
Formal Aspects of Computing (1999) 11: 359–380
c© 1999 BCS Formal Aspects

of Computing

Revising Z: Part I – logic and semantics

Martin C. Henson1 and Steve Reeves2

1Department of Computer Science, University of Essex, UK;
2Department of Computer Science, University of Waikato, New Zealand

Keywords: Specification language Z; Logics of specification languages; semantics
of specification languages

Abstract. This is the first of two related papers. We introduce a simple specifica-
tion logic ZC comprising a logic and a semantics (in ZF set theory) within which
the logic is sound. We then provide an interpretation for (a rational reconstruction
of) the specification language Z within ZC . As a result we obtain a sound logic
for Z, including a basic schema calculus.

1. Introduction

1.1. Background

The specification language Z has been in existence, and has been very widely
used, for more than a decade. There is, however, no definitive logical account
of Z, although progress has been made (e.g. [WB92], [Bri95]1, [Nic95], [HM97],
[Toy97], [BM96], [WD96], [Mar98]). These attempts to provide Z with a logic
are not accompanied by meta-mathematical results such as a soundness proof;
indeed, the logic in [Nic95] (and [BM96]) is inconsistent (see [Hen98] and note
that [Mar98] repairs the error).

Our aim in this paper is to establish a logic for a version of Z, the devel-
opment and nature of which has been guided by our associated mathematical
investigations. This means that we have felt it necessary to allow the mathemat-
ical investigation to form, in part, a critique of the language Z as it is generally

Correspondence and offprint requests to: Martin Henson, Department of Computer Science, University
of Essex, Wivenhoe Park, Colchester, Essex, C04 3SQ, UK
1 This has now been superseded by a new thesis which is currently in the process of being examined.
It contains a logic and is accompanied by a mathematical analysis. Brien’s work is complementary to
ours and will provide an opportunity for a fruitful comparative investigations in the future.

CORE Metadata, citation and similar papers at core.ac.uk

Provided by Research Commons@Waikato

https://core.ac.uk/display/29194659?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

360 M. C. Henson and S. Reeves

understood. The critique, and the revisionism which accompanies it, emerges most
explicitly in the companion paper [HeR99]. Our own view is that developing a
logic for Z long after establishing its language will inevitably suggest certain areas
in which the language is best adjusted. Doubtless others may disagree, at least
with the particular revisions we propose but, for our part, we have our mathe-
matical analysis to resort to in substantiating claims of conceptual simplicity and
elegance, and for defending our neologisms.

We do not offer this work as a final, nor even a definitive, account but we
do feel that what follows establishes a methodologically sound trajectory for
further work and fruitful comparison. Our work should, therefore, be considered
as complementary to, rather than as a competitor of, the work which continues
on the Z standard (which is, in part, working towards completing a logic for
standard Z) and it will be very interesting to compare that with the approach we
have taken here.

In discussing a logic for Z, it is also necessary to mention the related topic
of semantics. Z semantics has, since [Spi88], been in a more well-developed
state than the logic. This work has been substantially revised and updated by
those responsible for the relevant sections of [Nic95]. It is quite possible that the
semantic perspective has been given conceptual priority by those most concerned
with these matters during the last decade. Although we would wish to argue
strongly against such a priority, this will not be our major concern here, and
it is only our surmise that that has been, in fact, the case. However, we would
wish the reader to bear the following in mind in reading the paper: by giving
the logic conceptual priority we are able to enormously simplify the semantics
for Z. The most important consequence of this simplicity is that we will be able
to provide a soundness proof for our logic (corollaries 5.3 and 5.5 below) with
a very simple and straightforward proof. This observation should be contrasted
with the situation in, for example, [Nic95] where there is no soundness proof, and
the prospect that it would be enormously complicated to construct.

We have not, so far, mentioned proof-tools, but as [Mar97] has accurately
diagnosed, the existence of a logic for Z should be considered a precondition for
the proper development of proof-tools for Z, and is, therefore, a separate, though
related, research area. It is, of course, a very important area and [Mar97] provides
a comprehensive review of existing work to date, the most notable of which is
perhaps the shallow semantic embedding of [KSW96].

1.2. Organisation of the paper

In Section 2 we introduce a specification system ZC which is essentially a typed set
theory incorporating the notion of a schema type. This system is, when compared
with Z in its notational scope, very simple indeed. ZC is much more than a
notation: it is a specification logic and the language is associated with both
rules for determining the types of terms, rules for determining that propositions
are well-formed, and rules of inference. The meta-mathematical measure we
investigate is the property of syntactic consistency: we show that all provably
true (proto-)propositions are well-formed. ZC forms an effective bridge between
Z proper and the intended model in classical extensional set theory. In Section
3 we show how ZC may be interpreted quite simply in ZF using, in particular,
a suitable dependent product operation over a family of sets over a very small

Revising Z: Part I – logic and semantics 361

(in ordinal terms) universe of sets. The interpretation is shown to be suitable by
means of soundness results of a standard and, in this case, very simple kind.

In Section 4 we introduce a notation which is very much closer to the Z familiar
in the literature. We include more substantial mechanisms for the construction of
propositions, sets and, in particular, a basic algebra of schema operations. This
notation is also equipped with a system of rules for type assignment for terms and
propositionhood, together with a logic. As before, we can show that this system
is syntactically consistent with respect to type assignment and propositionhood.
In Section 5 we are able to describe an interpretation for this Z within the much
simpler system ZC . The interpretation has several significant features. We are able
to test our interpretation by showing that it preserves the type assignment and
propositionhood systems of both Z and ZC . Finally we are able to demonstrate
that the interpretation of Z in ZC is sound: it preserves entailment. By composing
results we complete the paper with a soundness theorem for Z in the intended
model ZF.

The system we develop here is still a somewhat impoverished version of Z,
and the companion paper [HeR99] contains extensions to the full system as we
have developed it.

2. The specification logic ZC

In this section we shall describe a simple specification logic which we call ZC .
It is based upon the notion of schema type which has been introduced in Z.
Our strategy will be to interpret higher-level features of Z within this logic. The
idea of interpreting the language of Z within a small core language is not new.
The approach is novel in presenting a core specification logic and undertaking a
systematic mathematical analysis.

2.1. The language of ZC

We begin with types.

T ::= N | PT | T × T | [D]

Schema types [D] are explicitly part of the type system. We take N rather than Z
to be the primitive type of ZC . This is a more natural choice from a logical point
of view and we may impose conventional rules for N from which other derived
number systems, such as Z, may be obtained.

Declarations are very simple.

