
 1

DESIGN AND IMPLEMENTATION OF A FILTER ENGINE
FOR SEMANTIC WEB DOCUMENTS

Takanori Kozuka and Annika Hinze
Department of Computer Science, University of Waikato

{tk27, a.hinze}@cs.waikato.ac.nz

Abstract

This report describes our project that addresses the challenge of changes in the
semantic web. Some studies have already been done for the so-called adaptive
semantic web, such as applying inferring rules. In this study, we apply the
technology of Event Notification System (ENS). Treating changes as events, we
developed a notification system for such events.

1. Introduction
The Semantic Web is a new concept for extracting information from the Web pages in computer-
readable form. The Semantic Web is supported by three key technologies: RDF, RDF schema, and
Ontologies. These technologies are used to describe the information for this purpose, but they
mainly function in static situation.
The problem this paper focuses on is how to detect and reflect the dynamic changes of information
in the Web world. In the first chapter, we introduce the brief outline of the Semantic Web (Section
1.1), and the example scenario (Section 1.2). Then we discuss about the problem of change
management in the Semantic Web in detail.

1.1. The Semantic web

The Semantic Web is not something completely new, but is an application of the World Wide Web
(WWW). In this section, we highlight the advantage of the Semantic Web over the WWW.

The World Wide Web
Internet opened the new era of information society. People have access to information from
office/home with just turning on the computer. The new media changed people’s life style, and
opened the opportunity to publish documents to general public. Many businesses position the Web
as vital PR media, and provide the information through the Web. Documents on the Web are
designed for the purpose of each
publisher, thus each Web page may
have a unique appearance.
Consequently, Web pages generally are
suitable for human to read, but not
suitable for computer to extract
meaningful information automatically.
Data on Web are typically unstructured,
because they are not intended to use as a
database. There are lots of valuable
information hidden in the ocean of Web

Figure 1 Search Engine Access in the WWW

 2

pages. But, when people need to find a set of interconnected information, for example, information
about a particular article (its abstract, full-text, the rating of the article, or information about author
and publisher), users often have to visit each Web site individually to collect the necessary
information. For this purpose of information seeking, people use search engines. (see Figure 1)
The idea of the Semantic Web is based on people’s demand to gain the inter-connected
information in a meaningful way.

The Semantic Web
Instead of forcing users to access to Web
sites one by one, the Semantic Web
provides the single interface, called
agent, enabling users to register details
of requirements that users need. Then
agent visits relevant Websites, and
collects the necessary information for
users. (see Figure 2)

The Semantic Web is defined formally
as an “extension of the current web in
which information is given well-defined meaning, better enabling computers and people to work in
cooperation” [12]. The intention of the Semantic Web is to interconnect documents on various
Web sites, and to extract information from the documents. Terms used in the documents possibly
have different meanings based on the publishers’ purpose. Therefore they need to be interpreted
and to be transformed into structured database, which would provide meaningful contents for
individual needs. This frees users from the task visiting an enormous number of Web sites to find
the information that they are looking for. In general, typical user does not visit more than one or
two pages out of the search results extracted by search engine. Thus the potentially relevant
information easily can be overlooked. In contrast, the Semantic Web collects all the relevant data
as long as it is presented in a certain format. This feature enables users to discover information
they need more easily and in scalable manner.

In the Semantic Web, information can be selected from sources and provided to the users by
agents based on the users’ interest or information need. (See Figure 2)

In a short summary, the Semantic Web;

• collects data from various different sources,
• interprets the meaning of the data,
• connects the data into a structured database,
• extracts knowledge (or useful information) from the database, and
• provides meaningful contents to users
• through a single interface (agent)

1.2. Scenario

This section describes a scenario that allows us to identify open problem in the Semantic Web.

One afternoon, John Smith received the phone call from his friend, Jane. She seemed to have the
spy ware in her computer. The virus protection program warned the infection by the spy ware, but
does not have the vaccine for that. She did not have any recognized problem yet, but she wanted to
exterminate it and asked John how to do it.

Figure 2 Data Access in the Semantic Web

 3

1. Search (Profiling)
John wrote down the message by the virus protection program, and typed it into his terminal of the
Semantic Web. Soon after the terminal returned the candidate spy wares that she experienced.
There are so many candidates, as the warning message was too general to identify the particular
target. John decided to focus on the latest ones, for which the vaccine is available. John changed
the conditions, and typed it to the terminal again. Under the new conditions, the four spy wares
were found, that were reported within the last two months. One of those is just found few days
ago, and the vaccine is only available from one company. The virus protection program that Jane is
using has not developed the vaccine for that.
John set the system to carry on further search to the system, and explained to Jane the situation.
Jane downloaded three vaccine programmes, which are already available. However upon the
connection to the Internet, her system still kept warning the existence of the spy ware.

2. Notification
Two days later, John found two notices from the system. One tells the vaccine became available
for the last one spy ware. The other notice is about one vaccine that Jane has downloaded two days
ago. It reported the applicable OS version by the vaccine. Unfortunately that tells the vaccine is not
valid for Jane’s OS version. John explained to Jane, and she got the new vaccine, but the problem
still remains, so they had to wait until the new version would be developed.
Few days later, John found another notice, which tells the development of the vaccine for Jane’s
OS version. After downloading the new vaccine, the problem solved. So, John cancelled further
notice about this spy ware from the Semantic Web.

In this scenario, John could not get the information that he needs in the first query. In such a case,
the current Semantic Web requires users to access the system again and again until the information
would become available. Or, realistically, users would give up, and approach to another channel to
search the information.
The scenario also introduced the case of updating notification. Semantic Web so far has limitations
in handling updating/deleting of information. Once information was delivered to users, users
would not be aware of any updating/deletion until the users would perform the same query again.
Even if the same search was performed, it would not be easy to find the deletion of particular
information.

1.3. Problem Description

The idea of Semantic Web gave us the great opportunity to utilise the huge amount of data on the
World Wide Web. The data are generated and added to Web pages every second extending the size
of data sources. This extension of data sources is the backbone for Semantic Web, but it also takes
the risk of the out-of-dating into the information gained from Web pages. What if a change would
be made on the information on the page after the user accessed that page? What if the publisher
would add new pages under the existing page? Not only the insertion of new data, existing data
would possibly be updated or deleted from the pages that user referred to. These changes happen
often in the Web world. And all these changes may affect users, as they may contain relevant
information for them.
However, so far the Semantic Web extracts the information statically, and does not take this
dynamic change into account after retrieval from the Web pages. Its main concern is to extract the
data at the certain point of time. Once the data are extracted from Web, the system would not
dynamically reflect any changes on those pages. Thus, the adaptability to such change is the next

 4

key issue for the Semantic Web. This dissertation proposes a first help towards the adaptability of
the Semantic Web.

As we will see in the next Section, RDF/DRFS technologies and their XML like syntax is one
asset of the Semantic Web. These technologies describe resources and relationships between them,
enabling users to find the relevant information. But the problem is, they work statically: existing
query languages do not react to the dynamic change of RDF documents. In this project, we focus
on how to identify and filter changes in the Semantic Web, which functions as namely The
Adaptive Semantic Web1. (Figure 3)

We propose to develop an Event Notification System (ENS) for the Adaptive Semantic Web. In
this new function, users will receive notification about changes, which are relevant to the users’
interests. The concept of Event Notification System will be discussed in detail in Section 2.2.
We will now first identify issues for event notification in the Semantic Web and then specify the
focus of their work.

This concept of change management in the Semantic Web leads to the following research issues:

(1) Event type
An Event Notification System treats certain type of changes as events. There are many different
types of changes. Changes can be the new occurrence of a document or the change of the
document. Changes can refer to time. Or, changes can be the increase/decrease of value. This type
of events is, for example, the body temperature. Changes can be primitive type (means, occur
independently) or composite type (i.e. particular sequence of changes, for example, B occurs after
A). For details on event types in our system, see Section 3.3. In this project, we only focus on the
primitive types of events: the change of the contents in Web pages.

(2) Event Observation
Events in the Semantic Web are generated by Web publishers. The question is how to observe the
events occurrence. It is not practical to check through Web pages in the world. Therefore a strategy
of how to observe the events in the most efficient way needs to be developed in this project. We
focus on events occurring in a given database of Semantic Web documents.

(4) Query Language and Filtering
The document format of the Semantic Web is the so-called RDF (Resource Description
Framework). Currently no query language is available to catch changes of RDF documents. So, the
initial issue here is “how to detect the changes”.

1 The name “Adaptive Semantic Web” has been initially introduced by Peter Dolog et al. [15]

Figure 3 The Adaptive Semantic Web

 5

Queries will be interpreted and filter the irrelevant events, leaving only the relevant ones for given
queries. We need to find the most efficient approach for the filtering. The filter language is
influenced by the database type used to store the RDF documents. In this project, we use a trigger
approach to detect and filter events.

(3) Data Type / Storage
As the document format of the Semantic Web is RDF, which is the application of XML, it is one
option to directly store the document in XML. Considering the Semantic Web handles the large
amount of documents from World Wide Web, it is not scalable to store the documents in a file
system. One option to solve the scalability issue is to convert documents into database entries,
which is generally more efficient. If we transform documents into entries in a database, we have
several options for the storage: relational database, or object relational database. In general, Object
Relational Database is considered to be faster in processing due to its ability to handle data
recursively. The selection of the database type needs to be considered together with the way to
observe and filter events, as the storage system would influence these methods. For our project, we
use a relational database (Oracle) and the RDF storage system Sesame.

In this report, we focus on the development of a filter engine for the semantic web documents,
which detects events, filters out irrelevant events, and stores the relevant events for notification.
Profiling of users, query parser, and notifier of events are remained for further research.

The remainder of this report is structured as follows: In Section 2, we discuss the technical
background of the Semantic Web and this dissertation in more details, which are foundation of our
implementation. We also briefly discuss the related work. In Section 3, we discuss the design of
system. We then discuss our implementation in Section 4. And finally in Section 5, we summarize
the achievement of this project, and review the limitation and future work to be done.

2. Background
In this section, we discuss the key technologies of the Semantic Web and our Event Notification
System. The search engines and search agents in the Semantic Web have similar function; both
accept the key queries such as word/sentences and return the relevant data for user. However their
architectures are very different. The search Engine focuses on the keywords, and returns the Web
pages, which contain keywords in metadata (header part) or in their contents (body part). It does
not recognize the meaning of words, but return documents if they contain keywords.
The Semantic Web, on the other hand, more focuses on the meaning of data. It uses RDF
documents, which describe the content and relation of Web pages. Structure of RDF documents is
provided by the Resource Description Framework (RDF), RDF Schema (RDFS), and
Ontologies. Applying these technologies, RDF documents describes the relations of resources.
Because the documents are written using a certain schema, the documents are human-readable and
can also be processed by a machine.
The Semantic Web so far offers static search of data. Our main interest is to design the filter
engine of an Event Notification System for the Semantic Web data in order to extract the dynamic
changes of Web documents which are relevant to users. In this Section, we first discuss the data
handling issues in the Semantic Web introducing its key technologies, and then we present a
general introduction of the Event Notification Systems.

 6

2.1. Data Issues in the Semantic Web

Three layers of the Semantic Web are RDF, RDF Schema, and Ontologies. Web pages data are
collected from the WWW, interpreted, and connected to extract the meaningful information. Then
they are stored for future queries. Especially storage is important for our Event Notification
System. In this section, we introduce the RDF, RDF Schema, and Ontologies, and then discuss
storage and query issues.

2.1.1. Resource Description Framework and RDF Schema

RDF documents can be described using XML syntax, triples, or a graph representation. RDF
documents are (of course) written using RDF and RDFS, but their structure is more expressively
described in triples and graph. Hence we first focus on the triple and graph representation to study
the concepts of RDF documents. And then we discuss XML representation to develop the
discussion to the architectural issue.

2.1.1.1. Conceptual Framework of the Semantic Web

First, we introduce the components of triples and their relation, which are also used in the graph
representation. Next, we show how to describe triples in graph format. Then we discuss the
practical approach to build the relations of resources and extract the meaning from them.

