
A Teaching and Support Tool for Building Formal Models of
Graphical User-Interfaces

Steve Reeves
Departmenf of Computer Science

University of Waikafo
HAMILTON

New Zealand
sfever@waikafo.ac.nz

Abstract

In this paper we propose the design of a tool that
will allow the construction of a formal, textual
description of a software system even if it has a
graphical user-intelface as a component. An important
aspect of this design is that it can be used for two
purposes-the teaching of first-order logic and the
formal specification of graphical user-interfaces. The
design has been suggested by considering a system that
has already been very successful for teaching first-order
logic, namely Tarski’s World.

Introduction

There are now many, well-documented uses of
formal specification in the program development
process-Diller [l]; Dromey [2]; Gries [3] are a few of
the many texts in this area-that show that not only is
formal specification of software desirable (and in many
cases necessary, especially in the safety-critical field),
for all the well-rehearsed reasons (efficiency of
construction, demonstration of correctness and ease of
maintenance), but it puts the design, construction and
use of software on a basis that truly allows us to speak
of software engineering as a discipline that is as
principled, successful and well-founded as other branches
of engineering such as civil and mechanical.

However, there is one area of great importance
within software engineering that is particularly
problematical. It is where the graphical meets the
textual. Currently, the methods of formal specification
which are used for describing the function of software
(what it does, not how it does it) are textual and give us
a basis for reasoning about the function of the software.
When we describe the graphical user-interface part of
some software system we currently have a problem,
though. Although we can describe the interaction (via
dialogues, say) in a way similar to the way in which we
can describe the other parts of the system, we cannot
similarly describe the way the system looks, i.e. we

98
O-8186-7379-6/96 $05.00 0 1996 IEEE

cannot say what it displays at each stage during a
dialogue, at the same level of abstraction and formality.

We can, of course, say how it displays what it
displays by providing the code to do it. We could draw
pictures of what it displays, or describe what it displays
in English, say. These are not, however, ways of
describing what the display looks like which are at the
same level of abstraction and formalization as the ways
we have of describing the function of the software.
Formally, the displays are second-class citizens.

Putting this another way, since we are talking about
stages prior to implementation here, we do not want to
have to describe the look of our systems by using any
programming or other such low-level notation, since
that says how the look of a display comes about, not
what the look is. However, we do want the description
of what the system looks like to be formal, since later
we want to reason about it and, in particular, to prove
that the implementation of the system really does look
like what the designers and specifiers said it should look
like.

Put simply, we have the problem of formally
describing in words and symbols, i.e. textually, what
something looks like.

This work is motivated by what appears to be a gap
in current work on the use of formalization in
interfaces. There has been much good work done in this
area in recent years and particularly appealing is the
work described in, for example, Harrison and Thimbleby
141'

However, though most parts of a system might be
formally described, the display, i.e. what the screen
shows, never seems to be (apart from at the level of
implementation, but we have already said that is not
what we want when doing specifications). A good
example of this is the very well-presented paper by
Harrison and Dix [5] where the set ‘D’ is used within
discussion of formal specifications for interactions,
where D is the set of displays. Algebraic properties of
D are discussed in various parts of the paper, but the
elements of D themselves are never discussed, though
we are told that a display, i.e. an element of D, is “a

Proceedings of the 1996 International Conference on Software Engineering: Education and Practice (SE: E&P '96)
0-8186-7379-6/96 $10.00 © 1996 IEEE

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Research Commons@Waikato

https://core.ac.uk/display/29194665?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

visual representation of some or all of the state...and
might be, for example, an array of pixels (the details are
not important)“. This is very definitely relegating
displays to a lower-level, and we have no hope of
reasoning about them.

Another paper in the same collection, Alexander [6],
goes some way towards overcoming the problem by
allowing a designer to see how the interaction of a
dialogue causes changes in a display, but iit still leaves
open the problem that what the display looks like
cannot be reasoned about within the specification. A
point from Lieberman, that it is difficult for designers
to visualize a dialogue from a static description, is used
in Alexander [6]; we would paraphrase this by saying
that it is also difficult for a designer to visualize a
display from a low-level description.

All this work is really focussed on forma.lly
describing dialogues, not with describing what each
stage of a dialogue looks like, which must surely be
important for the designer.