D ::= l : T | l : T ; D

Declarations of the form l : T are called prime declarations. The labels l are
constants. Prime declarations l0 : T0 and l1 : T1 are compatible unless l0 = l1 and
T0 6= T1. This idea extends naturally to schema types. We shall write [D0] � [D1]
when the set of prime declarations of D0 is a subset of that of D1. Other
meta-operations we shall need over (compatible) schema types: [D0] \ [D1] is the
schema type comprising all prime declarations of [D0] which do not occur in
[D1]. The schema type [D0]∨ [D1] is the schema type comprising the union of the
prime declarations in D0 and D1. As a matter of convention, which simplifies the

362 M. C. Henson and S. Reeves

presentation, we take the ground instances of meta-syntactic expressions to be
all and only those for which the relevant meta-operations are well-defined. This
avoids laborious notation and extra sideconditions. For example writing T0 ∨ T1

forces T0 and T1, in the context in which the expression appears, to be compatible
schema types.

We also need the usual notion of substituting for a variable with a term. We
denote the operation of substitution by t1[x/t0] (in the meta-language) which
means that all free occurrences of x are replaced by t0 in t1. This is extended in
the usual way to allow simultaneous substitution of several variables.

Finally, we shall introduce meta-notational conventions which require substi-
tution for labels. For this we need the alphabet operator, defined as follows: Let
[D] = [· · · li : Ti · · ·]. Then α[D] =df {· · · li · · ·} and we shall write [α[D]/t .α[D]]
to represent the family of substitutions: · · · [li/t .li] · · ·

The formulae of ZC delineate a typed predicate logic. We begin with the cat-
egory which forms the basis for the language of well-typed formulae we require.

The proto-syntax of formulae is given by:

P ::= ⊥ | t = t | t ∈ t | ¬P | P ∨ P | ∃ z : T • P

The logic of ZC is classical and so the remaining logical connectives and the
universal quantifier can be defined in terms of the above in the usual manner.

The proto-syntax of terms is as follows:

t ::= x | n | {z : T | P} | t .l | 〈| · · · l V t · · · |〉 | t .1 | t .2

| (t , t) | t � [D]

The last term formation operator is new and has no history in Z. We pronounce
the symbol � “filter” and its purpose is to permit the restriction of bindings to a
given schema type. We shall see, in Section 5, how important these filtered terms
are for constructing compositional interpretations for schema expressions. Our
choice of notation indicates that there is an intimate relationship between filtered
terms and restricted schemas; this is made clear in section 2.5 of [HeR99].

The subcategory of numerals is as expected:

n ::= 0 | succ n

For notational clarity we will use, in the sequel, the meta-variable C to range
over set-terms. That is, terms which, under the well-formation system we now
turn to, have the type PT for some T .

2.2. Type assignment and propositionhood in ZC

Definition 2.1. Sequents of the system have the form: Γ .C J where J is a
judgement that a term has a type or that a proto-formula is a proposition. We
will omit the subscript on the entailment symbol, whenever the context allows,
in this system and in all the other systems which follow. Γ is a type assignment
context for variables. Such contexts are understood to be partial functions from
variables to types. They are extended as follows:

Γ, x : T =df λy .

{
T x = y
Γ(y) otherwise

Revising Z: Part I – logic and semantics 363

For clarity of presentation we shall omit the entailment symbol and all compo-
nents of contexts which are irrelevant to, or which remain unchanged by, any
rule.

⊥ prop
(C⊥)

t0 : T t1 : T
t0 = t1 prop

(C=)
t : T C : PT

t ∈ C prop
(C∈)

P prop

¬P prop
(C¬)

P0 prop P1 prop

P0 ∨ P1 prop
(C∨)

x : T . P prop

∃ x : T • P prop
(C∃)

x : T . x : T
(Cx)

0 : N
(C)

n : N
succ n : N

(Cs)

x : T . P prop

{x : T | P} : PT
(C{})

t : [· · · li : Ti · · ·]
t .li : Ti

(C.)

· · · ti : Ti · · ·
〈| · · · li V ti · · · |〉 : [· · · li : Ti · · ·] (CV)

t : T1 × T2

t .1 : T1
(C)

t : T1 × T2

t .2 : T2
(C)

t0 : T0 t1 : T1

(t0, t1) : T0 × T1
(C())

t : T1 T0 � T1

t � T0 : T0

(C�)

Lemma 2.2. (The generation lemma for ZC).

(i) If Γ . P0 ∨ P1 prop then Γ . P0 prop and Γ . P1 prop

(ii) If Γ . {x : T | P} : T0 then Γ, x : T . P prop and T0 = PT

Proof. (i) There is only one rule with a conclusion of the form Γ . P0 ∨ P1 prop,
namely: (C∨). (ii) Similarly.

These are two cases of a general result known as the generation lemma. There
are many similar cases for all other conclusion forms and these are all proved in
exactly the same manner.

2.3. Some consequences of typechecking

Before we move on to discuss the logic of ZC there are number of auxiliary
results which concern the rules for proposition formation and type assignment
introduced in definition 2.1.

Lemma 2.3.

(i) If x does not appear free in P , and x : T . P prop then P prop

(ii) If x does not appear free in t , and x : T0 . t : T1 then t : T1

(iii) If t : T1 and x does not appear free in t then x : T0 . t : T1

(iv) If P prop and x does not appear free in P then x : T . P prop

Typing of terms is unique in ZC .

Lemma 2.4. If t : T0 and t : T1 then T0 = T1

Proof. By the generation lemma (lemma 2.2). q

364 M. C. Henson and S. Reeves

Lemma 2.5.

(i) If P [z/t] prop and t : T then z : T . P prop

(ii) If z : T . P prop and t : T then P [z/t] prop

(iii) If t1[z/t0] : T1 and t0 : T0 then z : T0 . t1 : T1

(iv) If z : T0 . t1 : T1 and t0 : T0 then t1[z/t0] : T1

Proof. The pairs (i) and (iii); (ii) and (iv) are each proved by simultaneous
induction on the structure of the relevant derivations.

2.4. The logic of ZC

The proto-judgements of the logic have the form:

Γ `C P

where a proto-context Γ has the form Γ−; Γ+. Γ− is a type assignment context (a
context for the type system) and Γ+ is a set of formulae. These are well-formed
according to the following rules.

Γ− context

Γ− . P prop Γ context

Γ−; P ,Γ+ context

Proofs introduce new putative contexts, propositions and terms and the rules
must be guarded in some cases by type judgements to ensure they remain
type consistent. We shall establish that these conditions of well-formedness are
maintained by the rules below (proposition 2.9). For notational simplicity we
shall, in the sequel, often write tT for a term t such that t : T in the context in
which it appears. For example, Γ ` P (tT) implies that, additionally, Γ− . t : T .

Definition 2.6.

t0 ≡ t1 =df ∀ z ∈ t0 • z ∈ t1 ∧ ∀ z ∈ t1 • z ∈ t0

Definition 2.7. (Logic of ZC). As before, we omit all data which remain un-
changed by a rule.

