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Abstract

This paper is an attempt to increase the understanding in the behavior
of ensembles for discrete variables in a quantitative way. A set of tight
upper and lower bounds for the accuracy of an ensemble is presented for
wide classes of ensemble algorithms, including bagging and boosting. The
ensemble accuracy is expressed in terms of the accuracies of the members
of the ensemble.

Since those bounds represent best and worst case behavior only, we
study typical behavior as well, and discuss its properties. A parameter-
ized bound is presented which describes ensemble behavior as a mixture
of depentent base classifier and independent base classifier areas. Some
empirical results are presented to support our conclusions.

1 Introduction

Ensemble algorithms like bagging [4], boosting [8], arcing [5] and their variations
are widely researched and used. There is a good body of emperical work on
ensembles [1, 6].

Ensemble behavior for real valued class variables, like for example in re-
gression problems, are reasonably well understood [4, 12]. However, when the
class variable has discrete values, analysis is not very outspoken and no strong
quantitative results are available.

Various approaches based on variance-bias decomposition [7, 10] and diversity-
loss [3, 9] describe the behavior of ensembles, but interpretation for discrete
classes is cumbersome.

In this article, we concentrate on accuracy of ensembles with discrete classes
by deriving tight bounds on the ensemble accuracy in terms of the mean accu-
racy of the ensemble members. Starting simple with a binary class and so-called



uniform democratic voting as in standard bagging, we generalize the bounds for
increasingly wider classes of ensembles including non-uniform voting, multi-
valued classes and probabilistic voting. Unfortunately, it turns out that the
bounds are rather wide, which explains the difficulty in finding good quantita-
tive analysis of ensemble behavior.

In the following section, terminology is introduced. In the following section
we derive upper and lower bounds on ensemble accuracy for various situations
and voting schemes. Upper and lower bounds only indicate best and worst
case behavior, so we proceed considering typical behavior. We conclude with a
summary, some final remarks and directions for further research.

2 Terms and definitions

We consider a set of variables x = {z1,...,2,}, » > 0 with domain X =
{X1,...,Xp} called attributes and a single variable y with domain Y called
class variable or just class. We will consider finite discrete classes only in this
paper. A classifier C' is a function X — [0,1]/Y] that maps an instantiation
of x inX to a probability distribution Po(y|x) of y. The value of y with the
highest probability is the prediction of the classifier on x, denoted by C(x) =
argmazy cy Po(y = y'|x). Note that classifiers that just output a single value
y* of y (such as simple nearest neighbour and support vector machines) still fit
the model: their output can be interpreted as a degenerate distribution with
Ply=y*)=1and Vy,-P(y =y') =0.

An ensemble is a classifier that combines the results of a set of classifiers

(called base classifiers) C1,...,Ck, k > 1. There are various ways an ensemble
can combine t}ge results of base classifiers: each classifier has a vote with weight
Wi,oen W g Wi = 1.

Democratic voting combines votes by letting each base classifier assign a
single vote to its most likely class, and selecting the class value with the most
votes. The prediction under democratic voting is for instance x is

k
argmazycy Z wil(y = Ci(x))

i=1

where I(.) is the indicator function (I(true) = 1, i(false) = 0) and P;(.|.) the
probability distribution of classifier C;.

Probabilistic voting combines votes by letting each base classifier assign a
single vote to its most likely class, and selecting the class value with the most
votes. The prediction under democratic voting is for instance x is

k

argmaycy Z w; P (y|x)
i=1



Figure 1: Upper bound construction for £ = 4 and 5. ’c’ is correctly classified,

’.” incorrect.
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Other more exotic voting methods exists[3] but these are outside scope of
this paper. Uniform voting is voting where all weights are equal, V¥_ w; = %,
otherwise it is non-uniform voting. Combined with the voting schemes, we get
four combinations: uniform and non-uniform democratic voting and uniform
and non-uniform probabilistic voting.

