
A Survey of Software Development Practices
in the New Zealand Software Industry

Lindsay Groves, Ray Nickson
School of Mathematical and Computing Sciences,
Victoria University of Wellington, New Zealand

and

Greg Reeve, Steve Reeves, Mark Utting
Department of Computer Science,

University of Waikato, New Zealand

Abstract

We report on the software development tech-
niques used in the New Zealand software indus-
try, paying particular attention to requirements
gathering. We surveyed a selection of software
companies with a general questionnaire and
then conducted in-depth interviews with four
companies. Our results show a wide variety
in the kinds of companies undertaking software
development, employing a wide range of soft-
ware development techniques. Although our
data are not sufficiently detailed to draw statis-
tically significant conclusions, it appears that
larger software development groups typically
have more well-defined software development
processes, spend proportionally more time on
requirements gathering, and follow more rig-
orous testing regimes.

1 Introduction

The ISuRF (Improving Software using Re-
quirements Formalization) project is aimed at
demonstrating how formal specification tech-
niques can be used to improve the require-
ments gathering phase of software develop-
ment. This project is funded by the Foundation
for Research, Science and Technology (FRST),
through the Public Good Science Fund (PGSF).
As the first part of the project, we have under-
taken a modest survey of software development
techniques used in the New Zealand software
industry. Later parts of the project will involve

case studies to compare formal specification
techniques with the techniques currently being
used, and determining what kinds of tools and
techniques would facilitate the uptake of formal
techniques.

The survey was primarily intended to pro-
vide a broad view of the New Zealand software
industry, focusing on the techniques used for
expressing software requirements and for de-
termining whether the resulting system satis-
fied these requirements. More specifically, we
aimed to answer the following questions:

1. What notations and tools are used to
express requirements and specifications?
Are any formal specification notations
used?

2. What proportion of effort is devoted to the
requirements and specification phases?

3. How are evolving requirements managed?

4. What validation and verification tech-
niques are used to ensure that the system
meets its requirements?

More generally, we wanted to obtain an
overview of the kinds of environments that for-
mal specification techniques would have to fit
into in order to be used in practice. We also
expected the survey would be of general inter-
est, since we were not aware of any other such
survey of the New Zealand software industry.

This report explains the method followed
in conducting the survey (Section 2), presents
the main findings (Sections 3 and 4), then

1

0-7695-0631-3/00 $10.00 @ 2000

discusses our interpretation of these find-
ings and presents some conclusions (Sec-
tion 5). More information about the ISuRF
project can be found at the project web site:
http://www.cs.waikato.ac.nz/cs/Research/fm.

2 Method

Since this was very much an exploratory
survey, we wanted to get both a broad view of
the industry as a whole, and a more detailed
picture of a few companies. We therefore de-
cided to conduct the survey in two main parts:
in the first part, we conducted a series of tele-
phone interviews; in the second part, we visited
four companies and conducted more detailed
interviews. This section explains how we se-
lected companies to contact, and how we con-
ducted the two sets of interviews.

2.1 The initial contact list

Our first step was to construct a list of com-
panies that we considered to be suitable candi-
dates for telephone interviews. Our main crite-
ria for selecting these companies were that they
must perform software development, or de-
velop software requirements specifications for
subcontractors, and operate in New Zealand.

We compiled this list from several sources,
including the “New Zealand Internet Con-
nected Organisations ” web page,1 the Altavista
search engine (searching on “software” and
“develop”), the Internet Yellow Pages,2 and
a contact list compiled as part of a previous
CSCW survey (see [1]). We also included a
number of well-known large software compa-
nies, and a few other companies that we had
personal contacts with.

In total, we had 65 companies on our con-
tact list. We sent each of these companies a
short letter introducing our project and explain-
ing the goals of the survey, along with a two-
page introduction to the idea of software re-
quirements formalization as background for the
survey (included in [4]).

2.2 Telephone Interviews

We developed a set of questions to use as
a basis for the telephone interviews (included

1See: http://www.comp.vuw.ac.nz/˜mark/netsites.html
2See: http://tdl.tols.co.nz/

in [4]). The questions were designed to capture
information of direct interest to our project (e.g.
what software development methodologies and
tools are used), plus other information that we
felt might be of general interest and/or help us
to identify patterns in the other data (e.g. the
size of the company and the kinds of software
developed).