Γ ` P0 Γ− . P1 prop

Γ ` P0 ∨ P1
(∨+

)
Γ ` P1 Γ− . P0 prop

Γ ` P0 ∨ P1
(∨+

)

P0 ∨ P1 P0 ` P2 P1 ` P2

P2
(∨−)

Γ,P ` ⊥ Γ− . P prop

Γ ` ¬P
(¬+)

¬¬P
P

(¬−)
P ¬P
⊥ (⊥+)

Γ ` ⊥ Γ− . P prop

Γ ` P
(⊥−)

Γ ` P [z/t] Γ− . t : T

Γ ` ∃ z : T • P
(∃+)

∃ z : T • P0 y : T ; P0[z/y] ` P1

P1
(∃−), for fresh y

Revising Z: Part I – logic and semantics 365

Γ,P context

Γ,P ` P
(ass) Γ− . t : T

Γ ` t = t
(ref)

Γ− . 〈| · · · li V ti · · · |〉 : T

Γ ` 〈| · · · li V ti · · · |〉.li = ti

(V=
)

Γ− . t : [· · · li : Ti · · ·]
Γ ` 〈| · · · li V t .li · · · |〉 = t

(V=
)

Γ− . (t1, t2) : T

Γ ` (t1, t2).1 = t1
(()=

)
Γ− . (t1, t2) : T

Γ ` (t1, t2).2 = t2
(()=

)
Γ− ` t : T1 × T2

Γ ` (t .1, t .2) = t
(()=

)

t0 = t1 P [z/t0]

P [z/t1]
(sub)

P [n/0] n : N; P ` P [n/succ n]

n : N ` P
(N−)

, for fresh n

Γ ` P [z/t] Γ− . t : T

Γ ` t ∈ {z : T | P} ({}+)
t ∈ {z : T | P}

P [z/t]
({}−)

t0 ≡ t1

t0 = t1
(ext)

Γ ` t .li = ti Γ− . t : T [· · · li : Ti · · ·] � T

Γ ` (t � [· · · li : Ti · · ·]).li = ti
(�=)

Since contexts are sets we do not require structural rules. The following weakening
rule is clearly admissible and may be usefully added:

Γ0 ` P Γ−0 ,Γ−1 ; Γ+
0 ,Γ

+
1 context

Γ−0 ,Γ−1 ; Γ+
0 ,Γ

+
1 ` P

2.5. Consequences of the logic for ZC

There should also be a number of equality congruence rules for the terms of
ZC . These are not included in the system because they are all easily derivable;
essentially because we have the rule (sub). The following are derived rules of ZC :

t1 = t0

t0 = t1
(sym)

t0 = t1 t1 = t2

t0 = t2
(trans)

t0 = t2 t1 = t3

(t0, t1) = (t2, t3)
(=())

Γ ` t0 = t1 Γ− . t0 : T1 × T2

Γ ` t0.1 = t1.1
(=.)

Γ ` t0 = t1 Γ− . t0 : T1 × T2

Γ ` t0.2 = t1.2
(=.)

· · · t0i = t1i · · ·
〈| · · · li V t0i · · · |〉 = 〈| · · · li V t1i · · · |〉 (=V)

Γ ` t0 = t1 Γ− . t0 : [· · · li : Ti · · ·]
Γ ` t0.li = t1.li

(=.l)

Γ ` t0 = t1 Γ− . t0 : T1 T0 � T1

Γ ` t0 � T0 = t1 � T0

(=�)

We shall need the following definition, which extends filtering from terms to sets.

Definition 2.8. Let T0 � T1. Let z and x be fresh variables.

CPT1 � T0 =df {z : T0 | ∃ x : T1 • x ∈ C ∧ z = x � T0}
Then we have:

C : PT1 T0 � T1

C � T0 : PT0

(CP �)

366 M. C. Henson and S. Reeves

Then we have rules relating filtered terms and filtered sets:

Γ ` t ∈ C Γ− . t : T1 T0 � T1

Γ ` t � T0 ∈ C � T0

(∈+
�)

This follows by rules (C�), ({}+) and (∃+).

Γ ` t ∈ CPT0 � T Γ−, x : T0; Γ+, x ∈ C , t = x � T ` P

Γ ` P
(∈−�)

for fresh x . This follows by rules ({}−) and (∃−).

2.6. Syntactic consistency for ZC

The logic should only enable us to deduce well-formed propositions from well-
formed assumptions. This is the content of the next result.

Proposition 2.9. (Syntactic consistency). If Γ `C P when Γ context then Γ− .C P
prop

Proof. By induction on the structure of the derivation Γ ` P . We give one case
to illustrate. Suppose that Γ context .
Case rule (∃−): we may assume ex hypothesi (first premise) that Γ− . ∃ z : T •
P0 prop since we have Γ context by assumption. From the generation lemma
it follows that Γ−, z : T . P0 prop and this, together with the assumption
that Γ context , is sufficient to show that Γ−, z : T ; Γ+,P0 context . Since we
know that the variable y is not free in P0 we have, by alpha-conversion (in the
meta-language), Γ−, y : T ; Γ+,P0[z/y] context and then, ex hypothesi (second
premise), that Γ−, y : T . P1 prop. But since y is not free in P1 this reduces to to
Γ− . P1 prop by lemma 2.3(i).

The specification logic ZC is essentially a typed set theory in which, in
particular, we have schema types. There are, however, no schemas in ZC and this
may seem rather odd since these are archetypical of Z. In fact, given the schema
types, schemas are just special cases of the comprehensions. Specifically, we may
introduce schemas by meta-notational convention using the following definition:

[D | P] =df {z : [D] | P [α[D]/z .α[D]]}
where z is a fresh variable. Note that this device requires us to allow the meta-
variable P to range over the proto-propositions extended with labels as terms.
The right-hand-side is, of course, (proto-)syntactically valid in ZC . Given this
definition we may provide the following versions of the comprehension rules
using the schema notation:[

Γ ` P [α[D]/t .α[D]] Γ− . t : [D]

Γ ` t ∈ [D | P]

]
t ∈ [D | P]

P [α[D]/t .α[D]]

It is immediate that equality for schemas is also extensional (see definition 2.6).
We shall return to this in far more detail in Section 5.2, where we show how an
algebra of schemas can be represented in ZC .

Revising Z: Part I – logic and semantics 367

We are proposing that ZC be taken as an adequate base theory within which
the much higher-level features of Z can be interpreted. As such it plays an
intermediate role between Z and classical, extensional set theory (which is the
intended model for Z). To show that ZC can play this role we must show that
it can be faithfully interpreted in ZF, and we devote the next section to that
task. Sections 4 and 5 are then devoted to showing that ZC is adequate for the
interpretation of Z.

3. A model of ZC in ZF

In this section we provide an interpretation J KC from the language of ZC

into ZF and present a variety of results. We shall omit the subscript on the
interpretation function unless this is essential. The semantics is extremely simple.
The novelty lies in our interpretation of schema types as dependent products over
a family of sets from a small (in ordinal terms) cumulative universe.

3.1. Types

The language of types ZC is given by a simple context free grammar. Such a
grammar is understood mathematically to be an inductive definition over an
operator which determines a set (the language of the grammar). The closure
ordinal for this induction (the ordinal at which iteration of the operator reaches
a fixpoint) is ω because the operator in question is continuous. In other words,
the non-terminal operators may be applied finitely, but unboundedly, often.
Consequently the type structures which can be described are, from a set-theoretic
perspective, rather trivial. Consider, therefore, the following definition in ZF
which constructs a tiny cumulative hierarchy.

