
p-charts and Z: examples and extensions

Greg Reeve and Steve Reeves
Department of Computer Science

University of Waikato
Hamilton, NEW ZEALAND

{gregqstever} @waikato.ac.nz

Abstract

p-Charts are a way of specifying reactive systems, i.e. sys-
terns which are in some environment to which they have to
react, based on the well-established formalism Statecharts.

This paper gives (very abbreviated) examples of trans-
lating p-charts to Z, which is itself a well-established lan-
guage for specifying computational systems with tried and
tested methods and support tools which guide its effective
use in systems development. We undertake this translation
in order that investigation of the modelled system can be
performed before expensive and lengthy implementation is
considered.

We also present an extension of the p-charts and the re-
lated Z to deal with a simple command language, local vari-
ables and integer-valued signals.

1 Introduction

p-Charts [4] are a visual representation used for the speci-
fication of cyclic components of reactive systems, i.e. sys-
tems which are in some environment to which they contin-
ually react; mechanisms driven by graphical user interfaces
or those driven by signals received on a communication in-
terface are examples of such systems. They extend finite
state transition diagrams by adding modularisation through
hierarchical decomposition, i.e. allowing states to contain
other p-charts, and by parallel composition, i.e. allowing the
modelling of separate communicating processes. In both
these cases p-charts can then communicate via instanta-
neously broadcast signals.

The p-chart formalism that is the basis of the translation,
given in [6], is itself based on a preceding variant called
MiniStatecharts, and these are themselves based on the
original Statecharts ([l]). P-Charts, or some of their pre-
decessors, are widely used by engineers in specifying and
designing many sorts of reactive systems. Furthermore, un-
like many visually-based notations, they have a denotational
semantics which gives a precise and well-defined meaning

to each chart.
Overall, our strategy for specifying and reasoning about

reactive systems has two key aspects: to allow ourselves to
exploit the visual nature of p-charts and the specification
structuring properties of Z; to be in a position to use a reli-
able proof assistant.

The fact that p-charts or similar formalisms are widely
used by engineers, and the fact that Z is widely used by
software engineers, were also important reasons for our
strategy. Finally, it is certainly the case that having both
model-checking-based and deduction-based methods at our
disposal to investigate systems is advantageous.

Z/EVES [7] is a type checking and theorem proving tool
for Z specifications. Theorems can be defined and proofs
attempted at any time. Z/EVES was developed by ORA [3]
and is used here to prove properties about the Z translated
from p-charts. Very importantly, Z/EVES has been devel-
oped and used over a number of years on many different
projects, some very large and with safety-critical compo-
nents. We have high confidence in its correct embodiment
of the logic of Z and therefore high confidence in the prop-
erties we prove of our systems. Confidence in the usefulness
and reliability of a proof assistant cannot be over-valued.

2 The central locking example

In Figure 1 we give a first example of a p-chart. This exam-
ple is taken from [4]. It specifies the central locking system
for a car and considers, amongst other things, how such a
system should react in the case of a crash. The system is
required to unlock all the doors if a crash happens.

2.1 The chart

States in a p-chart are shown by ellipses (double ellipses
denote start states for their respective p-chart) and transi-
tions are labelled as shown. A transition is triggered if the
signals appearing before the ‘/’ are present (if there is noth-
ing written there then the transition is always triggered) and

1530-1362/00$10.0002000IEEE
258

Proceedings of the Seventh Asia-Pacific Software Engineering Conference (APSEC�00)
1530-1362/00 $10.00 © 2000 IEEE

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Research Commons@Waikato

https://core.ac.uk/display/29194671?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Figure 1: The central locking system

they emit the signals in the set after the ‘/‘. The dashed
lines show that the three sub-charts Control, MotorLeft and
MotorRight work in parallel. The signals appearing in the
small box at the bottom of the chart’s border indicate that the
named signals are broadcast throughout the enclosed charts.

If the system is in its starting configuration and re-
ceives (from the underlying hardware) the signal ckey then
it moves to state Protect and emits and broadcasts to all
sub-charts the signals ldn and rdn. These signals simul-
taneously cause MotorLejI to move to state LDown and
MotorRight to move to state RDown, i.e. modelling lock-
ing of the doors. At the next tick of the system clock,
MotorLeji and MotorRight will each move to their respec-
tive states LOff and ROff and emit the signals lmr and rmr
respectively. (It is assumed here that locking takes only one
unit of time.) The signals lmr and rmr will be instanta-
neously broadcast, so Control will move from Protect to
Ready, emitting nothing.

