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Abstract

‘We define two lifted, total relation semantics for Event B machines: Safe B for
safety-only properties and Live B for liveness properties. The usual Event B proof
obligations, Safe, are sufficient to establish Safe B refinement. Satisfying Safe
plus a simple additional proof obligation ACT_REF is sufficient to establish Live
B refinement. The use of lifted, total relations both prevents the ambiguity of the
unlifted relational semantics and prevents operations being clairvoyant.
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1 Introduction

An Event B tool will generate proof obligations that, when satisfied, are sufficient to
guarantee the correctness of a machine refinement. But Event B has a partial correct-
ness semantics that can model only safety properties, and although on the surface it
seems that Event B could be extended to model liveness properties by the addition of
simple proof obligations, this we show not to be the case.

The problem arises because of the underlying semantic model. It is well-known
from Spivey’s work on Z [1] that to use partial relations to model what is called total
correctness in the state-based world and liveness in the event-based world, can result
in operations being clairvoyant when operations may be guarded. This introduction of
clairvoyant operations has also been found by Nelson [2] when extending Dijkstra’s
calculus (with a weakest precondition semantics). In [2] Nelson states “we require that
the implementation of our commands be clairvoyant enough to find a computation that
succeeds”. We consider clairvoyance more thoroughly in Section 1.1.

In this paper we will define two lifted, total relation semantics for Event B:

Safe B semantics gives a partial correctness interpretation, as does Event B. We show
that Event B’s normal proof obligations, here called Safe, imply refinement de-
fined on the new Safe B semantics;



Live B semantics gives a total correctness interpretation and differs from Safe B se-
mantics in how the relation is totalised. Satisfying the proof obligations Safe
plus one additional proof obligation is sufficient to imply refinement on Live B
semantics, i.e.refinement on the total correctness semantics.

In Section 2 we review Event B semantics with the slightly generalised form of
operations found in [3]. We motivate our definition of refinement by reference to a
natural notion of refinement (Section 2.4) that is common in the literature.

In Section 3 we review the close relation between state-based formalisms and event-
based formalisms and formalise the previously mentioned natural notion of refinement
in Definition 3. In Section 4 we define our Safe B semantics and show that applying the
event-based definition of refinement gives the expected results. In Section 5 we define
our Live B semantics and show that applying the event-based definition of refinement
gives the result that we would expect from the event-based literature.

We illustrate our alternative semantics with a simple example system where the op-
erations of one version, C, are indeed refinements of the operations of another version,
A. We then use this example to show that had we given the partial relations a total cor-
rectness interpretation then, quite at odds with our expectations, the machine C is not
a refinement of A (using the previously given natural notion of refinement).

A consequence of this is that simply adding an additional proof obligation while us-
ing the usual partial relation semantics of Event B would result in operations behaving
clairvoyantly (see next section) and refinement not giving the results we expect.

1.1 Clairvoyant operations

The first reference we have found to clairvoyant operations is in Nelson’s work [2]
extending Dijkstra’s calculus. The semantics used by both Nelson and Dijkstra is not
based on partial relations but on weakest preconditions. What the partial relation and
weakest precondition semantics have in common is that neither have an explicit repre-
sentation of nontermination.

If we compose the two operations in Fig. 1 W U W:U
as relations, we get the result shown. The a a a a a i a
point here is that W ; U is defined to always \
b b b b b b

take us from a to a. So, somehow, W must

“know” not to allow the move from a to b, Figure 1: Operation W and U and
which leads us into being blocked, i.e. into a  their clairvoyant composition

state which U cannot get us back to a from.

But this means that W must “know” that it will pass on “control” to U.

Hence we say that W must be “clairvoyant” because it must be able to see into the
future (of its uses). Indeed, sequencing in general will require clairvoyance to work
according to relational composition. This we take to be completely unacceptable.

The problem illustrated by the two operations W and U was referred to by Spivey
as giving operations a meaning that “differs from the meaning that would be be natural
in a programming language”’[1, p136].