(A) TRIPLE
The RDF documents are conceptually expressed in the form of sentences. A sentence has three
components: subject, predicate, and object. All sentences contain these three components. As they
are structured in three components, it is also called triples. Dividing sentences into triples, it
becomes possible to store RDF documents into database. Each component is identified by Uniform
Resource Identifier (URI). [13]
Consider the following example: There is a person whose name is John. He is represented by
Uniform Resource Identifier (URI) http://www.example1.org.nz/, which is his own Website. He
wrote the report with the title of ‘The Semantic Web’. This document is uploaded in the Website
whose URI is http://www.example2.co.nz/. The relation between ‘John’ and ‘The Semantic Web’
is stated in the web page whose URI is http://www.example3.co.nz/. This relation can be described
by the following sentence:

 Subject Predicate Object
Sentence John hasWritten ‘The Semantic Web’

URI http://www.example1.org.nz http://www.example3.co.nz http://www.example2.co.nz

 Suppose again John is the student of the University of Waikato, whose Web address is
http://www.example4.ac.nz/. This relation is also stated in the web page whose address is
http://www.example3.co.nz/. Then the relation can be written as follows:

 Subject Predicate Object
Sentence The University of Waikato hasStudent John

URI http://www.example4.ac.nz http://www.example3.co.nz http://www.example1.org.nz

Predicate is like ‘verb’ used in common English sentence. Predicate bridges any two entities,
which have URIs, and makes a sentence. Two entities, which are bridged by predicate, are called

 7

Figure 4 Graph

subject and object. The meanings of subject and object are much like English grammar term. They
are not necessary to be Web pages. Any entities, which have URI, can be subject/object. Subject
and object are also called resource. There are two types of resources: property and class. Predicate
has to be a property, but subject and object can be either property or class.
It is important to give the URI to the resources. In the Internet world, everybody can write
anything. Two different people may use same term in different meanings. Or two different terms
can be used to express same meaning. For example, consider the term “create”. The religious
people use this term to express the creation of the world by the God, while the artists mean
drawing the picture. Or, the office administrator would use that term for generating the business
report. Connecting the resources to a particular URI, we can avoid such confusion, and define the
meaning of the resource clearly.

(B) GRAPH
Triples can also be expressed in the
graph format. In the graph, classes
(subjects and objects) are
represented by oval shape and
property by arrows. (See Figure 4)
Attributes of classes are expressed as
literal, which are represented by
rectangles. Literals are the
descriptive details of classes, such as
the title of the document, creation date, number of pages, name of the person, etc.

Applying this simple grammar, we
can make sentences one after another
with connecting given resources.
Figure 5 shows the very simple
relationships between document
group and writer group. Two
properties used in Figure 5, which are
subPropertyOf and subClassOf, show
the hierarchy of resources. They are
defined by RDF Schema, and a key to
express the relationships between
resources. We will go into detail
about RDF Schema later. The other
three properties (hasAuthor,
hasCreated, hasWritten) are user-
defined properties.
Classes are connected by the arrows (properties). There are only 13 classes and 14 properties in
this case. But even such simple relations, the diagram is already complicated enough to confuse
the reader. Therefore the new issue arises in here: how can we extract the sentences, which contain
a particular meaning? We need a certain level of abstraction of resources to extract the meaningful
information out of complicated resource connection. Now we talk about the topic of how to
organize resources.

Figure 5 Graph with many resources

 8

Figure 7 Abstract Resources

Figure 8 Relate Resources

(C) HOW TO ORGANIZE RESOURCES
To organize the relations of resources, we apply two dimensions on resources. One dimension is
vertical: the hierarchy of resources. More abstracted resource locates in higher position of
hierarchy. The other dimension is horizontal: other than the hierarchical relations. We map
resources with these two dimensions. Each mapped resources are connected to URI, which identify
address of them. We organize resources in three steps; (1) identify resources, (2) abstract one
resource to another, and (3) relate them each other.

Identify Resources: (Where is it?)
To identify the resources, the Semantic Web
refers the location (URI) of them. In the
Semantic Web, identification refers to the
resources knowing “where it is”. ‘Identifying’
means to describe resource’s location with the
combination of the namespace and their local
name in the form of URI. (See Figure 6)

Abstract Resources: (What is it?)
In abstraction, a resource should be classified into
two different categories: class or property. (See
Figure 7) The publishers of RDF documents make
their own rules about how to sub-classify resources.
For example, the document with title ‘The Semantic
Web’ can be a sub-class of ‘assignment report’.
‘Assignment report’ can be the sub-class of the
‘report’, which is again the sub-class of ‘text
document’. Then the ‘text document’ can be the sub-class of ‘document’, which is type ‘Class’. In
same manner, properties can be split into the sub-properties, and made into hierarchy. ‘Edit’ can be
the sub-property of ‘write’. And ‘write’ can be the sub-property of ‘create’, which is of type
‘Property’. Through the abstraction, resources are semantically structured into the tree. Then the
resources, whose addresses spread whole over the world, become available to search from the
semantic tree.

Relate Resources: (How do they relate?)
After resources are identified appropriately, then we
can make sentences using those resources. (Figure 8)
Connecting two resources (subject and object) with a
property (predicate), we can make sentence in any
level of hierarchy. That means, we can say either
“Person – Created - Document” or “John - Wrote – Assignment report”. ‘Relating’ can be done
earlier than abstraction. The combination of relation and abstraction makes it possible to extract
the meaningful information (i.e. knowledge representation).

Web information are sorted in these three steps (identify, abstract, relate), and described in the
form of RDF documents. RDF documents are actually supported by three technologies: RDF, RDF
Schema, and Ontologies. In Section 2.1.1.2, we discuss technical issues based on the conceptual
framework.

Figure 6 Identify Resources

 9

2.1.1.2. Architectural Framework of the Semantic Web

The latest version of RDF and RDF Schema recommended by World Wide Web Consortium
(W3C) is introduced in “RDF Vocabulary Description Language 1.0: RDF Schema” [6].
Vocabulary of RDF/RDFS contains 29 resources: 13 classes and 16 properties. The vocabulary
shown in the following table is ones that we mainly deal with in this project.

Syntax of RDF documents is extended from XML. Similarly to XML, user can define vocabulary
of RDF documents extending W3C recommendation. A sample of RDF document in XML is
introduced in Figure 9. The graph representation of Figure 9 is shown in Figure 13 with some
extension. Both RDF and RDF Schema are used to write this RDF documents. Developing the
vocabularies of users’ own, the RDF documents yield the meaning on the sentences.

(A) RESOURCE DESCRIPTION FRAMEWORK
Resource Description Framework (RDF) is an infrastructure that enables the encoding, exchange
and reuse of structured metadata [1]. It is used to identify the resources showing the type of
resource (whether class or property) and the URI of the resource. W3C provides the good
introductory guide of how to write the RDF documents [7]. We see the simple example in here.
The following sentence says, “Resource ‘People’ is a ‘class’, and is located in the address of
http://www.example.ac.nz/terms”.

In this example, ‘rdf:’ is a pre-defined namespace which is defined at
"http://www.w3.org/1999/02/22-rdf-syntax-ns”. Terms ‘Description’, ‘about’,
‘type’, and resource are defined at the Web page represented by namespace ‘rdf’. Term ‘People’ is
defined by user at "http://www.example.ac.nz/terms".

The following sentence says same thing as the above. The abbreviation is used in this case. Where
many terms are defined in a page, this way is efficient as it shortens the sentence. In the rest of this
report, we use the abbreviation.

<rdf:RDF xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#">
 <rdf:Description rdf:about="http://www.example.ac.nz/terms#People">
 <rdf:type rdf:resource="http://www.w3.org/2000/01/rdf-schema#Class"/>
 </rdf:Description>
.....

 Class Property
RDF Property type

RDFS Resource, Literal, Class subClassOf, subPropertyOf, domain, range

<rdf:RDF xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
 xml:base="http://www.example.ac.nz/terms">
 <rdf:Description rdf:ID="People">
 <rdf:type rdf:resource="http://www.w3.org/2000/01/rdf-schema#Class"/>
 </rdf:Description>
.....

 10

<?xml version="1.0"?>

<rdf:RDF xml:lang="en"

 xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"

 xmlns:rdfs="http://www.w3.org/2000/01/rdf-schema#"

 xml:base="http://www.waikato.ac.nz/tk27/terms">

 <rdf:Description rdf:ID="People">

 <rdf:type rdf:resource="http://www.w3.org/2000/01/rdf-schema#Class"/>

 </rdf:Description>

 <rdf:Description rdf:ID="Student">

 <rdf:type rdf:resource="http://www.w3.org/2000/01/rdf-schema#Class"/>

 <rdfs:subClassOf rdf:resource="#People"/>

 </rdf:Description>

 <rdf:Description rdf:ID="Document">

 <rdf:type rdf:resource="http://www.w3.org/2000/01/rdf-schema#Class"/>

 </rdf:Description>

 <rdf:Description rdf:ID="WebPage">

 <rdf:type rdf:resource="http://www.w3.org/2000/01/rdf-schema#Class"/>

 <rdfs:subClassOf rdf:resource="#Document"/>

 </rdf:Description>

 <rdf:Description rdf:ID="hasCreated">

 <rdf:type rdf:resource="http://www.w3.org/...22-rdf-syntax-ns#Property"/>

 <rdfs:domain rdf:resource="#People"/>

 <rdfs:range rdf:resource="#Document"/>

 </rdf:Description>

 <rdf:Description rdf:ID="hasWritten">

 <rdf:type rdf:resource="http://www.w3.org/...22-rdf-syntax-ns#Property"/>

 <rdfs:subPropertyOf rdf:resource="#hasCreated"/>

 </rdf:Description>

</rdf:RDF>

Figure 9 RDF Document

 11

Figure 10

(B) RDF SCHEMA

RDF Schema (RDFS) is a semantic extension of RDF. It provides mechanisms for describing
groups of related resources and the relationships between these resources. [6] It expresses the
relations of class and property. Term ‘subClassOf’, which is defined by RDFS, is used to express
the hierarchical relation of the classes. For example, where the ‘Student’ class is the sub class of
the ‘People’ class, this relation is described as:

Similarly, the hierarchy of properties is expressed by the term ‘subPropertyOf’. For example, the
following sentence means ’hasWritten’ property is the sub-property of ‘hasCreated’”.

RDFS is used to describe not only the hierarchical relation. It applies to all kind of sentences.
Conceptually, sentences are structured with three components: subject, predicate, and object as
introduced in Section 2.1.1.1. More precisely, this relation is described in RDF document using
five components: two classes (subject and object), property, domain, and range. The terms
‘Domain’ and ‘Range’ are defined by RDF Schema. Domain represents the relationship between
subject and predicate, and range represents the relationship between object and predicate. These
relations between classes and properties are, again, supported with triple structure (i.e. Property –
Domain – Class or Property – Range - Class), and property bridges two Classes in the middle.
(Figure 10)

 <rdf:Description rdf:ID="hasWritten">
 <rdf:type rdf:resource="http://www.w3.org/...22-rdf-syntax-ns#Property"/>
 <rdfs:subPropertyOf rdf:resource="#hasCreated"/>
 </rdf:Description>

.....

 <rdf:Description rdf:ID="Student">
 <rdf:type rdf:resource="http://www.w3.org/2000/01/rdf-schema#Class"/>
 <rdfs:subClassOf rdf:resource="#People"/>
</rdf:Description>

.....

 12

Splitting a sentence into two triples, the process of sentence-making becomes more flexible. When
Web pages are created, they are not described as the part of the sentence initially. Until somebody
publishes the document to connect resources, they are not a part of sentence. In the other case,
resources, which are part of sentence, may be deleted. In such case, remainder of resources would
be no longer a part of sentence. Building subject-predicate-object relation with five components,
construction/destruction of sentences would become much more adaptable to the real-world
situation.
Please note, ‘Domain’, ‘Range’, ‘subClassOf’, and ‘subPropertyOf’ are typed as ‘Property’. They
are used to represent the hierarchical relation and sentence relation of two resources. It is
confusing to call them as property as it easily mixes up with properties other than these four
properties. So, we call them as ‘relational property’ in this report.

2.1.2. Ontology

Ontologies deal with equivalency of resources. What person ‘A’ calls “create” can have the same
meaning as when person ‘B’ says “write”.