Such a gap in otherwise useful work .is something
that we hope to suggest a plug for in the rest of this
paper. We aim to show one way that might help to
bridge the current gap between the textual nature of
designs and formal specifications and tlhe graphical
nature of the look of a system. The way we suggest
looks, at first, very surprising. We consider a piece of
software, Tarski’s World, that has been developed over
several years with the aim (which it achieves very
well-see Goldson, Reeves and Bornat [7] for a
discussion) of supporting the teaching of formal logic
to undergraduates (and senior school and college
students).

This might seem to be far removed from the
problem being addressed so in order to be clear this
software will be illustrated in the next section.

Before we go on to that we need to explore the other
reason for proposing this system, which is that it can
be seen as a more computer science-oriented version of
Tarski’s World.

Rather than, as we shall see in the next section,
using an application-neutral world of geometrically
shaped blocks (cubes, dodecahedra and tetrahedral, we
propose that computer science students would be more
motivated by working in a world of graphical user-
interface components. They would build pictures of
graphical user-interfaces and then construct first-order
logic descriptions of those pictures. So, rather than
describing and reasoning about the blocks they would
deal with buttons, menu items and windows, for
example.

Tarski’s World has proved to be very successful as a
vehicle for teaching logic to first-year computer science
undergraduate students-we would hope that making the

world more relevant to computer science, and so
providiqg more motivation, would mean that this tool
was even more successful as a teaching tool for first-
order logic.

Having looked at Tarski’s World, as it stands, in the
next section, in the third we will look at how some of
the ideas behind the software described in section two
can help with our problem of providing formal, textual
descriptions of the look of systems.

Tarski.‘s World

Tarslki’s Wiorld, described in Barwise and
Etchemendy [8], was developed to support the teaching
of (classical, first-order) logic. Some descriptions of
other syistems with the same aims, as well as Tarski’s
World, are given in Goldson and Reeves [9]; suffice to
say that ‘Tarski’s World was one of the best. The author
has had the pleasant experience of using it for teaching
first-year undergraduates in computer science for a
number of years. It is a robust, well-designed system
and achieves its aims very well.

One of the points of this paper is to suggest an
improvement tlhat wou1.d make the program more
relevant to computer science while, of course, retaining
all of the other features which make it so successful.
As far a:s understanding Tarski’s World and the rest of
this paper is concerned, the important point to note is
that the objects and relationships that exist in a certain
picture, called a situation, are described by a set of
sentences, called the descriution. The situation gives a
meaning, to each of the sentences in the description, so
another way of thinking of the relationship between the
situation and the description is to consider the situation
as giving an &erDreta& of the sentences in the
description.

Consider the situation, ‘worldl’, and associated
description, ‘sents I’, in figure 1. Here each of the
sentences in tlne description is true in the given
situation. So, the description correctly describes the
situation.. At a certain level of precision we have reduced
the graphical informatiorn in the situation to the formal,
textual information in the description.

The phrase ‘at a certain level’ must occur in the
previous sentence since other, different, descriptions
may be given for the sarne situation; figure 2 gives an
example: where :a11 the sentences are true in the situation
in figure 1 too (note that the symbol ‘A’ means ‘and’).
So, there can be more than one description for some
situations. However, descriptions do enjoy the property
of being consistent: that is, all the sentences in any set
of descriptions Iof some situation will all be true in that
situation. No two descriptions of a situation can
contradict one another and a bigger, more complete,

99

Proceedings of the 1996 International Conference on Software Engineering: Education and Practice (SE: E&P '96)
0-8186-7379-6/96 $10.00 © 1996 IEEE

1. ptCa1 Sentence 1 53
__ __ _. ___ ,_ ._ .___ _._ ,_ _____ .___. ., ., . . ._ __ ., Yes No

2. Large(a)

It

WFF? 0 Cl
51ef ‘r i”; i”!

3. Cube(d)

4. Medium(d)
__ ._ _. _. __ ._ ._ _. __ __. _. _.. __. ._ ._ __ ._ __. _ .__ ___ ___ __ . ,.
5. FrontOfCd, a)

Figure 1. The Tarski’s World windows.