It is well known that partial relation semantics are ambiguous in that the region
outside the domain of the relation can be interpreted in several ways: as guarded [4],



as chaos (persistently undefined) [5] or as undefined [6].

Further, relations with no explicit representation of nontermination, whether partial
or total, are ambiguous. They can be interpreted as either:

partial correctness semantics (see [7, 8]) - the relation defines the behaviour only if
the operation terminates, or;

total correctness semantics (see [5, 1, 9]) - the relation defines when the operation
terminates and what state it terminates in.

Under the partial correctness interpretation W and U (Fig. 1) do not behave clairvoy-
antly as W ; U quite naturally specifies that if W ; U terminates then it will terminate
in state a. The clairvoyance only occurs if a total correctness interpretation is applied.

2 B and Event B Machines and semantics

In this section we briefly review B [9] and Event B [8] machines and their semantics.
To be well-formed the machine must satisfy some tool generated “proof obligations”.
B and Event B tools also automatically generate proof obligations that are sufficient to
imply refinement.

In B [9] operations are given a partial relation semantics. The domain is partitioned
into three disjoint sets. The states that do not satisfy the pre-condition Pre of the
operation are undefined. The states that satisfy Pre can be either pre-states not related
to any post-state, referred to as magic states, or pre-states that are related to a post-state,
referred to as active states.

Event B was introduced in Extending B without changing it [10] to model opera-
tions that could be guarded in the process algebraic sense. In Event B operations (now
called events) cannot be undefined on any part of their domain. Like Dunne and Conroy
[3], however, we permit both guards G and Pre to condition generalised substitutions
R as there is no theoretical reason to limit the operations to being totally defined:

E 2 PRE Pre SELECT G THEN R END

In this paper the states that do not satisfy the pre-condition Pre of the operation are
undefined, characterised by —Pre. The states that satisfy Pre can be either pre-states
not related to any post-state, referred to as blocked states characterised by Pre A =G,
or pre-states that are related to a post-state, referred to as active states characterised by
Pre A G.

When SELECT does not appear, assume G = T'RU E. Similarly when PRE does
not appear, assume Pre = T'RU E. We add a generalised substitution stop with before
and after predicate FALSE as sugar for:

stop = SELECT FALSE THEN skip END

Event B specifies only safety properties. Thus doing nothing satisfies any specifi-
cation because it “does nothing wrong”.




2.1 Set theoretic semantics

The usual B syntax for generalised substitutions defines three predicates. The first
defines a relation R and the two others define subsets of the pre-states: G is true of
the states in domain(R) in which the operation is not blocked; and Pre is true of the
states in domain(R) for which the operation is defined.

Let S be restricted to evaluations that satisfy the invariant, S £ {v|I(v)}. The
partial relation rel C S x S for “extended” Event B operation A can be split into three
parts, based on combinations of the predicates I, Pre and G. The first is the active
part:

aa = {v — v'|I(v) A G(v) A Pre(v) A R(v,v")}
All three predicates hold in as. The second part ma is not active, so G' does not hold
but Pre does still hold for it, so it is the blocked part of the relation (and so contributes
nothing in the partial relation rel above):
ma £ .
The third part, states for which Pre does not hold, is the undefined part:
ua = {v z|I(v) A ~Pre(v)}.
States of up are related to all other states (x is unconstrained, though from .S). The
relational semantics of A is the union of these three parts:
rela £ ap Uma U up

This relational semantics is ambiguous (Section 1.1). It can be interpreted as giving
either a partial correctness semantics or a total correctness semantics. Usually the
interpretation is stated informally, i.e. not as part of the formal semantics, and also
is usually fixed in the initial discussion and never changed. But we are interested in
both interpretations, and even in using a set of operations where some are to have one
interpretation and the rest to have the other interpretation. We wish to formally capture
the semantic difference between total and partial correctness. To do this we will lift
and totalise the partial relations in different ways, as we shall see.