Looking back at Figure 4, there are
two relations, which have same
meaning, are drawn on the diagram.
One is [Document – hasAuthor –
People], and the other is [People –
hasCreated – Document]. The order
of subject and object is inversed, and
classes are bridged by different properties, but the meaning of sentences is the same. Sometimes,
even the sentence order is the same: such example is [People – isAuthorOf – Document]. (See
Figure 11) When the user is searching for the document written by People, all these sentences
provide the valid result ‘Document’. In other case, the schema A and schema B may use the
different terms to express the same meaning. For example, “People” in schema ‘A’ can be same
thing as “User” in schema ‘B’. Ontology describes the relationship among resources (e.g. if ‘A’
then ‘B’, etc.), and clarifies equality of two classes or interprets the multiple values of properties.
Two technologies to support ontology are available: Web Ontology Language (OWL), which is
W3C recommended [11] and is based on DARPA Agent Markup Language (DAML), and
Ontology Inference Layer (OIL). [14]
In this report, we do not go further for this topic. Our main focus is to create the filter engine to
notify about changes. Documents using Ontologies will be left for further study.

2.1.3. Storage

RDF documents for the Semantic Web are usually stored in a storage system. After collecting the
RDF documents, the system builds the database including the documents. RDF document can be
stored in XML, triples, or graphs. The storage system can therefore use an XML Database, a
Relational Database (RDB), or an Object-Relational Database (ORDB). Considering RDF in
triple format, RDB or ORDB would be used.

For our adaptive Semantic Web, RDB and ORDB (for example, Oracle or SQL 2000) have strong
advantage. They have trigger function, which enable to manipulate data upon insertion or deletion.
This function is considered to be quite useful to build the filtering / notification system.

 subject predicate object
1 Document hasAuthor People
2 People hasCreated Document
3 People isAuthorOf Document

Figure 11 Equivalent sentences

 13

ORDB is similar to Relational
Database. Object is closely
equivalent to Entity of RDB. ORDB
is known to have advantage in
processing speed of triples
comparing to the RDB. [5] Since
the Semantic Web has hierarchy,
the system needs to access to the
database until reaching the end of
hierarchy (either highest or lowest).
In Object-Oriented programming, each object is directly connected to the relative resources. Its
simple structure enables the system to process faster. (Figure 12)
We employed Oracle for our storage system. Oracle is adaptable either to RDB or ORDB. Despite
of the advantage of faster processing speed in ORDB, we actually used Oracle as RDB for our
implementation. As we will discuss later, we used Sesame as platform. Sesame used to provide
two different schemas: RDB-based and ORDB-based. So, we initially intended to compare the
performance of RDB to ORDB. But ORDB-based schema is no longer available in the latest
version. So, we justified the storage system to the currently available one (i.e. RDB).

2.1.4. Query

If we give the author name
and topic of article to the
search engine as keyword, it
will return any documents,
which contains the given
keywords. Instead, the
Semantic Web returns the
article with the given topic
and author. So, the returned
documents are expected to be
more relevant than the one
from search engine.
Moreover, the Semantic Web would return even the data which does not contain the given
keywords, but relevant to the topic. Suppose the user would search for the ‘report about the
Semantic Web written by John who is a student’, and we do not have exact match of this
domain/range relation. However the higher level resources of them, say [People – HasCreated –
Document], may have the domain / range relationship. Then the system deductively infers that the
higher-level relationship makes the lower- level relation valid. (Figure 13)

We identify four patterns for the system to infer the valid domain/range relations (Figure 14).

(1) Exact match (class and property have domain/range relation)
(2) Super property match (class and super property have domain/range relation)
(3) Super class match (super class and property have domain/range relation)
(4) Super class and super property match (super class and super property have domain/range relation)

Figure 13 Find domain/range relations from super classes/properties

Figure 12 Object Relational Database

 14

Figure 14 Four patters to find valid relation

When user
passes the query
to the system in
the form of the
triple, the system
first checks the
exact match of
valid relation. If
it is not found,
then it traces any
combination of
the super-
classes/super-properties of the triple. And if the valid relation would be found in the higher
hierarchy, then returns all the sub classes of that combination, which are super classes of the given
triple, as valid.
We will revisit this approach later again when discussing the design of the Adaptive Semantic
Web.

2.2. Event Notification

Traditional system provides the information upon the request of the client. Information delivery is
outcome of request/reply-interaction. Event Notification System (ENS) [23] reacts to events, not
to requests, and delivers the information of client’s interests/needs selectively. There are three key
components in ENS: event generation/observation, filter, and notification. (See Figure 15)

In ENS, any changes
made on the known
data are treated as
event. Incoming
events are observed by
the system and
transferred to the
filter.
There are many
different types of
events. Events can be
the text data, or number. For example, in medical care system, the pulse of the patient and body
temperature and the particular patterns of brainwave can be events. Pulse can be counted and
reported to the system as the numeric data. Body temperature can be reported when it exceeds
certain level. Brainwave would be reported when the wave pattern would become particular
pattern. Or, the events can be generated by the patient themselves or his/her caregiver with
pressing the button to tell the emergency. Events may be independently reported. Or they may be
reported when they occur in a particular sequence, or when the combination of the change matches
to the pre-defined event pattern. In the case that incoming events is not available, the system would
fire the event generator, and collects data from outside system.
Not all events are relevant to the users’ interests. So, when the occurrence of the event is observed,
the system filters out the irrelevant information that is not the user’s interests/needs. The condition
of filtering is called user profile. User profile in here has broader meaning than common English
term. Rather than physical factors like age or sex, it focuses on users’ interests or needs. User’s
interests or needs may be pre-registered by user, or the system infers from users’ behavioural

Figure 15 Event Notification System

 15

patterns. If the matching data to the user profile are monitored, then they are transferred to the
notifier, and the notifier delivers the event notice to the user.
In this process, definition of event and profile are the keys to receive the relevant event
notifications. Event can be single event, or a combination of sequential events. Event can be fired
by itself, or needs to be called to extract. We are interested in the changes of sentences in RDF
documents. Then, more precisely which changes do we need to detect?
Event definition decides the input of the ENS. In contrast, user-profiling affect on the output of the
ENS. What conditions to apply? How to describe events? Which language to use? Answering
these questions, we can detect the valid results of event notices.

2.3. Related Work

The key processes in event notification are the change detection and the filtering process. Our
intention is to extract the changes dynamically and selectively. So, we visited works related to
each processes individually, and intend to integrate idea of them.

Concepts/tools for change-detection have been developed for some RDF related technologies:
XML, database, Ontology, and for the Semantic Web. Cobena offered supporting tool for Xyleme
(XML filtering system). [22] Active database is the most generally applicable tool for change
detection. [19] Detection of changes guided by Ontology, which is one of three layers in the
Semantic Web, is studied by Li Qin et al. [17]. Papamarkos et al offered event-condition action
rule language, which is dedicated for the Semantic Web. [16]

Several query languages are offered for RDF, XML, and Attribute-value pairs. Karvounarakis et al
proposed RQL, a query language for RDF documents [4]. He and his colleagues also discussed
RQL for modelling a community portal [3]. Broekstra provided a guide for the RQL language
dedicated to Sesame (SeRQL), which is a storage and querying system of RDF documents [9].

Only a few systems and languages have been proposed for XML filtering: Aguilera et al
introduced Xyleme, which is the filter of XML documents [20]. Existing filters for XML
documents do not detect changed or deleted data. No filters exist for RDF documents in triple or
graph format.
Hayes et al introduced the automated collaborative filtering of attribute-value pairs [21]; this
system is not suitable for RDF documents.

In this project, we intend to joint the two concepts of ‘change detection’ and ‘query language’; we
offer the dynamic filtering of the changes in RDF documents using its triple structure. To the best
of our knowledge, this is the first attempt for filtering RDF documents for changes and deletion.

3. System Design
In this section, we discuss about the design of the system we prepare in this dissertation. First, we
introduce the overall system architecture in Section 3.1. Then we discuss the Sesame system,
which is used as the storage and querying system for RDF documents. Our notification engine is
developed adapting to the Sesame storage system. Sesame is introduced in Section 3.2. Then we
discuss details of the conceptual design: event definition (Section 3.3), event observation (Section
3.4), profiling, filtering, and event notification (Section 3.5). Finally we introduce our
implementation design in Section 3.6 (Storage) and in Section 3.7 (Trigger/Procedure).

 16

3.1. System Architecture

In this project, we
extended the existing
system Sesame. Sesame is
a RDF storage system,
which provides the
platform for the Semantic
Web. [2] Details of
Sesame will be introduced
in Section 3.2. Event
Notification Engine uses
the data of RDF
documents, which are
translated and stored in the
repository by Sesame, to
develop the Event
Notification Engine.
(Figure 16, shaded area)
Event Notification Engine
has three key modules:
profiler, filter, and notifier.
Profiler interprets user’s
queries into attribute-value
pairs and store into user
profile repository. Filter reacts to events (changes on the RDF records), and finds the matching
records to user interest referring user profile records. Notifier receives the matching records from
filter, and sends messages to the user. Our task in this project is to implement the filter engine in
this project. Profiler and notifier, which are shown in the dot line in Figure 16, have not been
implemented. We inserted user queries directly to the profile repository instead of parsing and
storing through profiler.
Relevant events (matching records to user profiles) are stored into the query results database.
These records are ready to be exported to user upon calling by notifier.

3.2. Sesame

We used Sesame version 1.0.4 in our project. Hereinafter, we refer to this version as Sesame.
Sesame supports insertion, storage, and querying of RDF documents. [2]. Two protocols are
supported (HTTP and SOAP). It has three main modules: RDF administration module, RQL query
module, and RDF export module. (See Figure 16) Administration module allows insertion /
deletion of RDF data and schema information. Query module evaluates queries posed by users.
Export module allows extraction of the schema and/or data. Information is translated in Repository
Abstraction Layer (RAL) before storing into / extracting from database. This enables Sesame to
handle different DBMSs.

RDF documents with any syntax errors are unacceptable by administration module. Three options
are available in insertion interface: read from www, read from local file, and type directly to the
textbox. Removal options are remove-triple option, which deletes one triple at a time, and clear-
all-triples option, which deletes all triples from database.

Figure 16 Architecture of the Semantic Web Filter Engine

 17

Theoretically Sesame supports any DBMS because of abstraction by RAL, but actually current
version 1.0.4 supports only three DBMS: MySQL, PostgreSQL, and Oracle 9i. [8] MySQL is
categorised to Relational Database, and PostgreSQL to Object-Relational Database. Oracle can be
used either as RDB or ORDB. Broekstra introduced two different schema; Relational database and
Object-Relational Database [10]. However, its current version 1.0.4 handles only Relational
Database schema.
In default, Sesame holds the information of RDF- and RDFS-defined resources as initial data.
After user’s first login and selection of the database, Sesame automatically creates 25 tables and
inserts initial data into 16 tables. The remainder of nine tables are used for the temporary data
manipulation. Hence we do not focus on these tables.
Entity Relationship Diagram (E-R Diagram) for valid 16 tables of Oracle is introduced later in
Figure 22. An E-R Diagram is “a model of entities in the business environment, the relationships
or associations among those entities, and the attributes or properties of both the entities and their
relationships. A rectangle is used to represent an entity and a diamond is used to represent the
relationship between two or more entities“. [18] An oval represents an attribute. An underlined
attribute is an identifier (primary key) of an entity.

There are some noteworthy issues about Sesame tables. The E-R Diagram indicates the referential
integrity, but actually there is no foreign key set in the tables. No constraint is set in Sesame except
primary keys. The Sesame parser engine is written in Java, and the java program controls
referential integrity. Due to the restriction of the Sesame source code, no foreign key constraints
can be added. Otherwise, Sesame reports the error upon deletion of data from the referred table.
Even when the cascade option is selected, still Sesame returns the error message. So, all references
are removed from tables, and maintained by Sesame Java programs.
There are some redundancies among tables. For, all records in
SubClassOf table are derived from Direct_SubClassOf table.
Direct_SubClassOf table contains only directly related sub-super class
relationships. SubClassOf table, on the other hand, contains any
combinations of sub-super classes. If there are two sub-super relations,
then SubClassOf table holds all possible combinations making six
records in total while Direct_SubClassOf table holds two records.
(Figure 17) In other word, data in SubClassOf table can be inferred
from Direct_SubClassOf table. RDF documents only state the direct
sub-super relation. So, Sesame parser derives extra records and insert
into SubClassOf table.
Sesame inserts 29 resources into tables in default, which represent
classes and properties defined by RDF and RDF Schema. Examples of
default classes are ‘Resource’, ‘Class’, ‘Property’, ‘Literal’, etc, and
properties are ‘type’, ‘subClassOf’, ‘subPropertyOf’, ‘domain’,
‘range’, etc. Hierarchy to these resources are also generated by
Sesame. For example, Sesame generates the ‘Class’ class in default.
Then any classes newly added into Sesame system, say ‘People’ class,
are defined as (direct) sub class of ‘Class’, and the record [People,
Class] is added into the table Direct_SubClassOf table and SubClassOf
table in relation of [sub, super] as well as adding record [People] into Class table. Same issues can
be seen between Direct_SubPropertyOf table and SubPropertyOf table, and between
ProperInstanceOf table and InstanceOf table.
There are several database operation problems caused by integrity issue and the redundancy of
table structure. This topic will be discussed later in Section 3.5.2 (Filtering).