The instances of (x,y) € X X Y occurs with a probability distribution
P(x,y)). A loss function [ is a function Y x Y — R that compares the predic-
tion of a classifier with the true value of y and maps it onto a real value. In
this paper, we consider the 0-1 loss function I(y,y') = I(y # y'), which is zero
when the prediction matches the true value, and one otherwise. The loss L of
a classifier C' is the expected loss, that is,

L= [ 1.COPExaxy.
XxY
The accuracy A of a classifier C' is the one minus the 0-1 loss of the classifier,

ieA=1-L,or
AZ/ I(y,C(x))P(x,y)dx, y.
XxXY

3 Bounds under 0-1 loss

In this section, we provide bounds on the accuracy of an ensemble in terms of the
accuracies of the individual base classifiers in the ensemble. We start with the
simple case of uniform democratic voting with a binary class and subsequently
generalize in the direction of

e binary to multinomial class,
e uniform to weighted voting, and

e democratic to probabilistic voting.



Finally, a general bound for weighted probabilistic voting with a multinomial
class is given.

3.1 Uniform democratic voting with binary class

In this section, on domain X with binary class Y let Cy,...,Ck, k > 1 be
a set of classifiers with accuracies Ai,...,A;. Let A be the mean accuracy
A= % Zle A;, and A the accuracy of the ensemble using uniform democratic
voting.

LEMMA 3.1
A<24

So, the accuracy of an ensemble never exceeds the mean accuracy by a factor
of 2.

Proof: Let T be the maximum (by probability mass) set of instances (x,y)
for which C(x) = y. Because uniform democratic voting is used, for every
(x,y) € T the number of votes for y must be larger or equal k/2 (in case it is
equal, the voting scheme is choosing a class value randomly, and since we are
constructing an upper bound, we assume it happens to always make the correct
choice).

So, every (x,y) € T consumes at most k/2.P(x,y) votes. There is a total
of Ele A; votes available. Therefore, the fraction of (x,y) in T is at most
the number of available votes divided by the number of required votes P(T) =
(XF Ai)/(k/2) =21 5% | A; = 24, No better allocation of votes is possible,
since for every move of a vote for y for instance (x,y), would make that instance
misclassify and no other instance is helped by the moved vote. So this is the
largest size T' can take.

Note that A is the probability an instance in T occurring, A = [y, y I(y, C(x))P(x,y)dx,y <

Jr P(x,y)dx,y = P(T), so A < 2A. L]

LEMMA 3.2 B
A>24-1

In words, the accuracy of an ensemble never decreases below twice the mean
accuracy minus 1. So, if the mean accuracy drops below a half, the ensemble
accuracy may drop to zero.

Proof: We try to find a lower bound by allocating the votes of the base classifiers
in a way that lowers the accuracy as much as possible. There is a fraction of
kA votes available. Let A,,;, be the minimum obtainable accuracy and T as in
previous proof, then to spill as many votes as possible, each (x,y) € T should
get k votes, consuming kA, votes. The fraction in F (i.e. all instances outside
X) should consume k/2 votes, for a total of k/2P(F) = k/2(1 — Apn) votes.



Summing kAmin and k/2(1 — Anin) gives the total set of votes kA. And after
some manipulation, we get,

k/Z( mzn) + kAmzn = kA
= 1/2(1 - mzn) + Amzn = A
& 1/21) +1/24mim = A
& Apin = 24-1
So A never decreases below A, = 24 — 1. ]

The question now is whether the bounds in Lemma 3.1 and 3.2 are tight
or loose. Figure 1 shows an example for £k = 4 and & = 5 where the first
column indicates a number of the instance (x,y), and the last column contains
the classification of the ensemble. The columns in the middle show whether a
classifier C; has a correct (c) prediction or an incorrect (.) for the particular
instance. So, for k = 4 and k = 5 there are cases that are close to the upper
bound indeed. The following lemma shows this is true for general k£ > 1.