Many of the questions were intentionally
open-ended, so that each company could de-
scribe its practice in the most natural way,
rather than being forced to fit their practices
into a predetermined set of criteria. This in-
evitably leads to some difficulties in comparing
the responses, and means that great care must
be taken in interpreting the results.

We completed telephone interviews with 24
companies. The remaining companies were
not actively developing software or software re-
quirements specifications, did not wish to par-
ticipate, or could not be contacted. The results
of the telephone survey are presented in Sec-
tion 3.

2.3 In-Depth Interviews

After analyzing the telephone survey results,
we selected four companies for on-site inter-
views, to obtain a more in-depth snapshot of
software development practices in some rep-
resentative companies. For this part, we re-
stricted our attention to companies undertaking
development of significant software systems,
rather than just customizing or maintaining ex-
isting software. This eliminated many of the
companies covered by our telephone survey.

We chose four companies covering a range
of sizes and applications, including one large
multinational company.

We visited each of these four companies,
spending about half a day at each, speaking to
two or three senior staff members. The results
of these in-depth interviews are summarised in
Section 4.

3 Telephone Interview Results

3.1 Introduction

This section summarises the results of the
telephone interviews we conducted to survey
the software development techniques used in
the New Zealand software industry. It con-
tains a description of the categories in which

2

the interview data have been presented—this
includes some abbreviations for the sake of tab-
ulation. Some of these categories (1, 4, 5 and 8)
come directly from the questionnaire; the rest
emerged as useful ways of summarising the re-
sponses obtained. In both cases, the categories
themselves are subjective in the sense that we
have imposed our own interpretation of the data
and our own ideas as to what are interesting
points to bring out. This is of course usual and
quite unavoidable when interpreting question-
naire results when the questions asked are of
the fairly open-ended sort we have employed.

Finally, we have not summarised all of the
data that we gathered—we have concentrated
just on those which serve our goal of seeing
how requirements gathering is currently done.
The remaining data on our completed ques-
tionnaires have been useful as context for the
results reported here, have guided us in our
choice of site-visits and have helped to shape
the categories we chose for further analysis.

Presented next, in Table 1, are the data in
summary form and then Tables 2, 3, 4 and 5 are
used to suggest evidence of trends in the data.

3.2 The categories used

The interview information presented in this
report is divided into eight categories, as fol-
lows:

1. Size.

The number of people who are involved
in software development within the organ-
isation. This is categorized into one of the
three values: small (S) representing 1-3
personnel, medium (M) representing 4-9
personnel , or large (L) representing 10 or
more personnel.

2. Kind of development.

The type of software development projects
undertaken by the organisation. The dif-
fering projects found were grouped under
the following categories:

� Specific software products for cus-
tomers.

O: One-off contracts
M: Mass production (Shrink

wrapped)
C: Customizing pre-developed

software

S: Service/support

� In house development to support
running of organization.

IO: Own development
IC: Customization of bought-in

products

� Product support. Inclusion of soft-
ware in organisation’s products.

PI: In house development

PB: Brought from outside source

3. Formalityof process and/or notation.

Here formality refers to both the process
and the language or notation used.For-
mality of processdenotes the degree to
which the specification process is well-
defined, documented and followed for all
projects. Formality of language or nota-
tion refers to the well-definedness of the
language or notation used to write down
specifications. Specification languages
with precisely defined semantics, such as
Z and VDM, are regarded as fully-formal,
whereas notations like UML, whose se-
mantics are not precisely defined, are re-
garded as semi-formal (or rigorous).

We describe the degree of formality, on a
scale of 1 to 5, where 1 is the least formal
and 5 is the most formal, as follows:

1 : No explicit process and no formal
language.

2 : Clear phases, though any method
used is implicit and no formal lan-
guage used.

3 : Clear phases, and a sequence of in-
formal specifications made during a
project.

4 : Formal process, with semi-formal
notation.

5 : Formal process, with fully formal
notation.

This classification is very subjective be-
cause it depends on the interviewee’s per-
ception of degree of formality, what the
interviewer chose to record, and our later
perception of the recorded information.
The phrases above suggest how we de-
cided which category to put a company
into, though the goodness-of-fit will vary.

3

4. Specificationof requirements.

Indicates an estimated proportion of time
spent on specifying requirements in a typ-
ical project. These are mostly very rough
estimates, since accurate information was
often not available, especially when there
was no clear requirements specification
phase. Many of the companies also indi-
cated that this varies considerably among
different projects.