Direct_SubClassOf
sub super

Student People
People Class

SubClassOf

sub super
Student Student
Student People
Student Class
People People
People Class

Class Class

Figure 17 SubClassOf vs

Direct_SubClassOf

 18

Sesame supports five query languages: SeRQL-S, SeRQL-C, RDQL, Extract, and Explore. These
languages extract the data of user’s interests. Selection of query language is given in toolbar as
read-action options. When the database is selected, Sesame shows the textbox under toolbar.
Typing the query in this textbox according to the grammar of each language, and press evaluate
button, then Sesame return the query results under the text box.

3.3. Conceptual System Design: Event Definition

In our system, we focus on Classes and Properties, but not “Literals” because:
(1) Our platform (Sesame) does not capture referential integrity between literal and resource.
(2) Class- Property relationships are central to the documents. They are very complex.
(3) Literal is merely the attribute of resources, so that it does not affect the meaning of sentences.

So, we only focus on the class, property, and their relationships (domain, range, sub-class, and
sub-property). Possible changes of these components are insertion, deletion, and updating.
Updating in Sesame is a combination of deletion and addition. It is therefore covered by insertion
and deletion events.

We identify four insertion patterns
for Domain relationship (See
Figure 18(1) – (4)). Dotted lines
represent the inserted resources.
Range relation also has four
patterns. (Figure 18(5) – (8)).

(1) Insert a relational property
(2) Insert a property and a

relational property
(3) Insert a class and a relational

property
(4) Insert all three components

(i.e. a class, a property and a
relational property)

For SubClassOf and
SubPropertyOf, we identify four
patterns each. Patterns of
SubPropertyOf property are
similar to Domain relation, but
need to replace ‘class’ to
‘property’. (See Figure 18 (9)-
(12)).

Similarly, SubClassOf property
has four insertion patterns. In this
case, the above four patterns need
to replace ‘property’ to ‘class’.
(Figure 18 (13) - (16)) In
summary, there are total of 16
different events.

Figure 18 Event Patterns of Triple: Insertion

 19

We identify six patterns for deletion from Domain
relationship and Range relationship. The six
patterns are described in Figure 19, with showing
deleting resource with dot lines.

(1) Delete relational property only
(2) Delete property and relational property
(3) Delete class and relational property
(4) Delete class, property, and relational property
(5) Delete property only
(6) Delete class only

Pattern (5) represents the case that only the
property is eliminated. In this case, the domain
relation remains leaving garbage data. Pattern (6)
eliminates classes only. Both (5) and (6) leave an invalid domain relation, but these patterns may
happen in Sesame.

Similarly to Domain and Range, SubClassOf and SubPropertyOf relations also have six patterns
each. So, there are total of 24 different event patterns.

As mentioned, updating is the combination of deletion and insertion. Thus, the two events
(deletion and insertion) can be generated at the same time. Pattern (5) and (6) of deletion pattern
do not apply for updating, because the corresponding patterns in insertion are not appeared.

3.4. Conceptual System Design: Event Observation

The proposing system uses Sesame as its platform. In Sesame, data are stored in a database. We
will use the database - internal trigger to watch the events and manipulate the data.

In summary, the number of identified event patterns is 40 in total: 16 insertions and 24 deletions.
This number is counted based on the events in RDF documents as described in the last section.
Theoretically we need to observe 40 events. However, we need to reconsider the event definition
from the system side. As we use triggers for monitor of events, events definition needs to be
represented by changes in the database. There are eight relevant tables in Sesame’s database:
Class, Property, Domain, Range, Direct_SubClassOf, SubClassOf, Direct_SubPropertyOf, and
SubPropertyOf. (Refer Appendix A1) As we discussed before, SubClassOf table is derived from
Direct_SubClassOf table causing the redundancy. Thus actually we need to observe only one of
them. We decided to use the Direct_SubClassOf table because the number of records is smaller.
The same issue exists between Direct_SubPropertyOf table and SubPropertyOf table.
Consequently, we need to observe the events on six tables. Each table may experience delete
events and insert events. In conclusion, we need to observe 12 events on six tables in total.

3.5. Conceptual System Design:
 Profiling, Filtering, and Event Notification

The data processing flow of the event notification engine contains three modules: profiling,
filtering, and notification.

Figure 19 Event Patterns of Triple: Deletion

 20

3.5.1. Profiling

User Profile describes a user’s interest. The profile may be expressed by profile definition
languages. Profile definition may use one of the extensions of Sesame’s five query languages.
Currently, these language extensions do not exist. In the Adaptive Semantic Web, it is necessary to
store the parsed profile in the database. Hence the extended language and their parser are not
available, we manually insert the query into a Queries table. (The table design and the database
schema will be discussed later in Section 3.6). Part of the future work is an implementation of a
user interface for profile definition in Sesame, as well as the language extension and the parser.
Then, this manual operation will be automated.
As shown in Appendix A3 (Table No 2), we designed table as to accept query (profile) in strings.
Strings are interpreted into resource ID referring the Resources table. Filtering action can be fired
only when Ids for all three components are identified. For example, where user wants the matching
documents to the sentence [John – hasWritten - Report], components of tripe are stored as subject,
predicate, and object respectively. Then triggers search resource ID of them. Given the resource
ID, say 1, 2, and 3, then query becomes ready to search matching relations from Domain and
Range tables.

3.5.2. Filtering

Filtering is the process to extract the matching records to profile (query) from valid domain and
range relations. Where domain/range relationships exist in super classes/properties, they also need
to be extracted as matching records.
Insertion/deletion of the data into tables fires the trigger on tables. Then the next issue is how to
screen out the irrelevant data. There can be two approaches to filter the data. One approach is to
use a built-in query language. Sesame prepared several built-in query languages. One of them is
the dedicated query language for Sesame (called SeRQL – pronounce as circle) [8]. This query
language would need to be extended to serve as profile language for the filtering. The other
approach is to use the SQL query language of database with support of triggers and procedures. In
our project, we employed the later approach. There are several reasons to select triggers for our
approach as we will explain now in detail:

(1) Support of selective extraction
Query languages so far cannot select the part of matching documents selectively. Given the query,
they return all matched results, but what we
need is only the changed sentences. To extract
the changes, the system has to hold all data and
compare to the result after changes are made. It
is impossible to hold data for query languages
so far. On the other hand, database programs
hold all data before changing, thus it is possible
to extract changes selectively.

(2) Selective extraction of deletion
When a change was made, users need only be
notified on that change. However, the current
query languages return the whole result. So, the
notification system would need to compare the
results before the changes are made and after

Figure 20 Deletion of Sub-Class

 21

the changes are made. Triggers allow for simpler solution of comparing within the database.
Classes and properties sometimes can be connected in very complex way. Consider the situation
that shown in the Figure 20. If sub-super relation between ‘Animal’ and ‘People’ is deleted,
‘Animal’ class loses whole sub-super relation between subclasses of ‘People’ class. However,
where the sub-super relation between ‘Writer’ and ‘ReportWriter’ is deleted, new relations are
more complicated. ‘People’ has two sub classes: ‘Creator’ and ‘Student’. Sub classes of
‘ReportWriter’ (i.e. ‘Student’ and its sub classes) are no longer the sub class of ‘Writer’ and
‘Creator’. Similarly, super classes of ‘Writer’ are no longer the super classes of ‘ReportWriter’.
However, ‘Student’ and its sub classes are still sub classes of ‘People’ because there is another
direct sub-super relationship between ‘People’ and ‘Student’. Because of potential existence of
such direct relationships, we need to check the validity of each relationship one by one. Query
languages, in general, are not designed to extract this sort of changes selectively.

(3) Inability of query languages to describe the multi level matching
 Sesame returns the result of
a query in the form of a
triple. However it is
uncertain whether it
expresses the real
relationship of the classes
and properties. Triple is
actually structured with the
five components: class
(subject), property
(predicate), class (object),
domain, and range. Where
the class / property has super class / property, if the upper level of class / property would have
valid domain (or range) relation, then the lower level class / property naturally have the valid
relationship. Validity of domain and range should be evaluated individually without concerning
levels. Then there is the case that a triple becomes valid even when the single property does not
have both domain and range relations. Valid relation of super class/property in any upper level can
make that triple valid. In Figure 21, the bottom line resources do not have the exact match of the
relations. (i.e. John, HasEdited, and SemanticWeb) However, each resource has valid relation of
domain or range in upper class. [HasWritten - Domain - Student] and [HasCreated - Range -
Document]. Thus the bottom line relation is also valid. In this case, valid relationship is confirmed
in different levels. If we selectively indicate only one property to show the validity of this
statement, the triple does not express this relation accurately. It is considered to be more
appropriate to indicate two properties to show the valid relation.

(4) Less workload
Sesame supports five query languages and three database programs. Using the query languages for
filtering means, it is necessary to analyse five query languages. It is more time consuming to
analyze five query languages rather than convert the triggers to three database programs.

(5) Ease of future maintenance
The Semantic Web is not the established and stabilized technologies. It is still on the way of
development. So, more query languages would be introduced in future. However the Database has
already established the high quality level and got the stability. So, the less efforts will be expected
for adoption than query languages.

Figure 21 Matching in multi-level

 22

Considering the above issues, this project challenged to develop the filter with trigger and
procedures. Algorithm of trigger/procedure will be introduced in Section 3.7.

3.5.3. Event Notification

In Sesame, the result of queries is given directly on the screen. In the Adaptive Semantic Web, it is
necessary to send the notification of changes to users. There can be several options for event
notification. One is to send e-mail to users. Another option is to store the changes into the
database, and show them at the time of user’s next login. In our project, we stored relevant changes
into the Notices table. (The table design and the database schema will be discussed later in Section
3.6) Upon implementation of a notifier interface in Sesame, this operation will be automated.
Insertion of the changes into Notices table is handled by trigger with the assist of procedures.
Algorithms of triggers/procedures will be introduced in Section 3.7.

3.6 Implementation Design: Storage

In addition to the Sesame generated tables, we created 14 more tables to run the event notification
feature. The relations among the extended tables are introduced in the E-R Diagram (Appendix
A2). The table design is also shown in the Appendix A3. Following the Sesame regulation, none of
the additional tables for filtering engine has foreign keys. Instead, triggers maintain the referential
integrity. Upon deleting the referred data, triggers delete the records, which is in referring tables.
So the foreign keys indicated in E-R Diagram (Appendix A1 and A2) are not physically set, but
they are conceptually referred.

The roles of tables are categorised into four groups: (1) store user queries (profiles),
(2) intermediate the queries and query results, (3) store query results, and (4) error protection. The
relation among tables is described in Figure 22. We also explain the relation among tables
applying sample data in Figure 23. Figure 23 indicates both table of Sesame and extended tables
for our Event Filtering Engine. Extended tables are underlined to distinguish from Sesame’s ones.
In the following explanations, we sometimes use the term ‘valid’, for example, valid subject, valid
domain relation, etc. We call valid when the resources or relations exist in Sesame tables. Domain
relation is valid if combination of property and class exists in Domain table. Subject is valid if the
resource name exists in Resources table and that resource’s ID exists in Class table. Similarly, sub-
super property relation is valid if the combination of sub property and super property exists in
Direct_SubPropertyOf table.

Roles of tables for Event Notification engine are as follows:

(1) Tables for Queries

a. Requesters
 Store the data about the requesters (users) including the e-mail address. Requesters’ details are
taken from log-in accounts

 b. Queries
Store the user profiles as queries (subjects, predicates, and objects) as well as requester’s id. Query
details are stored being identified by query ID. Query ID is sequential number to identify the
query. (Shown as 201 in Figure 23) Requester ID refers to Requesters table. (Shown as 101 in
Figure 23) Predicate, subject, and object are stored as string. Shown as John, hasWritten, Report
respectively in Figure 23)

 23

When the same words as predicate is found in (inserted into) the Resources table and if it is the
property (i.e. exist in Property table), then the resource ID of that property is stored into
QueryPredicates table together with query ID. Similarly resource IDs of subject and object are
stored into QuerySubjects and QueryObjects tables respectively when the resource IDs are found
and they exist in Class table.