LEMMA 3.3 There ezist sets of classifiers such that A = min(2A + ¢, 1) where
e=A/2k

Proof: Let k be even. Let Ci,...,C) have equal accuracies, V¥ ;A4; = A.
First, assume A is less than a half. Let (x,y) be such that it can be split into
sets of instances iy, ... ,ik,ix+1 such that for 1 < i < k, P(i;) = 2A/k and
Pligy1) =1—24

Now, let C; vote correct for i;, ... , i,-+k/2, then a fraction of Z’Jrk/? P(i;) =
k/2.2A/k = A = A; portion of the vote is consumed for classifier C Also, for
each 1 <14 <k, k/2 of the base classifiers vote correct, hence the vote is correct
for Y P(i;) = Y% 24/k =24

If A is more than £, the same recipe as before with A = 1/2 can be applied
and we get A = 1. The procedure leaves a few extra votes to be assigned, which
can be done at random.

If k is odd, a fraction k + 1/2 of the votes is required instead of k/2 which
requires A/2k of the vote to be assigned to exceed the threshold. L]

A similar construction exists for the lower bound, as illustrated in Figure 2
and is generalized in the following lemma.

LEMMA 3.4 There ezist a set of classifiers such that A = maz(24 — 1+ ¢€,0)
where e = A/2k.

Proof: Let k be even. Let C1,... ,Cy have equal accuracies, Vi_; A; = A.
IftA> %, let (x,y) be such that it can be split into sets of instances

i1y--- 50k, ipp1 such that P(ig11) = 2A—1andfor 1 <i <k, P(i;) = (2—24)/k
constant. Let instances in ixy; be classified correct by each base classifier,

In the following paragraph, all indices are to be interpreted modulo k.



Figure 2: Lower bound construction for £k =4 and 5
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consuming k(2A — 1) of the votes and contributing 24 — 1 to the accuracy.
Now, let C; vote correct for i;,... %2, ! then a fraction of Z;i’;ﬂ P(i;) =
k/2.2A/k = A = A; portion of the vote is consumed for classifier C;. Also,
for each 1 < i < k, k/2 of the base classifiers vote incorrect, hence the vote is
incorrect. Now, every classifier C; has assigned k/2.(2 —2A) /k for the instances
i1,-.. 4 and (24 —1) for instances i1, which sums to A = C; of its votes. No
contribution to the accuracy is made by the instance i1, ... ,i; since the vote
never exceeds k/2. So, the total accuracy is contributed by ix41 alone, and this
is only 24 — 1.

IfA< %, the same procedure applies, but now the set of instances ix4+1 can
be made empty, and some instances cannot get a correct vote, resulting in an
accuracy of zero.

If k is odd, a fraction k& — 1/2 of the votes is required instead of k/2 to
make an instance misclassify, so this leaves A4/2k of the vote to be assigned to
instances in 7.

THEOREM 1 Subject to 0 < A <1,
2A—1<A<24 (1)
and there exist sets of classifiers that realize these bounds within O(1/k).

Proof: Follows directly from Lemma 3.1 to 3.4 and the observation that the
accuracy by definition is between zero and one. U]

3.2 Uniform democratic voting with multinomial class

The results from the previous section can be generalized to multinomial classes
with |Y'| values realizing that to get a correct ensemble prediction, in the best
case only |Y|/k of the base classifiers have to be correct. However, in the worst
case k/2 of the base classifiers may be correct while the ensemble prediction is
incorrect. This happens namely if the incorrect base classifiers all vote for the
same incorrect class.



In this section, on domain X with multinomial class Y let C1,... ,Ck, k > 1
be a set of classifiers with accuracies A1, ..., Ax. Let A be the mean accuracy

A= % Zle A;, and A the accuracy of the ensemble using uniform democratic
voting.

THEOREM 2 Subject to 0 < A <1,
2A-1< AL |Y|A (2)
and there exist sets of classifiers that realize these bounds within O(1/k).

Proof: The lower bound follows from the same construction as in the proof of
Lemma 3.2 where it is assumed that for an instance x all incorrect classifiers
vote for the same class. Existence of a set of classifiers that realizes this bound
is as in the proof of Lemma 3.4 under the same restriction.