5. Standards.

Any industry/ISO/New Zealand standards
that are maintained by the organisation

6. Testingcarried out on developed software.

This is a rough classification of the types
of testing performed into a level of rigour.
An organisation is rated at a given level if
they use at least one of the methods per-
taining to that level (and perhaps methods
from a lower level). The levels are defined
as follows:

1: Testing by customers (after release);
includes beta releases.
Developers perform their own testing
during development.
Testing by eventual users (before re-
lease); includes integration tests on
site.

2: Unit, system and/or acceptance testing.
Project-specific test plans used.
Regression testing.

3: Testing done by dedicated testers (not
developers involved in the project).
Test plans derived from the specifica-
tion.

This categorization is again somewhat
subjective, and organisations may well use
other testing methods that were not men-
tioned during the interview.

7. Tools and Languagesused.

An indication of some of the tools, lan-
guages and development methods used by
the organisation.

4 In-depth Interviews

To complement the broad-brush picture of
the New Zealand software industry painted by

the above survey, we visited four companies
and discussed their software development prac-
tices in more detail. We chose a range of dif-
ferent sized companies, from medium to large.
A summary of these interviews is given in this
section, focusing mostly on requirements and
specification issues. Some of these companies
asked to be anonymous, so we have decided not
to relate this section to Table 1.

4.1 Company A

Company A manufactures point-of-sale so-
lutions, security systems and petrol pumps, for
sale in New Zealand and overseas. It employs
around 250 people. We focussed on the secu-
rity systems division, which employs around
45 people, including 26 software developers.
These developers are structured into several
project groups, with each group typically com-
prising a manager, four to five software engi-
neers and one to three software testers.

Company A is ISO 9001 certified, so follow
a documented software lifecycle, which is gen-
erally a waterfall model, but with prototypes
done during the design stage if necessary. Lo-
tus Notes is used to track requirements, de-
sign documents, test plans and results, and pro-
cesses.

A typical project begins with aTerms of Ref-
erencestatement which is used to evaluate fea-
sibility and guide the production of theFunc-
tional Requirementsdocument. This is gen-
erally based on a standard template, and often
containsuse cases, as well as interface and per-
formance requirements. A major requirements
review meeting is held after the functional re-
quirements are complete.

Next, work proceeds into the design and
implementation phases, where design reviews,
and some code reviews, are done internally
by the project group. In parallel with design
and coding, the testers produce test sets di-
rectly from the functional requirements docu-
ment, and the design documents as they be-
come available. They useCause and Effect
techniques to generate formal test plans for the
product. These test plans are mostly used to
perform system testing, but some modules are
tested individually. This is followed by alpha
and beta testing and load testing. They use
some tools to help in applying tests, but this
is not fully automated. They plan to start using
automated regression testing tools in the future.

4

Table 1. Data Summary
Size Kind Formality Specificationa Standards Testing Some Typical Tools and Languages

S O 1 20% 1 C,C++,VB,Access,Code DBs,Coral Draw
M O 2 25% 1 JBuilder,C,C++,Java,SQL
L O 4 25% 3 UML,Virtual Modeller,VB,FoxPro,Access
L O 3 33% 3 ERwin,Visual Source, Progress 4GL
M O 4 10-40% 2 VB,Access,Delphi,C,Informix
S O 1 15% 1 Prolog, C, ODBC, HTML, Javascript
M O,M 4 40-60% 2 Objectory,C++,Java,SOM/DSOM(IBM),Oracle DB2,Object Store, Poet
L O,C 4 30% MS-Cert. 3 FoxPro,Delphi,C++,C
L O,S 4 20% ISO9001, CMM-2, SWIFT 3 Use tools and languages developed in-house and: Rational Rose, UML
M O,IO 1 20-30% 1 DreamWeaver,Frontier,MacroMedia,html, Perl
S M 3 * 3 Booch,Visual C++,VB,Delphi
M M 2 15% ISO9002 3 VB, SQL
S M 2 20% 1 Delphi,Paradox DBs,Pascal,QuickBasic
L M,C 4 25-40% 2 SourceSafe,UML,C,C++,Java
M M,C 2 * 1 KLOC(EFT-pos)
M C 2 30% ISO9000 2 C,Ingres,VB,SQL-Server
L IO,IC 3 20-40% ISO9000 2 None mentioned
S IO 2 30% 1 FoxPro,RDBM
L IO 3 35% ISO9001 3 Oracle, SQL, C
M IO,IC 3 * 2 Power Builder,VB,Perl, Visual C
S IO,IC 1 10% 1 C++,Delphi,Assembler
M IC,PB 2 10-20% 2 KBM
L PI 3 30-40% ISO9001 3 Templates,class diagrams,C(Unix, Win),Jade(NT),VB,C++
L PI,PB 4 *b ISO9001 3 Rational Rose C++(Booch/UML),Project Technology, Bridge Point