Figure 22 Relationship among tables created by Sesame/ tables for Event Filtering Engine

 24

Direct_SubPropertyOf
sub super
16 15

Namespace
id prefix name userdefined export
1 www.example.com example null null

Resources
id namespace localname
11 1 Student

12 1 John

13 1 Document

14 1 Report

15 1 HasCreated

16 1 HasWritten

Requesters
req_id fname lname email Lastlogin

101 Mary Smith js@example.com 2005-3-1 15:32

Queries
q_id subject predicate object req_id
201 John hasWritten Report 101

Class
id
11

12

13

14

Property
id
15

16 QuerySubjects
q_id subj_id
201 12

QueryPredicates
q_id pred_id
201 16

TempObjects
q_id obj_id
201 13

201 14

QueryObjects
q_id obj_id
201 14

TempPredicates
q_id pred_id
201 15

201 16

TempSubjects
q_id subj_id
201 11

201 12
Domain
property class

15 11

Range
property class

15 13

Direct_SubClassOf
sub super
14 13

QueryDomain
q_id pred_id subj_id
201 15 11

QueryRange
q_id pred_id obj_id
201 15 13

QueryResults
q_id subj_id pred_s_id pred_o_id obj_id
201 11 15 15 13

Notices
q_id subj_id pred_s_id pred_o_id obj_id delet datefound
201 11 15 15 13 0 2005-3-1 15:30

Figure 23 Relationship among tables with sample data

Direct_SubClassOf
sub super
12 11

14 13

 25

(2) Tables for intermediate process

c. QuerySubjects
Store query ID and valid class ID (i.e. resource ID) which has the same resource name in
Resources table as subject name in Queries table. Query ID refers to Queries table. (Shown as 201
in Figure 23) Subject ID refers to Class table. (Shown as 12 in Figure 23)
Combination of query ID and subject ID must be unique.

d. QueryPredicates
Store query ID and valid property ID (i.e. resource ID) which has the same resource name in
Resources table as predicate name in Queries table. Query ID refers to Queries table. (Shown as
201 in Figure 23) Predicate ID refers to Property table. (Shown as 16 in Figure 23)
Combination of query ID and predicate ID must be unique.

e. QueryObjects
Store query ID and valid class ID (i.e. resource ID) which has the same resource name in
Resources table as object name in Queries table. Query ID refers to Queries table. (Shown as 201
in Figure 23) Subject ID refers to Class table. (Shown as 14 in Figure 23)
Combination of query ID and object ID must be unique.

f. TempSubjects
Temporally store subject ID and all valid super classes of subject ID that appears in QuerySubjects
table. (Shown as 12 and 11 in Figure 23) Query ID refers query ID of corresponding subject.
(Shown as 201 in Figure 23)

g. TempPredicates
Temporally store predicate ID and all valid super properties of predicate ID that appears in
QueryPredicates table. (Shown as 16 and 15 in Figure 23) Query ID refers query ID of
corresponding subject. (Shown as 201 in Figure 23)

h. TempObjects
Temporally store object ID and all super classes of valid object ID that appears in QueryObjects
table. (Shown as 14 and 13 in Figure 23) Query ID refers query ID of corresponding subject.
(Shown as 201 in Figure 23)

i. QueryDomain
Store all valid domain relations, which are combinations of resources held in
TempPredicates table and TempSubjects table. (Shown as 15 and 11 respectively in
Figure 23) Query ID refers query ID of corresponding predicate/subject. (Shown as 201 in Fig. 23)
Combination of query ID, predicate ID, and subject ID must be unique.

j. QueryRange
Store all valid range relations, which are combinations of resources held in TempPredicates table
and TempSubjects table. (Shown as 15 and 13 respectively in Figure 23) Query ID refers query ID
of corresponding predicate/object. (Shown as 201 in Figure 23)
Combination of query ID, predicate ID, and object ID must be unique.

 26

(3) Tables for Query Results

k. QueryResults
Store query results, which are combination of records in QueryDomain table and QueryRange
table. Any combinations of records in QueryDomain table and QueryRange table with mutual
query ID are valid query results. In Figure 23, there is only one record each for query ID ‘201’ in
QueryDomain and QueryRange tables. So, we get only one combination, which is [11, 15, 15, 13].
Combination of query ID, subject ID, domain-property ID, range property ID, and object ID must
be unique.

l. Notices
Store logs of newly inserted /deleted query results into/from QueryResults table. Flag to indicate
event type (1:delete or 0:insert) and date/time of filtering the event are also stored.
No referential integrities or unique constraints are set because a record may occur several times.

(4) Tables for Error Protection

m. Direct_SubClassOf2
Duplicate copy of Direct_SubClassOf table. We will discuss the reason to prepare the duplicated
copy later in this section.

n. Direct_SubPropertyOf2
Duplicate copy of Direct_SubPropertyOf table

The Notices table and the Requesters table contain a column for sysdate (i.e. system date). In
Notices table, sysdate is stored when the new insertion/deletion record is inserted. In Requesters
table, the sysdate shows the time that user logged in last time. Comparing two sysdate, the system
can select the only records, which have not been shown to the users. This feature offers different
options to receive the event notice: Users can receive e-mails, or they can have the summary of the
un-seen event notices upon logging-in.

Tables TempSubjects, TempPredicates, and TempObjects tables do not hold any records. They are
used to store the relevant data temporarily when comparing the valid records ‘before insertion (or
deletion)’ to ‘after insertion (or deletion)’. After insertion of relevant records after operation into
these tables, records are compared to existing records (i.e. records before changes occur).

Last two tables are duplicate copies of existing tables. These introduce redundancies but some
problems cannot be solved without these duplicated copies. One problem is caused by mutation,
and the other problem is observed at the time of updating the table.

(1) Mutation problem
Mutation error occurs when the trigger/procedure tries to select the data from table, which is on the
process of insertion/deletion and fired the trigger. For example, consider the case that the data is
inserted into the Direct_SubClassOf table. Because an event (a newly added relation) may connect
the query’s subject/object with the valid statement, the Direct_SubClassOf table fires the trigger to
re-check the super classes of subject/object.
However, the Direct_SubClassOf table itself is in the process of insertion. In order to keep
atomicity, Oracle will not treat the insertion transaction as complete until the trigger completes all
duties. So, the Oracle returns the mutation error. Same problem happens in Direct_SubPropertyOf
table, and in the deletion transaction, too.

 27

To solve this mutation problem, we prepared the duplicate copy of Direct_SubClassOf table and
Direct_SubPropertyOf table. When the data is inserted into Direct_SubClassOf table or
Direct_SubPropertyOf table, the trigger inserts the same data into duplicate table. Then trigger can
select the data from the duplicated copy any time.

(2) Update trigger
Another approach to solve the mutation problem could be proposed: Sesame prepares the two
brotherly tables: SubClassOf table and Direct_SubClassOf table. All records in SubClassOf table
are derived from Direct_SubClassOf table. So, we can select the records from the tables other than
the one that is firing the trigger. However this approach is found to be invalid at the time of
updating. The problem is the order in which the records are written into these tables. Sesame
processes both deletion and insertion transactions first on the SubClassOf table and then on the
Direct_SubClassOf table. We need to select the records before deletion and after insertion. If
records are deleted before comparison, or if the records are inserted after comparison, the system
loses the opportunity to compare the data before and after deletion (or insertion). So, we have to
set deletion trigger on SubClassOf table, and insertion trigger on Direct_SubClassOf table.
Otherwise the change is not reflected in the result.
However, in updating, this solution does not work. Updating is a combination of insertion and
deletion. But in this solution, we have to set the trigger for updating in two different tables, which
is not possible for triggers. Therefore, we prefer the solution to prepare the duplicated copy of
Direct_SubClassOf table and Direct_SubPropertyOf table.

3.7 Implementation Design: Algorithm of Triggers

Since this project employs Oracle as database, naturally SQL is employed as query language.
Initially triggers are fired upon insertion into/deletion from six tables: Property, Class, Domain,
Range, Direct_SubClassOf, and Direct_SubPropertyOf. These tables fire the triggers, and
manipulate other tables or call procedures. Inserted/deleted tables fire the trigger and manipulate
other tables or call procedures. The Queries table is referred to at the time of table manipulation.
Then the events that do not match the user profiles are filtered out. Filtering processes use different
triggers depending on the incoming events. They will be introduced individually later in this
section. Relevant changes are finally reflected to QueryResults table. QueryResults table is then
updated removing irrelevant records and inserting the relevant records. QueryResults table holds
the latest valid query results, and insert the insertion / deletion records into Notices table upon the
occurrence of insertion/deletion.

The overall flow is described in the Appendix C1. Triggers and procedures are colour-coded.
Green colour indicates the observation of the events. Yellow colour indicates event notification,
and the rest of them are colour-coded to blue, which means intermediate processes. Please note,
there are four sub procedures, which do not call other procedures. They assist the process of other
procedures/triggers manipulating temporary tables or checking the records in tables. They are
shown in the Appendix C2 with colour-code of grey. The flowcharts of individual triggers and
procedures are introduced in the Appendix B1 to B28 with short explanations of process.
Now, we discuss the filtering algorithm. Event source and flow of data among tables can be found
in Figure 22. We introduce the algorithms referring the example introduced in Figure 24. In this
example, we interpreted RDF Document into the triple form to simplify the statement. We show
the only insertion events in this example. Scenario of example is to filter the matching records to
the query inquired by Mary, which is [John - hasWritten – Report]. This query and its requester’s
details are stored into the Queries table and Requesters table with the following details.

 28

Profile (Query):

 subject predicate object Event Notification Engine operation
 John hasWritten Report Insert into Requesters table

req_id fname lname e-mail lastlogin
101 Mary Smith … …

Insert into Queries table
q_id subject predicate object req_id
201 John hasWritten Report 101

 As introduced before, there are 12 event observers: six tables with two operations each (i.e.
insertion and deletion), and each event takes the unique process for filtering. Each event refers to
the flowchart in the appendix B and Figure 24. The step numbers after Figure 24 represent
numbers shown in the left end of Figure.

(1) Insertion into Domain table
When the new record is inserted into Domain table, trigger first checks if any valid record exists in
the QuerySubjects table and if any valid record exists in QueryPredicates table. If both of them
exist which have mutual query ID, then insert the new records into QueryDomain table. Insertion
trigger of QueryDomain table checks the QueryRange table if it contains the query ID which is
newly added into QueryDomain table. If it does, then insert the combination of records in
QueryDomain and QueryRange tables into QueryResults table. QueryResults table fire the trigger
to insert new notice record into Notices table. Repeat this process for sub classes of new class and
sub properties of new property. If the transaction is updating, delete the old resources in domain
relationship from QueryDomain table before insertion transaction. In Figure 24, no action is taken
by our system because there is no record in QueryPredicates table at the time of insertion into
Domain table.
For more information, refer to Appendix B9, B25, B26 / Figure 24 Step 8.

(2) Insertion into Range table
Algorithm is much like insertion into Domain table. Interpret as QuerySubjects to QueryObjects,
Domain to Range, and QueryDomain to QueryRange, and then the rest of the explanation is same
as the procedure to insert into Domain table. In Figure 24, no action is taken by our system
because there is no record in QueryPredicates table at the time of insertion into Domain table.
For more information, refer to Appendix B11, B25, B26 / Figure 24 Step 9.