(i) F (0) = N
(ii) F (α+ 1) = F (α) ∪ PF (α)
(iii) F (ω) =

⋃
α<ω F (α)

This function is guaranteed to exist by transfinite induction (in fact only transfinite
induction below ω.2 is required) and we then take F (ω + 1) to be the universe
within which the type system of ZC may be interpreted. This universe is a set.
Let B be an I -indexed family of sets over F (ω). (That is, B ∈ I → F (ω + 1).)
Then we can define a dependent function space which is suitable for our purposes
as follows:

Π(X∈I).B (X) =df {f ∈ I → F (ω) | (∀ i ∈ I)(f (i) ∈ B (i))}
This we can harness to interpret the types of ZC :

(i) JNK =df N
(ii) JT0 × T1K =df JT0KX JT1K
(iii) JPT K =df P JT K
(iv) J[· · · li : Ti · · ·]K =df Π(X∈I).B (X)

where I =df {· · · li · · ·} and B (li) =df JTi K. The labels li can be modelled in ZF in
any number of ways, for example as finite ordinals. The only important point is
that they be distinguishable from one another. We shall write them in ZF as we
do in ZC for simplicity.

368 M. C. Henson and S. Reeves

3.2. Sets, logic and terms

We shall translate the entire proto-syntax of ZC into ZF. We begin with the
formulae.J⊥K =df (∀ x)(¬x = x)Jt0 = t1K =df Jt0K = Jt1KJt0 ∈ t1K =df Jt0K ∈ Jt1KJ¬PK =df ¬ JPKJP0 ∨ P1K =df JP0K ∨ JP1KJ∃ z : T • PK =df (∃ z)(z ∈ JT K ∧ JPK)
There are no special conditions to impose with respect to the judgement of
propositionhood of ZC , since ZF is an untyped language of sets. As a consequence
we may interpret the judgement forms Γ .C P prop to mean that JPK is a well-
formed formula of ZF. Since this is true for any P , the judgement is (semantically)
redundant.

The terms are straightforwardly interpreted. We take the usual definition
of cartesian product in ZF in which ordered pairs are defined by 〈x , y〉 =df{{x}, {x , y}}. Then we make use of the maps fst ∈ A X B → A such that

〈a , b〉 fst7→ a and snd ∈ A X B → B such that 〈a , b〉 snd7→ b.
In what follows let f0 ∈ J[· · · li : Ti · · ·]K and f0(li) = Jti K and f1 ∈ J[D]K and

f1(l) = JtK (l) when l ∈ α[D].JxK =df xJnK =df nJ{x : T | P}K =df {JxK ∈ JT K | JPK}Jt .lK =df JtK (l)J〈| · · · li V ti · · · |〉K =df f0Jt .1K =df fst JtKJt .2K =df snd JtKJ(t0, t1)K =df {{Jt0K}, {Jt0K , Jt1K}}Jt � [D]K =df f1

3.3. Mathematical results

As a result of careful design the two crucial semantic results for ZC are easy to
prove.

Proposition 3.1. (Soundness of type assignment for ZC). If Γ .C t : T thenJΓK `ZF JtK ∈ JT K.
Proposition 3.2. (Soundness of ZC logic). If Γ `C P then JΓK `ZF JPK.
4. Introducing Z

The specification logic Z which we introduce in this section will seem a somewhat
impoverished version of the Z one routinely finds in the literature. Our intention
is to provide a basic, high-level extension of ZC which itself may be extended,

Revising Z: Part I – logic and semantics 369

by further internal definition, in a variety of ways. It does not seem sensible to
us that Z should aim to provide every feature for every conceivable application;
particularly when these may be expressed very simply as notational conventions.
What we focus on here will be generalisations in which sets may occur in what
are type contexts in ZC , and on the basic operations of the schema calculus.

There remain, nonetheless, a number of particularly important notions that it
would be a mistake to leave unexamined so, having provided an interpretation for
the specification logic of this section, we shall, in the companion paper [HeR99],
go on to give an explanation of the most important derived constructs of Z.

4.1. The language of Z

We first give the proto-syntax for the language of Z which we consider in this
paper. Essentially Z extends ZC by allowing more general forms of propositions,
more general forms of sets, and a number of new forms of terms. We shall
use the same names for the syntactic categories as we used for ZC , except for
the declarations, since the ZC category appears as well. In what follows we will
always write DC for the category of ZC declarations, permitting us to reuse the
category name D for the more general Z declarations.

Types are as they were in ZC .

T ::= N | PT | T × T | [DC]

The proto-syntax for declarations in Z is, then:

D ::= l ∈ C | l ∈ C ; D

The proto-syntax of propositions:

P ::= ⊥ | t = t | t ∈ C | ¬P | P ∨ P | ∃ z ∈ C • P

Finally, we have the proto-syntax for terms. In addition to our use of C as a
meta-variable for terms of type PT we now reserve the meta-variable S for sets
of type PT where T is a schema type. Firstly, then, we have the terms which are
sets:

t ::= {z ∈ C | P} | PC | C × C | N | [D] | λz ∈ C • t

In Z, then, the types appear as a sub-category, or, more precisely, the carrier
sets of the types do. These can be formally isolated by means of the following
category definitions:

D∗ ::= l ∈ T ∗ | l ∈ T ∗; D∗
T ∗ ::= N | T ∗ × T ∗ | PT ∗ | [D∗]

Since D∗ is just the Z image of the ZC declarations, we can take all the operations
defined over DC as inducing similar operations over D∗.

We have established a notational shift from conventional presentations of Z
but, we feel, it is justified. Most particularly, allowing t : C would suggest that
we are permitting sets to be types, which we are not: such an approach would
make typechecking undecidable. Writing t ∈ T ∗ on the other hand suggests that
we are permitting types to be sets which is precisely what Z allows. Additionally,
the colon is a judgement of the type assignment and propositionhood system and
this never assigns anything other than a type (a name) to a term. Consequently,

370 M. C. Henson and S. Reeves

it would be somewhat confusing to permit more general usage for the type
assignment symbol elsewhere in the language. These scruples arise here because
we are dealing with logical systems and not simply the language. Perhaps we
are being too fastidious, but the strict distinction between a type and its carrier
is well recognised (e.g. [Spi92] p. 24). What might be a reasonable abuse of
language (writing T in place of the carrier set T ∗), we feel, may be more easily
accommodated than an abuse of logic (writing t : T in place of t ∈ T ∗ (or
t ∈ T)). Indeed we will not have to burden the presentation by distinguishing a
type and its carrier precisely because we will insist on the correct logical relation
in type judgements and in membership propositions.