aA * in this column indicates that we were not able to ascertain the relevant percentage from the data we gathered.
bIn this case, the company stated that the amount of specification done varied considerably from project to project—we estimate this might vary between10% and 50%, and show the mid-point of that

range in the tables that follow.

5

Table 2. Summary – in order of software team size
Size Kind of Development Formality Specification Testing

S M L O M C S IO IC PI PB 1 2 3 4 5 10% ! 50% 1 2 3
* * * * *
* * * * * *
* * * * *
* * * * * *
* * * * * *
* * * * *
* * * * *
* * * * * *
* * * * * *

* * * * * *
* * * * *
* * * * *
* * * * *
* * * * *
* * * * *
* * * * *
* * * * * *
* * * * * *

* * * * *
* * * * * *
* * * * *
* * * *
* * * * *
* * * * *

Table 3. Summary – in order of formality
Size Kind of Development Formality Specification Testing

S M L O M C S IO IC PI PB 1 2 3 4 5 10% ! 50% 1 2 3
* * * * * *
* * * * * *
* * * * *
* * * * * *
* * * * * *

* * * * *
* * * * * *

* * * * *
* * * * *
* * * * * *
* * * * *

* * * * *
* * * *

* * * * * *
* * * * *
* * * * *
* * * * *
* * * * *

* * * * *
* * * * *

* * * * * *
* * * * * *
* * * * *
* * * * *

6

Table 4. Summary – in order of average time spent on analysis/specification
Size Kind of Development Formality Specification Testing

S M L O M C S IO IC PI PB 1 2 3 4 5 10% ! 50% 1 2 3
* * * * * *

* * * * *
* * * * *
* * * * * *
* * * * *
* * * * * *
* * * * * *
* * * * * *

* * * * *
* * * * *

* * * * *
* * * * *
* * * * *
* * * * * *

* * * * * *
* * * * *
* * * * *

* * * * * *
* * * * *

* * * * *
* * * * * *

* * * * *
* * * * *

* * * *

Table 5. Summary – in order of formality of testing procedures
Size Kind of Development Formality Specification Testing

S M L O M C S IO IC PI PB 1 2 3 4 5 10% ! 50% 1 2 3
* * * * *
* * * * * *
* * * * *
* * * * *
* * * * *
* * * * * *
* * * * * *

* * * * *
* * * *

* * * * * *
* * * * * *

* * * * * *
* * * * *
* * * * *
* * * * *
* * * * * *
* * * * *
* * * * *
* * * * * *

* * * * *
* * * * * *
* * * * *
* * * * *
* * * * *

7

Typically, a third of the effort on a project
is spent on feasibility and requirements gath-
ering, a third on design and implementation,
and a third on testing. They believe that it
is important to get requirements agreed up-
front, but it is inevitable that some clarification
will come later, typically during design. They
would like to do more tracking of changes, to
be able to track whether anomalies were intro-
duced during requirements, design or coding.
They use thecritical chain method to manage
project schedules and are pleased with how this
is working—their latest project was brought to
beta test one month early.

4.2 Company B

Company B is a large New Zealand com-
pany that manufactures electronic communica-
tions products. It employs over 900 people and
exports 90% of its products to over 80 coun-
tries. Its products contain an increasing amount
of software, and its main development divi-
sions each have around 30 software engineers.
One of the main products produced contains
embedded software which is often customised
for individual customer requirements, and they
maintain around 100 variants of this software.
The software for another main product is more
standardised, with only a few variants.

Company B is ISO 9001 certified, and is
in the process of introducing a product de-
velopment process which is a local variant of
Hewlett-Packard’s product development pro-
cess. The local variant has seven phases, sep-
arated by milestones, or stage-gates (D0-D6),
covering the entire product life cycle from fea-
sibility analysis to product obsolescence.