2.2 Proof obligations of Event B machines

An Event B machine is initialised to start in the states for which init holds. The fol-
lowing three proof obligations constitute a well-formedness condition on Event B ma-
chines:

init(v) = I(v) INIT
I(v) AG(v) A Pre(v) = 3w .R(v,v") FIS
I(v) AG(v) A Pre(v) A R(v,v") = I(v') INV

Proof obligation INIT guarantees that the initialisation of a machine must satisfy its
invariant. FIS guarantees that a, the active part of rel, is a total relation and finally INV
guarantees that the postcondition of any operation must satisfy the machine invariant.

That G(v) A Pre(v) C domain(R(v,v")) is guaranteed by the FIS proof obliga-
tion.

All Event B machines must be well-formed, i.e. must satisfy these three proof obli-
gations, prior to the refinement of the machine. Let B be the set of all well-formed
machines.



2.3 Refinement

Refinement of the Event B operation A (see Fig. 2) is given by
ALy C=2relc C rela.
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Figure 2: Refinement A Cp C <= relc C rela

Machine refinement has been defined in various ways in the literature and small
changes in a definition can have far reaching consequences.

In Event B [8] machine refinement is defined as a property quantified over all op-
erations whereas in B [9] machine refinement is defined as a property quantified over
all programs. The review of the event-based testing semantics in Section 3 provides an
answer to the obvious question: what is a good definition of refinement?

2.4 A natural but informal definition of refinement

Although informal the following definition of refinement is very natural and appears in
many places in the literature [7, 5,9, 11, 12, 4]:

The concrete machine C € B is a refinement of an abstract machine A € B
where no user of A could observe if they were given C in place of A.

The user of Event B machine A first places it in an Event B context x € B. This we
write as [A]x. The user then observes the whole system, M, built from A and X. Thus
to formalise this we need to define both Event B contexts and observations.

As B machines can be used only by programs, the contexts in which a B machine
can be placed are only programs. Consequently it is natural to define B machine re-
finement by quantifying over all programs.

Event B machines, unlike B machines, are not used by programs, they are used
by other machines. This is also true of the event-based definition of processes that
appears in CSP [13], ACP [14] and the Algebraic Theory of Processes [15]. Because
of these different users we would expect a Event B refinement to be quantified over all
machines, just as testing refinement [15] is quantified over all processes. Although in
Event B [8] refinement is quantified over all operations, in [3] they define forward and
backward Event B refinement quantified over all programs.



2.5 Decomposition and contexts

The Event B methodology is based on a top-down approach where machine M can be
decomposed into a pair of component machines A and x, written (A, x) € decompose(M).
In performing such a decomposition the new machines may contain both internal (nor-
mal) operations, denoted by op for example, and external operations, denoted by op.
These new machines can then be recomposed so that recompose(A, x) = M.

Because of this top-down construction we would start with process M and construct
(A,x) € decompose(M) hence [A]x = recompose(A,x) = M.

We do not need to give the details of Event B decomposition but we remind the
reader that recomposition takes the union of the infernal operations of A and x. The
only synchronisation of operations is between two operations with the same name
where one is internal and the other is external. The external operation is simply dropped
in the construction of recompose(A, x).

The proof obligations of decompose guarantee that the external operations of one
process are more abstract than the internal operations with the same name in the other
process, so for any op:

op L op. (1)

Thus the contexts that A can be placed in must satisfy (1).

We postpone defining what can be observed of an Event B machine until after we
review the observation of processes in the next section.

3 Machines are processes

This section introduces nothing new but will review some ideas from the event-based
world of processes and the close relation between the labelled transition system seman-
tics of processes and the state-based relational semantics of operations.

CSP [16, 13] was one of the first process calculus formalisms and uses failure
semantics to model liveness properties and trace semantics to model safety properties.
Failure semantics has been characterised by an elegant must testing semantics and
trace semantics characterised by may testing semantics [17, 15]. When the interactions
formalised by these testing semantics is the same as the interactions of real processes
with their environment (contexts) then an engineer can have some confidence that it is
appropriate to use these testing refinements.