 29

(3) Deletion from Domain table
Delete the relation from QueryDomain table where subject ID is class ID of deleted record and
predicate ID is property ID of deleted record. Deletion trigger of QueryDomain table deletes the
corresponding records from QueryResults table. Deletion trigger of QueryResults table then fires,
and insert the full details of deletion records as well as the deletion time and the category to
identify the deletion (i.e. set 1 in column ‘delet’) into Notices table.
For more information, refer to Appendix B10 and B26.

 subject predicate object Event Notification Engine operation
 Sesame Table Operation

1 Student type class
 Insert into Namespace table

id prefix name … …
1 www.example.com example … …

Insert into Resources table
id namespace localname
11 1 Student

Insert into Class table
id
11

2 John type class
 Insert into Resources table

id namespace localname
… … …
12 1 John

Insert into Class table fire trigger
id
…
12

Insert into QuerySubjects table
q_id subj_id
201 12

3 John subClassOf Student
 Insert into Direct_SubClassOf table

sub super
12 11

Insert into Direct_SubClassOf2 table
sub super
12 11

4 Document type class
 Insert into Resources table

id namespace localname
… … …
13 1 Document

Insert into Class table
id
…
13

Figure 24 (Part 1) Example of an Insertion of RDF Documents and Filtering Process

 30

(4) Deletion from Range table
Algorithm is much like deletion from Domain table. Interpret the terms as same rules as insertion.
For more information, refer to Appendix B10 and B26.

 subject predicate object Event Notification Engine operation
 Sesame Table Operation

5 Report type class
 Insert into Resources table

id namespace localname
… … …
14 1 Report

Insert into Class table
id
…
14

Insert into QueryObjects table
q_id obj_id
201 14

6 Report subClassOf Document
 Insert into Direct_SubClassOf table

sub super
… …
14 13

Insert into Direct_SubClassOf2table
sub super
… …
14 13

7 hasCreated type property
 Insert into Resources table

id namespace localname
… … …
15 1 hasCreated

Insert into Property table
id
15

8 hasCreated domain Student
 Insert into Domain table

property class
15 11

9 hasCreated range Document
 Insert into Range table

property class
15 13

Figure 24 (Part 2) Example of an Insertion of RDF Documents and Filtering Process

 31

(5) Insertion into Direct_SubPropertyOf table
In this procedure, we use the Direct_SubPropertyOf2 table, which is duplicated copy of
Direct_SubPropertyOf table. Direct_SubPropertyOf2 table is automatically maintained by the
trigger on Direct_SubPropertyOf table upon insertion, deletion, or updating. As discussed in
Section 3.6, we use the duplicate copy to avoid the mutation problem.
When the new sub-super relation record is inserted, check the QueryPredicates table if new ‘sub’
exists. If it exists, then find all super properties of that predicate and insert into TempPredicates
table. Also find super classes of corresponding subject / object from QuerySubjects / QueryObjects
tables and insert into TempSubjects / TempObjects table respectively. Utilizing the records in
temporary tables, insert the valid records into QueryDomain table and QueryRange table, then
QueryResults table, which fire the trigger to insert event notice into Notices table.
Repeat the same procedure for the sub property of new ’sub’ referring Direct_SubPorpoertyOf2
table until no sub property would be found.
If transaction is updating, then handle deleting transaction first.
In Figure 24, system finds the sub property ID ‘16’ in QueryPredicates table, which is inserted in
step 10. Then trigger of QueryPredicates table searches super properties of 16. ‘15’ is found and
‘16’ and ‘15’ are inserted into TempPredicates table. Similarly, TempSubjects and TempObjects
table get super classes; (12, 11) and (14, 13) respectively. Then all possible combinations of
TempPredicates and TempSubjects are generated. Possible combinations of predicate-subject

 subject predicate object Event Notification Engine operation
 Sesame Table Operation

10 hasWritten type property
 Insert into Resources table

id namespace localname
… … …
16 1 hasWritten

Insert into Property table
id
16

Insert into QueryPredicates table
q_id pred_id

201 16
Insert into TempSubjects table
q_id subj_id
201 12
201 11

 Insert into TempObjects table
q_id obj_id
201 14
201 13

 Insert into TempPredicates table
q_id pred_id
201 16

Clear TempSubjects, TempObjects, and
TempPredicates tables

Figure 24 (Part 3) Example of an Insertion of RDF Documents and Filtering Process

 32

(domain) relations are (15, 11), (15, 12), (16, 11), and (16, 12). Among these combinations, one
combination (15, 11) is found in Domain table. (Refer Figure 24 step 8) Therefore, this
combination is stored into QueryDomain table together with query ID (i.e. 201). Similarly, range
(predicate-object) relation (15, 13) is found to be valid in Range table. (Refer Figure 24 step 9) So,
this relation is also stored into QueryRange table. QueryDomain table and QueryRange table have
mutual query ID of 201 now. So, new record is created and inserted into QueryResults table. Then
trigger of QueryResults table is fired, and it inserts the event notice into Notices table.
For more information, refer to Appendix B5, B6, B16, B19, B20, B28, B23, B24, B26, B27, B25 /
Figure 24 Step 11.

(6) Insertion into Direct_SubClassOf table
Algorithm is much like insertion into Direct_SubPropertyOf table. Interpret property into class,
class to property, Direct_SubPropertyOf2 to Direct_SubClassOf2, QuerySubjects/QueryObjects

 subject predicate object Event Notification Engine operation
 Sesame Table Operation

11 hasWritten subPropertyOf hasCreated
 Insert into Direct_SubPropertyOf table

sub super
… …
16 15

Insert into Direct_SubPropertyOf2 table
sub super
… …
16 15

Insert into TempPredicates table
q_id pred_id
201 16
201 15

Insert into TempSubjects table
q_id subj_id
201 12
201 11

 Insert into TempObjects table
q_id obj_id
201 14
201 13

Insert into QueryDomain table
q_id pred_id subj_id
201 15 11

Insert into QueryRange table
q_id pred_id obj_id
201 15 13

Insert into QueryResults table
q_
id

sub
j_id

pred
s_id

pred
o_id

obj
_id

201 11 15 15 13
Insert into Notices table

q_
id

subj
_id

pred_
s_id

pred_
o_id

obj_
id

dele
t

date

201 11 15 15 13 0 …
Clear TempSubjects, TempObjects, and
TempPredicates tables

Figure 24 (Part 4) Example of an Insertion of RDF Documents and Filtering Process

 33

into QueryPredicates, and QueryPredicates into QuerySubjects/QueryObjects. In Figure 24, no
action is taken by our system other than duplication of Direct_SubClassOf table, because there is
no record in QueryPredicates table at the time of insertion into Direct_SubClassOf table.
For more information, refer to Appendix B7, B8, B17, B18, B21, B22, B28, B23, B24, B26, B27,
B25 / Figure 24 Step3 and 6.

(7) Deletion from Direct_SubPropertyOf table
Deletion procedure is bit more complicate than insertion. Since the deleted sub-super relation may
bridge other properties which are recognized as part of valid domain/range relations. (Refer
Section 3.5.2) We need to screen all the predicates which are super class of deleted property. If any
query uses the super property of deleted property, then re-build the valid combination of
domain/range. We use the temporary tables (TempSubjects, TempPredicates, and TempObjects)
for this purpose. We compare the existing query results with the temporary results, which now
holds the latest valid results, and then delete any results which is not contained in the temporary
results. It is much simpler to delete all results once, and then re-build the new results. But in that
case, user shall receive the lots of notices of insertions and deletions. The above-mentioned
procedure saves the number of insertion/deletion notices, and avoids the confusion of user.
For more information, refer to Appendix B6, B19, B20, B26, and B28.

(8) Deletion from Direct_SubClassOf table
Algorithm is much like deletion from Direct_SubPropertyOf table. Interpret the terms as same
rules as insertion.
For more information, refer to Appendix B8, B21, B22, B26, and B28.

(9) Insertion into Property table
Upon insertion, trigger checks the corresponding ‘localname’, which is shown as rdf:ID in RDF
document, from Resources table, then compare to predicate in the Queries table. If any predicates
would match to property’s ‘localname’, then resource ID of property is inserted into
QueryPredicates table as predicate ID. Then insertion event fires trigger of QueryPredicates table.
Insertion trigger of QueryPredicates table, then checks QuerySubjects table if any records with
same query ID as predicate would exist. If records exist, then insert all super classes of subject into
TempSubjects table, and all super properties of predicate into TempPredicates table. After that,
system generates all possible combination of records in TempSubjects and TempPredicates tables,
and compare to records in the Domain table whether any combinations would match to them.
Where matching records exist, store those combinations into QueryDomain table.
Similarly, system checks QueryObjects table if any records with same query ID as predicate exist.
If exist, then insert super classes of object into TempObjects table. Where the combinations of
TempObjects and TempPredicates table would match to any records in the Range table, insert
those combinations into QueryRange table. Where both QueryDomain and QueryRange table have
any records with mutual query ID, then triggers of these tables create the combinations of the
records from them, and insert them into QueryResults table. Insertion trigger of QueryResults table
then fires, and insert the full details of insertion records as well as the insertion time and the
category to identify the insertion (i.e. insert 0 into column ‘delet’) into Notices table.

In Figure 24 step 7, no action is taken by our system because no valid property can be found in
Queries table at the time of insertion into Property table. In step 10, on the other hand, predicate
‘hasWritten’ is found in query ID ‘201’, and its resource ID is identified as 16. So, system inserts
‘16’ into QueryPredicates table. Trigger of QueryPredicates table then searches the records with
query ID ‘201’ from QuerySubjects table and finds subject ID ‘12’. Then ‘12’ and super classes of
‘12’ (i.e. ‘11’) are inserted into TempSubjects table. Similarly, TempObjects table get super

 34

classes (14 and 13), and TempPredicates table get super properties (16). Then all possible
combinations of TempPredicates and TempSubjects are generated to find valid domain relations
from Domain table. For query ID ‘201’, possible combinations of predicate-subject (domain)
relations are (16, 11) and (16, 12). Neither of them have valid domain relation, so system does not
insert any data into QueryDomain table. Similarly, TempPredicates and TempObjects tables are
found not to have valid range relation, so the system stop further search, and clear TempSubjects,
TempObjects, and TempPredicates tables.
For more information, refer to Appendix B1, B10, B6, B16, B26, B19, B20, B28, B23, B24, B27,
B25 / Figure 24 Step 7 and 10.

(10) Insertion into Class table
Algorithm of insertion into Class table is much like insertion into Property table. Interpret terms as
‘property’ into ‘class’, ‘predicate’ into ‘subject’ (or ‘object’), ‘QueryPredicates’ into
‘QuerySubjects (or QueryObjects)’.
For more information, refer to Appendix B3, B17, B18, B10, B8, B28, B23, B24, B26, B21, B22,
B27, B25 / Figure 24 Step 1, 2, 4, and 5.

(11) Deletion from Property table
Upon deletion of property, old property is deleted from Direct_SubPropertyOf table, Domain
table, and Range table. Then the triggers of these tables process the rest of the data manipulation.
 For more information, refer to Appendix B2, B10, B6, B19, B20, B26, and B28.

(12) Deletion from Class table
Algorithm is much like deletion from Property table. Interpret the terms as same rules as insertion.
For more information, refer to Appendix B4, B10, B8, B21, B22, B26, and B28.

Applying the knowledge of Event Notification System, RDF and RDF Schema technologies, we
designed 12 triggers on Sesame tables. We also designed additional 14 tables to store user profiles
and to filter matching events upon insertion/deletion events on the Sesame tables. In addition to
triggers on Sesame tables, further 18 triggers are set on the tables for Event Notification System.
The number of procedures prepared for Event Notification System is 25. In total, 57 triggers and
procedures are prepared for our project.

4. Implementation and Evaluation
We implemented triggers and procedures based on the design introduced in previous section, and
tested the functionalities of triggers/procedures. In this section, we summarise the tasks that we
performed for the implementation, and study the performance of our implementation.

4.1. Implementation

We created 14 tables, and set the triggers on them as event observer/notifier. System is
implemented only on database, and Sesame code is not modified at all. 25 triggers and 27
procedures (52 in total) are coded. Five of them (four triggers and one procedure) are not
introduced in the system design. These four triggers and a procedure handle the queries input into
Queries table. Triggers are fired upon (a) deleting query requester, (b) inserting new query, (c)
updating query, and (d) deleting query. Trigger calls procedure after deleting query. These
triggers/procedure prepare the initial records into the QueryResults table when the query is added

 35

(or deleted / updated). They are necessary because the system cannot find any changes without the
initial records. 12 triggers are for event monitoring, which are set on the tables provided by
Sesame. (Property, Class, Domain, Range, Direct_SubPropertyOf, Direct_SubClassOf tables) Two
triggers are for event notice, which are set on the QueryResults table. Other triggers are for
filtering the irrelevant events.
Implementation had been carried out in the trial and error base, re-arranging to the design
repeatedly. The mutation problem and the confusion caused by the lack of referential integrity
caused these repetitions. Extremely slow processing, which we will discuss in Section 4.2.2 also
caused the repetition for seeking the better solution.