The phase leading up to the D0 stage-gate
explores the feasibility of a new product con-
cept, including market analysis and technical
feasibility. If the project proceeds, this phase
will result in a product definition which still
allows many possible technical solutions. The
phase leading to D1 narrows this down to a sin-
gle preferred “paper solution” and produces a
project plan and a high-level product design.
The D1 to D2 phase produces a working proto-
type of hardware and software, and ensures that
all design risks have been eliminated. Mile-
stone D3 marks the first production product.
Between D2 and D3 the product implementa-
tion is realised, including beta testing, type ap-
provals and customer trials.

The phase to D4 takes the product to full
production, and is mainly concerned with man-
ufacturing and assembly. The D4 to D5 phase
involves on-going maintenance and upgrades.
The D5 milestone marks the end of develop-
ment. The D5 to D6 phase plans product obso-
lescence, and the D6 milestone marks the prod-
uct becoming obsolete.

Software development is managed within
the overall product development process. This
process is quite flexible, and the project plan
developed during the D0 to D1 phase deter-
mines, for each project, what will actually hap-
pen at each phase and what reviews are per-
formed. The D0 to D1 phase produces a soft-
ware specification, and perhaps some of the de-
sign. How much design is done in this phase,
and the amount of time spent on capturing re-
quirements, varies according to the project, and
in particular depends on the perceived risk—for
unfamiliar projects, more time is spent in this
phase than with more familiar projects. A ma-
jor project review of requirements design and
project plan is held prior to passing the D1
stage-gate. A test plan must have been pro-
duced and executed prior to achieving the D3
(first production product) milestone. Typically
the development group defines validation tests,
but some larger projects have used independent
testing as well and this is likely to become stan-
dard practice in the future.

The product development process also
allows a variety of software development
methodologies to be used, and the Com-
pany uses a mixture of “traditional” functional
decomposition and object oriented methods.
These are used in roughly equal proportions,
with the traditional approach being preferred
for hardware constrained applications.

A variety of object oriented methodologies
and tools are used. There is significant use of
the Shlaer-MellorInformation Modelmethod-
ology3 which captures designs using entity-
relationship diagrams, finite state machines and
data flow diagrams. Some engineers useRa-
tional Rose4 to provide tool support for soft-
ware design, UML documentation and coding
development, and there is some use of Booch’s
methodology. Because of the wide variety
of products and hardware platforms, there is
no standard coding language across products.
Most coding is done in assembly language, C

3See: http://www.projtech.com/info/smmethod.html
4See: http://www.rational.com/products/rose/index.html

8

and C++, although other languages are some-
times used. Assembly language is typically
used for hardware constrained systems. A va-
riety of other tools are also used, for example
MATLAB is used extensively for simulation.
Some of the engineers are also conversant with
SDL,5 largely because many of the protocols
used are defined using SDL.

4.3 Company C

Company C is a software development com-
pany that employs 20-30 staff. It specializes in
leading edge development of low-level commu-
nications software, and systems for the health
and travel industries.

Company C uses two styles of requirements
specification. The first (preferred) style is a re-
quirements document that is prepared by the
client’s own IT staff or by an independent con-
sultant. Sometimes this requirements docu-
ment includes quite detailed design informa-
tion. Other times, Company C’s systems an-
alysts will develop the design, in conjunction
with the client, to ensure that the solution
matches the client’s needs.

The second style of requirements specifica-
tion involves Company C’s sales staff visiting
the client and formulating requirements. This
typically takes longer, because client require-
ments can be fuzzy. A common difficulty in the
health industry is that requirements must be ap-
proved by large committees and it is difficult to
please everyone. The resulting initial require-
ments document (containing prose and white-
board diagrams) is then passed on to the sys-
tems analyst, who produces a high-level design
(prose plus Visio diagrams and some screen-
shots) for approval by the client.

The time spent on requirements specifica-
tion varies between projects. Company C has
found that the more time spent on specifica-
tion and design the more smoothly the project
goes—less “reworking” is required. They are
progressing toward using more detailed speci-
fications. However, this is sometimes resisted
by clients, who view work on ensuring that
requirements and design are correct as being
wasted time and prefer to measure progress
purely by how much has been implemented.

Company C uses a variety of development
methods and tools, including Rational Rose,
UML and Java for some projects and Visual

5See: http://www.sdl-forum.org/SDL/index.htm

Design Studio and C++ for others. Integration
and system testing is usually performed by the
development team.