Subsequently a wide range of testing semantics [18, 19] has been designed and the
process-theoretic approach has been applied to processes that interact with each other in
a wide variety of ways. Both B and Event B machines interact in a distinct, well-defined
manner and this interaction can be formally modelled by a testing semantics. Thus
following the process calculus approach will give some confidence that a definition of
refinement can be constructed that is appropriate for Event B machines.

Let Act be a finite set of observable operations.

Definition 1 LTS—labelled transition systems. Let Alp C Act be the alphabet, Na
be a finite set of nodes and sp the start node. LTS A £ (Np, sa, ea, Ta, Alpa) where
sa € Na, ea € Na, and Ta C {(n,a,m)|n,m € NaAa € Alp An # ep}. °



Alpap is the alphabet of A.

A path is a sequence of states and actions and the set of paths generated by the LTS
Ais: Patha = {sa, p$,n2, 05, ... |(n1, p§yn2), (na, pS,n3), ... € Ta}.

We write |p| for the number of actions in (i.e. length of) a path and p® for the
sequence of actions pf', pg ... in path p = sa, p{,ne, ps . ... For finite paths p =
sa, pY,na, 05, . .. n; define last(p) = n;. We will write ¢ for the empty sequence
of actions, hence sy = e. Where A is obvious from context we write xi>y for
(z,a,y) € Ta n—— for Im.(n,a,m) € Th, sAp—a> when p € Patha, sAp—am when
p € Patha Alast(p) = n, and finally 7(s) £ {a|s—}.

We define the traces of A to be: Tr(A) £ {p®|saL—1}.

The complete traces of A are:

Tre(A) £ {p*|(sa=nAm(n) = 0) V (sa"= A |p| = 00)}U {p™V/|(sa"—en)}
Trace refinement is: A Ty, C 2 Tr(C) C Tr(A) and complete trace refinement is:
A Crpe C2 Tre(C) CTre(A)

We define refusals: Ref(n,A) £

({alnr>} UX|a€ AlpAn € Nanifn = ea then X = felse X = {1/}
We define failures: Fail(A) 2 {(p, X)|sc—2>n A X € Ref(n,A)} and failure trace:
FT(A) 2 {Ref(sa, A)p§ Ref(na, A)ps Ref(ns, A) ... |sc—=1.
Failure refinement [13, 14]: A Cp C £ Vp.Fail(C) C Fail(A) and failure trace
refinement [14]: A Cpr C 2 Vp.FT(C) C FT(A).

We only use failure trace refinement in Lemma 5 and all we need is the well-known
result ACpr C= ACr C[14].

Definition 2 Parallel composition of LTS A and B is defined only if Alpa N Alpg = ().

def .
Najg = Na X Ng, ea|g = ea X €B, sa|B = (5A, sB) and Tp| is defined:

n—-al,a ¢ a(B) n—-gl,3 ¢ a(A) n——al, m——gk
(n,m)LA”B(l,m) (m,n)LA”B(m,Z) (n,m)LAHB(l,k)

let X £ {3la € X} then Alpas dof (Alpa — Alps) U (Alps — Alpp). .

Let LTS be the set of all LTS. Our generic definition of refinement from [20] as-
sumes that processes interact via the parallel composition given in Definition 2. But
this generic definition of refinement is parameterised by:

1. the set of contexts that a process can interact with, = C {(_ || )|z € LTS}

2. Obs : LTS — 29° a function from LTS to a set of observations. Ob is the set of
all possible observations.

Definition 3 A C = ops) C £ V[, € 2.0bs([C],) C Obs([Al,) .

It should be noted that processes can be given a relational semantics where the
relation is between contexts and observations, Rel(A) C = x Ob. Using this relational
semantics the definition of refinement in Definition 3 is simply subset on the relational
semantics:



Lemma 1 A C = 045y C <= Rel(C) C Rel(A)

It is important to note that this event-based definition of a relational semantics is not
simply a relation from pre-state to post-state.

