
Working Paper Series
ISSN 1170-487X

Liberalising Event B
Without changing it

Steve Reeves and David Streader

Working Paper: 07/2006
July 10, 2006

c©Steve Reeves and David Streader
Department of Computer Science

The University of Waikato
Private Bag 3105

Hamilton, New Zealand

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Research Commons@Waikato

https://core.ac.uk/display/29194639?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Liberalising Event B (Without changing it)

Steve Reeves and David Streader
University of Waikato,Hamilton, New Zealand

{dstr,stever}@cs.waikato.ac.nz

July 10, 2006

Abstract

We transfer a process algebraic notion of refinement to the B method by using
the well-known bridge between the relational semantics underlying the B machines
and the labelled transition system semantics of processes. Thus we define delta
refinement on Event B systems. We then apply this new refinement to a problem
from the literature that previously could only be solved by retrenchment.

Keywords: process refinement, automatic verification, frame refinement, Event B

1 Introduction
In this paper we will clearly state a well-known formal relation between the set theo-
retic semantics underlying B machines and the labelled transition system (LTS) seman-
tics of process algebra. However since such operational semantics only define part of
the semantics, we also need to define a refinement relation on the operational seman-
tics.

The semantics (meaning) of a LTS is commonly given by defining a refinement
relation on the LTS, indeed see Glabeck [1] for an interesting survey of refinements and
testing semantics. The informal intuition is that the meaning of a specification is given
by the set of implementations that satisfy it and each distinct refinement relation defines
a distinct set of implementations that the specification can be refined into. Hence each
refinement may define a distinct meaning for a single LTS

First we will review simple B machines (Section 2) and their operational semantics.
We state the proof obligations from Event B and give a definition of refinement of Event
B machines. It is easy to show that the proof obligations imply the refinement. Next
we define the LTS semantics of processes (Section 3) and give the definition of trace
refinement. Using this we define the relation between the two operational semantics
and show (Section 3.1) that proof obligations imply trace refinement.

Then to illustrate the operational semantics of B machines and motivate our dis-
cussion we give an example problem (Section 4) taken from a paper on retrenchment
[2].

In this paper we are interested in frame refinements that allow events (actions) that
do not appear in the abstract specification to appear in the more concrete specification.

1

We introduce two known definitions of process refinement and apply them to Event B
machines (Section 5) to give a new and more liberal notion of refinement.

Finally we use this to refine our example specification so as to satisfy the specifica-
tion (Section 6).

2 B Machine operational semantics
Both B and Event B define machines with a set of private variables, an invariant condi-
tion and a set of public operations. We will refer to the set of operations as the frame
of the machine. We do this because this set of of operations forms a frame of reference
and the machine will tell us nothing about operations that appear outside of the frame
of reference.

To be valid the machine must satisfy some “proof obligations”. What make B and
Event B machines so useful is the first order proof obligations that can be automatically
generated and which are sufficient to infer refinement.

In B [3] operations are given a partial relational semantics. The domain is parti-
tioned into three disjoint sets. The states that do not satisfy a precondition Pre are
undefined. The states that satisfy Pre can be either pre-states not related to any post-
state (referred to as magic) or pre-states that are related to a post-state (referred to as
active).

Event B was introduced in Extending B without changing it [4] to model operations
that could be guarded in the process algebraic sense. In Event B operations (now
called events) do not use the preconditionPre and cannot be undefined on part of their
domain. Here we revert back to B like syntax for events. Thus we permit both guards
G(v) and preconditions Pre(v) to be applied to generalised substitutions R(v, v ′):

E , PRE Pre(v) SELECT G(v) THEN R(v, v′) END
When SELECT does not appear assume G(v) = TRUE; similarly when PRE

does not appear assume Pre(v) = TRUE. We add a generalised substitution stop
with before and after predicate FALSE, as sugar for:

stop , PRE FALSE THEN skip END
Event B specifies only safety properties, thus doing nothing satisfies any specifica-

tion because it “does nothing wrong”.