The factors that the Company perceives as
barriers to spending adequate time performing
requirements specification include:

� An accounting outlook towards the de-
velopment process: deliverables must be
made by deadline. When nothing is been
produced, for example executable code,
then progress is less evident.

� Customer investment: the customer has
paid a proportion of the cost in deposit and
wants to see (what they think is) progress.
Often extensive work on ensuring the re-
quirements are correct is not viewed as
progress by the customer. However, the
Company’s staff believe specification and
design diagrams are a good thing to be
able to show customers.

Changes to the project after the point of con-
tract are submitted to the Company in the form
of a change request. The Company is very clear
that changes from the contracted specification
are the liability of the client, and charge accord-
ingly.

4.4 Company D

Company D is an international company that
employs approximately 300-350 staff in New
Zealand. They develop software for a wide
range of applications for external clients.

Company D views each of its operations
world-wide as a distinct centre of expertise and
encourages the incorporation of existing local
knowledge and expertise into projects. While
there remains some mixture of cultures be-
tween overseas and local groups, Company D is
currently introducing its proprietary company-
wide methodologies for developing software
solutions.

The Company expects software require-
ments to be supplied by the client, but often
finds that those requirements are ambiguous
and that the client does not have a firm grasp
on what they require. The Company currently
spends about 20% of total development effort
on the requirements and specification phase. It
would like to increase this, because it has ob-
served that the more specification that is done
the easier the development stages become.

9

The Company made the following observa-
tions based on experience with requirements
specification in New Zealand:

� There is often a large gap between the high
level contractual specification produced to
secure a contract and the solution specifi-
cation that is needed to proceed to an im-
plementation.

� Development of more precise contractual
specifications is hindered by the competi-
tive market. Especially when bidding for
contracts—the contractual specification is
often different to the solution specifica-
tion.

� It would be desirable to be able to ex-
press requirements far more precisely be-
fore presenting them to the customer. This
would allow for far better change track-
ing, ease and speed of development and
completion to specification later down the
track.

� A lot of the changes requested by the
client are being absorbed into develop-
ment because the requirements specifica-
tion is not precise enough to identify these
changes as deviations from the original re-
quirements.

� Customers are often unhappy about a lot
of time being spent on requirements spec-
ification and design, because it is not ob-
vious to them that they are getting any-
thing for their money—they expect code
and some tangible product.

� Requirements gathering gets easier as
knowledge of an area of expertise grows,
from having done previous projects with
similar solutions.

5 Conclusions

The results of our telephone survey demon-
strate that there is a very wide range of kinds
and sizes of organisation doing software de-
velopment in New Zealand. These range from
very small companies specialising in particu-
lar application areas, and small groups within
companies whose main business is not soft-
ware development, to large companies, or
groups within even larger companies, undertak-
ing much larger and more varied software de-
velopment projects.

There is also a wide range in the kinds
of applications developed, and in the kinds
of client-developer relationship encountered.
Some companies do only in-house develop-
ment, and spend much of their effort in main-
taining and upgrading a few large systems; oth-
ers undertake contracts for external clients, or
undertake development projects for an antici-
pated market (perhaps as part of another prod-
uct), rather than for specific clients.

This diversity makes it difficult to identify
meaningful patterns in the software develop-
ment practices employed. We also need to take
care in interpreting the results of our survey,
due to the size of the sample, the nature of the
questions, and the variability in the way an-
swers were given and recorded. We can, how-
ever, draw a few tentative conclusions from our
results.

5.1 General Observations

The most significant factor in determining
the kinds of practices employed appears to be
the size of the software development group. It
seemed, in general, that larger software devel-
opment groups tend to have more well-defined
software development processes. They also ap-
pear to spend proportionally more time on cap-
turing requirements, and to have more rigor-
ous testing regimes. It also appears that more
well-defined software development processes
are used by software teams that produce soft-
ware for customers (either as software products
or, like Company B, embedded), rather than in-
house providers.

These trends may be explained by the gen-
eral requirement for larger organisations to
have a more formal management structure, and
the fact that these organisations tend to under-
take larger software development projects for
which more rigorous development and testing
methods are appropriate—unfortunately, our
question regarding the size of system devel-
oped did not produce information allowing us
to investigate that relationship.

5.2 Answers to Specific Questions

We now discuss our findings regarding the
four questions mentioned in Section 1.