2.2 The 2

The Z translation process gives us, broadly, Z state schemas
associated with each p-chart state and Z operation schemas
associated with each transition, together with an opera-
tion schema, that we usually call Step, which describes
what happens during one step of the system (which can be
thought of as the processes’ behaviour at each tick of a sys-
tem’s global clock).

A crucial part of the philosophy of Z is that of an obser-
vation. An observation can be thought of as a window, with
a name to uniquely identify it, through which we can look at
some part of the system being modelled. A Z state schema
collects together those observations which go to make some
useful conceptual part of the system being modelled. Typ-

ically, the whole model is made of several state schemas,
each describing a conceptually meaningful aspect of the
system, combined together.

A Z state schema has two parts: that above the line shows
us what observations of the system go to make up this part of
the state; that below the line places constraints on allowable
values of the observed quantities when the system is in this
part of the state. A Z operation schema also has two parts:
that above the line again mentions observations, though this
time the “before” and “after” values of observations may be
referred to-by convention the “after” value of an observa-
tion is denoted by priming the relevant label. As with the
state schemas, below the line in an operation schema we are
given constraints that the observations must satisfy when
this operation happens. Typically, these constraints tell us
what relationships exist between “before” and “after” val-
ues of the observations via predicates over unprimed and
primed labels respectively.

Throughout this paper we will give only highlights of the
translation. The full story is available in [S].

Referring to the central locking system translation, we
have state schemas:

- Control, - InitControl

Elormal rs crash

-Normal, - T InitNormal- -Ready -

which describe the sequential p-charts Control, Normal and
Crash. Note that the hierarchical nature of p-charts means
that some states are not atomic, like Crash, but are both
states and charts, like Control and Normal.

We also have operation schemas like:

-d NormalCrash

Normal
Crash’
i? : PSignal
active - : p km
oclrl!, o! : B Signal
active(contro1)
crashs E i? U (o! rl fconrml)
od = {lup, rup}

259

Proceedings of the Seventh Asia-Pacific Software Engineering Conference (APSEC�00)
1530-1362/00 $10.00 © 2000 IEEE

- ~RcadyProrecr

Ready
Protect
i? : PSignal
active- : p pstare
oaks!, o! : P Signal
active(norma1)
ckey E i? U (o! llf~~~)
oj,ro,.,,z! = {ldn, rdn}

- ~oj-yDown~~
Oli?
Down;
i? : PSignal
active- : B psrare
oaks!, o! : I Signal
active(motorleft)
ldn E i? u (o! nfMoror~~)
ONonn! = 0

which describe the transitions from Normal to Crash, Ready
to Protect and from LOf to LDown in MotorLeft.

To give an idea of what this translation is capturing we
consider the operation schema IJ,+I~~~c~~,, in more detail.
Above the line we mention observations that this operation
depends upon. First we include the state schemas Normal
and Crash’. Normal is unprimed and so denotes the state
that the transition starts from and Crash’ is primed, denoting
that this is the state that the transition ends in. i? is the input
set of signals that the transition is reacting to, active intro-
duces a predicate that tells us which of the specifications
charts are currently active (see below for a more detailed
description of this predicate) and oct,l! and o! describe, re-
spectively, the output signal sets from the chart Control and
from the whole system.

Below the line we have three predicates, to be read in
logical conjunction. The first says that this operation can
happen only when Control is an active chart. The second
says that the operation (and so the transition it translates)
can happen only if the signal crash, (subscripted to differ-
entiate this value from the state name) is in the set of signals
either input from the environment or fed back within the
chart. The final predicate says that in any case where this
operation happens (i.e. when the translated transition fires)
the output signals are lup and rup.

As mentioned above, each operation schema contains a
predicate that describes which of the specification’s charts
are currently active. The translation described in [6] was
modified to include this predicate and hence more fully cap-
ture the modularization and compositional principles inher-
ent in the p-charts formalism. Using this predicate to ab-
stract on the “activeness” of individual sequential charts al-
lows their translation to be performed independently of their
position in any specification hierarchy. Details of the speci-
fication’s hierarchical nature only becomes evident when all
of the charts are combined in the schema Step as described
below. For a more detailed discussion the interested reader
is referred to [5].