The safety semantics of a process A is given by its traces T'r(A). The safety or
partial correctness semantics of a process cannot be used to specify that something
must happen. Thus if trace a;b were observable then any sub-trace a or ¢ must also
be observable else if ¢ were not a valid observation we would know that a must be
performed and if @ were not a valid observation we would know that after performing
an a then a b must be performed. Consequently using Definition 3 to model safety or
partial correctness semantics we let Obs : LTS — 277,

Failure semantics is well-known to model liveness properties, that is from the fail-
ure semantics of a process, it is known when an operations must occur. This in state-
based terminology is the total correctness semantics. It was shown in [20] that when
Z C LTS and Obs : LTS — 277° then C(z,7re) is failure refinement i.e. a total
correctness semantics.

It is well-known that ADTs can be placed only in contexts that are programs, Prog,
i.e. sequences of operations, whereas processes in general can be placed in branching
contexts [4]. The refinement of ADTs (or objects) has been defined in the literature
[5, 11] in the style of Definition 3 where = = Prog and Ob = T'r°.

3.1 Relating operation semantics

There is an obvious bijection between LTS semantics and the relational semantics of
a machine. Note a machine consists of a set of named operations hence the relational
semantics of a machine contains a set of named relations.

The operational semantics of Event B machine A is the set of named partial rela-
tions Npr(A) or the operations in A as defined in Section 2.1. This can be used to
define a LTS.

Definition 4 Its(A) 2 (Nysa, sitsn, Tiesa, Alp) where Nyyqa is the set of evaluations
of the variables of A, sisa = inita,
Tisa = {(z,n,y)|(n, Ry) € Npr(A) A (z,y) € Ry},
Alp £ the set of operations of A. )

Example Event B machine The partial relational semantics of Event B machine A is
given by the solid arrows in W and U in Fig. 3. (The particular lifting and totalising
that appears in Fig. 3 will be explained in the next section on Safe B semantics.)

The observation of lifted total relations. The lifting of the semantics adds a new
element | to the domain of the relations (see Fig. 3). In this paper L will always
be used to represent the non-termination of an operation. An operation is observed
only when it terminates, hence when an operation goes to the post-state L it does not
terminate and consequently is not observed.

The solid arrows in Fig. 3 end at states other than L. They represent an operation
that has terminated and consequently the operation can be observed, whereas the dot-
ted arrows end at _L and represent an operation that has not terminated and consequently
cannot be observed.



MACHINE A

SETS Nodes = {a, b}

VARIABLES st w u

INVARIANT st € Nodes “\“ ECU

INITIALISATION st :=a by, b b

OPERATIONS

W £ SELECT st = a Lo s1 Lo s 1
THEN st := a[]st := b END;

U £ SELECT st = a UW  §— W —b

THEN st := a END; lts(A)

END

Figure 3: Machine A with its relational and LTS semantics

4 Safe B semantics - A

The Safe B semantics of machines are the lifted total relations Fa C S| xS, where
S, 2 {v|I(v)} U{L}and
{v— V' |I(v) AG(v) A Pre(v) A (R(v,v") Vo' = 1)}
{v+— L|I(v) A=G(v) A Pre(v)}
{v— z|I(v) A=Pre(v) Nz € S}
The relation rel is defined as the union the active, blocked and undefined parts
rel 23U mUT.

The machine A in Fig. 3 is given a partial relation semantics by Event B, shown by
the solid arrows in W and U. The Safe B semantics for A is A, shown in Fig. 3 by both
the solid and dotted arrows.

As we are adopting a partial correctness approach in this section the semantics only
shows the behaviour of the operation if the operation terminates. As partial correctness
semantics cannot guarantee termination any operation must always be able to not ter-
minate. The totalising captures this intention by mapping all pre-states to L.

o) 3 w)
(> 1> 1l

4.1 Relational semantics

From the state-based view it is natural to construct the relational semantics of a se-
quence of two operations by the relational composition of the relational semantics of
each operation. But from the event-based view we must consider what can be observed
of the sequence of operations.

