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Abstract. This is the second of two related papers. In “Revising Z: Part I -
logic and semantics” (this journal) we introduced a simple specification logic
ZC comprising a logic and a semantics (in ZF set theory). We then provided
an interpretation for (a rational reconstruction of) the specification language Z
within ZC . As a result we obtained a sound logic for Z, including the basic schema
calculus. In this paper we extend the basic framework with more sophisticated
features (including schema operations) and we mount a critique of a number
of concepts used in Z. We further demonstrate that the complications and
confusions which these concepts introduce can be avoided without compromising
expressibility.

1. Introduction

In the earlier companion paper [HeR99] we introduced a specification system ZC ,
a typed set theory incorporating the notion of a schema type and we established
a number of meta-mathematical results including its soundness with respect
to a simple set-theoretic semantics. We went on to introduce a notation very
much closer to the Z familiar in the literature. This included more substantial
mechanisms for the construction of propositions, sets and, in particular, schemas.

In this paper we further extend the logic for Z substantially. In Section 2,
we extend the schema calculus with a number of new forms of expression and
introduce a number of other new forms of term, set and propositional forms. We
then turn, in Section 3, to consider two Z concepts, θ expressions and schema
priming, which are without doubt the locus of much confusion in the literature.
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After reviewing these notions we go on to provide additional mechanisms suitable
to either interpret or modify them. Finally, in Section 4, we examine some example
specifications from the literature which employ the full range of the apparatus
available in Z and demonstrate how such specifications may be rendered in our
framework.

We do not review the logical development of [HeR99] in this paper, and the
reader will need to refer to that in order to establish the logical systems which
are the point of departure here.

2. Derived constructs

We indicated in [HeR99] that, given the basic connectives and set (hence schema)
operations we introduced, we would be able to construct others that we expect
to find in Z. Since we are particularly concerned with developing the logic of
Z, it is appropriate that we go on to examine the expected logical consequences
of these constructions. We shall, in particular, spend some time extending the
schema calculus which is of major importance in Z. In fact it is not quite clear
why this has traditionally been referred to as a schema calculus since the literature
typically introduces nothing beyond a notation for schema expressions. It is true
that there are some suggested rules for membership in compound schemas, at
least for the simplest cases like conjunction, in the normative source [Nic95], but
these are quite clearly wrong. For example (ibid. Section F.6.6, p. 207) we can
easily derive the following rules, the first of which is too restrictive and the others
are not even well-formed:

Γ ` b ∈ S Γ ` b ∈ T
Γ ` b ∈ S ∧ T

Γ ` b ∈ S ∧ T
Γ ` b ∈ S

Γ ` b ∈ S ∧ T
Γ ` b ∈ T

using the rules (SchBindMem) and (SAnd). We are not the only authors to detect
this mistake in [Nic95]. However, the suggested remedy (adding a proviso to
rule (SchBindMem) [Mar98]) only ensures that the elimination rules above are
well-defined: they are still very limited. Beyond this incorrect treatment of the
simplest aspects of the schema calculus there is almost nothing, for example the
incomplete rule for schema composition (SComp) (ibid. p. 208). These errors were
carried over into [BrM96] but are rectified in [Mar98].

2.1. Schema conjunction

We would expect to define conjunction over schemas by analogy with operations
like set intersection and logical conjunction:JS0 ∧ S1K =df J¬(¬S0 ∨ ¬S1)K
Using rules (Z¬S ) and (Z∨S )1 we obtain the following derived rule for type
assignment:

Γ . S0 : PT0 Γ . S1 : PT1

Γ . S0 ∧ S1 : P(T0 ∨ T1)
(Z∧S )

1 A reminder: these rules and many others that follow are from [HeR99].
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We can simplify the right-hand side of the definition, so that we have, for fresh
y: r

SPT0

0 ∧ SPT1

1

z
= {y : T0 ∨ T1 | y � T0 ∈ JS0K ∧ y � T1 ∈ JS1K}

The following introduction rule is derivable: (∧+) and ({}+):

Γ ` t � T0 ∈ S0 Γ ` t � T1 ∈ S1 Γ− . t : T0 ∨ T1

Γ ` t ∈ S0 ∧ S1
(S+
∧ )

The corresponding elimination rules:

Γ ` t ∈ S0 ∧ S1 Γ− . S0 : PT0

Γ ` t � T0 ∈ S0

(S−∧ )

Γ ` t ∈ S0 ∧ S1 Γ− . S1 : PT1

Γ ` t � T1 ∈ S1

(S−∧ )

With these in place we can prove the expected relationship (see [WoD96] pp.
165-6):

Lemma 2.1.

Γ− . [D∗0 | P0] : PT0 Γ− . [D∗1 | P1] : PT1

Γ ` [D∗0 | P0] ∧ [D∗1 | P1] = [D∗0 ∨ D∗1 | P0 ∧ P1]
(∧=)

Proof. We can use the equational logic that we already have at our disposal. The
result follows easily by rules (¬=) and (∨=) and De Morgan’s laws.

Finally we have the substitution rule:

S0 = S2 S1 = S2

S0 ∧ S1 = S2 ∧ S3

Again, these follow easily from the corresponding rules for disjunction and
negation schemas.