Finally, we give the schema Step which describes the
processes’ possible behaviours at each cycle (tick of the sys-
tem clock) with respect to the state of each process and the
input signals which have been presented to the system since
the last cycle. This schema is defined as follows:

- Step
AControl,
ANormal,
AMotorLefr,
AMotorRight,
i?, o! : iFSignal

3 oar,!, oaks!, oaks!, oj+“! : B Signal;
active- : P psrote l
(active(contr01) ti true) A
(active(nonna1) * cconrmt = normal) A
(active(motorlef) W true) A
(active(motorright) ($ true) A
o! = oc,,,! u O&m! u ONorm! u ONonn! A
konrtnl A ~Normal A ~MokwLafr A ~Mo,orR;ghf

where:

which just gathers together in disjunction all the possible
operations in the chart MotorLeft (including ‘doing nothing’
in 6Mo,orRighr and being an inactive state in InacriveMOrOrRigh,),
and similarly for Sconrrol, dNO-1 and c&,&@.

Further details of the Z are not important for our discus-
sion here-save to say that they ensure that the intended
meaning of the chart is faithfully captured so that we have
the benefit of a second description of the model. With this
model we can go on to use Z support tools to infer facts
about the original chart model inductively.

2.3 Using Z/EVES to demonstrate a problem

If the system is in its initial configuration when a crash hap-
pens, which gives rise to the signal crash,, at the same in-
stant as the system emits the ckey signal (perhaps as a re-
sult of the crash affecting the electronics of the vehicle),
MotorLef and MotorRight each have a choice about what
they do next since, for example, MotorLejI in state LOff
given both the signals {ldn, lup} can either move to state
LDown or to state LUp.

We can show that the system has this unwanted and dan-
gerous behaviour by trying to prove the following pred-
icate. This predicate constrains the schema Step so that
it describes all behaviours of the specification, when it
is in states Ready (in the chart Normal), LOfl (of chart
MotorLeft) and ROff (of chart MotorRight), and both the
input signals crash, and ckey have been emitted by the sys-
tem.

Step[ccontm[:= normal, c,fbrm := ready, c,~~~,,~tfr := off/,
CMotorRight := ofsr, i? := {crush,, ckey}];

Z/EVES is used to simplify this predicate using all the log-

260

Proceedings of the Seventh Asia-Pacific Software Engineering Conference (APSEC�00)
1530-1362/00 $10.00 © 2000 IEEE

ical and Z rules that are embodied in it. From this simplifi-
cation we get:

o! = {lup} U ({r-up} U ({ldn} U {rdn})) A
&,,,, = protect A c&,,~~, = crash
A (CLmor~ef = ‘PI A 7 ChororRighr = UP,

* df&wRight = down,)

A (dfmorRight = UPr A 1 ckor~eft = UPI
* 4,0tortin = doyr)

A (CkxorRight =

v 44mrLefl = up>~~$?~~~o~R~t = down,)

which describes the dangerous situation where it is possible
for one or both the motors to lock the doors (the motors
move the locks)-which is of course exactly what we don’t
want to happen.

This shows a typical use of tools like z/EVES: we formu-
late properties that we want the system to satisfy (or not sat-
isfy) and then use the tool (which embodies the underlying
semantics of Z and hence, via our translation, of p-charts)
to prove (or disprove) them. In this way, at the specification
stage of development, we can satisfy ourselves that the sys-
tem correctly models desirable properties before going on
to the expensive step of implementation.

The problem we showed above can be easily fixed in
this case: we simply block the unwanted locking motor
movements by changing the triggers on the relevant tran-
sitions (from LOJf to Down in MotorLeft and similarly in
MotorRight) to ldn A 1 crash and rdn A 7 crash. If we do
this then given the same predicate we now get the following
simplified predicate from Z/EVES:

&mol = crash A cLotorLefr = up:
= up, A chO = protect

? ?Z$$J] U ({rup} Uy{ldn} U {rdn}))

which is what we want since this says that both motors un-
lock as their only “choice”. (There is still a, more subtle,
problem with this specification which the reader might like
to ponder.)

3 Extending p-charts

This section introduces the extensions to p-charts that we
will be translating into Z. The extensions include the addi-
tion of local variables, integer-valued signals and a simple
command language for transitions that is used to manipulate
these new specification attributes.

Our motivation for adding these extensions to the p-
charts language, apart from the “state explosion” problem
of [9], is the need to model systems that react to values and
parameters from the environment in which the system being
specified resides.

Figure 2: A stopwatch

We describe each of the parts of the extension in turn us-
ing the p-chart pictured in Figure 2 as an example. This
chart is derived from an example in [8] describing a stop-
watch that is assumed to have an external 1 MHz clock.

The transitions labelled tl are in each case an abbre-
viation for two transitions with the labels 7 s A W <
105/W := W + 1 and 7 s A W 2 105/X := 0 * time,
respectively. Similarly the transition labelled t2 represents
two transitions with labels s A W < 105/W := W + 1 and
s A W 2 105/W := 0 * time.