E-i
1. -iDodec(a)

sents 2

2. ISmaller(d, a) WFF? IXI 0 -.’
Sent? tB 0 4 __ __

3. BackOf(a,d) h Cube(d)

Figure 2. Another version of the sentences window.

100

Proceedings of the 1996 International Conference on Software Engineering: Education and Practice (SE: E&P '96)
0-8186-7379-6/96 $10.00 © 1996 IEEE

1. (3x (Tet(x) A Large(x))
..___.______________....~..,...

2. 3x 3y (Largerh, y) A ~Largehl)
__._.._,,._...._._....,...,..,..,...,.. .

3. ~VX (Smalllx) V Medium(x))
___,_.___..._.._____.,... “.

4. Vx Vy (IDodec(x) ,A Dodecly)) + x q y)
.,...,__..___..___....,..,..,...,.....,....................,.......,.. .

5. lVy (Cube(y) + Small(y))
_. ,..,..._____________....,...,...,..... ,. .__. .____.____.............,... ,_____.___.._____................... .

6. Qx (Large(x) H Tet(xII
,_.._____.___.._____.......,,..,,...,................................,.,...,...........................,...~................

7. Vx Qy ILarger(x, y) + BackOfhr, y))
.,_,____.____.____... “. . .

8. 3x ly (Cube(x) A l-et(y) A LeftOf(X, y) A
Smaller-lx, y))

,,_..,.,,..,,..._.._......,...,.,..,,.............,.. _...__._._._..._..._,.. .
9. 3x 3y ~~SmallIx~ A Large(y) A

Qz (Betwef?n(z, x, y) -9 Cube(z))))
_..__._..,,._____.__..................,.....,,,..

lo. Qx (Small(x) H B’y (y z x 3 LeftOfcx, ~4))

Figure 3.Ockham’s sentences.

Figure 4. A solution situation for 0ckham”s sentences.

description can always be made by collecting together
all the sentences in a set of descriptions of some
situation.

Also, we often find that one description A is
stronger than another B, which means that description A
contains all the sentences that description B does, plus
some more. The general case is where description A
entails description B, which means that the sentences in
description B follow logically from those in A, given
some suitable logical definitions of the relations.

As a final part of this introduction we give a typical
question that rnight be set as part of a laboratory
exercise on a course in logic. The problem is to build a
si.ngle world with as few blocks as possible in which
each of the ten sentences given in the file O&ham’s
Sentences is true.

The sentences and a solution are given in figures 3
and 4.

101

Proceedings of the 1996 International Conference on Software Engineering: Education and Practice (SE: E&P '96)
0-8186-7379-6/96 $10.00 © 1996 IEEE

Modelling a graphical user-interface

The main idea taken from Tarski’s World is that of
describing, textually, a situation that is given
graphically and doing this within a system that checks
that what you have said is true and, if it is not, can
guide you (by playing ‘the game’, whose rules encode
the meaning of the quantifiers and connectives and
which guides the user through the syntactic structure of
a sentence until, at the atomic level, it is obvious why
the sentence is not true in the given situation) to an
explanation of why that sentence is not true.

The proposed system will allow a designer to
experiment with the look of a display and then go on to
develop a formal description of it. The system can be
used to check at each stage that the description really is
describing the display constructed by allowing the
designer to check that all of the description’s sentences
are true.

In the end, the designer can be certain that the
description of the display, in first-order logic, that they
write is correct.

Allowing experimentation with the look and
description of a display are an important part of this use
of such a system - the fact that such an open-ended,
relatively unconstrained exploration can result in a
formal description (to some level of precision) is the
main goal of this work.

Later in the process of building the interface in
software, the existence of this situation and description
will allow the software engineer to strengthen the
specification if necessary. This might arise if the
software engineer is not able to prove that a certain
piece of code works correctly from their current
specifications, but can for stronger ones, and they can
go back to the situation and description and use the
system to show that adding sentences to the description,
to get a stronger one, still results in all the sentences
being true, so that the stronger description can be used
to further the specification process.

It also allows us to go the other way: given a
textual description, within the system you can build up,
checking correctness all along, a graphical
representation of the sentences. This would be an
approach used when, for example, animating a
specification for a user or client who need not
understand the formal language used.

This is also the point at which it becomes clear that
the system could be used to support the teaching of
logic. The system could be used just as Tarski’s World
is, except that the world contains not just simple solids
but graphical user-interface elements.