If we look at the partial relation W; U in Fig. 4 we can see

W0 =wW;U

We leave it to the interested reader to check that this is true in general.

Itis easy to see that the lifted and totalised V/V,\U relation tells us the possible change
in state or even that it fails to terminate. But let us consider A placed in the context of



program W; U, then clearly operation W can be be performed and may end in state b
(see Fig. 3) after which no further operations can be performed and thus it is possible
for W alone to be observed. This observation cannot be inferred from the lifted and
totalised relational semantics of W; U (see Fig. 4) as arrow a—_L implies either that
nothing is observed or that W;U is not observed.

As pointed out in Section 3 a pro- W-U E Rel(A) Ob
cess can be given a relational seman- a—- a W; U: W; U
tics where the relation is between its \
contexts and observations. This is easy b b \W
to compute from the relational seman- L ; 1 .
tics of the operations and the interpre-
tation given in Section 3.1 (details can Figure 4: Rel(A) of A Fig. 3

be found in [4]). A small part of the relation Rel(A) is shown in Fig. 4 (right-hand
side).

4.2 Operation Refinement

Here operations have a total relation semantics EI; and refinement is defined as the
subset of the total relations: o
ACsC £ relc C rela.
It is easy to see that this refinement is the same as Event B refinement (see Sec-
tion 2.3) on the partial relation semantics, i.e. relc C relp <= EE - @ and
ACsC «<— ALCgC

4.3 Machine Refinement

We are going to apply the event-based definition of process refinement (see Section 3)
that is based on placing a process in a context and observing the execution of both the
process and context.

In Section 2.3 we defined the contexts that Event B machines can be placed in. In
Section 3.1 we discussed the observation of operations with lifted total relations. When
we apply this to the lifted total relations that model partial correctness semantics we
find that traces are observable. It is easy to see that when traces are observable then
refinement given in Definition 3 is the standard trace refinement. This is exactly what
we expect as it is already known in the process literature that for safety-only properties
(partial correctness) trace semantics is all that is needed.

Definition 5 Safe B refinement Cgp:
A Csp C2 Ve € B.Tr(lts([C]x)) C Tr(lts([A]x))

It is easy to establish that, for machines A in Fig. 3 and C in Fig. 5, A Cgp C.
We can infer B machine refinement from the well-known corresponding process-
style refinements given in Section 3.

Lemma 2 [ts(A) Cp, lts(C) == ACgp C

10



MACHINE C

SETS Nodes = {a,b} “ W " " u .
VARIABLES st \ O
INVARIANT st € Nodes b N b b
INITIALISATION st :=a
OPERATIONS L 30 L] 2
W £ SELECT st = a = Rel(C) Ob
THEN st := b END; ( ] W; U W;u
U £ SELECT st = a U Wb SO
THEN st := a END; ( j Its(C) w
END .

Figure 5: Machine C and safety only semantics

Proof (sketch). It is well-known [15] that Prog are all the tests needed to establish the
safe (may) refinement of a process which is trace refinement and hence:
ltS(A) E(Prog,TT) ltS(C) = ltS(A) E(LTS,TT) ltS(C) = ltS(A) Crr ltS(C) .
From definitions Its([A]x) =7 [Its(A)];5(x). Finally as Prog C Its(B) C LTS,
we have lts(A) Cprs,1r) I1ts(C) = A Esp C. .
As we would expect, and it is easy to check, for machines A in Fig. 3 and C in
Fig. 5, its(A) Cr, lts(C).

4.4 Proof obligations and refinement

Quantifying over all Event B machines is not computationally feasible and the standard
solution is to construct a set of sufficient conditions quantified over all operations.

The Event B proof obligations are crafted so as to establish the well-known for-
ward simulation as illustrated in Fig. 6. Forward simulation is sufficient to guarantee
refinement. The lack of a “final” operation in Fig. 6 may, from the state-based perspec-
tive, seem worrying. But let us recall that many useful event-based programs do not
terminate and event-based definitions of refinement and simulation [21] do not need
any final operation.

