
Replace this file with prentcsmacro.sty for your meeting,
or with entcsmacro.sty for your meeting. Both can be
found at the ENTCS Macro Home Page.

Stepwise Refinement of Processes

Steve Reeves 2

Department of Computer Science, University of Waikato, Hamilton, New Zealand

David Streader 1

Department of Computer Science, University of Waikato, Hamilton, New Zealand

Abstract
Industry is looking to create a market in reliable “plug-and-play” components. To model
components in a modular style it would be useful to combine event-based and state-based
reasoning. One of the first steps in building an event-based model is to decide upon a set
of atomic actions. This choice will depend on the formalism used, and may restrict in quite
unexpected ways what we are able to formalise. In this paper we illustrate some limits to
developing real world processes using existing formalisms, and we define a new notion of
refinement, vertical refinement, which addresses some of these limitations. We show that
using vertical refinement we can rewrite a specification into a different formalism, allowing
us to move between handshake processes, broadcast processes and abstract data types.

Key words: components, process, vertical refinement

1 Introduction

Industry is looking to create a market in reliable “plug-and-play” components. It
has been noted [25] that to model components in a modular style it would be useful
to combine the event-based reasoning of process algebra with state-based reason-
ing. But it has been commented [24] that in order for process algebras to become of
greater use in practice there is a need for a more well-defined methodology. Here
we will take a familiar state-based methodology and apply it to a specification of an
event-based process. This can be seen as an improved, or at least novel, event-based
methodology or as the first step towards a methodology for specifying components
with both state-based and event-based features.

This paper is event-based other than that we will be applying use case speci-
fications, a common part of state-based methodologies, to event-based processes.

1 Email: dstr@cs.waikato.ac.nz
2 Email: stever@cs.waikato.ac.nz

c©2005 Published by Elsevier Science B. V.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Research Commons@Waikato

https://core.ac.uk/display/29194624?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://www.math.tulane.edu/~entcs

Reeves Streader

We will show a very simple example of an event-based process where the atomic
actions we have chosen are perfectly adequate. But, when we attempt to extend
the implementation by specifying an additional use case the specification cannot be
satisfied using process algebras such as CSP or CCS. From this we conclude that
the actions we have chosen are not at an adequate level of abstraction. It is usual to
have to informally rewrite the specification using a different set of atomic actions.
Here we define vertical refinement of processes that allows us to formally rewrite
the specification using a different set of atomic actions.

Anyone building a process model must decide on the formalism to be used and
on a set of atomic actions. It is tempting to think that the atomic actions used in
the formalism correspond quite naturally to real “atomic” actions. In practice it is
more likely that some thought is required to decide what aspects of the real world
can be modelled by an atomic action. To make such a choice requires a detailed
knowledge both about the world to be modelled and the formalism in which it is
going to be modelled. Moreover the choice will depend on the formalism used, and
this may restrict in quite unexpected ways what we are able to formalise.

In the paper we will illustrate some limits to developing real world processes
using existing formalisms, and we define vertical refinement which addresses some
of these limitations.

Many definitions of process refinement, e.g. failure refinement [3] and trace re-
finement [23], relate processes with the same alphabet or set of atomic actions. We
will refer to processes with the same alphabet as being in the same layer and refine-
ment within a layer as horizontal refinement. Our definition of vertical refinement
between layers is based on a refinement function and an abstraction function. The
refinement function J K maps high-level processes, defined over a set of high-level
atomic actions, to low-level, more detailed processes, defined over a set of low-
level atomic actions. The abstraction mapping vA moves us from the low-level
back to the high-level.

Each refinement step formalises a design decision, e.g. a failure (trace) refine-
ment step is a design decision to remove some failures (traces) from the set of
failures (traces) of the process. A sequence of refinement steps is well behaved
when no design decisions can undo a previous decision, e.g. after a failure (trace)
is removed from the set of failures (traces) of the process no subsequent refinement
step can replace it.

To the best of our knowledge our definition of vertical refinement is the first
that can be used to relate layers where the actions on different layers can be of a
different kind, e.g. handshake, broadcast or abstract data types.

In this paper we will use two sets of observable actions: a! actions that can be
thought of as active and a? actions that can be thought of as passive; and we will
model their synchronisation as the unobservable τ . In the handshake layer we use
these two sets of actions in the same way that CCS uses names and co-names.