4.2. Evaluation

The main focus of evaluation is to confirm the correct functioning of the Event Notification
Engine. Functionalities of triggers/procedures are checked in two steps. First, we manipulated the
database directly, and confirmed the insertion, deletion and updating tasks are appropriately
performed on six Sesame-generated tables, which we set the event observers. We confirmed the
performance with checking records inserted into Notices table. The updating was only tested in the
database, since Sesame does not support updates via its interface.
Second, we generated valid RDF documents, and submitted them to Sesame for storage. Our filter
engine matches the documents to the stored profiles, and the results are confirmed in the Notices
table.

4.2.1. Test Planning

Test on Oracle Database
Three operations are tested on the eight tables using SQL language. Operations are insertion,
deletion, and updating. Six tables observe events: Property, Class, Domain, Range,
Direct_SubPropertyOf, and Direct_SubClassOf table. Additionally, we tested three operations on
Queries table, and deletion on Requesters table. Operations on Queries table are expected to
generate the base data, which are to be compared to the results after events occur. Requesters table
contain the details of query requester. So, deletion of the requester should delete the queries
requested by that requester from Queries table. So that function is also confirmed. The
functionality is checked with selecting all records from Notices table. Where new notice is
inserted, the function is confirmed to be working. All operations generate appropriate delete/insert
notices, and all triggers/procedures’ functions found to be working all right.

Inserting Test in Sesame interface
In the second stage, RDF documents are generated to test the insert function. Six tables are tested
for insertion. This time we did not test Queries table because there is no interface to insert into
Queries table in Sesame. Sesame has three options to insert data. We used the option to type
directly to the textbox. The documents are copied and pasted into the textbox of Sesame interface.
Since the notifier is not implemented in this project, the results are confirmed with querying the
records from Notices table directly in Oracle database.

Abbreviations in the RDF documents are found to be unacceptable by Sesame. In Figure 25, both
documents are valid RDF documents, but document (A) was not accepted by Sesame. There seems
to be some parsing problem in Sesame. So, we tested without using abbreviation.

Deleting Test in Sesame interface
Deleting test is used the Sesame’s option ‘remove triple’.

 36

Some constraints are found in deletion transaction of Sesame.

(1) When inserting the records, Sesame automatically generated the full combination of
resources. For example, if we express the triple [XMLdocument – SubClassOf - WebPage] where
the triple [WebPage- SubClassOf - Document] exists, then Sesame automatically generates the
triples [XMLdocument – SubClassOf - Document] and [XMLdocument – SubClassOf - Class]
even though this relation is not explicitly described. When deleting the record [XMLdocument –
SubClassOf - WebPage], however, we have to explicitly delete two records [XMLdocument –
SubClassOf - Document] and [XMLdocument – SubClassOf - Class] as well.

(2) Invalid property would remain in Sesame. For example, if class [People] would be deleted
where the domain relation [HasWritten – Domain – People] exists, domain relation must be
removed, but Sesame requires the deleting statement explicitly. This problem is actually solved by
the trigger implemented in this project.

(3) When storing data, definition of namespace simplifies the triple expressions, but removal
transaction does not accept namespace and requires the full descriptions (means, with full URI
address without namespace).

The functions are tested putting the above constraints into account. The URIs of records are typed
into textboxes. The results are confirmed querying the Notices table.

4.2.2. Test Result and Evaluation

In the first test, tables in database are manipulated directly and all the triggers / procedures are
confirmed to function in deletion, insertion, and updating. System date storage is confirmed to
function appropriately. Queries handled by triggers/procedures of Database are confirmed to

(A) RDF document with abbreviation
<rdf:RDF xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
 xmlns:rdfs="http://www.w3.org/2000/01/rdf-schema#"
 xml:base="http://www.waikato.ac.nz/tk27/terms">
 <rdfs:Class rdf:ID="People"/>
 <rdf:Property rdf:ID="hasCreated"/>
</rdf:RDF>

(B) RDF document without abbreviation
<rdf:RDF xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
 xmlns:rdfs="http://www.w3.org/2000/01/rdf-schema#"
 xml:base="http://www.waikato.ac.nz/tk27/terms">
 <rdf:Description rdf:ID="People">
 <rdf:type rdf:resource="http://www.w3.org/2000/01/rdf-
schema#Class"/>
 </rdf:Description>
 <rdf:Description rdf:ID="hasCreated">
 <rdf:type rdf:resource="http://www.w3.org/1999/02/22-rdf-syntax-
ns#Property"/>
 </rdf:Description>
</rdf:RDF>

Figure 25 Abbreviation

 37

function appropriately without the dedicated query languages for RDF documents (e.g. RQL,
SeRQL). For the multi-level domain/range relations, triple are confirmed to indicate two different
properties accordingly. Triggers/procedures extracted the relevant relations appropriately upon
insertion/deletion where the sub-super relations exist. In short, the triggers/procedures were found
to execute the expected works appropriately.

Then the tests are carried out through Sesame interface. In both insertion and deletion, the
triggers/procedures are confirmed to fire the event notices appropriately.

It was not the focus of this project to measure the performance, but it is worth to report it. Fairly
saying, processing speed in the system is very slow. There are two potential reasons. Because all
records in SubClassOf table can be derived from Direct_SubClassOf table, SubClassOf table is not
really necessary. SubClassOf table holds all
combination of sub-super relation derived
from Direct_SubClassOf table, so the
number of records exponentially increases
suffering scalability. Same problem exists in
SubPropertyOf table and InstanceOf table.
Records in Triples table can be derived from
other tables, too. There are total of 29
resources initially set by Sesame into
Resources table. Only 29 records generate
extra 432 records in other tables (that makes
461 records in total!). (Figure 26) This
enormous number of records is considered to
be the main reason of the slow processing.
The second reason possibly is the algorithm
to check the super class/property. As we
discussed in Section 3.6, we used
Direct_SubClassOf / Direct_SubPropertyOf
table to find the super class / super property.
These tables store only the direct sub-super
relations. So, the system has to access to the
table while super class/property of key
resource exists. This repetitive operation possibly is another reason to spoil the processing speed.
However, if we would use SubClassOf / SubPropertyOf tables, then the number of
insertion/deletion shall increases. So, it is unsure which approach is more efficient.
Considering the number of Web pages existing in the World Wide Web, scalability is the big issue
for the Semantic Web. Further development of more efficient platform and performance test of the
system is expected.

Through the tests in database, we confirmed that the insertion, deletion, and updating
functionalities work appropriately without any errors (including mutation). The triples in two
different levels are recognised and extracted to the valid domain/range relations. The tests are
successful in Sesame as well. Events inserted via Sesame’s interface are appropriately filtered in
our filter engine (according to the user profiles) and the matching events are inserted into Notices
table.
One concern is the processing speed. It might negatively influence the scalability of the whole
system. We propose to investigate alternative designs to database triggers in future work (see next
Section).

Table Number of
records

Namespaces 2
Resources 29
Property 14
Direct_SubPropertyOf 1
Sub Property Of 15
Class 13
Direct_SubClassOf 12
SubClassOf 31
Domain 9
Range 8
Proper_InstanceOf 28
InstanceOf 57
Literal 0
Triples 120
Depend 121
RepInfo 1
Total 461

 38

5. Summaries and Future Work
Through this project, we completed four tasks. Our achievements are reported in Section 5.1. A
summary of issues observed through the project implementation and recognised future works are
discussed in Section 5.2. Finally in Section 5.3, we also summarise our recommendations for
further improvements of the Sesame system.

5.1. Achievements

Our major achievements in this project are as follows:

(1) Design and Implementation of a Event Notice System for RDF.
We add the feature to reflect the changes made on RDF documents to the search results upon
inserting/deleting/updating.

(2) Synchronized Deleting
When the user removes the class from Class table, for example, ‘People’, System automatically
delete it from Domain, Range, Direct_SubClassOf, SubClassOf table without explicit removal
query.

(3) Expression of multi level triple
Where the domain /range relations exist in the different level of super property, our system
explicitly indicates the properties which has those relations.

(4) Query language-free solution
Since the triggers/procedures extract the relevant records to the user’s query from database, the
system does not need the extra query language. Upon designing user interface to accept the user’s
query in the form of [subject – predicate, object], the system will be free from developing further
query languages.

5.2. Future Work on the Event Notification System

Here, we propose future steps to enhance our ENS:

(1) Extension for ontology
In this project, we did not deal with Ontology, as we did not wish to complicate the event notice
engine. However it does not mean it is minor issue; rather it is very important part to interpret the
RDF documents. Consider the three triples shown in Figure 11. These three sentences have same
meaning. Then where the sentence (1) is valid, the document, which contains sub classes/property
of sentence (2), is also valid. Where the sentence order is reversed and the sentence (1) is valid, the
document, which contains sub classes/properties of sentence (3), is also valid. So, the involvement
of Ontology changes the outcome of the Adaptive Semantic Web. We need to put this factor into
account in the future study.

(2) Limited notification system
Our system is confirmed to observe the events and filter them. However, the interaction between
Sesame is not completed. The query and requester data need to be inserted into the database using
SQL language. Event notices, which are stored in the Notices table, should be delivered to users.

 39

Involving the user interface design in Sesame, we need to upgrade our system as to work together
with Sesame.

(3) Partial synchronization on triples manipulation.
We synchronised the deletion of property/class to the four tables, which are Domain, Range,
Direct_SubClassOf, and Direct_SubPropertyOf tables. Because they would affect on the results of
filtering we updated these tables. However, there are another tables, which contain the deleted
resource. We need to analyze the relation of whole table, and should maintain other tables as well
to maintain the consistency among tables.

(4) Scalability
The planned functionality of the system has been achieved. However, there exists the performance
problem as we introduced in Section 4.2.2. Reasons for the slow processing probably are:
Sesame’s database table design, or trigger algorithm, or both. ORDB is considered to be faster in
processing speed than RDB. So we initially intended to implement using ORDB, but changed the
plan, as we found Sesame does not support ORDB in the latest version. As for the future work,
ORDB needs to be studied adaptability to the Adaptive Semantic Web as well as the performance
of ORDB with OQL language.

5.3. Future Work on Sesame System

Sesame is found to be good tool to experience the taste of the Semantic Web. However, some
practical problems, which have to be solved to use in real world, are observed.

(1) Scalability
As we saw in Section 4.2.2, the database schema contains the large amount of redundant records,
which shall cause the exponential increase of records. This problem is considered to be the critical
fault to handle the large size of data spreading over the World Wide Web. The table design is
seriously expected to improve.

(2) Usability in deleting/Updating operation
Sesame introduces the engine to implement deleting transaction. This engine requires user to type
in the deleting triples in the form of URI. Where the insertion action automates the generation of
inferred triples, it is hard for users to clear out such inferred triples. Simple and practical solution
is expected for this issue. Considering the usability, the best solution is to analyse the removal of
the sentence from RDF documents, and justify. Further development is expected for this theme.
Updating is not available in current version. Update is the combination of the deletion and
insertion. It would be hard until the development of the automated deletion program. Further study
of method to interpret the changes of the RDF documents is expected.

(3) Adaptability of abbreviation of the RDF documents
Abbreviation currently is not interpreted into database appropriately. It is recommended to upgrade
the version to adapt to the valid abbreviation.

(4) Integrity to Literal
In current model, the literal does not have any referential integrity with resources. So, the key
information like name or title are not extractable. In real situation, the user should need these
information relating to resources. So, it would be recommended to keep referential integrity
between literal and resources.

 40

(5) Referential integrity
Foreign key cause error when data attempted to be removed. Even when cascading option was set
on foreign key, still the foreign key causes error. It is easier for the researcher to develop the
system further with analyse of the foreign keys, it would recommended letting Sesame work with
the foreign key (if it is possible).

Acknowledgements

The project reported in this working paper has been performed by Takanori Kozuka as
Dissertation for a Postgraduate Diploma in Computer Science. The project was supervised by
Annika Hinze.