2.2. Schema implication

Following the pattern given above for conjunction, we would expect the definition:JS0 ⇒ S1K =df J¬S0 ∨ S1K
Using the rules (Z¬S ) and (Z∨S ) we obtain a derived rule for type assignment:

Γ . S0 : PT0 Γ . S1 : PT1

Γ . S0 ⇒ S1 : P(T0 ∨ T1)
(Z⇒S )

Simplifying the right-hand side of the definition, we obtain, for fresh z :q
S0

T0 ⇒ S1
T1
y

= {z : T0 ∨ T1 | z � T0 6∈ JS0K ∨ z � T1 ∈ JS1K}
The introduction rule is:

Γ, t � T0 ∈ S0 ` t � T1 ∈ S1 Γ− . t : T0 ∨ T1 Γ− . S0 : PT0

Γ ` t ∈ S0 ⇒ S1
(S+⇒)
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The elimination rule is:

Γ ` t ∈ S0 ⇒ S1 Γ ` t � T0 ∈ S0 Γ− . S1 : PT1

Γ ` t � T1 ∈ S1

(S−⇒)

The expected relationship holds:

Lemma 2.2.

Γ− . [D∗0 | P0] : PT0 Γ− . [D∗1 | P1] : PT1

Γ ` [D∗0 | P0]⇒ [D∗1 | P1] = [D∗0 ∨ D∗1 | P0 ⇒ P1]

Proof. Using the equational logic: rules (¬=) and (∨=). q

Finally we have the expected substitution rule:

S0 = S1 S2 = S3

S0 ⇒ S2 = S1 ⇒ S3

2.3. Schema inclusion

Schema inclusion can be defined in terms of schema conjunction.J[D0; [D1 | P1] | P0]K =df J[D0 ∨ D1 | P0] ∧ [D1 | P1]K
It should be noted that this, unlike the other operators we consider, is a non-
compositional definition which involves a generalisation, on the left-hand side, of
the language of declarations to include schema references.

The rules are then easily calculated as special cases of those for schema
conjunction. First the typing rules:

Γ . [D0 ∨ D1 | P0] : P(T0 ∨ T1) Γ . [D1 | P1] : PT1

Γ . [D0; [D1 | P1] | P1] : P(T0 ∨ T1)
(Zinc)

The introduction rule is:

Γ ` t ∈ [D0 ∨ D1 | P0] Γ ` t � T1 ∈ [D1 | P1]

Γ ` t ∈ [D0; [D1 | P1] | P0]

The elimination rules are:

Γ ` t ∈ [D0; [D1 | P1] | P0]

Γ ` t ∈ [D0 ∨ D1 | P0]

Γ− . [D1 | P1] : PT1 Γ ` t ∈ [D0; [D1 | P1] | P0]

Γ ` t � T1 ∈ [D1 | P1]

Finally, we have the expected equational law:

Γ− . [D∗0 | P0] : PT0 Γ− . [D∗1 | P1] : PT1

Γ ` [D∗0 ; [D∗1 | P1] | P0] = [D∗0 ∨ D∗1 | P0 ∧ P1]
(inc=)

Although the ∆ and Ξ schemas of Z are intimately linked, in the standard
accounts, with schema inclusion, we shall delay their consideration until we
discuss schema priming and the θ operator (Section 3 below).
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2.4. Schema composition and piping

We proceed by adopting a standard definition of schema composition, in terms
of renaming, conjunction and hiding (see e.g. [Dil94]). We give a very simpli-
fied, introductory account, restricting the composition along a single pair of
complementary labels.

We shall need to index the composition operator with the pair of labels along
which the composition is taken. Let S0 : P(T0 ∨ [l ′ : T ]) and S1 : P(T1 ∨ [l : T ]).
Let v be a fresh label. Then:q

S0
o
9(l ′ ,l ) S1

y
=df

q
(S0[l ′ ← v ] ∧ S1[l ← v ]) \ [v : T ]

y
For notational simplicity it is sensible to define a derived operator on types:

T0
o
9(l ′ ,l ) T1 =df (T0[l ′ ← v ] ∨ T1[l ← v ]) \ [v : T ]

First we have the typing rule, which is easily derived:

S0 : P(T0 ∨ [l ′ : T ]) S1 : P(T1 ∨ [l : T ])

S0
o
9(l ′ ,l ) S1 : P(T0

o
9(l ′ ,l ) T1)

In the introduction rule we write V0 and V1 for T0 ∨ [l ′ : T ] and T1 ∨
[l : T ] respectively.

Γ ` (t � V0[l ′ ← v ])[v ← l ′] ∈ S0 Γ ` (t � V1[l ← v ])[v ← l ] ∈ S1

Γ ` t � (T0
o
9(l ′ ,l ) T1) ∈ SPV0

0
o
9(l ′ ,l ) SPV1

1

(S+
o
9

)

This is calculated using the rules (S+
h ), (S+∧ ) and (S+←) twice.

We also obtain an elimination rule:

Γ ` t ∈ SP(T0∨[l ′:T ])
0

o
9(l ′ ,l ) SP(T1∨[l :T ])

1 Γ′ ` P

Γ ` P
(S−o

9
), for fresh y0 and y1

where Γ′ is:
Γ−, y0 : T0 ∨ [v : T ], y1 : T1 ∨ [v : T ]; Γ+, y0[v ← l ′] ∈ S0, y1[v ← l ] ∈
S1, y0 � T0 = t � T0, y1 � T1 = t � T1.