2.1 Refinement in B and Event B
B generates proof obligations that are sufficient but not necessary to establish that a
concrete machine is a refinement of an abstract machine. In Event B refinement is
defined as a property quantified over all operations whereas in B refinement is defined
as a property quantified over all programs.

The effect of a program consists of the initialisation of a machine init followed by a
sequence of the machine’s operations px , initx; o∗x , where the machine can be abstract
(x = a) or concrete (x = c). Let P be the set of all programs and r the relation between
the abstract and concrete state that is defined in the INV ARIANT clause of the B
REFINEMENT .

2

The definition of refinement we use is:
A vB C , ∀p ∈ P.pC ⊆ pA; r

It is easy to see, and well-known [5], that Event B proof obligations:
IA(v) ∧ J(v, w) ∧ PreA(v) ∧GA(v)⇒ ∃w′.S(w,w′) FIS REF

initC(w)⇒ ∃v.initA(v) ∧ IC(v, w) INIT REF
IA(v) ∧ IC(v, w) ∧ PreC(w) ∧GC(w) ∧ RC(w,w′)⇒ INV REF

GA(v) ∧ PreA(v) ∧ ∃v′.(RA(v, v′) ∧ IC(v′, w′))
directly imply the subset relations in Fig. 1.

s

◦
⊆ ⊆ ⊆

◦

◦

◦ ◦

◦ ·

·

initC

initA
r r r

bAaA

aC bC

Figure 1: Forwards refinement

Lemma 1 The subset relations in Fig. 1 imply A vB C

This is clear from inspection of Fig. 1. •

3 Operational semantics of processes

LetAct be a finite set of observable operations and τ and δ be two special unobservable
operations.

Definition 1 LTS—labelled transition systems. Let Alp ⊆ Act be the alphabet,NA be
a finite set of nodes and sA the start node. LTS AAlp , (NA, sA, eA, TA, Alp) where
sA ∈ NA, eA ∈ NA, and TA ⊆ {(n, a,m)|n,m ∈ NA ∧ a ∈ Alpτ ∧ n 6= eA}. •

To reduce notational clutter AAlp will be frequently written as A where its alphabet
Alp is clear from context and will write α(A) for Alp the alphabet of A.

A path is a sequence of states and actions and the set of paths generated by the LTS
A is: PathA , {sA, ρ

α
1 , n2, ρ

α
2 , . . . |(n1, ρ

α
1 , n2), (n2, ρ

α
2 , n3), . . . ∈ TA}.

We write |ρ| for the number of actions in (i.e. length of) a path and ρα for the
sequence of actions ρα1 , ρ

α
2 . . . in path ρ = sA, ρ

α
1 , n2, ρ

α
2 For finite paths ρ =

sA, ρ
α
1 , n2, ρ

α
2 , . . . ni define last(ρ) , ni. We will write ε for the empty sequence

of actions, hence sαA = ε. Where A is obvious from context we write x a−→y for

(x, a, y) ∈ TA, n
a−→ for ∃m.(n, a,m) ∈ TA, sA

ρα−→ when ρ ∈ PathA and finally

sA
ρα−→n when ρ ∈ PathA ∧ last(ρ) = n.
Definition 1 takes no account of τ actions being unobservable, and we call → a

strong semantics and define the traces of A to be: Tr(A) , {ρα|sA
ρα−→}.

and trace refinement to be: A vTr C , Tr(C) ⊆ Tr(A).

3

3.1 Relating operational semantics
There is an obvious bijection between LTS semantics and the relational semantics of
a machine. Note a machine consists of a set of named operations hence the relational
semantics of a machine contains a set of named relations:

Let the transitions of LTS A be the set of triples TA; this defines the following set
of named partial relations:

{(n,Rn)|(x, n, y) ∈ TA} where Rn , {(x, y)|(x, n, y) ∈ TA}.
Similarly the set of named partial relations Npr defines a set of transitions:

TA , {(x, n, y)|(n,Rn) ∈ Npr ∧ (x, y) ∈ Rn}.
The alphabet of an Event B machine is the set of names of its operations. As an

operation o , stop will generate no transitions the LTS needs an explicit definition of
its alphabet.