The example that follows demonstrates that it is possible to use a set of hand-
shake actions to formally describe how a simple process must interact, but to model
the process we need to extend process algebras such as CSP or CCS.

2

Reeves Streader

1.1 Example - Use case specification

VM1
s ◦ ◦ e

c? b1? d1?

VM2
s ◦ ◦ e

c? b2? d2?

VM
s ◦

◦

◦

e

e
c?

b1?

b2?

d1?

d2?
Robot use cases:
a - drink d1 from VM1
b - drink d2 from VM2
c - drink d1 from VM.

Fig. 1. Robot specification

In Fig. 1 we give three simple use cases to specify what drinks Robot obtains
from three vending machines. VM is easy to understand as a machine that accepts
a coin (c?) and then reacts to either button one (b1?) or button two (b2?) be-
ing pushed and subsequently enables the removal of drink one (d1?) or drink two
(d2?). The vending machines VM1 and VM2 are self-explanatory. Using the cho-
sen atomic actions process algebras can model these simple vending machines but
can they model the specified Robot ?

Use case a, the robot must obtain drink d1 from VM1, can obviously be satisfied
by R1

def
= c!b1!d1!. But this fails to satisfy use case b.

We can refine R1 to Rob and establish that it satisfies use

Rob
s ◦

◦

◦

◦

◦
c!

b1!
b2!

d1!

d2!

case b, that the robot must obtain drink d2 from VM2. Al-
though for such a simple process we can see that it also sat-
isfies the initial use case “obtaining drink d1 from VM1”, for
more complex processes we would establish a formal refinement relation from R1
to Rob.

At this point in the development VM1, VM2 and Rob are all viewed as being
defined at an adequate level of abstraction and the first two use cases have been
satisfied. But we are unable to satisfy the third use case c, the robot must obtain
drink d1 from VM. From this we conclude that the actions we have chosen are not
at an adequate level of abstraction.

Using existing formalisms we would have to start again with a new formalisa-
tion that is only informally related to the original formal specification. For our sim-
ple example, not much work would be lost. However, for large processes, changing
the formal specification could entail a huge amount of work. Moreover, as we
see from Fig. 1, there is no simple way to tell that our specification is in any way
unsatisfactory.

The same problem also occurs with feature addition. Imagine that we imple-
ment Rob to obtain the required drinks from VM1 and VM2 with our high-level
atomic actions. Later, however, we are required to add a new feature to the robot,
namely to obtain drink d1 from VM. Normally the formal specification is thrown
away and a new specification based on a new set of “atomic actions” is written.
We, instead, propose to formally refine the specification by applying a vertical re-
finement.

In Section 5 we give a solution to the example that works if we interpret the low-
level processes as broadcast processes, i.e. processes with local control of output,
rather than handshake processes.

3

Reeves Streader

2 Framework for a Single layer

Let Names be a finite set of names, Act! def
= {a!|a ∈ Names} be a set of

active actions, Act? def
= {a?|a ∈ Names} be a set of passive actions, Act def

=

Act!∪Act? the set of observable actions andActτ def
= Act∪{τ}. Our handshake

formalism, like CCS, splits observable actions into two sets and like CCS the only
use we will make of this distinction, in our handshake layer, is to define point-to-
point synchronisation. Note, following what Hoare and He say [17][p.198] “The
main distinguishing feature of CSP is to define a hiding operator that succeeds in
total concealment of internal actions”, our observational semantics totally conceals
internal actions.

Definition 1 LTS—labelled transition systems. Let NA be a finite set of nodes and
sA the start node. Labelled transition system A

def
= (NA, sA, TA) where sA ∈ NA,

and TA ⊆ {(n, a,m)|n,m ∈ NA ∧ a ∈ Actτ}. •
A path is a sequence of states and actions and the set of paths generated by

the LTS A is: PathA
def
= {sA, ρ

α
1 , n2, ρ

α
2 , . . . |(n1, ρ

α
1 , n2), (n2, ρ

α
2 , n3), . . . ∈ TA}.