Instead of the objects present in Tarski’s World we
would have windows, menus and buttons of various
sizes and with various attributes. Their relative
positions would be modelled just as in Tarski’s World,
as would, say, the text written on them, the procedures
or methods that were connected to etc.

Given below is an example of how such a
description building enterprise might look. Figure 5 is
the menu that we want to specify. In an analogy with
Tarski’s World, we can imagine the menu expressed in
its component parts as in figure 6. By viewing the
situation in figure 6 from the front we see the menu as
required in figure 5.

We can then go on to build a description of the
situation in figure 6, as given in figure 7. Notice that,
as we want with specifications, the description is an
abstract form of the menu in the sense that some things
are left out; we do not need to give all of the detail (like
exact positions) of the menu in order to usefully specify
it. Later, of course, during the refinement process (the
process that takes us from a specification to an
implementation) a programmer will have to be specific
about such things. However, the point of specifying is
that we can leave out any unnecessary detail, i.e.
perform abstraction, in order see clearly what is being
asked for. In particular, we do not have to say how the
menu is drawn, just what is drawn.

At each stage of building the description the system
can be used, just as in Tarski’s World, to make sure that
the sentences added to the description are all true in the
situation being described. If it ever turns out that this is
not the case, then the game can be played to find out
why.

In this way, the user can build-up as strong a
description as they like for passing on, as a formal
specification, to the software engineer. Later, the
software engineer can strengthen the description, if
necessary, since they will still have the situation being
modelled. They can also take a description and, by
building a situation which makes all the sentences in
the description true, show a client what the specified
graphical user-interface will look like.

As a second example, given the sentences (with
approximate translations) in figure 8, considered as a
specification, we might design a dialogue box that
meets them as shown in figure 9. This would be the
usual way, following the model of the Tarski’s World
exercises, that the tool would be used for teaching.

If it were being used to support formalization of a
display then the opposite would happen. The designer
would, in this example, construct a picture of the
dialogue box and then start to write sentences, checking
their truth as they went, and gradually build-up a correct

102

Proceedings of the 1996 International Conference on Software Engineering: Education and Practice (SE: E&P '96)
0-8186-7379-6/96 $10.00 © 1996 IEEE

Figure 5. A typical menu.

Figure 6. The components of a typical menu.

--

1. FrontOf(b,a) A Text(b, "Delete...")

2. Above(c,b) A Text(c, "Close...")

3. Above(d,c) A Text(d, "New...")

4. Above(e,d) A Text(e, "Open...")

5. Above(f,e) A Text(f, "Files...") h Dark(f)

Figure 7. The first-order logic description of the components of a typical menu.

description at whatever level of abstraction they thought
appropriate for the problem in hand.

In the simple examples here we have confined
ourselves to simple relations between objects in a
situation (FrontOf, Text); clearly we will wish to have
available other relations, such as those that for a button,
say, describing not just its physical attributes but the
way it is linked with the program being built.

What we have here, then, is a way of formally and
textually, describing the look of a display at certain

points during the dialogue, or other interaction, with a
user. This is done at the same level of abstraction as we
would usually want to work when specifying systems.
The fact that it is textual allows us to use the sorts of
methods discussed in section one. The fact that it is
formal allows us to reason (either within or outside the
sorts of systems mentioned in section one) about the
look of the displ.ay. The display is now, formally, a
f&t-class citizen.

103

Proceedings of the 1996 International Conference on Software Engineering: Education and Practice (SE: E&P '96)
0-8186-7379-6/96 $10.00 © 1996 IEEE

3X3y(Button(x) A Button(y) A x#y)

?!x(Text(x, "Input the name of the file"))

There are atleast two buttons

There is a text box containing
“Input the name of the file”

3xEditBox(x) There is an edit box

vxb'y((EditBox(x) A jzText(y,z)) + Above(y,x)) The text is above the edit box

vxvy((Button(x) A -Button(y)) - Above(y,x)) The buttons are at the bottom

gx(Button(x) A Text(x,"OK")) There is a button with “OK” on it

gx(Button(x) A Text(x,"Cancel")) There is a button with “Cancel” on it

Figure 8. A first-order logic description of a dialogue box.