Among the set comprehensions we shall, as before, isolate the schemas as a
special case with the special meta-notation (where z is fresh):

[D | P] =df {z ∈ [D] | P [α[D]/z .α[D]]}
We then extend the term language with schema expressions:

t ::= · · · | [D | P] | S ∨ S | S \ [l : T] | ¬S | S [l1 ← l0]

Note that all such expressions are included as sets in Z. We only use the unusual
notation for renaming in order to prevent confusion with substitution in the
meta-language. Schema hiding is, in standard approaches, equivalent to schema
existential quantification (e.g. [WoD96] p. 181).

Disjunction, hiding, negation and renaming are sufficient to permit definitions
for conjunction, implication, equivalence, pre-condition, composition and piping
to be constructed using the usual definitions. We shall have more to say about
this in the companion paper [HeR99].

The proto-syntax of terms is completed by means of the following:

t ::= · · · | x | n | t .l | 〈| · · · l V t · · · |〉 | t .1 | t .2 | (t , t) |
t � [D] | let x == t in t | (λz ∈ C • t)t

We shall write t0 7→ t1 as a synonym for (t0, t1) when the pair is considered as a
maplet, that is, as an element of a function.

4.2. Type assignment and propositionhood in Z

Definition 4.1. The judgements of the system again have the following forms:

Γ .Z P prop
Γ .Z t : T

The contexts, as usual, are partial functions giving type assignments for variables.
As before, in giving the rules, we will omit any data which are not changed by a
rule.

⊥ prop
(Z⊥)

t0 : T t1 : T
t0 = t1 prop

(Z=)
t : T C : PT

t ∈ C prop
(Z∈)

P prop

¬ P prop
(Z¬)

P0 prop P1 prop

P0 ∨ P1 prop
(Z∨)

C : PT z : T . P prop

∃ z ∈ C • P prop
(Z∃)

x : T . x : T
(Zx)

0 : N
(Z)

n : N
succ n : N

(Zs)

Revising Z: Part I – logic and semantics 371

S0 : PT0 S1 : PT1

S0 ∨ S1 : P(T0 ∨ T1)
(Z∨S)

S : PT

S \ [l : T1] : P(T \ [l : T1])
(Zh)

S : T
S [l0 ← l1] : T [l0 ← l1]

(Zr), l1 6∈ αT
C : PT z : T . P prop

{z ∈ C | P} : PT
(Z{}) S : T

¬S : T
(Z¬S)

C : PT

PC : PPT
(ZP)

C0 : PT0 C1 : PT1

C0 × C1 : P(T0 × T1)
(Z×)

N : PN
(ZN)

· · · C : PT · · ·
[· · · l ∈ C · · ·] : P[· · · l : T · · ·] (Z[])

t : [· · · li : T · · ·]
t .li : T

(Z.)

C : PT0 z : T0 . t : T1

λz ∈ C • t : P(T0 × T1)
(Zλ)

λz ∈ C • t1 : P(T0 × T1) t0 : T0

(λz ∈ C • t1) t0 : T1
(Zap)

· · · ti : Ti · · ·
〈| · · · li V ti · · · |〉 : [· · · li : Ti · · ·] (ZV)

t : T1 × T2

t .1 : T1
(Z)

t : T1 × T2

t .2 : T2
(Z)

t0 : T0 t1 : T1

(t0, t1) : T0 × T1
(Z())

t0 : T0 x : T0 . t1 : T1

let x == t0 in t1 : T1
(Zlet)

t : [D1] [D0] � [D1]

t � [D0] : [D0]
(Z�)

Similar results to those we exhibited for the corresponding system for ZC hold
for the system for Z.

Lemma 4.2. The generation lemma for Z holds.

Lemma 4.3.

(i) If x does not appear free in P , and x : T . P prop then P prop

(ii) If x does not appear free in t , and x : T0 . t : T1 then t : T1

(iii) If t : T1 and x does not appear free in t then x : T0 . t : T1

(iv) If P prop and x does not appear free in P then x : T . P prop

Typing of terms is also unique in Z.

Lemma 4.4. If t : T0 and t : T1 then T0 = T1

Proof. By the generation lemma (lemma 4.2).

Lemma 4.5.

(i) If P [z/t] prop and t : T then z : T . P prop

(ii) If z : T . P prop and t : T then P [z/t] prop

(iii) If t1[z/t0] : T1 and t0 : T0 then z : T0 . t1 : T1

(iv) If z : T0 . t1 : T1 and t0 : T0 then t1[z/t0] : T1

Lemma 4.6. . T : PT for all types T .

Proof. An easy induction on the structure of types. q

372 M. C. Henson and S. Reeves

Lemma 4.7. The following rule is derivable:

C : PT1 T0 � T1

C � T0 : PT0

(ZP �)

4.3. A logic for Z

Definition 4.8. (Logic of Z). The judgements of the logic have the form:

Γ `Z P

Contexts Γ have the form Γ−; Γ+ as they did in Section 2.4, and these are
well-formed by means of analogous rules introduced earlier for ZC .

Γ ` P0 Γ− . P1 prop

Γ ` P0 ∨ P1
(∨+

)
Γ ` P1 Γ− . P0 prop

Γ ` P0 ∨ P1
(∨+

)

P0 ∨ P1 P0 ` P2 P1 ` P2

P2
(∨−)

Γ,P ` ⊥ Γ− . P prop

Γ ` ¬P
(¬+)

¬¬P
P

(¬−)
P ¬P
⊥ (⊥+)

Γ ` ⊥ Γ− . P prop

Γ ` P
(⊥−)

P [z/t] t ∈ C

∃ z ∈ C • P
(∃+)

Γ ` ∃ z ∈ C • P0 Γ− . C : PT Γ−, y : T ; Γ+, y ∈ C ,P0[z/y] ` P1

P1
(∃−)

for fresh y .

Γ,P context

Γ,P ` P
(ass) Γ− . t : T

Γ ` t = t
(ref)

t0 = t1 P [z/t0]

P [z/t1]
(sub)

Γ− . 〈| · · · li V ti · · · |〉 : T

Γ ` 〈| · · · li V ti · · · |〉.li = ti
(V=)

Γ− . t : [· · · li : Ti · · ·]
Γ ` 〈| · · · li V t .li · · · |〉 = t

(V=)

Γ− . (t1, t2) : T

Γ ` (t1, t2).1 = t1
(()=

)
Γ− . (t1, t2) : T

Γ ` (t1, t2).2 = t2
(()=

)
Γ− ` t : T1 × T2

Γ ` (t .1, t .2) = t
(()=

)

P [z/t] t ∈ C

t ∈ {z ∈ C | P} ({}+)
t ∈ {z ∈ C | P}

t ∈ C
({}−)

t ∈ {z ∈ C | P}
P [z/t]

({}−)

t 6∈ S

t ∈ ¬S
(¬S+)

t ∈ ¬S
t 6∈ S

(¬S−)

t ∈ S
t[l0 ← l1] ∈ S [l0 ← l1]

(S+←), l1 6∈ αS t ∈ S [l0 ← l1]

t[l1 ← l0] ∈ S
(S−←), l1 6∈ αS

Γ ` t ∈ S Γ− . t : T0

Γ ` t � T0 \ [l : T1] ∈ S \ [l : T1]
(S+
h)

Revising Z: Part I – logic and semantics 373

Γ ` t T̂ ∈ SPT0 \ [l : T1] Γ−, y : T0; Γ+, y ∈ S , y � T̂ = t ` P

Γ ` P
(S−h)

where T̂ is T0 \ [l : T1] and for fresh y .