This relation between the state- and event-based semantics can be used to show
what we might expect: that the proof obligations of Event B refinement are sufficient
to establish trace refinement.

Lemma 2 A vB C implies A vTr C

Proof: We will prove A 6vTr C ⇒ A 6vB C and from this, using propositional logic,
we can infer A vB C⇒ A vTr C.

Assume A 6vTr C and hence ∃t ∈ Tr(C) ∧ t /∈ Tr(A)

s

◦
⊆ ⊆ ⊆ 6⊆

◦

◦

◦ ◦

◦ · ·
initC

initA
r r r

bAaA

aC bC cC

Figure 2: Contradiction

With out loss of generality let t , a; b; c . . . and let the greatest prefix in Tr(A) be
a; b. Hence clearly from Fig. 2 A 6vB C. •

4 Example - Mobile Radio
For our example we use the specification of a Mobile Radio from [2] where the difficul-
ties refining the low-level mobile radio LLMR are used to justify the use of retrench-
ment. We make one small change to the specification: their call outgoing operation
co(x) is amended to x←co with an outgoing parameter.

MACHINE HLMR
SETS CALLS = {Idle, Busy}
VARIABLES callState, currChan
INVARIANT callState ∈ CALLS ∧ currChan ∈ CHANNELS
INITIALISATION callState := Idle ‖ currChan :∈ CHANNELS
OPERATIONS

4

do , PRE callState = Busy THEN callState := Idle END;
di , SELECT callState = Busy THEN callState := Idle END;

x←co , PRE callState = Idle ∧ x ∈ CHANNELS THEN
CHOICE callState := Busy ‖ x := currChan OR skip
END

END;
ci(x) , PRE x ∈ CHANNELS THEN

SELECT callState = Idle THEN
callState := Busy ‖ currChan:= x ELSE skip

END
END;

END

In the relational semantics we use solid arrows for the active part of the operation
and dashed arrows for the undefined part of the operation.

do
Idle Idle

Busy Busy

di
Idle Idle

Busy Busy

The radio is either in an Idle or a Busy state and the channel number it is always
set to an element of CHANNEL. The radio is initially in Idle. The call outgoing
action n← co and call incoming action ci(x) both take a channel number as parameter
and this parameter is either n ∈ CHANNEL or m /∈ CHANNEL.

n←co
Idle Idle

Busy Busy

ci(n)
Idle Idle

Busy Busy

ci(m)
Idle Idle

Busy Busy

In the right-hand LTS of Fig. 3 we have included only the active and guarded
operations of the relational semantics and have omitted the undefined operations. Note
the dotted arrow to ⊥ represents that di is blocked from state Idle. The undefined
operations appear in the left-hand LTS. We could have added the undefined operations
to the right-hand LTS but this would have made it very hard to read.

Idle Busy

Assume not called

Undefined

do,ci(m) n←co,ci(m)

Guaranteed actions of HLMR

Idle Busy

⊥
di

di,do

n←co,ci(n)

n←co ci(n)

Figure 3: Assume Guarantee Specification of High Level Mobile Radio

The specification makes no guarantee as to its behaviour if one of the undefined
operations is called. Rephrasing the specification assumes that undefined operations of

5

the left LTS are not called and only guarantees its behaviour (the right-hand LTS) when
the assumption is satisfied.

The high-level Mobile Radio has been partially specified. How it behaves with op-
eration ci(m) is completely undefined, as is operation do from state Idle and operation
n← co from state Busy.

5 Frame Refinement
The state of our machines is private. The only part of a machine that can be seen by,
or interact with, a context is the set of operations (events). Consequently the frame of
a machine is the set of its operations, and frame refinement introduces new operations.

The treatment of frame refinement is different in the state-based and event-based
approaches. The first point to note is that in the event-based world there are two forms
of unobservable event: the τ and δ events, see [6] for details. Consequently there are
two ways to remove events from a concrete process: one, hiding or abstraction; and the
other, restriction. Each of these methods of removing events can be reversed to give
two definitions of frame refinement, whereas the state-based literature has focused on
just one of these.