We write |ρ| for the number of actions in (i.e. length of) a path and ρα for the
sequence of actions ρα1 , ρ

α
2 . . . in path ρ = sA, ρ

α
1 , n2, ρ

α
2 For finite paths ρ =

sA, ρ
α
1 , n2, ρ

α
2 , . . . ni define last(ρ)

def
= ni.

We will write ε for the empty sequence of actions, hence {sA}α = ε.
We write x a−→y for (x, a, y) ∈ TA where A is obvious from context, n a−→ for

∃m.(n, a, m) ∈ TA, sA
ρα−→ when ρ ∈ PathA and sA

ρα−→n when ρ ∈ PathA ∧
last(ρ) = n. Also, α(A)

def
= {a|n a−→m ∈ TA}, π(s)

def
= {a|s a−→}

The complete traces of A are:

Trc(A)
def
= {ρα|(sA

ρα−→n ∧ π(n) = ∅) ∨ (sA
ρα−→∧ |ρ| =∞)}.

A process diverges when it engages in an infinite sequence of τ actions. Diver-
gence has been treated in at least three distinct ways in the literature. Divergence
as chaos in [3], chaos free divergence in [6] and the fair interpretation found in
[9,18]. We believe our approach would work with any of these interpretations as
long as divergence is defined in the same way on both handshake and broadcast
processes. We have chosen a fair interpretation of divergence as this can be found
in both broadcast [23] and handshake [9,18] semantics.

We use strong fairness: a path is fair if, whenever something can occur infinitely
often it does occur infinitely often. Thus if a process is offered the ability to perform
s

b−→◦ infinitely often then the action must ultimately be taken. The fair traces of
A are:

Trf(A)
def
= {ρα|ρ ∈ Path(A) ∧

∀a∀n.(|{i|ni a−→∧ ni = n}| =∞⇒ |{i|ni a−→ni+1 ∧ ni = n}| =∞)}.
The complete fair traces of A are: Trcf(A)

def
= Trf(A) ∩ Trc(A)

Our definition of parallel composition models point-to-point synchronisation
and is closer to CCS parallel composition than CSP parallel composition. We avoid

4

Reeves Streader

CSP-style parallel composition as its ability to model multi-way synchronisation
would force us to use a more complicated definition of vertical refinement.

Definition 2 Parallel composition of LTS A and B: let N ⊆ Names.

NA‖NB
def
= NA ×NB, sA‖NB = (sA, sB) and TA‖NB is defined as follows.

Let x ∈ Actτ and name(a?)
def
= a, name(a!)

def
= a and name(τ)

def
= τ

n
x−→Al, name(x) /∈ N

(n,m)
x−→A‖NB(l, m)

n
x−→Bl, name(x) /∈ N

(m,n)
x−→A‖NB(m, l)

n
a?−→Al, m

a!−→Bk, a ∈ N
(n,m)

τ−→A‖NB(l, k)

We will write ‖ as short for ‖Act. Note this parallel composition does not allow
any actions to be concurrent, all must be synchronised. •

We define refusals: Ref(ρ,C)
def
= {{a|n

a

6−→}|sC
ρ−→n} and failure refinement

[3]: A vF C
def
= ∀ρ.Ref(ρ,C) ⊆ Ref(ρ,A) where ρ is a sequence of actions

and C and A are processes.
The LTS in Definition 1 takes no account of τ actions being unobservable, so we

would call it a strong semantics (→) and based on it we have a strong equivalence
(=X) and a strong refinement (vX) .

We will define, in Section 2.1, a strong semantics of actions and then, in Sec-
tion 2.2, quite separately give a meaning to unobservable τ actions by defining how
to abstract these actions to build an observational semantics. This “separation of
concerns” is more common in operational models [18,2] than denotational models
[3]. The reason we do this is that we want the observational semantics to be the
same on both layers of handshake processes and layers of broadcast processes.

2.1 Refinement, meaning and strong semantics

We should think of the LTS semantics of a process as defining some underlying ma-
chinery on which strong equality and strong refinement are built. A single LTS can
be used to mean different processes and the different meanings can be formalised
using different equalities. By taking the meaning of a specification to be the set
of implementations that it can be refined into we can give specifications different
meanings by applying different refinements.

Let LTS be the set of all LTSs. Our definition of refinement is parameterised
by:

(i) the set of contexts we can use, Ξ ⊆ {(‖ x)|x ∈ LTS}
(ii) Obs : LTS → 2Ob a function from LTS to a set of observations. Ob is the set

containing any observation of any process.