Γ ` t � T0 ∈ S0 Γ− . S1 : PT1 Γ− . t : T0 ∨ T1

Γ ` t ∈ S0 ∨ S1
(S+∨)

Γ ` t � T1 ∈ S1 Γ− . S0 : PT0 Γ− . t : T0 ∨ T1

Γ ` t ∈ S0 ∨ S1
(S+∨)

t ∈ SPT0

0 ∨ SPT1

1 t � T0 ∈ S0 ` P t � T1 ∈ S1 ` P

P
(S−∨)

Γ−, z : T ; Γ+, z ∈ C0 ` z ∈ C1 Γ− . C0 : PT

Γ ` C0 ∈ PC1
(P+)

C0 ∈ PC1 t ∈ C0

t ∈ C1
(P−)

t1 ∈ C1 t2 ∈ C2

(t1, t2) ∈ C1 × C2
(×+)

t ∈ C1 × C2

t .1 ∈ C1
(×−)

t ∈ C1 × C2

t .2 ∈ C2
(×−)

0 ∈ N (N+
)

n ∈ N
succ n ∈ N (N+

)
P [n/0] n : N; P ` P [n/succ n]

n : N ` P
(N−)

, fresh n

· · · ti ∈ Ci · · ·
〈| · · · li V ti · · · |〉 ∈ [· · · li ∈ Ci · · ·] ([]+)

t ∈ [· · · li ∈ Ci · · ·]
t .li ∈ Ci

([]−)

Γ ` t0 ∈ C Γ− . C : PT0 Γ−, z : T0 . t1 : T1

Γ ` t0 7→ t1[z/t0] ∈ (λz ∈ C • t1)
(λ+)

t0 ∈ (λz ∈ C • t1)

t0.1 ∈ C
(λ−)

t0 ∈ (λz ∈ C • t1)

t0.2 = t1[z/t0.1]
(λ−)

Γ− . t0 : T0 Γ−, z : T0 . t1 : T1 Γ ` t0 ∈ C

Γ ` (λz ∈ C • t1) t0 = t1[z/t0]
(λ=)

Γ− . t0 : T0 Γ−, z : T0 . t1 : T1

Γ ` let z == t0 in t1 = t1[z/t0]
(let)

t0 ≡ t1

t0 = t1
(ext)

Γ ` t .li = ti Γ− . t : T [· · · li : Ti · · ·] � T

Γ ` (t � [· · · li : Ti · · ·]).li = ti
(�=)

4.4. Consequences of the logic for Z

There are, as was the case with ZC , a large number of congruence rules for
equality which are all derivable using substitution.

374 M. C. Henson and S. Reeves

t1 = t0

t0 = t1
(sym)

t0 = t1 t1 = t2

t0 = t2
(trans)

t0 = t2 t1 = t3

(t0, t1) = (t2, t3)
(=())

Γ ` t0 = t1 Γ− . t0 : T1 × T2

Γ ` t0.1 = t1.1
(=.)

Γ ` t0 = t1 Γ− . t0 : T1 × T2

Γ ` t0.2 = t1.2
(=.)

· · · t0i = t1i · · ·
〈| · · · li V t0i · · · |〉 = 〈| · · · li V t1i · · · |〉 (=V)

Γ ` t0 = t1 Γ− . t0 : [· · · li : Ti · · ·]
Γ ` t0.li = t1.li

(=.l)

Γ ` C0 = C1 Γ− . {z ∈ C0 | P} : PT

Γ ` {z ∈ C0 | P} = {z ∈ C1 | P} (={})
C0 = C1

PC0 = PC1
(=P)

C0 = C2 C1 = C3

C0 × C1 = C2 × C3
(=×)

S0 = S2 S1 = S3

S0 ∨ S1 = S2 ∨ S3
(=∨)

S0 = S1

S0 \ [l : T] = S1 \ [l : T]
(=\) S0 = S1

S0[l0 ← l1] = S1[l0 ← l1]
(=←), l1 6∈ αS0

S0 = S1

¬S0 = ¬S1
(=¬)

Γ ` C0 = C1 Γ, z : T ` t0 = t1 Γ− . C0 : PT

Γ ` λz ∈ C0 • t0 = λz ∈ C1 • t1
(=λ)

for fresh z .

Γ ` t0 = t2 Γ− . t0 : T Γ, x : T ` t1 = t3

Γ ` let x == t0 in t1 = let x == t2 in t3
(=let)

λz ∈ C0 • t0 = λz ∈ C1 • t1 t2 = t3 t2 ∈ C0

(λz ∈ C0 • t0) t2 = (λz ∈ C1 • t1) t3
(=app)

Γ ` t0 = t1 Γ− . t0 : T1 T0 � T1

Γ ` t0 � T0 = t1 � T0

(=�)

Set equality in Z is, like in ZC , extensional. The necessary rules are also part of
the logic for Z. The rule (∈+

�), that relates filtered terms and filtered sets in ZC

also generalises to Z.

Lemma 4.9. The following rule is admissible:

t : T
t ∈ T

Proof. By induction on the structure of the term t . For example:
Case t .1: we may assume that t .1 : T1 for some type T1. By lemma 4.2 we have
t : T1 × T2 for some type T2. Ex hypothesi we then obtain t ∈ T1 × T2 and then
t .1 ∈ T1, by rule (×−l), as required.

Revising Z: Part I – logic and semantics 375

Schemas were introduced in Z, as in ZC , by convention. This induces immediately
the following rules:

P [α[D]/t .α[D]] t ∈ [D]

t ∈ [D | P]
(S+)

t ∈ [D | P]

P [α[D]/t .α[D]]
(S−)

t ∈ [D | P]

t ∈ [D]
(S−)

It is then possible to prove those relationships which are commonly used to
describe (occasionally to define) the schema operators in the literature. This
begins the task of establishing an equational logic for Z which is justified by
the logic. The equations all have premises which ensure that the equalities are
well-formed.

Lemma 4.10.