3.1 Local Variables

Local variables are local to the sequential p-chart in which
they occur and their value can be referenced and updated by
transitions within their p-chart. Local variables are consid-
ered to be of type integer here but could easily be extended
to be of arbitrary (Z-definable) type. Each sequential CL-
chart in a specification containing local variables describes
the value that the variable is initialised to when the chart is
entered, e.g. [X = 0] in Figure 2.

The local variables in the example are W, X, Y and 2
where X, Y and 2 are used to represent the display digits
of the stopwatch, and W is used to convert the 1MHz clock
into one that ticks every tenth of a second. Without local
variables the digits would be difficult to represent and the
calculation of seconds etc. from the 1MHz clock almost im-
possible, since it is certainly infeasible (from a design and
reasoning point-of-view) to have 10’ plus states in the CL-
chart, i.e. we would have the “state explosion” mentioned
above.

261

Proceedings of the Seventh Asia-Pacific Software Engineering Conference (APSEC�00)
1530-1362/00 $10.00 © 2000 IEEE

Figure 3: Specifying a very simple menu-driven
system using p-charts

3.2 Integer-valued signals

As an example of using integer-valued signals consider Fig-
ure 3. This is an example of an interactive system, which
is another important sort of system that we will be extend-
ing our work to deal with. This example is of a very sim-
ple menu driven system. It consists of two charts. The
Chooser moves to a wait state once the user has chosen
an item from the menu, allowing further interaction only
once the ok signal has been received, signifying the fact that
the chosen action has been completed. The Action chart
initiates appropriate action depending on the value carried
by the integer-valued signal choice. This example, while
very simple, shows how a typical menu-driven GUI could
be specified (and then investigated) within our framework.

In fact, just as for local variables, we can allow signals to
carry any Z-definable value.

3.3 Command Language

The command language that we introduce in this section
is based on [8]. It allows the local variables and integer-
valued signals described above to be manipulated by transi-
tions within a sequential p-chart.

In the example in Figure 2 the command low A Y =
9/Y := 0 * med informally says that, assuming the chart
is currently in state Med, if the signal low is input and the
local variable Y has a value of nine then after this transition
the local variable Y has been updated to have value zero and
the signal med is emitted. Since this signal is fed back, it
will cause some transition in Display-Hi, depending on the
value of the local variable X in that chart.

4 Updating the Translation

In this section we examine the changes in the translation
process needed for the extensions to local variables and a
command language.

At the top-most level (i.e. between states On and Ofl) the
translation works just as before, so we get state schemas:

and operation schemas like:

- &go,
Off
On’
i? : PSignal
active- : P r(lstnre
oStopwatch!, o! : Ifp Signal
active(stopwatch)
s E i? u (01 nfStopwatch)

7 r E i? u (o! nfsopwotch)