1. Notations and tools.Like earlier overseas
studies [2, 6] we found that most com-
panies use text documents and general-

10

purpose tools such as word processors and
spreadsheets to express requirements and
specifications. About half of them said
they used diagrams (ERD, DFD, UML)
for some aspects and one quarter said they
used standardized word-processor tem-
plates across projects. Three companies
said they relied primarily upon face-to-
face meetings to capture requirements.
One project in a telecommunications com-
pany used an international standards spec-
ification which included a formal specifi-
cation and test cases, but this was the only
use of formal specification languages.

2. Effort devoted to requirements and specification.
The data concerning the proportion of
time spent on capturing requirements
are difficult to interpret because many
companies were not able to provide
accurate data, and what data they did
provide were expressed in terms of their
own development process. These caveats
aside, the average of thespecification
column of Table 1 is around one quarter.
This shows that New Zealand companies
spend a significant amount of time man-
aging requirements and specifying the
proposed system (one third of the compa-
nies also included top-level design in this
statistic). For comparison, a collation of
1970s data by Schach [8] shows that on
average projects spent an average of 6%
on requirements, 15% on specification
and 18% on design. More recent data
[3] for 132 Hewlett-Packard projects
gives 18% for the requirements and
specification phases and 19% for design.
Our quarter estimate falls in the middle
of these figures (between 6+15=21% and
6+15+18=39% for the Schach data, and
between 18% and 18+19=37% for the
HP data) which is a good match, given
that our estimate includes some top-level
design.

The fact that larger software development
groups appear to spend more time on cap-
turing requirements may be due to the
complexity of the systems being devel-
oped, but may also be due in part to vari-
ous other factors: for example, there being
more client groups whose interests need
to be considered, or there being less con-
tact between developers and clients dur-

ing later phases of the project. Some of
the smaller companies said that they did
not need to spend much time documenting
requirements because they work closely
with clients during the development, in
some form of prototyping process. Where
the developers undertake several projects
for the same client, there is also a carry-
over of understanding about the client’s
environment that allows software require-
ments to be expressed more concisely.

3. Evolving requirements. We asked each
company how they recorded and re-
sponded to changing user requirements,
and got relevant answers from 15 compa-
nies, mostly focussing on the contractual
issues rather than the technical issues of
how changes affect development. One
managed changes informally (usually on a
payment for time basis), while the others
all used some sort of standardchange
request form to capture requirements
changes. Five of those companies used
automated systems to track the progress
of the changes through their software
development process. Large requirements
changes are generally closely monitored
because they may require additional
payment from the client, but several
companies said they perform small mod-
ifications (and bug fixes) for clients for a
few months after system delivery for no
extra charge.

4. Validation and verification. When asked
what quality control measures they use,
all companies mentioned testing, as
expected. This testing ranged from just
relying on the client to test the product,
to quite sophisticated testing regimes
with test plans being developed from the
specification by a separate team from the
developers.

Ten of the companies gave separate statis-
tics for the percentage of time they spend
doing (system) testing and integration.
These ranged from 9% to 35%, with an
average of 27%. This is very similar to
the statistics reported by Schach [8] (24%)
and Grady [3] (29%) for the integration
phase.

Most companies stated they hold review
meetings after each early lifecycle phase

11

(requirements, specification etc.) but, sur-
prisingly, none mentioned code reviews.
Given that reviews have been shown to be
more efficient at finding errors than test-
ing [5], this is an area where improvement
could be obtained.

5.3 Comparison with Related Work

Other field studies of software develop-
ment practices include a 1988 MCC study [2]
of 17 large projects (with 97 interviews and
3000 pages of transcripts!), and a 1992 MCC
study [6] of 23 projects that focussed on re-
quirements modelling. These were both qual-
itative studies, even less quantitative than ours,
and used open-ended questions like ours.

The 1988 study found three major problems
that affected many projects: a thin spread of
application domain knowledge; fluctuating and
conflicting requirements; and communication
and coordination breakdowns.