The substitution rule is as expected:

Γ ` SP(T0∨[l ′:T ])
0 = S2 Γ ` SP(T1∨[l :T ])

1 = S3

Γ ` S0
o
9(l ′ ,l ) S1 = S2

o
9(l ′ ,l ) S3

Turning now to piping, we immediately see that the definition, and therefore the
rules, are much the same. All we require is to select our complementary labels
to be distinguished by the diacritical marks which indicate input and output.
For example, the composition operator we have introduced above, indexed by a
pair of labels (l!, l?) implements the piping operator over a single input/output
channel.

This section only begins an investigation of composition and piping and we
have obtained rules which are rather unpleasant. Possibly the logic offers other
methods for defining composition which would result in more manageable rules.
Investigation of that is left to future work.
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2.5. Schema restriction

In view of our filtering operation on terms which we have extended to sets, we
can give a pleasant definition:r

SPT0

0 � SPT1

1

z
=df JS0 � T1 ∧ S1K

when T1 � T0. When the schema S1 is just a schema set we get:

S � [D∗] = S � [D]

This equation explains our use in this paper of the restriction symbol for term
filtering. From filtered terms we were able to introduce filtered sets, and from
those we obtain restricted schemas here. The overloading of the symbol is quite
unambiguous: restriction involves a schema set, whereas filtering employs a
schema type.

Our definition is a little less general than that in [Spi92] (p. 34) which has:r
SPT0

0 � SPT1

1

z
=df J(S0 ∧ S1) � T1K

Arguably our version is all that is required, since the standard definition permits
T1 to introduce new components and this is, perhaps, slightly odd for a restriction
operation. In order to work with the standard definition we could use the general
hiding operation over schema types in a manner similar to that employed below
in Section 2.6, but we shall not give the details here.

The rules are then just a special case of those for conjunction. Using rules
(Z∧) and (ZP �) we obtain the type rule:

Γ . S0 : PT0 Γ . S1 : PT1 T1 � T0

Γ . S0 � S1 : PT1

The introduction and elimination rules are then as follows:

Γ ` t ∈ S0 Γ ` t � T1 ∈ S1 T1 � T0

Γ ` t � T1 ∈ S0 � S1

(S+
� )

This follows by rules (S+∧ ) and (∈�), noting that T1 = T1 ∨ T1 and T0 = T0 ∨ T1.

Γ ` t ∈ S0 � S1 Γ−, y : T0; Γ+, y ∈ S0, y � T1 = t ` P

Γ ` P
(S−� ), for fresh y

Γ ` t ∈ S0 � S1

Γ ` t ∈ S1

(S−� )

These follow directly from the rules (S+∧ ), (S∧ ) and (∈−� ) noting that tT = t � T .

The substitution rule is:

Γ ` SPT0

0 = S2 Γ ` SPT1

1 = S3 T1 � T0

Γ ` S0 � S1 = S2 � S3

2.6. Schema level hiding

Our basic hiding operation takes a single label (with its type) as an argument and,
as we explained earlier, does duty for what, in other accounts, is a simple form of
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schema existential quantification. In those accounts one also finds quantification
over schemas in the category of schema expressions, for example [Spi92] (p. 76).
We should provide, within our framework, a form of schema level hiding to
correspond to this. This kind of operation has turned out to be of considerable
value in the structuring of Z specifications. [WoD96] provides some excellent
examples of operation promotion (ibid. chapter 13, see e.g. p. 187) which utilise
this operation in order to promote an operation on a simple state to an operator
on a global state of which it is a component. We shall return to this application
in Section 4.

The definition is quite simple. In view of our earlier development we can
define this easily using schema conjunction and restriction. Let T1 � T0:q

S0
PT0 \ S1

PT1
y

=df

q
(S0 ∧ S1) � (T0 \ T1)

y
Using rules (Z∧), (ZP �), together with the fact that T1 � T0, we obtain the
following type rule:

Γ . S0 : PT0 Γ . S1 : PT1 T1 � T0

Γ . S0 \ S1 : P(T0 \ T1)

The introduction rule is calculated using rules (S+
� ), (S+∧ ) and the fact that

T0 \ T1 � T0.

Γ ` t ∈ S0 Γ ` t � T1 ∈ S1 T1 � T0

Γ ` t � (T0 \ T1) ∈ S0 \ S1

The elimination rule is obtained using rule (∈−� ). Let x be fresh and Γ′ be

Γ−, x : T0; Γ+, x ∈ S0, x � T1 ∈ S1, x � (T0 \ T1) = t:

Γ ` t ∈ SPT0

0 \ SPT1

1 Γ′ ` P T1 � T0

Γ ` P

There is a useful equational rule for schema level hiding. This may be compared
with the syntactic characterisation of (a simpler form of) schema existential
quantification which is given in [WoD96] (p. 178). Let αD1 = {· · · li · · ·} and
σ = [· · · li · · · / · · · zi · · ·] where the zi are fresh variables.