6. Bibliography
RDF and RDF Schema

[1] Eric Miller (1998) "An Introduction to the Resource Description Framework",
D-Lib Magazine, May 1998, available at http://www/dlib.org/dlib/may98/miller/05miller.html

[2] Jeen Broekstra, Arjohn Kampman, Frank van Harmelen, (2001) “Sesame: An Architecture for
Storing and Querying RDF Data and Schema Information”, MIT Press, Sep 2001, available at
http://citeseer.nj.nec.com/broekstra01sesame.html

[3] Gregory Karvounarakis, Vassilis Christophides, Dimitris Plexousakis, Sofia Alexaki (2001)
“Querying RDF Descriptions for Community Web Portals”, In Proceedings of the BDA'2001
(17iemes Journees Bases de Donnees Avances - French Conference on Databases), Agadir,
Morocco, 2001, available at http://www.ics.forth.gr/isl/publications/paperlink/bda2001.pdf

[4] Gregory Karvounarakis, Sofia Alexaki, Vassilis Christophides, Dimitris Plexousakis, Michel
Scholl (2002) "RQL: a declarative query language for RDF", Proceedings of the 11th international
conference on World Wide Web, May 2002, available at
http://portal.acm.org.ezproxy.waikato.ac.nz:2048/ft_gateway.cfm?id=511524&type=pdf&coll=por
tal&dl=ACM&CFID=31607531&CFTOKEN=44744179

[5] Valerie Bonstrom, Annika Hinze, Heinz Schweppe (2003) “Storing RDF as a Graph”, First
Latin American Web Congress (LA-WEB 2003) , Apr. 2003, available at http://www.la-
web.org/2003/stamped/04_boenstroem_v.pdf

[6] Dan Brickley, R.V. Guha, Brian McBride (2004) “RDF Vocabulary Description Language 1.0:
RDF Schema”, W3C recommendation, Feb.2004, available at www.w3.org/TR/rdf-schema/

[7] Frank Manola, Eric Miller, Brian McBride (2004) “RDF Primer”, W3C recommendation,
Feb.2004, available at http://www.w3.org/TR/2004/REC-rdf-primer-20040210/

[8] Aduna B.V. (2004) “User Guide for Sesame”, Sirma AI Ltd

[9] Jeen Broekstra, “Sesame RQL: A Tutorial”, available at http://openrdf.org/doc/rql-tutorial.html

 41

[10] Jeen Broekstra, Arjohn Kampman, Frank van Harmelen (2002) “Sesame: A Generic
Architecture for Storing and Querying RDF and RDF Schema”, In Proceedings International
Semantic Web Conference 2002 available at http://www.openrdf.org/doc/papers/Sesame-
ISWC2002.pdf

Ontology

[11] Michael K Smith, Chris Welty, Deborah L McGuinness (2004) “OWL Web Ontology
Language Guide”, W3C recommendation 2004, Available at http://www.w3.org/TR/owl-guide/

The Semantic Web

[12] Tim Berners-Lee, James Hendler, Ora Lassila, (2001), “The Semantic Web”, Scientific
American, May 2001, available at http://www.sciam.com/article.cfm?articleID=00048144-10D2-
1C70-84A9809EC588EF21

[13] Aaron Swartz (2002), “The Semantic Web In Breadth”, HTML documents found on Sep
2004, available at http://logicerror.com/semanticWeb-long

[14] A.M. Kuchling (2004), “Introduction to the Semantic Web and RDF”, ZPUG DC, Dec 2004,
available at http://www.amk.ca/

Change Detection

[15] Peter Dolog, Nicola Henze, Wolfgang Ndjdl, Michael Sintek, (2003) “Towards the Adaptive
Semantic Web”, 1st Workshop on Principles and Practice of Semantic Web Reasoning. (2003)
available at http://www.kbs.uni-hannover.de/Arbeiten/Publikationen/2003/ppswr03.pdf

[16] George Papamarkos, Alexandra Poulovassillis, Peter T. Wood, “Event-Condition Action Rule
Language for the Semantic Web”, Proceedings of SWDB’ 03 Very Large Data Bases The first
International Workshop on
Semantic Web and Databases, Sep 2003

[17] Li Qin, Vijayalakshmi Atluri (2004) “Ontology-guided Change Detection to the Semantic
Web Data”, 23rd International Conference on Conceptual Modeling (ER2004), Shanghai, China,
Nov 2004

Database

[18] Joseph S. Valacich, Joey F. George, Jeffrey A. Hoffer (2001) “Essentials of System Analysis
& Design”, Prentice Hall, Published July 2000

[19] Norman W. Paton, Oscar Diaz (1999) "Active database systems", ACM Computing Surveys
(CSUR), Volume 31 Issue 1,March 1999, available at
http://portal.acm.org.ezproxy.waikato.ac.nz:2048/citation.cfm?id=311623&coll=portal&dl=ACM
&CFID=31607531&CFTOKEN=44744179

 42

Filtering

[20] V. Aguilera, S. Cluet, P. Veltri, D. Vodislav, F. Wattez (2000) “Querying XML Documents in
Xyleme” ACMSIGIR Workshop, July 2000, available at http://www.haifa.il.ibm.com/sigir00-
xml/final-papers/xyleme/XylemeQuery/XylemeQuery.html

[21] Conor Hayes, Barry Smyth (2001) "A Case-Based Reasoning View of Automated
Collaborative Filtering", In Proceedings of 4th International Conference on Case Based
Reasoning, ICCBR2001 (2001) 243-248, available at http://www.cs.tcd.ie/publications/tech-
reports/reports.01/TCD-CS-2001-09.pdf

[22] Gregory Cobena, Amelie Marian (2002) "Detecting Changes in XML Document", In 18th
Int.l Conf. on Data Engineering (ICDE 2002), 2002

[23] Annika Hinze (2003) “AmediAS: An Adaptive Event Notification System”, Proceedings of
the 2nd international workshop on Distributed event-based systems, July 2003

 43

7. Appendices
Appendix A. Database Design
Appendix B. Flowchart – Triggers and Procedures
Appendix C. Relation among Triggers and Procedures

 44

Appendix A: Database Design

A1.Entity Relation Diagram for Sesame Database

 45

A2. Entity-Relation Diagram for Event Notification Engine

 46

 A3. Table Design
1. Requesters

Attribute Data Type null Constraint / Remarks
req_id number (38) not null Primary key

Requester ID
fname varchar2 (100) not null First name of requester
lname varchar2 (100) not null Last name of requester
email varchar2 (255) not null E-mail address of requester
lastlogin datatime not null sysdate, date and time to log-in last time

2. Queries

Attribute Data Type null Constraint / Remarks
q_id number (38) not null Primary key

Query ID
subject varchar2 (100) not null Subject in string
predicate varchar2 (100) not null Predicate in string
object varchar2 (100) not null Object in string
req_id number (38) not null Requester ID

Refer Requesters (req_id)

3. QuerySubjects

Attribute Data Type null Constraint / Remarks
q_id number (38) not null Query ID

Refer Queries (q_id)
subj_id number (38) not null Subject ID

Refer Class (id)
Combination of q_id and subj_id must be unique

4. QueryPredicates

Attribute Data Type null Constraint / Remarks
q_id number (38) not null Primary key / Query ID

Refer Queries (q_id)
pred_id number (38) not null Predicate in string

Refer Property (id)
Combination of q_id and pred_id must be unique

5. QueryObjects

Attribute Data Type null Constraint / Remarks
q_id number (38) not null Primary key / Query ID

Refer Queries (q_id)
obj_id number (38) not null Object ID

Refer Class (id)
Combination of q_id and obj_id must be unique

6. TempSubjects
Attribute Data Type null Constraint / Remarks

q_id number (38) not null Query ID
subj_id number (38) not null Subject ID

7. TempPredicates

 47

Attribute Data Type null Constraint / Remarks
q_id number (38) not null Query ID
pred_id number (38) not null Predicate in string

8. TempObjects

Attribute Data Type null Constraint / Remarks
q_id number (38) not null Query ID
obj_id number (38) not null Object ID

9. QueryDomain

Attribute Data Type null Constraint / Remarks
q_id number (38) not null Query ID

Refer Queries (q_id)
pred_id number (38) not null Predicate ID

Refer Domain (property)
subj_id number (38) not null Subject ID

Refer Domain (class)
Combination of q_id, pred_id and subj_id must be unique

10. QueryRange

Attribute Data Type null Constraint / Remarks
q_id number (38) not null Query ID

Refer Queries (q_id)
pred_id number (38) not null Predicate ID

Refer Range (property)
obj_id number (38) not null Subject ID

Refer Range (class)
Combination of q_id, pred_id and obj_id must be unique

11. Requesters

Attribute Data Type null Constraint / Remarks
req_id number (38) not null Primary key

Requester ID
fname varchar2 (100) not null First name of requester
lname varchar2 (100) not null Last name of requester
email varchar2 (255) not null E-mail address of requester
lastlogin datatime not null sysdate, date and time to log-in last time

12. Queries

Attribute Data Type null Constraint / Remarks
q_id number (38) not null Primary key

Query ID
subject varchar2 (100) not null Subject in string
predicate varchar2 (100) not null Predicate in string
object varchar2 (100) not null Object in string
req_id number (38) not null Requester ID

Refer Requesters (req_id)

 48

13. QuerySubjects
Attribute Data Type null Constraint / Remarks

q_id number (38) not null Query ID
Refer Queries (q_id)

subj_id number (38) not null Subject ID
Refer Class (id)

Combination of q_id and subj_id must be unique

14. QueryPredicates

Attribute Data Type null Constraint / Remarks
q_id number (38) not null Primary key / Query ID

Refer Queries (q_id)
pred_id number (38) not null Predicate in string

Refer Property (id)
Combination of q_id and pred_id must be unique

15. QueryObjects

Attribute Data Type null Constraint / Remarks
q_id number (38) not null Primary key / Query ID

Refer Queries (q_id)
obj_id number (38) not null Object ID

Refer Class (id)
Combination of q_id and obj_id must be unique

16. TempSubjects
Attribute Data Type null Constraint / Remarks

q_id number (38) not null Query ID
subj_id number (38) not null Subject ID

17. TempPredicates

Attribute Data Type null Constraint / Remarks
q_id number (38) not null Query ID
pred_id number (38) not null Predicate in string

18. TempObjects

Attribute Data Type null Constraint / Remarks
q_id number (38) not null Query ID
obj_id number (38) not null Object ID

19. QueryDomain

Attribute Data Type null Constraint / Remarks
q_id number (38) not null Query ID

Refer Queries (q_id)
pred_id number (38) not null Predicate ID

Refer Domain (property)
subj_id number (38) not null Subject ID

Refer Domain (class)
Combination of q_id, pred_id and subj_id must be unique

 49

20. QueryRange
Attribute Data Type null Constraint / Remarks

q_id number (38) not null Query ID
Refer Queries (q_id)

pred_id number (38) not null Predicate ID
Refer Range (property)

obj_id number (38) not null Subject ID
Refer Range (class)

Combination of q_id, pred_id and obj_id must be unique

21. QueryResults

Attribute Data Type null Constraint / Remarks
q_id number (38) not null Query ID

Refer Queries (q_id)
subj_id number (38) not null Class ID for Subject

Refer QueryDomain (subj_id)
pred_s_id number (38) not null Property ID which makes domain relation

Refer QueryDomain (pred_id)
pred_o_id number (38) not null Property ID which makes range relation

Refer QueryRange (pred_id)
obj_id number (38) not null Class ID for Object

Refer QueryRange (obj_id)
 Combination of q_id, subj_id, pred_s_id, pred_o_id and obj_id must be unique.

22. Notices

Attribute Data Type null Constraint / Remarks
q_id number (38) not null Query ID
delet number (1) not null 1=delete, 0=insert
datefound date not null Sysdate, data that system inserts this record
subj_id number (38) not null Class ID for Subject
pred_s_id number (38) not null Property ID which makes domain relation
pred_o_id number (38) not null Property ID which makes range relation
obj_id number (38) not null Class ID for Object

23. Direct_SubPropertyOf2

Attribute Data Type null Constraint / Remarks
sub number (38) not null Sub property ID
super number (38) not null Super property ID

24. Direct_SubClassOf2

Attribute Data Type null Constraint / Remarks
sub number (38) not null Sub class ID
super number (38) not null Super class ID

 50

 51

 52

 53

 54

 55

 56

 57

 58

 59

 60

 61

 62

 63

 64

 65

 66

 67

 68

 69

 70

 71

 72

 73

 74

 75

 76

 77

 78

Appendix C. Relation among Triggers and Procedures
Appendix C1 Flow of Triggers Procedures

 79

Appendix C2 Sub Procedure