Definition 3 A v(Ξ,Obs) C
def
= ∀[]x ∈ Ξ.Obs([C]x) ⊆ Obs([A]x) •

This definition is derived from the generalised testing semantics in [22].
By the explicit use of contexts this definition of refinement can be applied to

different kinds of things. Contexts for handshake process are {(‖ x)|x ∈ LTS}
[1,22] , contexts for abstract data types are traces [7,22] {(‖ x)|x ∈ (Actτ)∗} and

5

Reeves Streader

contexts for broadcast have local control of output [23].
From any definition of refinement we have an equality:

A =Y C
def
= A vY C ∧ C vY A

As the empty trace is considered an observation the empty set of observations
is not in the range of Obs. Hence when Obs([A]x) is a singleton set of observations
then so is Obs([C]x), i.e. our refinement preserves uniqueness of observation.

2.2 Abstraction

Our definition of observational semantics is quite separate from the definition of
strong equality/refinement. This allows us to use the same observational semantics
on a layer of handshake processes and a layer of broadcast processes.

Definition 4 Observational semantics =⇒:
s

τ
=⇒t def

= s
τ−→s1, s1

τ−→s2, . . . sn−1
τ−→t

n
a

=⇒m def
= n

τ
=⇒n′, n′ a−→m′, m′ τ

=⇒m ∧ a ∈ Act
Abs(A)

def
= 〈NA, sA, {n x−→m|n x

=⇒m}〉. •
Our observational semantics is not the

A
s ◦ e

◦ e

a c

τ

b Abs(A)

s ◦ e

◦ e

a c

ba

b

same as in CCS [18] as we, like CSP,
use failure semantics and thus Abs() re-
moves all τ actions (see example to the right).

Definition 4, or an equivalent definition, has appeared in [9,6,20], and see [20]
for a comparison with the literature and a discussion about stability.

Our definition of abstraction, like the definitions in CCS and ACP [2], for-
malises a “fairness” assumption, i.e. τ loops that can be exited must be exited after
a finite number of times around the loop.

From the definition of an observational semantics (⇒) we have defined an
abstraction function Abs which we now use to define an observational refinement
vaX from a strong refinement vX :

A vaX C
def
= Abs(A) vX Abs(C)

An observational equivalence =aX can be defined in the obvious way, the point
being that vX could be failure refinement vF or a trace refinement vTr.

2.3 Layers

Both things and contexts are modelled using LTSs. A layer consists of a set of
things, a set of contexts and a refinement relation.

Definition 5 A layer X is (TX,ΞX,vX) where TX is a set of LTSs used to represent
things , ΞX a set contexts and vX⊆ TX × TX is a refinement relation on things.

The things represented in the layer are equivalence classes of =X. Where not
confusing we will misuse terminology and refer to an individual LTS as one of the
things in the layer. Importantly, different layers can represent different kinds of
things (Section 2.1).

6

Reeves Streader

3 Vertical refinement

We use a function J K to embed, or interpret, high-level LTS as low-level LTS. But
not all the low-level LTS are in the range of J K. We use a function vA to embed,
or interpret, low-level LTS as high-level LTS.

We apply J K to LTS representations of both high-level things TH and contexts
ΞH. Similarly vA can be applied to LTS representations of both low-level things
TL and contexts ΞL.

Let PH ∈ TH be the high-level things, and XH ∈ ΞH be the high-level con-
texts. Similarly let PL ∈ TL be the low-level things, and XL ∈ ΞL be the low-level
contexts.

The term [AH]XH
models the interaction of the high-level process AH with its

high-level context XH and this can be seen as an abstract specification of the de-
sired behaviour. A more concrete specification (or implementation) is the low-level
behaviour. These interactions are represented by [JAHK]JXHK. Next we discuss what
properties we want interpretations J K and vA to have in order that they constitute
a vertical refinement.