Input the name of the file

Figure 9. The box described in figure 8.

Conclusions

We have proposed a way of helping a designer build-
up a formal, textual description of a display.

The argument that this really b a help is based on
the fact that the design for the system has grown out of
experience with Tarski’s World, which has been
designed and used for teaching first-order logic to
students-a job which it does exceptionally well. All of
its qualities will be expressed in the proposed system
too.

We have also suggested that it can be used as a
support for teaching logic which is more relevant to
computer science because its ‘subject matter’ will be
graphical user-interface components.

The next step is to implement a prototype of a
system which performs this function in much the same
way as Tarski’s World does for designers of blocks
worlds. This would allow us to build and experiment

with, in a natural way, formal descriptions of displays
for graphical user-interfaces.

Following our experience with tool building
previously, we will be using the MacProlog32
environment (MacProlog32 is a trademark of Logic
Programming Associates, Studio 4, Royal Victoria
Patriotic Building, Trinity Road, LONDON, SW18
3SX, England) on a Macintosh to construct the tool
described in this paper. It should be noted that this
environment already has a facility which allows the user
to construct a display and then automatically produces
the code that represents that display. So, with the
addition of the tool described in this paper we will be
able to generate both the low-level, code description of a
display and also (utilizing the designer’s intelligence)
the high-level, abstract description too.

Finally, in order to check the truth of a sentence in
some situation the tool will, of course, have to be able
to do some theorem-proving. More precisely, the tool

104

Proceedings of the 1996 International Conference on Software Engineering: Education and Practice (SE: E&P '96)
0-8186-7379-6/96 $10.00 © 1996 IEEE

will gradually construct (as elements are added to the
display) an atomic description (a description using just
atomic sentences) of the display, i.e. a theory, T. Then,
for each sentence s in the designer’s description the tool
will have to show that T C s, i.e. that s is true in the
theory T. The technology for the underlying theorem-
prover is not too important-due to our previous
experience we have chosen to use a semantic tableau-
based method (Reeves and Clarke, 1990).

A final remark: because of the way in which many
curricula are designed, which in itself is a reflection of
the way in which the designers were taught, the
‘specialisms’ of user-interface design on the one hand
and formal methods on the other do not often both
feature amongst the skills of our students (or teachers).
The tool described in this paper, we believe, will help
to bridge this gap.

To have user-interface designers who appreciate the
usefulness, precision and conciseness of formal
descriptions and to have formal software engineers who
have an appreciation of the requirements of users in
their interactions with computers is surely a goal of
those of us who educate tomorrow’s computer
scientists.

References

[l] Diller, A. Z An Introduction to Formal Methods.
Wiley. 2nd. edition, 1994.

[2] Dromey, G. Program Derivation iShe Development
of Programs from Specifications. Addison-Wesley,
1989.

[3] Gries, D. The Science of Programming. Springer-
Verlag, 198 1.

[4,] Harrison, M. and Thimbleby H. (editors). Formal
Methods in Human-Computer Interaction.
Cambridge University Press, 1990.

[5] Harrison, M., Dix A. A State Model of Direct
manipulation in Interactive Systems. In Formal
Methods in Human-Computer Interaction, edited by
M. Harrison and H. Thimbleby, Cambridge
University Press, 1990, [4].

[6] Alex,ander, H. Structuring Dialogues using CSP. In
Formal Methods in Human-Computer Interaction,
edited by M. Harrison and H. Thimbleby,
Cambridge University Press, 1990, [4].

[7] Goldson, D., IReeves, S. and Bornat, R. A Review
of several systems for the Support of Logics. The
Computer Journal, volume 36, number 4, 1993.

[8] Barwise, J. and Etchemendy, J. The Language of
First..Order Logic. Center for the Study of Language
and Information, 199 1.

[9] Goldson, D. and Reeves, S. Review of “The
Language of First-order Logic” by Barwise and
Etchemendy. The Philosophical Quarterly,
Blackwells, Ox.ford, April 1994.

[lo] Reeves, S. and Clarke, M. Logic for Computer
Science, Addison-Wesley, 1990.

105

Proceedings of the 1996 International Conference on Software Engineering: Education and Practice (SE: E&P '96)
0-8186-7379-6/96 $10.00 © 1996 IEEE