Γ− . [D0 | P0] : PT0 Γ− . [D1 | P1] : PT1 [D1] � [D0]

Γ ` [D0 | P0] \ [D1 | P1] = [[D0] \ [D1] | ∃D1σ • (P0 ∧ P1)σ]

The substitution rule is:

Γ ` SPT0

0 = S2 Γ ` SPT1

1 = S3 T1 � T0

Γ ` S0 \ S1 = S2 \ S3

2.7. Definite description

Although definite descriptions nominally appear in Z as terms it is clear, from
those sources which provide a logic for Z, that these terms must be understood
to appear syncategorematically: the rules in [WoD96] and [Nic95] are expressed
in terms of equality propositions, which we will write:

µx ∈ T • P = t
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Further evidence for this being the correct approach comes from [Spi88] in which
the author remarks that (the meta-theory of) Z can be modelled within ZF
set-theory without the axiom of choice. The salient point being that ZF with an
explicit operator for definite descriptions (such as Hilbert’s epsilon or Russell’s
iota) would imply the axiom of choice (see e.g. [Lei69]).

The characteristic formula for definite descriptions, µx ∈ C • P = t , is
translated into Z by means of:

µx ∈ C • P = t =df (∃1 x ∈ C • P ) ∧ P [x/t]

and then all references to such terms may be removed by the following contextual
definition into Z. Let z be a fresh variable:

P0[z/µx ∈ C • P1] =df ∃ z ∈ C • µx ∈ C • P1 = z ∧ P0

Given the definition we easily obtain the following derived rules of typing and
inference:

C : PT z : T . P prop

µz ∈ C • P : T
(Zµ)

∃1 z ∈ C • P t ∈ C P [z/t]

µz ∈ C • P = t
(µ+)

µz ∈ C • P = t

t ∈ C
(µ− )

µz ∈ C • P = t

P [z/t]
(µ− )

With definite description in place we have immediately a means for dealing with
partial application. Given f ∈ T0 7→ T1 and x ∈ T0 we can set:

f (x ) =df µy ∈ T1 • (x , y) ∈ f

and then rules for partial application follow from those above for definite de-
scription. This approach is unlikely to satisfy many, since the issue of reasoning
with partial terms is a research topic which extends far beyond the study of Z (see
e.g. [Jon95]) and within which controversy is the watchword. Indeed, the reliance
upon the contextual (syntactically based) introduction of definite description does
not satisfy us. Investigating this topic further is, however, not the thrust of our
work here.

2.8. Conditional terms

With definite descriptions in hand we have a method for interpreting the condi-
tional terms often employed in example Z specifications.q

if P then tT
0 else tT

1

y
=df Jµx ∈ T • (P ⇒ x = t0) ∧ (¬P ⇒ x = t1)K

The following type assignment rule is then derivable using rules (Zµ), (Z∧), (Z⇒),
(Z=), (Z¬) and lemmas 4.3(i ) and 4.6 from [HeR99]:

Γ . P prop Γ . t0 : T Γ . t1 : T

Γ . if P then t0 else t1 : T

The following introduction rule can be derived, using the law of the excluded
middle for the proposition P :

P ` t0 = t2 ¬P ` t1 = t2

(if P then t0 else t1) = t2
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2.9. Generic schemas

A generic schema is parameterised over one or more types. These are very easily
accommodated within our regime. We will permit an extension of our language
of types to include type variables:

T ::= · · · | X

Then we may introduce a new category of generic schemas:

GS ::= S [X ]

Finally we extend the language of schema expressions to include instantiated
generic schemas:

S ::= · · · | S [X := T ]

Such instantiated schemas are interpreted into Z by means of:JS [X := T ]K =df JS K [X/T ]

The following rules are then immediate:

P [α[D]/t .α[D]] t ∈ [D][X/T ]

t ∈ [D | P ][X := T ]

t ∈ [D | P ][X := T ]

P [α[D]/t .α[D]]

t ∈ [D | P ][X := T ]

t ∈ [D][X/T ]

2.10. Alternative forms of quantification

There are several different forms of quantification which are adopted in the
literature on Z. We shall, in this short section, only attempt to develop those
alternatives presented in one of the normative sources: [Spi92]. The basic form
of existential quantification ([Spi92] p. 70) is:

∃ S • P

We shall interpret this by means of the following definitional extension, where z
is fresh:J∃ S • PK =df J∃ z ∈ S • P [αS/z .αS ]K
As a consequence we would then induce the following rules:

S : PT z : T . P [αS/z .αS ] prop

∃ S • P prop

P [αS/t .αS ] t ∈ S

∃ S • P

Let y be a fresh variable in the following rule:

Γ ` ∃ S • P0 Γ− . S : PT Γ−, y : T ; Γ+, y ∈ S ,P0[αS/y .αS ] ` P1

P1

The basic forms for λ-expressions and definite descriptions in [Spi92] (p. 58) are:

λS • t

and:

µS • P

We shall omit the translation of these (and their induced rules) since they follow
the pattern we have just presented for the existential quantifier and are easily
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calculated by analogy. The primitive form for set comprehension in [Spi92] (p.
57) is:

{S • t}
We interpret this by means of the following definition. Let z be a fresh variable:q{S • tT }y =df J{z ∈ T | ∃ S • z = t}K
We then obtain the following type assignment rule:

S : PT1 z : T1 . t[αS/z .αS ] : T0

{S • t} : PT0

The the introduction rule for this form of set comprehension is:

Γ− . S : PT1 Γ ` t2 ∈ S Γ ` t0 = t1[αS/t2.αS ]

Γ ` t0 ∈ {S • t1}
Let y be a fresh variable in the following elimination rule:

Γ ` t ∈ {S • t1} Γ− . S : PT1 Γ−, y : T1; Γ+, y ∈ S , t = t1[αS/y .αS ] ` P1

P1

2.11. The mathematical toolkit

We have said nothing about functions, sequences, bags etc. and the notation and
operations which correspond to them. The reason for this is that these remaining
features of Z are simple definitional extensions. As an example recall the standard
definition of sequences. In our notation this would be:

seq T =df {f ∈ N 7 7→ T | dom f = 1..#f }
which itself requires the development of finite partial functions; which in turn is
defined (e.g. [Spi92] (p. 112)) in terms of partial functions etc. The corresponding
display form < · · · > is of type P(N × T ) and so is interpreted in terms of the
display form for tuples. These details, and all the others, are completely covered
in e.g. [Spi92].

2.12. Organisation of specifications

Z provides mechanisms for the overall organisation of specifications into para-
graphs and sections. Where rules for these have been provided they have turned
out to be among the most complex required, and are clearly the result of much
ingenuity. In [Toy97] (p. 43) there are typechecking rules for sections and para-
graphs which are enormously complex and which require extremely baroque
side-conditions. At the very least these rules establish a useful basis for further
work. The complications occurring in the rule for sections arise because each
component induces a context which subsequent components inherit. It remains to
be seen to what extent these complications are tamed by treating schema compo-
nents as constants rather than variables. It is not even clear that these larger scale
entities are best treated explicitly within the object logic itself. Their function is
organisational rather than logical and the rules are more akin to side-condition
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calculations (ensuring proper scoping and so on) than to deduction. This is clearly
an important topic, especially in the context of the development of support tools,
and perhaps best left to those engaged in that research area.

3. Priming and the θ operator

There are two operations, very commonly utilised in Z specifications, which we
have, until now, avoided entirely. In this section we shall explain and demonstrate
the mathematical problems which they, jointly, cause. Following this we will
describe an alternative means by which the services they are meant to provide
can be presented, with the added advantage that the formalisation is relatively
simple, comprehensible and, consequently, usable.

There are two competing perspectives on schemas in Z, as they are currently
understood, which are mutually incompatible. The older view is that a schema is
a “piece of mathematical text” ([WoD96] p. 148) or the description of a state (e.g.
[She95] p. 202). The more recent, dating roughly from the time when schemas
became routinely used as sets and the θ operator was introduced, is that a schema
is a “set of bindings” [WoD96] (p. 156) or “collection of possible values” [She95]
(p. 199). The most striking example of this appears in [Dil94] (pp. 46–7), where,
within two paragraphs, the author gives both accounts of schemas2.

“· · · Schemas are used · · · to make precise what the state space of a given specification is. The state
space is defined by means of a state schema.” ([Dil94], Section 4.3.4, p. 46. Our emphasis.) “PhoneDB
is the name of a schema which represents a before state. Decorating the name with a prime, for
example PhoneDB ′, represents the after state.” ([Dil94], Section 4.3.4, p. 47. Our emphasis.)

The older perspective accounts for the use of schema priming: if S is a schema
representing the before state (singular), then S ′ represents the after state. The
notion of the ∆-schema is paradigmatic of this view. It is somewhat surprising to
discover that the Ξ-schema is paradigmatic of the alternative perspective. To see
this we must first see what goes wrong when we attempt understand such schemas
from the older perspective. Consider the schema ΞS =df [∆S | θS = θS ′]. It is
very well-known that in the context of the definition T =df S ′ the schema
[S ; T | θS = θT ] is not even well-typed a fortiori not equal to ΞS . But
instead of tracing this unfortunate observation back to the root cause (the
clash of perspectives we have introduced) a range of mathematically unpleasant
manoeuvres have taken place in order to accommodate the situation. For example,
in order to prevent Leibnitz’s principle from failing one must ensure that the
expression θS ′ is not the application of θ to the schema S ′ which ensures that
the substitution is invalid. But this may not be enough: generally, θ may only
be applied to schema names. This has the effect of making θ a non-extensional

2 We realise, of course, that the range of text books need not necessarily reflect our best understanding
of the subject, for which we might turn to [Spi88], [Spi92] and some sections of [Nic95]. The textbooks
however fulfill a very different function here: they have been written over a substantial period of
time, thus providing a historical perspective on Z and the evolution of its concepts. Additionally, they
are an excellent repository of Z in practice. The practices and perspectives of the various textbooks
constitutes an accurate reflection and record of the use of Z within the community of its practitioners
over time. The more technical references, like our own, are to a greater or lesser degree attempts
to normalise or to account for that practice. What we are highlighting here, in this section, is not
an inconsistency which appears only within or between some informal accounts of Z, but a genuine
evolution in the community’s self-understanding of Z.
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operation. These devices may prevent ambiguity and avoid the incoherence of
a failure of Leibnitz’s principle, but they do so by technical means which are
complex and unwieldy, making formalisation extremely difficult and, even if
achieved, of limited value. The problem is, rather, that the type of S ′ is not
the type required: we need the type of S here. Indeed we do: the Ξ-schema
is intended to link the initial state and the final state and these, under the
second perspective, are both elements of S . It appears that the θ operation is
inextricably linked with this second perspective. But from this viewpoint the
∆-schema is incomprehensible, for it appears to suggest that operations change
specifications of states (state spaces) rather than states. The solution to all this
must begin by reconciling these pre-theoretic contradictions.