The 1992 study split the projects into
customer-specificprojects (those with a sin-
gle customer) andmarket-driven(multiple cus-
tomers) and found significant differences be-
tween the groups. The main difference was
that customer-specific projects typically had
detailed customer-generated requirements doc-
uments, whereas market-driven projects tended
to havevaguely stated requirements and an in-
formal mode of expression and delivery. We
could not classify all our companies neatly
into these categories, but we did notice several
market-driven companies that had virtually no
requirements documents, relying instead upon
a super-designer[2] (a domain expert who de-
signs the system and works closely with the de-
velopers). This is different to the 1992 MCC
study, which found several super-designers in
customer-specific projects, but none in market-
driven projects. They also found that 1/3 of
the projects used CASE tools (similarly, we
found 7/21 companies used CASE tools or code
generators for some projects), and that most
projects used just general purpose tools such
as word processors, spreadsheets and databases
for requirements and specification work (we
found the same, but note that diagramming
tools are also used quite widely now).

5.4 Unsolicited Comments

Our telephone interviews and site visits also
gave rise to a number of interesting com-

ments that were not covered by the question-
naire. While these do not provide any basis for
comparisons, they do present some interesting
viewpoints and ranges of opinions.

Some of the people we spoke to said they
would prefer to spend more time on captur-
ing requirements, but were prevented from do-
ing so by commercial considerations. In some
cases this was because they were tendering
for contracts, and had to limit their invest-
ment in the tender in case they did not win the
contract—and avoid competitors gaining from
them, as the tenders may subsequently become
public documents. In other cases, they said that
clients, having paid (some proportion of) the
cost of the required system, were impatient to
see what they considered to be the “product”,
which usually meant executable code of some
sort. This attitude, clearly, militates against a
process that spends time getting requirements
right before moving to development.

We also encountered a wide range of opin-
ions on the value of standards such as ISO
9001. Some people said that certification to
such standards was too costly to maintain and
provided no commercial advantage, while oth-
ers said that these standards were very worth-
while, and that once absorbed into the corpo-
rate culture they required no additional effort
to maintain. It is worth noting that many of
the companies that did have ISO 9001 certifi-
cation had it for parts of their operation other
than software development. Some companies
were planning to seek an evaluation against the
Capability Maturity Model (CMM) developed
by Carnegie Mellon University [7].6

In many of the companies we spoke to, the
current software development process had been
in place for no more than 12 to 18 months,
and in several cases no projects had been com-
pleted under the current process. Some people
indicated that new processes are introduced ev-
ery couple of years, and others indicated that
the documented processes do not really reflect
what happens within their company.

In conclusion, we wish to reiterate that
this was a modest survey with modest aims,
and that great care must be taken in inter-
preting the results. While this form of sur-
vey was quite appropriate for our purposes, to
get more reliable/significant results would re-
quire a more focused survey, concentrating on
a smaller range of companies, with more nar-

6See: http://www.sei.cmu.edu/cmm/cmm.html.

12

rowly worded questions and more tightly de-
fined response categories. We hope that the re-
sults presented here would provide useful back-
ground to such a study.

Acknowledgments

This report is part of the ISuRF project, sup-
ported by FRST grant UOW805.

We would like to thank the companies who
participated in this survey for their time and ef-
fort.

References

[1] C. Blackett and S. Reeves. CSCW in
New Zealand: a snapshot. Technical Re-
port 96/15, Department of Computer Sci-
ence, University of Waikato, Hamilton,
New Zealand, 1996.

[2] Bill Curtis, Herb Krasner, and Neil Iscoe.
A field study of the software design process
for large systems.Communications of the
ACM, 31(11):1268–1287, November 1988.

[3] R. B. Grady. Successfully applying soft-
ware metrics.IEEE Computer, 27:18–25,
1994.

[4] Lindsay Groves, Ray Nickson, Greg
Reeve, Steve Reeves, and Mark Utting. A
survey of software requirements specifica-
tion practices in the New Zealand software
industry. Technical Report 99/8, Depart-
ment of Computer Science, The Univer-
sity of Waikato, 1999. Available from
http://www.cs.waikato.ac.nz/Pub/Tr/1999/.

[5] Capers Jones.Programming Productivity.
McGraw-Hill, 1986.

[6] M. Lubars, C. Potts, and C. Richter. A
review of the state of the practice in re-
quirements modeling. InProceedings of
the IEEE International Symposium on Re-
quirements Engineering, pages 2–14. IEEE
Computer Society, 1992. ISBN 0-8186-
3120-2.

[7] Mark C. Paulk. How ISO 9001 compares
with the CMM. IEEE Software, 12(1):74–
83, 1995.

[8] Shephen R. Schach.Classical and Object-
Oriented Software Engineering. McGraw
Hill, 1999.

13