Definition 2 Operation on LTS A
AδD , (NA, sA, eA, TAδD) where D ⊆ Act and TAδD defined by:

n
a−→Al, a /∈ D ∪ {δ}
n

a−→AδD l
α(AδD) , α(A)−D

AτS , (NA, sA, eA, TAτT) where T ⊆ Act and TAτS defined by:
n

a−→Al, a /∈ T
n

a−→AτT l

n
a−→Al, a ∈ T
n

τ−→AτT l
α(AτT) , α(A)− T •

Both unobservable operations τ and δ can be removed from the LTS without chang-
ing its observational semantics. The removal of δ actions always simplifies the LTS and
is so simple it has been built into Definition 2. All δ operations can simply be removed.

The removal of the τ operations is more problematic and in Definition 2 operations
are simply renamed as τ to be removed later by abstraction.

5.1 Abstraction
To model τ events as unobservable we show how to abstract them. This results in a
LTS that consists only of observable events.

Definition 3 Observational semantics =⇒:
s
τ

=⇒t , s τ−→s1, s1
τ−→s2, . . . sn−1

τ−→t
n

a
=⇒m , n τ

=⇒n′, n′ a−→m′,m′ τ=⇒m ∧ a ∈ Act
Abs(A) , (NA, sA, eA, {n x−→m|n x

=⇒m}). •

Our observational semantics is not the same as in CCS [7] where not all τ opera-
tions can be removed. We, like CSP, are able to remove all τ actions (see Fig. 4).

6

Essentially the same definition as Definition 3 has appeared in [8, 9, 10], and see
[10] for further comparison with the literature.

From the definition of an obser-
A

s ◦ e

◦ e

a c

τ

b Abs(A)

s ◦ e

◦ e

a c

ba

b

Figure 4: Action abstraction

vational semantics (⇒) we define
the traces of A, Tr(A) , {ρα|sA

ρα

=⇒}.
The frame of reference of a LTS

is its alphabet Alp. Usually in the
process literature the alphabet Alp is fixed for all LTS and hence its role is not made
explicit and the refinement rules so far mentioned do not permit a change in Alp.

But in the process literature there are known refinements that do permit a change
in the frame of the LTS, however they are extensions of failure refinements. In [11]
two refinements are considered where some actions of a concrete process are renamed.
In one form of refinement they are renamed to be τ actions and in the other they are
renamed to be δ actions.

Here all we do that is different is apply the same extension to trace refinement:

Definition 4 tau and delta refinement.
(AAlp vTrd CAlp∪New) , (AAlp vTr CAlp∪NewδNew)

(AAlp vTrt CAlp∪New) , (AAlp vTr CAlp∪NewτNew) •

5.2 Event B frame refinement

If a new event is a refinement of a skip statement then the concrete machine will be
observationally equivalent to the abstract machine.
IA(v) ∧ IC(v, w) ∧ PreC(w) ∧GC(w) ∧ RC(w,w′)⇒ IC(v, w′) TAU REF

The proof obligation TAU REF is sufficient to establish vTrt
If a new event is a refinement of a blocked statement then the concrete machine

will be a vTrd refinement of the abstract machine. This delta refinement requires no
proof obligation. At first glance this seems so liberal as to render refinement mean-
ingless. Although “do nothing” is always a refinement of any specification and we can
now add new events anywhere, it looks like we can refine any specification into any
implementation. But we cannot.

The particular “do nothing” that is a refinement of AAlp must have the same frame
as A, i.e. stopAlp. Delta refining stopAlp cannot add any action in Alp. Hence the
specification AAlp defines the safe behaviour of events in Alp and states nothing about
events not in Alp.

TAUOPERATIONS andDELTAOPERATIONS are defined by extending
B syntax. We will require that the sets are disjoint and that all operations in the refine-
ment but not in the original machine are in one of these sets. B machine refinement
will only require operations in TAUOPERATIONS to satisfy the proof obligation
TAU REF.