_,0— aA —o0— bp —0 o .
Inita l | |
~
s o r O o r G or

el C L.

Figure 6: Forward simulation

The proof obligations given here are no more that a slight rephrasing of those found
in [8, 3].

| initc(w) = Ju.inita(v) Alc(v,w) | INIT.REF |

11



The FIS_REF proof obligation ensures refinement builds a total relation on the
active states of the concrete operation.

The GRD_REF proof obligation guarantees that refinement preserves blocked states
of the relation, i.e. those v for which (Pre4(v) A =G 4(v)) holds.

The INV_REF proof obligation guarantees that the refinement of active states satis-
fies the subset in Fig. 6 . The only constraint on the the undefined states of the relation,
i.e. those v for which (= Pre 4 (v)) holds, is that it must be in one of @, m or a. This is
automatically guaranteed from the interpretation of the three predicates.

Ia(w) Ac(v,w) APres(v) AGa(v) = Fw' .Ro(w,w’) FIS_REF
Is(v) ANo(v,w) A Prea(v) A—=Ga(v) = Prec(w) AN —Ge(w) | GRD-REF
Io(v) Ao(v,w) A Prec(w) A Go(w) A Re(w,w') = INV_REF

Ga(v) A Prea(v) A . (Ra(v,v') Alc(v',w'))

Let Safe be the set of proof obligations {INIT_REF, FIS_REF, GRD_REF, INV_REF}
It is well-known and easy to see that these proof obligations establish the individual
subset relations in Fig. 6. Hence the proof obligations establish a refinement.

The mapping lts between the state- and event-based semantics can be used to show
what we might expect: that the Safe proof obligations of Event B refinement are suffi-
cient to establish trace refinement.

Lemma 3 The Safe proof obligations imply lts(A) Cr,. lts(C) and A Cgp C

Proof (sketch). The Safe proof obligations imply the subset relations in Fig. 6. It is
clear from inspection of Fig. 6 that [t5(A) C(prog,7r) Its(C). The result follows from
Lemma 2. °
This section has no new results. It is interesting, though, as it makes use of the
close connection between the state-based relational semantics and the event-based LTS
semantics to apply a testing-style definition of refinement to Event B machines.

5 Live B semantics - A

In order to model what can be observed of an execution of an Event B machine we need
to define the effect of executing a sequence of operations. But as already discussed
in Section 1.1, with total correctness semantics modelling sequential composition of
operations as the relational composition of partial relations is problematic.

We will write W for the W operation of Wi Wc
machine C (Fig. 5) and Wy for the W opera-  « a a
tion of machine A (Fig. 3). \

Using the partial relation semantics, the b
solid arrows in Fig. 7, we can see that Wa; U N
must terminate! As we want, and would ex-
pect, Wa C Wc, but using the natural notion Figure 7: Operations from A and C
of refinement given in Section 2.4, A IZ C. This can easily be seen by considering what
can be observed, based on partial relation semantics:

Obs ([l 5) = (W U} but Obs([Clyg ) = {W}.

The clairvoyance that partial relations would introduce means that W ¢ Obs([A]w.g)-
This we regard as counter-intuitive. It means that refinement, defined in a natural way

a ag——a

b b bb. b
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(Section 2.4), would give unexpected and undesirable results. Because of this a lifted,
totalised semantics is, we believe, to be preferred.

5.1 Lifting and totalising

The Live B semantics of machines are the lifted, total relation ;gl C S, x S, where
S, 2 {v|I(v)} U{L}and

a2 {ve o |I(v) AG(v) A Pre(v) A R(v,v')}
m=  {v L|I(v) A=G(v) A Pre(v)}
jé {v—z|I(v) AN=Pre(v) Nz € S}

rel aumuu
The difference between rel and rel is that in rel the active part of the relation, a, is
guaranteed to terminate (see Fig. 7) whereas in the partial correctness semantics rel the

active part is @ where no such guarantee exists.

