohau hakaipo	WK NZ	716 171	11,990 2,650	230 150	W	1	16,25	Lowe, Hendy, Ouellet	max
nakaipo		177	2,530	70		2 2	8,14 39,8,14	Cross Healy	strat. position uncertain may be Mp or Wo
nakaipo	NZ NZ	182	2,800	100	CCCP P	1	39,8,14	Healy	may be wip or web
nakaipo	NZ	184	2,400	80	č	ż	8,14	Gibbs	identity uncertain
nakaipo	NZ	1070	2.670	50	P	ī	9,45	Pullar	min
nakaipo	NZ	1071	2,730	60	Р	1	36	Pullar	max
nakaipo	NZ	2740	2,520	65	C	1	Z	Nairn	
nakaipo	WK	506	3,010	70	G G	1	16,25	Lowe, Green, Hendy	max
nakaipo	WK	507	2,010	80	G	3	16,25	Lowe, Green, Hendy	min, too young?
nakaipo	WK WK	537	2,560	60	G	1	16,25	Lowe, Green, Hendy	min
nakaipo nakaipo	WK	538 1017	2,860 2,900	60 110	G G P	1 2	16,25 d	Lowe, Green, Hendy	max stradilos tenhos ident, unestein
nakaipo	WK	1441	2,670	70	P	1	u i	Lowe, Newnham, Lowe Wigley, Edwards	straddles tephra; ident. uncertain min
nakaipo	Ŵĸ	1442	2,710	80	P	i	i	Wigley, Edwards	max
akatane	NZ	426	5,085	100	ċ	2	9,23	Healy	uncertain strat.
akatane	NZ	1066	5,180	80	C C P	1	39,23,9,38	Pullar, Pain	max
akatane	NZ	1072	3,200	65	Р	3	39,9	Pullar	min only
nakatane	NZ	1137	6,390	120	м	3	39,45,23	Pullar, Kohn mi	n: unreliable as section reworked (ref. 18,
nakatane	NZ	1198	5,050	100	C	2	Z		tephra ident. uncertain
akatane	NZ	1247	6,190	70	Ň	3	39,45,23		x: unreliable as section reworked (refs. 18
nakatane	NZ NZ	1358	4,690	120	C C P	1	23,7,56	Healy, Nairn	in flow
nakatane Nakatane	NZ	1946 3161	4,910 4,800	70 50	E E	1 1	36,34 23	Nairn Neall	min (also may for Hm)
akatane	NZ	3162	5,210	80	P	1	23	Neali	min (also max for Hm) max
akatane	NŽ	3948	4,600	90	Р	i	19,23	Howorth	min
akatane	NZ	3949	4,640	90	Р	i	19,23	Howorth	max
akatane	NZ	4305	4,830	90	Ċ	i	36,34	Naim	
akatane	NZ	4306	4,880	90	С	1	36,34	Nairn	
akatane	NZ	4307	4,940	80	С	1	36,34	Naim	
nakatane	NZ	4308	5,000	80	Socos	1	36	Nairn	
nakatane	NZ	4930	5,090	100	Ŵ	2	36	Jackson, Nairn	wood submerged by lake
nakatane	WK	496	4,490	60	P	1	23,27,16	Rogers, Lowe, Hogg	min (also max for Hm)
nakatane	WK	497	4,530	60	P	1	23,27,16	Rogers, Lowe, Hogg	min (also max for Hm)
nakatane	WK	501	4,860	70	P P	1	23,27,16	Rogers, Lowe, Hogg	max min (rample pot adjacent to tenhra)
nakatane	WK WK	610 611	3,660 5,510	70 70	P	3 3	16 16	Shaw Shaw	min (sample not adjacent to tephra) max (sample not adjacent to tephra)
nakatane nakatane	WK	611 660	4,850	80	Ğ	3	23,16,25	Lowe, Hendy, Ouellet	max (sample not adjacent to tephra) max
nakatane	WK	662	4,850	140	G	1	23,16,25	Lowe, Hendy, Ouellet	min (also max for Hm)
nakatane	WK	1333	4,200	110	P	1		de Lange, Crowcroft, Gilmo	
	Ŵĸ	1334	4,770	110	P	i		de Lange, Crowcroft, Gilmo	