The older perspective, that schemas are states, is highly syntactic and it is
linked with interpretations of the notation which are essentially based on macro-
expansion. These have no, or very limited, mathematical properties. Moreover,
this view is incompatible with almost all of the innovative work on Z which
has taken place more recently, much of which has been introduced as a result
of applying Z in practice. In particular, the greater role for schemas, as first-
class entities, presupposes that they represent specifications of collections and
not specifications of individuals. From this perspective it is easy to render the
Ξ-schema by means of [z , z ′ ∈ S | z = z ′] for some suitable choice of labels z
and z ′. Note that it is now quite clear that S describes the set of states over which
the operation computes, and the before and after states both conform to that
specification. As a result the type of the equality is preserved naturally, without
resort to dubious technical tricks. The ∆-schema is now best thought of as a
declaration and not as a schema at all: z , z ′ ∈ S .

So far as the θ operation is concerned, we have not needed to employ it in
the definition of the Ξ-schema because, instead of including a schema, we have
introduced a declaration over the schema as a set. But this approach can be taken
whenever the θ operation is normally required. It is a natural corollary of adding
schemas as sets to Z in the systematic fashion we are advocating: the operation
θ has no role to play.

3.1. Latent declarations

We have argued that we should remove the concepts of schema priming and the θ
operator on both conceptual and mathematical grounds. We must then investigate
whether or not the language remains expressive enough for its purposes. Certainly
there is a change of style. Adapting existing Z specifications to our revised
framework requires some care: when the θ operator is useful in standard Z we
would introduce a declaration of schema type, where, most often, the standard Z
would invoke a schema inclusion.

This approach, on its own, would require more explicit use of binding projec-
tion in specifications written in our system. Compare, for example, the following
in standard Z ([WoD96], p. 175) and then our revised language.

BoxOffice =df [seating : P Seat , sold : Seat 7→ Customer | dom sold ⊆ seating]
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Return0

∆BoxOffice
s? : Seat
c? : Customer

s? 7→ c? ∈ sold

sold ′ = sold \ {s? 7→ c?}
seating ′ = seating

BoxOffice =df [seating ∈ P Seat , sold ∈ Seat 7→ Customer | dom sold ⊆ seating]

Return0

b, b ′ ∈ BoxOffice
s? ∈ Seat
c? ∈ Customer

s? 7→ c? ∈ b.sold

b ′.sold = b.sold \ {s? 7→ c?}
b ′.seating = b.seating

The notational burden is rather similar to that one can encounter in programs
which manipulate structured data. In Pascal, for example, one has the “with”
idiom to aid presentation. A generalisation of this seems called for here.

We shall permit, as prime declarations, a new form which we will call latent
declarations. These are written:

(lξ ∈)S

where ξ is a, possibly absent, diacritical mark (prime, subscript etc.). Notice that
we restrict the use of this idiom to schemas only: its purpose is to ameliorate
the inexpressivity of our revision of Z which accrues because of the occasional
replacement of schema inclusion by a declaration, and there is nothing to be
gained by making it more general than absolutely necessary.

The idea is that one may, in the context of this declaration, refer to the
components of S directly. On the other hand, lξ is available, if necessary, when
one would conventionally require the θ-operator.

We can translate such a novelty into Z by means of:

[ · · · (lξ ∈)SPT · · · | P ] =df [· · · lξ ∈ S · · · | P [αTξ/lξ.αT ]]

The diacritical mark ξ plays a crucial role. It is perfectly possible (indeed highly
likely in view of the inclusion of ∆-schemas in operations) that a schema is
effectively included twice in our version of Z. Consequently, these marks, which
in standard Z refer to distinct components in distinct schemas, allow us to
determine to which declaration the component belongs.

In the presence of this syntactic device we can write the schema above as:
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Return0

(b, b ′ ∈)BoxOffice
s? ∈ Seat
c? ∈ Customer

s? 7→ c? ∈ sold

sold ′ = sold \ {s? 7→ c?}
seating ′ = seating

This is not significantly different from the standard presentation.
Additionally, we make use of the latently declared components at the same

time as suppressing their appearance elsewhere. For example, in standard Z we
might have ([WoD96] p. 193):

Promote
∆Array
∆Data
index? : N

index? ∈ dom array
{index?} −C array = {index?} −C array ′
array index? = θData
array ′ index? = θData ′

In our revised language this could now appear as:

Promote
(a , a ′ ∈)Array
(d , d ′ ∈)Data
index? ∈ N
index? ∈ dom array
{index?} −C array = {index?} −C array ′
array index? = d
array ′ index? = d ′

It is, perhaps, important to reinforce the point that our framework is likely to
impose some differences in the style of specification. In particular, in evaluating
our proposals with standard Z one must guard against assuming that simply
transliterating existing specifications is the correct point of comparison. The
following example demonstrates that one might approach a problem in quite
a different way. The technique we shall illustrate is described in [Bow96] from
which the example is adapted.