PH QH vAJQHK vA(RL)

JQHK RL

vH

vL

vV

vH=H

vA vA

Fig. 2. Stepwise Refinement

Vertical refinement vV may be preceded by some high-level refinement steps
and may itself precede low-level refinement steps (Fig. 2). Ideally we would require
this sequence of refinements to be well behaved but whether a design decision at
one layer is preserved by a process at another layer is a matter of interpretation.
Consequently we call this sequence of refinements well behaved if: refinements
within a layer are well behaved and both vertical refinements and low-level refine-
ments can be interpreted as high-level refinements (see Fig. 2).

Definition 6 Functions J K and vA define a vertical refinement between a high-
level layer (TH,ΞH,vH) and a low-level layer (TL,ΞL,vL) when

PH vH QH vV JQHK vL RL implies PH vH QH =H vAJQHK vH vA(RL) •
In practice we use LTS to represent things and thus will have no problem apply-

ing J K a function from LTS to LTS. As the things at any layer are actually equiv-
alence classes of LTSs it would be desirable that J K was a monotonic functions
and hence could be lifted to a function between equivalence classes, i.e. between
things. The vertical refinement we will apply in the stepwise development of our
example specification will use J K that is not monotonic. Although monotonisity
may be regained by restricting handshake processes to the constructable processes
of [21] we leave this to future work.

In our example the high-level process R1 is refined into Rob that satisfies the
first two conditions, i.e. that in context VM1 drink d1 is obtained and in context

7

Reeves Streader

VM2 drink d2 is obtained. We will construct a vertical refinement JRobK that can
be refined into RobotL such that RobotL satisfies the third and final part of the
specification, i.e. in context VM obtain drink d1.

Because [Rob]VM1 obtains drink d1 and [Rob]VM2 drink d2 then when J K and
vA are a vertical refinement and JRobK vL RobotL we are able to conclude that
[vA(RobotL)]VM1 obtains drink d1 and [vA(RobotL)]VM2 drink d2.

4 Individual layers

Before we can define a vertical refinement between a handshake and a broadcast
layer we must define the individual layers using the definitions in Section 2.1 and
Section 2.3. In this section we define our layers and to give some confidence that
the resulting refinement preorders are reasonable we show that the handshake pre-
order is the fair failures of [8,19] and the broadcast preorder is very similar to the
quiescence preorder of Segala [23].

4.1 Handshake layer (THs,ΞHs,vHs)

The handshake layer allows any LTS to be a thing THs
def
= LTS and contexts to

be ΞHs
def
= { ‖ x|x ∈ THs}. We define vHs

def
= v(ΞHs ,T rcf) . For terminating

processes vHs is failure refinement (see [22] for details).
Because, in our definition of refinement, we allow fair traces to be observed the

refinement of cyclic processes is not that of CSP, but is the same as the definition
in [8,19] where further details of this refinement can be found.

Assuming fair tests and only the special action ω observable we have the should
tests of [8] that characterise vshould refinement.

Definition 7 P should T def
= ∀ρ ∈ Act∗.P ‖ T

ρ−→Q =⇒ ∃µ ∈ Act∗.Q µω−→
A vshould C def

= ∀T A should T⇒ C should T. From [8]

As we might expect (and as Lemma 1 shows), using fair tests and all actions ob-
servable still characterises the same preorder. We show that v(ΞHs ,T rcf) refinement
is the same preorder as vshould, the refinement of [8] and thus the pre-congruence
results in [8] apply to our refinement.

Lemma 1 A v(ΞHs,T rcf) C ⇐⇒ A vshould C

4.2 Broadcast layer (TBC,ΞBC,vBC)

There has long been interest in the relation between handshake and broadcast style
communication but there are many variations of both styles. A comparison of the
“point to point” handshake communication of CCS with the multi-way broadcast
of CBS can be found in [15]. But the handshake and broadcast styles also differ
in that broadcast has local control of output whereas with handshake-style com-
munication all actions can be blocked. The only difference between our handshake
and broadcast models will be that broadcast cannot be blocked by any context.

8

Reeves Streader

Here we relate handshake and broadcast models that both use point to point
communication. We believe we could have considered handshake and broadcast
models that both use multi-way synchronisation (CSP, ACP and CBS) but here we
choose to keep to the simpler point to point model.

We require broadcast processes to have all input actions enabled from all states,
this being a common way to model local control of output [23,14].

Definition 8 TBC
def
= {A|∀n ∈ N.A∀a? ∈ Act?n a?−→}

ΞBC
def
= { ‖ x|x ∈ TBC}.