The upper bound follows from realizing that only k/|Y| of the base classifiers
need to be correct, as long as none of the incorrect values of |Y'| gets more than
k/|Y| of the votes (and in a draw of the votes the ensemble always happens to
select the correct value). The proofs of Lemma 3.1 and 3.3 apply with these
modifications, giving the upper bound and existence of a set of classifiers realizes
this bound. ]

Note, Theorem 1 is a special case of Theorem 2 for |Y| = 2.

3.3 Non-uniform democratic voting with multinomial class

For non-uniform voting, the mean accuracy A needs to be generalized as follows:

A= Zle w; A, which reduced to ¢ Zle A; for uniform voting.
THEOREM 3 Subject to 0 < A <1,

2A-1<A<|Y]A (3)
and there exist sets of classifiers that realize these bounds arbitrarily close.

Proof: Existence of the bounds follow from the observation that still an amount
of kA votes need to be optimally distributed. The existence proofs follow the
same pattern.

Realization of the bounds follows from the fact the bounds are realized for
uniform voting, which is a special case of non-uniform voting for k£ even. For k
odd, let wy = 0, and the classifiers 2, ...,k form a set with an even number of
classifiers, as before. ]

Note, Theorem 3 generalizes Theorem 1 and 2.

The theorem can be reformulated in terms of loss instead of accuracy as
follows. Let L; be the 0-1 loss for base class C; for 1 < i < k and let the mean
member loss be L = Zle w;L;. Then we have the following property.



CONSEQUENCE 3.1 Subject to 0 < L <1,
YIL+1-|Y|<L<2L

and there exist sets of classifiers that realize these bounds arbitrarily close.

Proof: Follows from definitions and some manipulation L = Ele w;L; =

Zle_w,-(l —4;) = Zle w; — Zle w;A; = 1— A. Now, substituting L=1-A
and L =1 — A in equation (3) gives

20-L0L)-1 < (1-L) < [|Y|(1-1L)
& 1-2L < 1-L < |Y|-|Y|L
& —-2L < -L < [Y|-1-|Y|L
& 2L > L > |[Y|L+1-1Y|

which by switching terms and observing 0 < L < 1 gives the desired result. []

3.4 Non-uniform probabilistic voting with multinomial class

For probabilistic voting, the member accuracy A; needs to be generalized as
follows: instead of considering the prediction of a classifier, consider the proba-
bility mass assigned to the correct class. More formally,

A= [ PkoPe iy
XXY

Now, let A = Zle w; A?| then we have the final result of this section.
THEOREM 4 Subject to 0 < A <1,

2A-1<A<|Y]A (4)
and there exist sets of classifiers that realize these bounds

Proof: Existence of the bounds follow from the observation that still an amount
of kA votes need to be optimally distributed. The existence proofs follow the
same pattern.

Realization of the bounds again follows from the fact the bounds are real-
ized for democratic voting, which is a degenerate case of probabilistic voting.
However, since there is a more refined control over distributing votes, because
fractions of votes can be assigned, it is possible to select classifiers for the upper
bound such that for correctly classified instance x k/|Y| + € of the votes are
correct, where € can be made arbitrarily small. Same argument applies for the
lower bound.

Note, Theorem 4 differs from Theorems 1 to 3 in that the bounds now can
be reached arbitrarily close, and in the definition of the mean member accuracy
A.



Figure 3: Graph of bounds (Ib = lower bound, ub; = upper bound)
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Let L? be 1 — A?, that is the probabilistic 0-1 loss for base class C; for
1 < i< k and let the mean member loss be L = Ele w; L;. Then we have the
following property.

CONSEQUENCE 3.2 Subject to 0 < L <1,
YIL+1-|Y|<L<2L
and there exist sets of classifiers that realize these bounds arbitrarily close.

The proof follows closely that of Consequence 3.1 and is left to the reader.

3.5 Discussion

Figure 3 shows a graph of the bounds of A expressed in A for binary, ternary
and four-valued classes, labeled as ubs, ubs and uby respectively. It shows that
the bounds are fairly wide: for A = % in fact A can be anything between 0 and
1. Unfortunately, sets of base classifiers exists such that with A = 1 A =0
and there exists sets of classifiers such that A = 1. Consequently, it will remain
hard to perform quantitative analysis on ensembles.