Example 3.1. The objective is to define a form of Ξ-schema which ensures that
only some of the state components are invariant across a state change. Consider:

S
a , b, c : N

Taking ∆S and ΞS as usual we define:

Φ(z ) =df ∆S ∧ (ΞS \ [z : N])

Calculation reveals that Φ(a) =
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∆S

b ′ = b
c′ = c

In other words Φ(a) is the same as ΞS except that one component of S (the
component a) is not held invariant. Whereas we could represent this directly in
our version of Z we might observe that the following is possible: Φ[X ] =df

s , s ′ ∈ S

s �X = s ′ �X

Then we would represent the schema Φ(a) above as Φ[X := [b, c : N]].

Although we might wish to argue that this is much clearer, this is not our
purpose here. The point at issue is that it is a complex matter to determine the
relative expressive merits of standard Z and our revision, because each language
determines its own natural styles. This is well worth exploring in much more
detail in the future. We shall make some further comments in Section 5.

4. Example

We shall not try to be over ambitious and will, by no means, attempt encyclopaedic
coverage of Z specification techniques in this section. It will certainly remain to be
seen whether or not what we have established as a revised Z meets the demands
of practice. We would hope, at the very least, that the existence of a complete
mathematical framework will encourage others to experiment.

Let us, at least, consider a reasonable example from the literature. This
concerns the technique of promotion (see [WoD96] chapter 13). The example
taken from this chapter (pp. 186-7) concerns the promotion of an operation over
a local state to an operation over a global state. This is Z at its very best:
providing a general organising strategy which structures a specification. First we
present the example as it stands in the book.

LocalScore
s : PColour

GlobalScore
score : Players 7→ LocalScore

AnswerLocal
∆LocalScore
c? : Colour

s ′ = s ∪ {c?}
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Promote
∆GlobalScore
∆LocalScore
p? : Player

p? ∈ dom score
θLocalScore = score p?
score′ = score ⊕ {p? 7→ θLocalScore′}

Then the specification of AnswerGlobal , the operation over the global state, is
given by promoting AnswerLocal with respect to Promote:

∃∆LocalScore • AnswerLocal ∧ Promote

In our presentation this would be rewritten as follows:

LocalScore
s ∈ PColour

GlobalScore
score ∈ Players 7→ LocalScore

AnswerLocal
(l , l ′ ∈)LocalScore
c? ∈ Colour

s ′ = s ∪ {c?}

Promote
(g , g ′ ∈)GlobalScore
l , l ′ ∈ LocalScore
p? ∈ Player

p? ∈ dom score
l = score p?
score′ = score ⊕ {p? 7→ l ′}

Then the specification of AnswerGlobal the operation over the global state is then
given by:

(AnswerLocal ∧ Promote) \ [l , l ′ ∈ LocalScore]

What confidence can we have that the schemas we have defined are the intended
interpretation? Since our operators are not defined by syntactic transformation
we cannot undertake the simplification of [WoD96] p. 188 which demonstrates
that ∃∆LocalScore • AnswerLocal ∧ Promote is equivalent to:
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AnswerGlobal
∆GlobalScore
p? : Player
c? : colour

p? ∈ dom score
{p?} −C score′ = {p?} −C score
(score′ p?).s = (score p?).s ∪ {c?}

However, we have more or less the same apparatus in another guise: each of
the syntactic transformations in the text-book have become instances of provable
equalities in our Z logic. Putting together the various lemmas for the schema
expressions from the technical development has established an equational logic
for reasoning about schemas.

The first stage is to remove the latent declarations.

AnswerLocal
l , l ′ ∈ LocalScore
c? ∈ Colour

l ′.s = l .s ∪ {c?}

Promote
g , g ′ ∈ GlobalScore
l , l ′ ∈ LocalScore
p? ∈ Player

p? ∈ dom score
l = g .score p?
g ′.score = g .score ⊕ {p? 7→ l ′}

Next, since our equations always require the D∗ form of declarations, we clearly
have to use the rule (∈=) on GlobalScore since its declaration part is not of the
right form. GlobalScore =(∈=)

GlobalScore0

score ∈ P(Players × LocalScore)

score ∈ Players 7→ LocalScore

We can now substitute this for GlobalScore in Promote, and then, in turn, we can
equate Promote with a schema whose declaration part is in the D∗ form.
Promote =(sub,∈=)

Promote0

g , g ′ ∈ [score ∈ P(Players × [s ∈ PColour])]
l , l ′ ∈ LocalScore
p? ∈ Player

p? ∈ dom score
l = g .score p?
g ′.score = g .score ⊕ {p? 7→ l ′}
g , g ′ ∈ GlobalScore0
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We now proceed to the conjunction:

AnswerLocal ∧ Promote =(sub) AnswerLocal ∧ Promote0 =(∧=)

AG
g , g ′ ∈ [score ∈ P(Players × [s ∈ PColour])]
l , l ′ ∈ LocalScore
c? ∈ Colour
p? ∈ Player

l ′.s = l .s ∪ {c?}
p? ∈ dom g .score
l = g .score p?
g ′.score = g .score ⊕ {p? 7→ l ′}
g , g ′ ∈ GlobalScore0

Then, by substitution, we have

AnswerLocal ∧ Promote0 \ [l , l ′ ∈ LocalScore] =(sub) AG \ [l , l ′ ∈ LocalScore]

and then, by the equality rule for hiding, AG \ [l , l ′ ∈ LocalScore] =
(\=

)

AnswerGlobal0
g , g ′ ∈ [score ∈ P(Players × [s ∈ PColour])]
c? ∈ Colour
p? ∈ Player