Lemma 3 Let α(C) = α(A) ∪N and N is defined to be a set of TAUOPERATIONS.
A vB C implies A vTrt C

7

Proof: We will prove A 6vTrt C ⇒ A 6vB C and using propositional logic we can
infer A vB C⇒ A vTrt C.

Assume A 6vTrt C and hence ∃t ∈ Tr(CτNew) ∧ t /∈ Tr(A)

s

◦
⊆ ⊆ ⊆ 6⊆

◦

◦

x x

◦ · ·
initC

initA
r r r

skipaA

aC

aC

nC cC

Figure 5: nC ∈ New

Without loss of generality let t , a; n; c . . ., let nC ∈ New and let the greatest
prefix of a; c . . . in Tr(A) be a. Hence clearly from Fig. 5 A 6vB C. •

Lemma 4 Let α(C) = α(A)∪N andN is defined to be a set of DELTAOPERATIONS.
A vB C implies A vTrd C.

The proof is the same as for Lemma 2 except we need to consider the special case of
the δ operations. With B refinement vB these are ignored and on the vTrd they are
also ignored. •

6 Continuing the Mobile Radio example from Section 4
The less abstract, lower-level view of the mobile radio LLMR takes into account new
features, in particular three new operations that do not appear anywhere in the high-
level specification HLMR:

1. When the radio is Busy it may fade and when a fade occurs the radio is Jammed;

2. When the radio is Jammed it must be reset to the Idle state;

This specification is very weak, it assumes that reset will only be called when
callState = Jam;

3. Before the radio will work the user must select a suitable wave band.

Let us assume that the LLMR description is a more accurate depiction of the ac-
tual radio. The high-level view HLMR is meaningful if we assume that the essential
operations sel and reset are always performed when needed and are never observed.
But to make the high-level view HLMR meaningful we must assume that fade is ig-
nored or simply never occurs. We can view the refinement from LLMR to HLMR as
adding this new feature and how to deal with it, while providing the service guaranteed
in HLMR.

This difference in the interpretation of the new operations is reflected in the details
of how the operations are removed from the high-level view HLMR:

8

REFINEMENT HLMR
REFINES LLMR
TAUOPERATIONS sel,reset ∗
DELTAOPERATIONS fade ∗
SETS JCALLSTATES = CALLSTATES ∪ {Jam}
VARIABLES jcallState, jcurrChan, bandSelected
INVARIANT jcallState ∈ JCALLSTATES ∧ bandSelected ∈ Bool

∧jcurrChan ∈ CHANNELS
∧(callState, jcallState) ∈ {(Idle, Idle), (Idle, Jam), (Busy,Busy)} Glue∗
∧currChan = jcurrChan Glue∗
∧bandSelected = FALSE ⇒ jcallState = Idle Reach∗

INITIALISATION jcallState = Idle ‖ bandSelected = FALSE ‖
jcurrChan :∈ CHANNELS

OPERATIONS
sel , PRE band selected = FALSE THEN band selected := TRUE END;

reset , PRE callState = Jam THEN callState := Idle END;
fade , SELECT callState = Busy ∧ band selected = TRUE THEN

callState := Jam
END;

do , PRE jcallState = Busy ∧ bandSelected = TRUE
THEN jcallState := Idle END;

di , SELECT jcallState = Busy ∧ bandSelected = TRUE
THEN jcallState := Idle END;

x←co , PRE jcallState = Idle ∧ bandSelected = TRUE ∧ x ∈ CHANNELS
THEN
CHOICE jcallState := Busy ‖ jcurrChan := x OR

skip OR jcallState := Jam
END

END;
ci(x) , PRE x ∈ CHANNELS THEN

SELECT jcallState = Idle ∧ bandSelected = TRUE THEN
jcallState := Busy ‖ jcurrChan := x ELSE skip

END
END;

END

The LLMR machine is taken from [2]. The only amendments are the addition of
lines marked with a ∗ on the right-hand side. The first two additional lines state how to
abstract the new operations and hence which proof obligations should be applied. The
third and fourth new lines define the gluing invariant between LLMR and HLMR.
The final additional line defines the reachable set of nodes. Without this the proof
obligations for the refinement of operation co(x) from HLMR to LLMR could not
be satisfied.