One point highlighted by Figure 3 is that ensembles do not necessarily out-
perform a single best classifier. Indeed, an ensemble may not even outperform

the best base classifier in the ensemble.
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4 Expected accuracy

The bounds in the previous section describe worst and best case behavior. In
this section, we study typical behavior by looking at the expected accuracy.

4.1 Uniform democratic voting with binary class

Let C1,...,Ck be a set of classifiers with the same accuracies V¢ ;A; = A.
Furthermore, assume all classifiers are independent. Though this is not such a
realistic assumption it helps in illustrating the behavior of the ensemble. Now
under uniform democratic voting with binary class, for an instance x we have
the probability that x is classified correctly by the ensemble

k
A=P(C(x) =y) = P()_I(Ci(x) = y) > [k/2]).
i=1
Since we assumed that the classifiers are independent, the probability that
exactly j classifiers vote correct is A7(1 — A)¥~7 which can be done in (3)
configurations. So, P(Y5_, I(Ci(x) = y) = j) = AI(1 — A)*~9(J) and hence
the accuracy can be written as a sum over binomials with parameter A,

> (3
A= Al(1— Ak i (5)
3=Tk/2] F

For small k, the binomial distribution in (5) can be approximated? by (in-
complete) Beta functions B, giving

A~ BUATR/2],E—[k/2]) _ B(A4; [k/2], [k/2])
B([k/2],k — [k/21) B([k/21, [k/2])

Figure 4 plots equation (6) as a function of A for various values of k. When
A is over A it is better to use the ensemble, otherwise it is better to use the
best base classifier in the ensemble. The crossing point, as shown in the plot, is
when A is % It shows that increasing the number of base classifiers increases
the influence of the ensemble, but the effect becomes smaller with higher k.

For large enough k, (5) can be approximated? by a normal with mean Ak

and variance o2 = (1 — A) Ak, giving

(6)

An / N(Ak, (1— A)Ak). )
i>[k/2]

2See for example http://www.mathworld.com/ under topic Binomial distribution. [Ac-
cessed 24 April 2002]
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Figure 5: Graph of accuracy A against A with a normal approximation
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Figure ?? plots equation (??) as a function of A, together with A. Still,
when A exceeds A it is better to use the ensemble, otherwise it is better to use
the best base classifier in the ensemble.

Note that the size of the ensemble k (here chosen 10) does not have an
impact on the shape of the plot. The reason is that (??) can be rewritten
through scaling by k giving

A :/ NA(1-DA)~ [ N @1-A)d)
i2[k/21/k i>3
where the approximation [k/2]/k ~ % holds for large k. The last formula has
no dependency on k, so the behavior of an ensemble is not expected to change
much. This does not mean that the ensemble can be made arbitrarily small
because the approximation (??) holds for large enough & only.

4.2 Mixtures

In practice, ensemble classifiers with A < % can outperform single base classi-
fiers, which indicates that the assumption we made that all base classifiers are
independent does not in general hold. Apparently, the mutual dependence of
base classifiers forms the strength of the ensemble.

This indicates the typical behavior of an ensemble can be interpreted as
a mixture of classifiers behaving the same for the straightforward cases, and
behaving more or less independent for the difficult cases. In other words, we
can expect A to be a mixture of A and (6).

A=(1-2)A+2(5)

In the binomial (5) the dependence between classifiers cannot be discarded,
and one way to cater for this is adding a small constant ¢; to the mean accuracy
A, giving an approximation of (6) by

B(A +c1; [k/2], | k/2])
B([k/2], [k/2])
Intuitively, the mixture depends on A: lower A puts more emphasis on the

dependence between classifiers, while higher A puts more emphasis on the inde-
pende between classifiers. Together, we arrive at the following approximation:

(8)

A+ i3 [k/2], [k/2])
B([k/2], |k/2])
The constants ¢; and ¢, can be varied to obtain mean, and typical upper and
lower bounds. In the experiments section, we see that (8) fits mean behavior
properly using ¢; = % and ¢y = % Further, ¢; = 0, c2 = 0 gives a lower bound
and ¢; = 0.5, c2 = 1 gives an upper bound.