Definition 6 Live B refinement Crp -
ACrp C=Vr € B.Tre(lts([Clx)) € Tre(lts([A]x)) o

5.2 Proof obligations and refinement

The ACT_REF proof obligation guarantees that refinement preserves active states of
the relation, those states x where (Pre(z) A G(z)).
| 1a(v) AMc(v,w) A Prea(v) AGa(v) = Prec(w) ANGe(w) | ACTREF |
Let Live be the proof obligations Safe U { ACT_REF}. The Live proof obligations
of Event B refinement are sufficient to establish failure refinement.
It should be noted that this proof obligation is little more than a rephrasing of the
proof obligation Fwd.C'T" in Dunne and Conroy’s Proposition 2 [3, p58].

Lemma 4 ltS(A) Cp ltS(C) =ALC.;,pC

Proof (sketch). From [20] lts(A) CF [ts(C) < Its(A) Cirrs,rre) Its(C). From
definitions Its([A]x) =rre [Its(A)]js(x). Finally as lts(B) C LT'S we have
ltS(A) E(LTS,T’I‘C) ltS(C) = A Cre C. °

Lemma 5 The Live proof obligations imply lts(A) C g its(C) and ACrp C

Proof (sketch). From Lemma 3 we know that the Live proof obligations imply
lts(A) Cp, lts(C). But ACT_REF implies that the active states are preserved by
refinement thus w(na) C m(nc) and hence Ref(nc) C Ref(na). Thus lts(A) Cpr
Its(C). From the literature it is well-known that this implies [ts(A) C g Its(C).

From Lemma 4 we have A C 1 C. °
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5.2.1 Comparison of Live B with Event B

It is clear that Event B has guarded (and hence blocked) states, but not undefined states.
In order to compare Live B with Event B we first remove the undefined states from Live
B. This we can do by assuming:

Prea(v) = Prec(w) = true
and simplifying our proof obligations.

Our INV_REF and GRD_REF proof obligations will be the same as Event B proof
obligations by the same name, see [8]. But, our ACT_REF proof obligation, though
an obvious proof obligation, is not found in [8] because they construct partial correct-
ness semantics. ACT_REF prevents the active part of machine operations from being
refined into “do nothing”.

6 Conclusion

This paper introduces little that, taken in individual parts, is new. Most of the work con-
sists in pulling together material, not all of which is widely known, from both the state-
based and event-based literature. What we found of interest is that unlifted relational
semantics are ambiguous, being open to both partial correctness and total correctness
interpretations (Section 1.1). If we add to this the fact that using partial relations to
model total correctness semantics introduces clairvoyant behaviour (Section 1.1), we
see good reason to use a semantics based on lifted, total relations.

We have introdl/l\ced two lifted, total relation semantics for Event B operations. The
Safe B semantics A is a partial correctness semantics and the Live B semantics A is
a total correctness semantics. Applying a natural definition of refinement to the par-
tial correctness semantics A results in the same pre-order as Event B’s usual partial
relations. Applying this same natural definition of refinement, but to the total correct-
ness semantics A, gives a new definition of refinement. Proof obligations, essentially
taken from [3], are sufficient to imply this new definition of refinement while avoiding
clairvoyant behaviour.

Because partial correctness and total correctness semantics are modelled by the lift-
ing and totalising of individual operations there is no reason why we should not have
operations with partial correctness semantics and operations with total correctness se-
mantics in the same machine. This could be of use if some operations represented
calls to a remote process that might not terminate, and hence need safety-only seman-
tics, and other operations are under local control and we can guarantee that they will
terminate, hence they can be given live semantics.

6.1 Comparison with literature

Dunne and Conroy’s Proposition 3 [3, p59] claims to give local conditions that are
necessary and sufficient to establish singleton failure refinement for Event B machines.
In [3, Section 4.1] a trace of a B machine is defined in terms of a sequence of the
operations. As Event B operations have a partial relation semantics, this definition
introduces clairvoyant behaviour as seen in Fig. 1. As a consequence of using partial
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relations our example machines A (Fig. 3) and C (Fig. 5) are refinements but are not
singleton failure refinements.
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