The finite traces in our semantics Tr? are the usual quiescent traces [23], i.e.
finite traces that stop in a state that can only listen, and the infinite traces in Tr? are
fair.
Tr?(A)

def
= {ρα|(sA

ρα−→n ∧ π(n) ⊆ Act?) ∨ (sA
ρα−→∧ |ρ| =∞)} ∩ Trf(A).

These traces can be used as the set of observations in our definition of refine-
ment (Definition 3) and directly as a denotational semantics.

Definition 9 Broadcast semantics:
A vTr? C

def
= Tr?(C) ⊆ Tr?(A) •

Semantics that, in the simple setting that we consider, are very similar to Defi-
nition 9 appear in [23,14]. But whereas Segala [23] gives meaning to τ actions in
his definition of fair trace we use Abs so that the same definition can be applied to
both handshake and broadcast processes. Consequently our semantics are slightly
different to that in [23].

Lemma 2 P =Tr? Q implies P =aTr? Q

It is frequently clearer to not show all the listening loops. Such LTS can be inter-
preted as broadcast processes by assuming listening loops to be implicit. Function
MBC turns a process into a broadcast process by simply adding n a?−→n to any n for
which a? is not enabled.

MBC(A)
def
= (NA, sA, TA ∪ {n a?−→n|¬n a?−→})

The effect of MBC on the semantics can be

P!

s ◦
e1

e2

s

◦

◦ e2

e1

Q!a!
b!

c!

a!

a!

b!

c!
best understood by considering some examples.
Process P! (see right) would be deterministic in
the handshake world, i.e. a context can “choose”
if P! performs b! or c!. But applying MBC to any
context in which P! can be placed prevents the contexts from blocking b! or c!
thus making P! nondeterministic. Later we will find that the nondeterminism of the
choice between output, as seen in P!, is essential for our definition of refinement to
satisfy the specification in Section 1.1.

Finally we establish that our general definition of refinement when applied to
broadcast processes generates the same preorder as our denotational semantics.

Lemma 3 A v(ΞBC ,T rcf) C ⇐⇒ A vTr? C

9

Reeves Streader

5 Building on a broadcast layer

Having defined our handshake and broadcast layers in Section 4 we can now define
a vertical refinement between them.

We map an active high-level action such as b! (see Fig. 3) into three parts, first
performing the try action try b! and subsequently either aborting (rej b?) if the con-
text cannot synchronise on b or succeeding (acc b?) if the context can synchronise
on b. The mapping for the passive action b? can be seen in right-hand side of Fig. 3.

Our function J K from a high-level layer to a low-level layer will not only map
a! and a? actions to different processes but also add try/reject loops wherever an
action cannot be performed (see left-hand side of Fig. 3).

◦n

nb?/∈π(n)

try b?

rej b!
s ◦ e

s e

try b!
acc b?

rej b?

b!

s ◦ e

s e

try b? acc b!

b?

Fig. 3. Vertical refinementJ K

Although we see this as the natural solution, because of the addition of the
try b?, rej b! loops at all nodes n for which b? /∈ π(n), the refinement J K mapping
is neither an action refinement [4] nor indeed an instance of Rensink and Gorrieri’s
Vertical Implementation [5].

We need some care in interpreting the actions of Fig. 3. In particular both
handshake actions b! and b? are able to be blocked but the broadcast actions
try b!,rej b! and acc b! are not.

Definition 10 Let A
def
= (NA, sA, TA)

HJAKB def
= MBC(N

HJAKB , sA, eA, THJAKB)

N
HJAKB

def
= NA ∪ {nt|t ∈ TA} ∪ {n(m,a?)|m ∈ NA ∧m

a?

6−→}
T
HJAKB

def
= {s try x!−−−→z, z

rej x?−−−→s, z
acc x?−−−−→t|s x!−→t ∧ z = n

s
x!−→t}∪

{s try x?−−−→z, z
acc x!−−−→t|s x?−→t ∧ z = n

s
x?−→t}∪

{s try x?−−−→z, z
rej x!−−−→s|s

x?

6−→ ∧ z = n(s,x?)} •
The processes (N

HJAKB , sA, THJAKB) are not all valid broadcast processes, i.e.
6⊆ TB . For this reason we have applied MBC . For ease of understanding we have
not shown the actions added by MBC in Fig. 3.