Ax(1-cgAd)A+ C2AB( (9)
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4.3 Generalizations

We would like to generalize the results from the previous to non uniform voting,
multinomial classes and probabilistic voting. However, a quantitative descrip-
tion is going to be increasingly complex without providing much insight, leaving
us to just a few qualitative remarks.

For multinomial classes with |Y| class values, the threshold under which an
ensemble makes a correct prediction depends on the distribution of the incorrect
votes: the number of correct votes required may be as low as k/|Y| or as high
as k/2. This suggests that to get a good ensemble result, selecting a set of
base classifiers that is more diverse in its predictions can minimize the required
threshold, hence requiring base classifiers that are less accurate overall.

Analysing probabilistic voting could help by realizing that for a classifier C'
the class probabilities Po(y|x) can be normalized to for example percentages
(100 values). Instead of treating C' as a single base classifier we now can treat
C' as a collection of 100 base classifiers where 100 x Pc(y|x) vote for class y on
input x.

5 Experiments

To get an impression how well approximation (8) works, some experiments were
done measuring A and A. Ensembles were learned using bagging and base
classifier C4.5 as implemented in Weka® [13]. A new evaluator method was
implemented on top of the existing Weka package and the bagging class was
made configurable so that the voting method (democratic or probabilistic) could
be selected. Otherwise, for all algorithms default settings as in Weka 3.2 were
used and uniform voting (V5_,w; = %) was applied. All algorithms were run ten
times using ten fold cross validation. Reasonable estimates for the accuracy are
obtained by collecting the accuracies for the ten folds and averaging over the
ten runs [11]. The datasets are from the UCI repository [2] and are provided
with Weka .

Figure 5 and 6 show A and A for the various datasets with democratic and
probabilistic voting respectively. Also the line A = A and the approximation (8)
are plotted. All datapoints are between those two lines, except for the datapoint
for primary tumor.

To get more datapoints, 110 datasets were generated randomly generating
a Bayesian network, populating it with randomly selected probability tables.
The data was generated by instantiating the variables one by one according
to the probability tables for the value of the parents. Datasets of 100 cases
were generated and the cardinality of the variables was varied from 2 to 12,

3Weka can be obtained from http://www.cs.waikato.ac.nz/ml/

4The following datasets were used: autos, balance-scale, breast-cancer, breast-w, horse-
colic, credit-rating, german-credit, pima-diabetes, glass, heart-c, heart-h, heart-statlog, hep-
atitis, iris, labor, lymphography, primary-tumor, segment, vehicle, vote, vowel, and zoo.
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Figure 6: Graph of measured accuracy A against A for democratic voting with
UCI datasets
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Figure 7: Graph of measured accuracy A against A for probabilistic voting with
UCI datasets
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Figure 8: Graph of measured accuracy A against A for probabilistic voting with
random data
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10 datasets for each. Figure 7 shows the same graph for randomly generated
datasets with one run ten fold cross-validation. Also, the mean, upper and lower
bound based on (8) is pictured, showing that they provide good indications of
the upper and lower bounds.

6 Conclusion

For 0-1 loss, accuracy upper and lower bounds are given for a variety of ensemble
algorithms, including bagging and boosting. We express the accuracy in terms
of the accuracies of the member classifiers and show that these bounds can
(almost) be realized indicating the bounds are very tight. However, the bounds
are pretty wide, hence it makes sense to concentrate on finding quantitative
descriptions of typical behavior only.

Some progress was made on describing typical ensemble behavior for uni-
form voting with independent base classifiers. A parameterized approximation

17



explains typical ensemble behavior as a mixture of base classifiers voting com-
pletely dependent and completely independent. By selection of appropriate
parameters, upper and lower bounds are obtained for most ensemble behavior.

Further research into quantitative descriptions of more general ensemble

methods could give better insight in ensemble behavior.
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