Γ− . [D∗ | P] : P[D∗]
Γ ` ¬[D∗ | P] = [D∗ | ¬P]

(¬=)

Proof. Note that the declarations must range over types. It is well known that
this equation fails if the declarations range over sets in general. Assume that
Γ− . [D∗ | P] : P[D∗]. This implies that the equation is a proposition and that
both sides have the type P[D∗].
Case (⊆): let t : [D∗]. Suppose that t ∈ ¬[D∗ | P]. Using rule (¬S−) this is
t 6∈ [D∗ | P], or equivalently ¬(t ∈ [D∗] ∧ P [α[D∗]/t .α[D∗]]). Using De Morgan’s
law, this is just t 6∈ [D∗]∨¬P [α[D∗]/t .α[D∗]]. Assume that t 6∈ [D∗]. Using lemma
4.9 we obtain t ∈ [D∗] from the assumption and hence we conclude that ⊥,
whence, by rule (⊥−), ¬P [α[D∗]/t .α[D∗]]. This now also follows by rule (∨−)
from the disjunction above. From this, and t ∈ [D∗], we finally conclude, by rule
(S+), that t ∈ [D∗ | ¬P] as required.
Case (⊇): let t : [D∗]. Suppose that t ∈ [D∗ | ¬P]. Using rules (S−) and (S−) we
obtain: ¬P [α[D∗]/t .α[D∗]] and t ∈ [D∗]. By rule ({}+) and propositional logic
we then conclude that t 6∈ [D∗ | P] which, by rule (¬S+), is t ∈ ¬[D∗ | P] as
required. q

Lemma 4.11.

Γ− . [D∗0 | P0] : PT0 Γ− . [D∗1 | P1] : PT1

Γ ` [D∗0 | P0] ∨ [D∗1 | P1] = [D∗0 ∨ D∗1 | P0 ∨ P1]
(∨=)

It is important to remember that in our framework labels and variables are
distinct, consequently there is no possibility of global variable capture to be
addressed here. However in the case of hiding, the distinction between variables
and labels leads to a minor notational variation:

Lemma 4.12.

Γ− . [D∗ | P] : PT1

Γ ` [D∗ | P] \ [l : T] = [D∗ \ [l : T] | ∃ z : T • P [l/z]]
(\=

)

for fresh z .

In addition we have an equation relating general declarations over sets to
declarations over types. This, by iteration, enables us to remove all non-type sets
from the declarations of Z schemas in the equational logic.

376 M. C. Henson and S. Reeves

Lemma 4.13.

Γ− . [D; l ∈ C | P] : PT1 Γ− . C : PT

Γ ` [D; l ∈ C | P] = [D; l ∈ T | l ∈ C ∧ P]
(∈=)

4.5. Syntactic consistency for Z

We must, of course, ensure that the rules of the logic are syntactically consistent.

Proposition 4.14. If Γ `Z P when Γ context then Γ− .Z P prop

Proof. By induction on the structure of the derivation Γ ` P . We give one case
for illustration. Suppose that Γ context .
Case rule (S−∨): We have, immediately, that: Γ− . S0 : PT0 and Γ− . S1 : PT1.
Using lemma 4.2 we have, ex hypothesi from the first premise, that: Γ− . t :
P(T0 ∨ T1). Then, because T0 � T0 ∨ T1 and T1 � T0 ∨ T1, it follows, by rule
(Z�), that Γ− . t � T0 : T0 and Γ− . t � T1 : T1. Hence we have, using rule
(Z∈): Γ− . t � T0 ∈ S0 prop and Γ− . t � T1 ∈ S1 prop. This establishes that:
Γ, t � T0 ∈ S0 context and Γ, t � T1 ∈ S1 context . Finally, using just the first of
these, we conclude: Γ− . P prop, ex hypothesi from the second premise of the
rule.

5. An interpretation of Z in ZC

In this section we describe a translation J KZ of Z, as described above, into ZC ,
our core specification logic. This translation (unlike normalisation processes for Z
which are found in the literature) is compositional. This can be achieved because
we have made precise the notions of propositionhood and type assignment.
Indeed, since well-formed Z sentences are those which satisfy the rules of definition
4.1, we shall make use, where necessary, of the type information associated with
Z terms. As before, we omit the subscript on the translation function unless it is
essential.

5.1. Propositions

The language of Z propositions is only marginally more complicated than that
of ZC . The translation is, for the main part, transparent:

(i) J⊥K =df ⊥
(ii) Jt0 = t1K =df Jt0K = Jt1K
(iii) Jt ∈ C K =df JtK ∈ JC K
(iv) J¬PK =df ¬ JPK
(v) JP0 ∨ P1K =df JP0K ∨ JP1K
(vi)

q∃ z ∈ CPT • P
y

=df ∃ z : T • z ∈ JC K ∧ JPK

Revising Z: Part I – logic and semantics 377

5.2. Schema terms

The three basic Z schema calculus operations can be translated into ZC as follows.
Note that we only interpret type-correct Z and, as a consequence, we may make
use of the relevant typing information.

Let x and z be a fresh variables, then:

(i)
q¬SPT

y
=df {z : T | z 6∈ JS K}

(ii)
q
S0
PT0 ∨ S1

PT1
y

=df {z : T0 ∨ T1 | z � T0 ∈ JS0K ∨ z � T1 ∈ JS1K}
(iii)

q
SPT0 \ [l : T1]

y
=df {z : T0 \ [l : T1] |

∃ x : T0 • x ∈ JS K ∧ z = x � T0 \ [l : T1]}

5.3. Set terms

There are a number of new forms of set available in Z, translated as follows.
Again, z is a fresh variable:

(i)
q
[D | P]PT

y
=df {z : T | z ∈ J[D]K ∧ JP [αT/z .αT]K}

(ii)
q{z ∈ CPT | P}y =df {z : T | z ∈ JC K ∧ JPK}

(iii)
q
PCPT

y
=df {z : PT | ∀ x : T • x ∈ z ⇒ x ∈ JC K}

(iv)
q
C1

PT1 × C2
PT2

y
=df {z : T1 × T2 | z .1 ∈ JC1K ∧ z .2 ∈ JC2K}

(v) JNK =df {z : N | z = z}
(vi)

r
[· · · li ∈ C Ti

i · · ·]
z

=df {z : [· · · li : Ti · · ·] |
· · · ∧ z .li ∈ JCi K ∧ · · ·}

(vii)
q
λx ∈ CPT1 • tT2

y
=df {z : T1 × T2 |

z .1 ∈ JC K ∧ z .2 = Jt[x/z .1]K}
5.4. Other terms

In addition to the sets, which are translated above, there are two new forms of
term in Z. In full the translation is:

(i) JxK =df x

(ii) JnK =df n

(iii) Jt .lK =df JtK .l
(iv) J〈| · · · li V ti · · · |〉K =df 〈| · · · li V Jti K · · · |〉
(v) Jt .1K =df JtK .1
(vi) Jt .2K =df JtK .2
(vii) J(t0, t1)K =df (Jt0K , Jt1K)
(viii) Jlet x == t0 in t1K =df Jt1K [x/ Jt0K]
(ix) J(λz ∈ C • t1) t0K =df Jt1K [z/ Jt0K]
(x) Jt � T K =df JtK � T

Lemma 5.1. JP [x/t]K = JPK [x/ JtK]
Proof. Variables are unchanged by the translation and this is sufficient.

We will use this property without further reference in the sequel.

378 M. C. Henson and S. Reeves

5.5. Correctness of the translation

The syntax of the systems Z and ZC are both given in two parts: a proto-syntax
equipped with rules for type assignment and propositionhood. Our translation
supposes that the Z expressions it considers are well-formed, but yields expressions
which are prima facie only in the proto-syntax of ZC . It is incumbent upon us to
show that the translation preserves syntactic well-formedness. This is the content
of the following proposition.