∃ z , z ′ ∈ LocalScore •
z ′.s = z .s ∪ {c?} ∧
p? ∈ dom g .score ∧
z = g .score p? ∧
g ′.score = g .score ⊕ {p? 7→ z ′} ∧
g , g ′ ∈ GlobalScore0

Note that z ′.s = z .s ∪{c?} ⇔ z ′ = 〈| s V z .s ∪{c?} |〉 is easily proved in the logic.
So the predicate part of AnswerGlobal0 is:

∃ z , z ′ ∈ LocalScore •
z ′ = 〈| s V z .s ∪ {c?} |〉 ∧
p? ∈ dom g .score ∧
z = g .score p? ∧
g ′.score = g .score ⊕ {p? 7→ z ′} ∧
g , g ′ ∈ GlobalScore0

By the one-point rule, on the first equation, we have:

∃ z ∈ LocalScore •
p? ∈ dom g .score ∧
z = g .score p? ∧
g ′.score = g .score ⊕ {p? 7→ 〈| s V z .s ∪ {c?} |〉} ∧
g , g ′ ∈ GlobalScore0

and again on the second equation gives:
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p? ∈ dom g .score ∧
g ′.score = g .score ⊕ {p? 7→ 〈| s V (g .score p?).s ∪ {c?} |〉} ∧
g , g ′ ∈ GlobalScore0

This then yields, by substitution:

AnswerGlobal2
g , g ′ ∈ [score ∈ P(Players × [s ∈ PColour])]
c? ∈ Colour
p? ∈ Player

p? ∈ dom g .score
g ′.score = g .score ⊕ {p? 7→ 〈| s V (g .score p?).s ∪ {c?} |〉}
g , g ′ ∈ GlobalScore0)

Now, using (∈=) again (and this time from right to left) we can undo the
manipulations on GlobalScore we began with:

AnswerGlobal3
g , g ′ ∈ GlobalScore
c? ∈ Colour
p? ∈ Player

p? ∈ dom g .score
g ′.score = g .score ⊕ {p? 7→ 〈| s V (g .score p?).s ∪ {c?} |〉}

Rewriting the second equality using the same argument as [WoD96] we then
have:

AnswerGlobal4
g , g ′ ∈ GlobalScore
c? ∈ Colour
p? ∈ Player

p? ∈ dom g .score
{p?} −C g ′.score = {p?} −C g .score
(g ′.score p?).s = (g .score p?).s ∪ {c?}

Then re-introducing latent declarations, we finally obtain:

AnswerGlobal
(g , g ′ ∈)GlobalScore
c? ∈ Colour
p? ∈ Player

p? ∈ dom score
{p?} −C score′ = {p?} −C score
(score′ p?).s = (score p?).s ∪ {c?}

This is precisely the natural transliteration of the AnswerGlobal schema which is
given in [WoD96] into our version of Z. The equations we have developed and
used are similar to the informal, purely linguistic, transformations adopted in the
textbooks, and our logic explains why these work. In view of proposition 4.14
of [HeR99], deduction ensures type-correctness automatically. A logic, in fact,
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permits more to be said about specifications, and then as a consequence, more
can be checked, with a gain in confidence as a major benefit.

5. Conclusions and future work

The purpose of this and the companion paper [HeR99] was twofold. Most
crucially, we wished to provide an analysis of the language Z within the context
of a useful mathematical framework, thus establishing Z as a specification logic.
A secondary aim has been a critique of the Z language which has become
established in the literature. These two trajectories are linked. Whilst it would
have been entirely possible to outline many of the conceptual conundrums which
Z poses in a discursive style (and it must be said that almost everything we have
said is known and shared by various workers in the Z research community),
we have been determined to allow the mathematics to take the lead. As is
very often the case, a mathematical approach does more than formalise; it
additionally highlights areas of confusion and complexity. Consequently, we have
used mathematical criteria to produce not only a formal account but a simple
and (ultimately, we hope) usable account which retains the major benefits which
Z offers: expressibility and scalability.

We have attempted to be reasonably comprehensive and have addressed, if in
places only in outline, most of the major areas of the Z language. However, much
remains to be done. We should like, in future publications, to develop and extend
the work we have begun here on the schema calculus and, as we have mentioned,
explore the organisation of specifications at the level of sections. In addition we
wish to pursue program development in the context of the specification logic we
have established. In particular, we are very interested in exploring other semantic
foundations for Z based on a constructive, intensional set theory and to compare
this with the traditional model, based as it is on classical, extensional set theory.

Finally, as we acknowledge in Section 3.1, our revised framework requires a
significant change in style and a significant investigation in which existing strate-
gies are re-expressed must be undertaken. The results of such an investigation
must then be used to evaluate and modify our approach. Such an interplay be-
tween theory and practice is vital. It is also not clear how the revised language
interacts with existing work on program development. From our point of view
this is not a concern for, as we indicated in the previous paragraph, we aim to
address this topic by replacing the standard classical, extensional model with an
intensional and constructive model. However, there are clearly interesting avenues
to explore which utilise more conventional mechanisms. In order to investigate
any of the these topics deeply, it would be very useful to use the systems provided
here as the basis for a proof development tool. Work on this has already begun
[Völ98], though much remains to be achieved.
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