OStopwatch . ’ = 0

- 6orl,
On

Off’
i? : PSignal
active- : P ,ustate
~~~~~~~~~~~~ o! : B Signal 
active(stopwutch) 
r E i? u (o! nfStopwatch) 

%opwatch! = {) 

The fimer sub-chart gives rise to the expected sorts of 
the state schemas, like: 

- Timer, - - InitTimer - - Run1 - 

and operation schemas like: 

- ~RunlStopl 

Run1 
Stopl' 
i? : PSignal 
active- : P pstate 
ofimer!, o! : IP Signal 
active(timer) 
s E i? u (o! i-l fiimer) 
W’ = w 
mm-r! = {} 

- %QRunl 

Run2 
Runl’ 
i? : PSignal 
active- : P pstarc 
onlime,!, o! : IP Signal 
active(timer) 
7 s E i? u (o! nfEmer) 
w < 100000 
w’= w+1 
mnler! = {} 

Here we can see how the local variable W has been dealt 
with by the translation. It first appears in the state schema 
Emer,, it is initialised (to 0) in ZnitZimer and it then ap- 
pears in each of the operation schemas. Note that where 
a transition does not change W (like the transition from 
Run1 to Stopl) then in the corresponding operation schema 

262 

Proceedings of the Seventh Asia-Pacific Software Engineering Conference (APSEC�00) 
1530-1362/00 $10.00 © 2000 IEEE 



(d~~,,l~~+) the “before” and “after” values of W are equated, 
i.e. the value of W does indeed not change due to the tran- 
sition being modelled. In contrast, in a transition like that 
from Run2 to Runl, the command attached to the transi- 
tion increments W, and so in the corresponding operation 
schema kmunl the “after” value of W is one more than its 
“before” value. 

Finally, in this tour of the Z highlights, the display chart 
for the low digits gives: 

T Display-L.+ - F hitDisplay-Lo - L.o 

--As:, 
L.0 
L.0’ 
i? : PSignal 
active- : P psrare 
oD&!, o! : Psignd 
active(displuy-lo) 
time E i? u (o! nfD&) 
z=9 
z’ = 0 
oD&! = {low} 

-6% 
Lo 
L.0’ 
i? : PSignal 
active- : P fistate 
oD&!, o! : P signal 
active(display-lo) 
time E i? u (o! nfD.b) 
z<9 
z’=z+1 
oD&,! = {} 

Again we can see how the commands are translated quite 
directly into Z from the chart. 

Once we have this translation we can again investigate it. 
An example property that we’d like to ensure holds in this 
system is that the values of the local variables X, Y and Z 
are never bigger than 9. This can be tested by proving the 
predicate: 

Vb : Step l b.X 5 9 A b.Y 5 9 A b.Z < 9 3 
b.X’ 5 9 A b.Y’ < 9 A b.Z’ 5 9 

b here is a binding (a record-like structure which contains 
each label of the indicated schema Step and associates each 
label with a value of the appropriate type) whose compo- 
nent values are accessed by the ‘dot’ mechanism. So, b.X 
accesses the value associated with the Step label X, and so 
on for the other labels. 

The predicate is an invariant which says that, whatever 
the current state, if the values are currently in range then 
they will be in the next state too. Since the initial state 
clearly has the variables in range, this together with the in- 
variant gives us the result we want. 

5 Conclusions 

We have shown how p-charts can be used to give a clear 
and intuitively attractive way to specify reactive systems. 
By interpreting the charts in an established language like Z, 
which enjoys established support tools like z/EVES, we are 
thus able to investigate the systems we specify, and reason 
about their properties. We also showed how suggested ex- 
tensions to p-charts (commands, local variables and integer- 
valued signals) can be used and, in turn, translated into Z, 
so extending our experimental and investigative power. In- 
deed our example in Figure 3 shows how we can bring the 
very important problem of specifying interactive systems 
into our grasp, and this area is likely to form one of our 
main focuses in the future. 

Acknowledgments 

We would like to thank: the referees for their comments; 
our colleagues on the ISuRF project [2]; the New Zealand 
government’s Foundation for Research, Science and Tech- 
nology (FRST) for a grant which funds this work. 

References 
[l] D. Harel. Statecharts: A visual formalism for complex sys- 

tems. Science of Compuring, pages 231-274, 1987. 

[2] www.cs.waikato.ac.nz/Research/fm/isurf.html. 

[3] www.ora.on.ca. 

[4] J. Philipps and P. Scholz. Compositional specification of 
embedded systems with statecharts. In M. Bidoit and 
M. Dauchet, editors, TAPSOFT ‘97: Theory and Practice of 
Sofhvare Development, number 1214 in LNCS, pages 637- 
651. Springer-Verlag, 1997. 

[5] Greg Reeve and Steve Reeves. P-Charts and Z: Extending the 
translation. Technical Report 00/l 1, Department of Computer 
Science, University of Waikato, 2000. 

[6] Greg Reeve and Steve Reeves. P-Charts and Z: Hows, whys 
and wherefores. In W. Grieskamp, T. Santen, and B. Stoddart, 
editors, Integrated Formal Methods 2000: Proceedings of the 
2nd. International Workshop on Integrated Formal Methods, 
LNCS 1945. Springer-Verlag, 2000. 

[7] M. Saaltink. The Z/EVES system. In J. Bowen, M. Hinchey, 
and D. Till, editors, Proc. 10th Int. ConJ: on the Z Formal 
Method (ZUM), volume 1212 of Lecture Notes in Computer 
Science, pages 72-88. Springer-Verlag, Berlin, April 1997. 

[S] I? Scholz. Design of Reactive Systems and their Distributed 
Implementation with Statecharts. PhD thesis, Institut fiir 
Informatik, Technische Universitgt Miinchen, August 1998. 
TUM-1982 1. 

[9] Peter Scholz. An extended version of mini-statecharts. Tech- 
nical Report TUM-19628, Technische Univeritlt Mtinchen, 
1996. 

263 

Proceedings of the Seventh Asia-Pacific Software Engineering Conference (APSEC�00) 
1530-1362/00 $10.00 © 2000 IEEE 