In order to verify LLMR v HLMR we could either:

9

1. apply δ{fade}τ{sel,reset} to the semantic model of HLMR and using automatic
tools test for trace refinement; or

2. adopt the B approach.

Idle

Jam

Busy

(ns,Idle)

Undefined

do,ci(m)

sel,reset n←co,ci(m)
do

sel

n←co,ci(m)

sel,reset

reset

n←co,ci(m)

do

LLMR

Idle

Jam

Busy

(ns,Idle)

(ns,Jam)

(ns,Busy)

sel

sel

sel

⊥

di

fade

di

fa
de

di,do

fade

fad
e

reset

reset

n←
co

n←co,ci(n)
n←co

ci(n)

ci(n)

Figure 6: Mobile Radio Low Level

States that are unreachable by guaranteed behaviour may be deleted as, by refine-
ment, the nondeterministic actions of the undefined behaviour that do reach those states
can be deleted and consequently the states may become unreachable by any behaviour.
Consequently states not selected and Jammed (ns, Jam) and not selected and Busy
(ns,Busy) may be deleted.

With the state-based approach in [2] they comment “One might say very loosely
that one had refined the HLMR model to the LLMR model, but one could not attach
any mathematical weight to such a statement.” With the simple extension to Event
B refinement we can see that we can give a formal definition of refinement so that
LLMR v HLMR.

7 Conclusion

Using the obvious relation between the relational semantics of B machines and the
LTS semantics of processes we have a simple link between these two separate models.
Using this link we apply the well-known delta refinement, defined on processes, to B
machines. This gives two definitions of frame refinement of B machines: the usual tau
refinement and the new delta refinement.

By applying a combination of tau and delta refinement to a problem taken from
the literature we demonstrate both the usefulness of the two styles of frame refinement
and their conceptually distinct roles. This enabled us to construct a formal refinement
between machines that previously were only related by retrenchment [2].

10

References
[1] van Glabbeek, R.L.: The linear time - branching time spectrum I. the semantics

of concrete sequential processes. In Bergstra, J., Ponse, A., Smolka, S., eds.:
Handbook of Process Algebra. Elsevier Science, Amsterdam, The Netherlands
(2001) 3–99

[2] Banach, R., Poppleton, M.: Retrenchment, refinement and simulation. In: Proc.
ZB-00. Volume 1878 of LNCS. (2000) 304–323

[3] Abrial, J.R.: The B-Book: Assigning Programs to Meanings. Cambridge Univer-
sity Press (1996)

[4] Abrial, J.R.: Extending B without changing it (for developing distributed sys-
tems). In Habrias, H., ed.: Proceedings of 1st Conference on the B method.
Putting into Practice methods and tools for information system design, 3 rue
du Maréchal Joffre, BP 34103, 44041 Nantes Cedex 1, B1996, IRIN Institut de
recherche en informatique de Nantes (1996) 169–191

[5] Metayer, C., Abrial, J.R., Voisin, L.: Event-B language. RODIN Project Deliver-
able D7 (2005)

[6] Baeten, J.C.M., Weijland, W.P.: Process Algebra. Cambridge Tracts in Theoreti-
cal Computer Science 18 (1990)

[7] Milner, R.: Communication and Concurrency. Prentice-Hall International (1989)

[8] Brinksma, E., Rensink, A., Vogler, W.: Applications of fair testing. FORTE 69
(1996) IFIP Conference Proceedings.

[9] Valmari, A., Tienari, M.: Compositional Failure-based Semantics Models for
Basic LOTOS. Formal Aspects of Computing 7 (1995) 440–468

[10] Reeves, S., Streader, D.: Atomic Components. In: ICTAC 2004. LNCS 3407.
Springer-Verlag (2004) 128–139

[11] Fischer, C., Wehrheim, H.: Behavioural subtyping relations for object-oriented
formalisms. LNCS 1816 (2000) 469–483

11