Proposition 5.2.

(i) If Γ .Z P prop then Γ .C JPK prop

(ii) If Γ .Z t : T then Γ .C JtK : T

Proof. By simultaneous induction on the structure of the antecedent derivations.
We give one case for illustration.
Case rule (Z∃): we have Γ .C JC K : PT ex hypothesi from which, by lemma
2.3(iii), we may conclude that Γ, z : T .C JC K : PT for fresh z . From this and
the instance of axiom (Cx) Γ, z : T .C z : T we have Γ, z : T .C z ∈ JC K prop
by rule (C∈). From this and Γ, z : T .C JPK prop, which follows ex hypothesi,
we may conclude that Γ, z : T .C z ∈ JC K ∧ JPK prop by (derived) rule (C∧).
Then by rule (C∃) we have Γ .C ∃ z : T • z ∈ JC K ∧ JPK prop which is
Γ .C J∃ z ∈ C • PK prop as required.

As a corollary we have the soundness of the type assignment system in ZF. We
temporarily write J K for the composition J KC ◦ J KZ .

Corollary 5.3. If Γ .Z t : T then JΓ K`ZF JtK ∈ JT K
Proof. Compose propositions 3.1 and 5.2.

Next we have the relative soundness result for the logic.

Proposition 5.4. If Γ−; Γ+ `Z P then Γ−;
q
Γ+

y `C JPK
Proof. By induction on the structure of the antecedent derivation. We provide
one case for illustration.
Case (∃+):
Ex hypothesi we have JPK [z/ JtK] and JtK ∈ JC K. By (derived) rule (∧+) we have
(z ∈ JC K∧ JPK)[z/ JtK] and, using proposition 2.9, JtK : T for some T . Hence, by
rule (∃+), ∃ z : T • z ∈ JC K ∧ JPK which is

q∃ z ∈ CPT • P
y

as required. q

Finally, as a corollary, we have soundness for the logic in ZF.

Corollary 5.5. If Γ `Z P then JΓ K `ZF JPK
Proof. Combine propositions 5.4 and 3.2.

This together with corollary 5.3 completes the process of modelling Z in ZF.

6. Conclusions

We have introduced a specification logic ZC which is sound with respect to a
simple set-theoretic semantics. We have gone on to demonstrate that the basic
apparatus of the specification language Z can be defined within ZC . As a result
the extended logic is both conservative over ZC , and, as a corollary of this,

Revising Z: Part I – logic and semantics 379

consistent. Much of the technical development concerns the interplay between
the type systems and the logic proper: we have spelled out what it means for
terms to be well-typed and, correspondingly, what it means for a proposition
to be well-formed. Inference is shown to preserve these properties, and we have
established that the translation of the more elaborate system into ZC preserves
both well-formation and inference properties. Our logics contrast with the current
draft of the Z standard (Annex F of [Nic95]) in several respects. That system
should, but does not, preserve well-formation of terms and propositions, there
exists no soundness proof with respect to the independently given semantics and
there is no clear technical connection which links the logic of well-formation
with the logic proper. In these regards, in particular, our formulation is an
improvement.

We have, however, not gone far enough. The extended logic described here is
still impoverished in several important respects, notably the absence of a calculus
for schemas. The standard logic [Nic95] is also incomplete in this area. It is the
purpose of the companion paper “Revising Z: Part II - logical development”
[HeR99] to make good these omissions and to continue the critique we have
begun here.

Acknowledgements

We would like to thank the Department of Computer Science at the University
of Waikato, New Zealand, the Centre for Discrete Mathematics and Theoretical
Computer Science, New Zealand, the Royal Society of Great Britain, and the
EPSRC (grant number GR/L57913) for financial assistance which has supported
the development of this research. We are most grateful to Doug Goldson, Lindsay
Groves, Ian Toyn, Ray Turner and Mark Utting for many useful discussions. We
are particularly grateful to the Editor-in-Chief, Cliff Jones, for his help and
encouragement in the preparation of the final version of this paper. Our final
thanks go to one of the referees, who performed the most thorough and fruitful
task of refereeing that we have ever experienced.

References

[BrM96] Brien, S. and Martin, A.: A tutorial of proof in standard Z. Technical report, Technical
monograph PRG-120, University of Oxford, 1996.

[Bri95] Brien, S.: A model and logic for generically typed set theory (Z). Technical report,
(draft) D. Phil. thesis, University of Oxford, 1995.

[Hen98] Henson, M. C.: The standard logic for Z is inconsistent. Formal Aspects of Computing
Journal, 10(3): 243–247, 1998.

[HaM97] Hall, J. and Martin, A.: W reconstructed. In Proceedings ZUM ’97, LNCS 1212, pages
115–134. Springer, 1997.

[HeR99] Henson, M. C. and Reeves, S.: Revising Z: Part II - logical development. Formal Aspects
of Computing Journal, 11(4): 381–401, 1999.

[KSW96] Kolyang, Santen, B. and Wolff, B.: A structure preserving encoding of Z in Is-
abelle/HOL. In Proceedings Formal Methods Europe. LNCS Vol. 1051, Springer Verlag,
1996.

[Mar97] Martin, A.: Approaches to proof in Z. Technical report, Technical Report TR97-34,
SVRC, University of Queensland, 1997.

[Mar98] Martin, A.: A revised deductive system for Z. Technical report, Technical Report TR98-
21, SVRC, University of Queensland, 1998.

[Nic95] Nicholls, J. (ed.): Z Notation: Version 1.2. Z Standards Panel, 1995.

380 M. C. Henson and S. Reeves

[Spi88] Spivey, J. M.: Understanding Z: A specification language and its formal semantics. C.U.P.,
1988.

[Spi92] Spivey, J. M.: The Z notation: A reference manual. Prentice Hall, 1992.
[Toy97] Toyn, I. (ed.): Z Notation: Draft 0.8. Unpublished draft, 1997.
[WoB92] Woodcock, J. and Brien, S.: W: A logic for Z . In Proceedings of ZUM ’91, 6th Conf.

on Z. Springer Verlag, 1992.
[WoD96] Woodcock, J. and Davies, J.: Using Z: Specification, Refinement and Proof. Prentice Hall,

1996.

Note added in proof

Since this paper was accepted for publication, the draft Z standard [Nic95] has
been superseded by the Final Committee Draft Standard [Toy99]. Our comments
regarding semantics remain germane. On the other hand, the Z standards panel
has decided to remove the logic entirely, rather than to correct it. As a result, our
paper now becomes, at least in part, a work of advocacy in favour of a logic for
Z.

[Toy99] Toyn, I. (ed.): Z Notation: Final Committee Draft, CD 13568.2,
ftp://ftp.york.ac.uk./hise reorts/cadiz/ZSTAN/fcd.ps.gz, 1999

Received March 1998

Accepted in revised form April 1999 by C. B. Jones