Next we define vertical abstraction BAbsH . It should be noted that each try x?
action is replaced by two τ actions, one each way.

Definition 11 Let A
def
= (NA, sA, TA)

(A) BAbsH
def
= Abs(NA, sA, T(A)BAbsH)

T(A)BAbsH
def
= {s x!−→t|s acc x?−−−→t} ∪ {s x?−→t|s acc x!−−−→t}∪

{s τ−→t|s try x!−−−→t ∨ s rej x!−−→t ∨ s rej x?−−−→t ∨ s τ−→t ∨ s try x?−−−→t ∨ t try x?−−−→s} •
10

Reeves Streader

5.1 Handshake on Broadcast

The refinement for our high-level handshake layer is failure subset and on the low-
level broadcast layer it is trace subset.

Theorem 1 Functions BAbsH and HJ KB define a vertical refinement from the
handshake layer with v(ΞHS ,T rcf) to the broadcast layer with v(ΞBC ,T rcf).

Theorem 1 shows that it is reasonable to model certain components of the
broadcast layer as “atomic actions” on the handshake layer. The set of high-level
contexts ΞH are mapped into HJΞHKB . As HJΞHKB ⊂ ΞB the low-level refinement
permits a greater set of contexts.

5.2 Continuing the Robot example from Section 1.1

Having shown in Theorem 1 that functions from Definition 10 and Definition 11
constitute a vertical refinement between a high-level handshake layer and a low-
level broadcast layer, we now use it to refine our example specification.

s ◦

◦

◦

HJRobHKB
◦ e

◦ e

c!

try b1!
rej b1?

try b2!
rej b2?

acc b1?

acc b2?

d1!

d2!

s ◦
RobH

◦

◦

e

e

c! b1!
b2!

d1!

d2!

v

6v RobotH

RobotLs ◦ ◦

◦

◦

◦

◦

e

e

c!

try b1! rej b1?

try b2!rej b2?

acc b1?

acc b2?

d1!

d2!

So as to keep the lower level diagrams small we have only expanded the high-level actions
b1! and b2!. The expansion of the other actions is obvious from Fig. 3.

Fig. 4. HJRobHKB can be refined into RobotL but there is no RobotH

HJRobHKB in Fig. 4 is a nondeterministic broadcast process. In particular which
button, b1 or b2, it tries to push first is not determined. Hence when offered both
buttons by VM its behaviour is nondeterministic. Process RobotL is a refinement
of HJRobHKB that will always try button b1 before b2. Hence when offered both
buttons b1 and b2 it will always push b1.

Broadcast processes can be viewed as handshake processes that happen to have
input always enabled. But if we treat them as handshake processes we must ap-
ply handshake refinement. Viewed as a handshake process HJRobHKB in Fig. 4 is
deterministic and cannot be refined, not even into RobotL.

Starting with “the robot must obtain drink d1 from VM1” (see Fig. 1) we build
R1

def
= c!, b1!, d1!. In order to satisfy “the robot must obtain drink d2 from

VM2” this high-level process is refined into Rob. Because we cannot satisfy “the
robot must obtain drink d1 from VM” we apply the functions from Definition 10
and Definition 11 that perform a vertical refinement (Theorem 1), transforming
the high-level processes into low-level processes. We then perform a low-level
refinement that satisfies the third and final part of the specification seen in Fig. 4.

11

Reeves Streader

Although for finite high-level processes we have been using failure refinement
it is not true that Rob is a failure refinement of R1. But this is not a problem
as Rob is a refinement of R1 using LOTOS’s extension [10], conf [11] and vFδ
“weak sub-typing” of [16]. As it is well known that failure refinement implies all of
these refinements, see [22] for details, then vertical refinement must preserve these
refinements also.

Our refinement steps were R1 vconf Rob vV HJRobHKB v(ΞBC ,T rcf) RobotL.
BecausevV is a vertical refinement we know that Rob v(ΞHs,T rcf) BAbsH(RobotL)
and as for finite processesv(ΞHs,T rcf) isvF and as it is well known thatvF⇒vconf
we have that R1 vconf BAbsH(RobotL) and that RobotL satisfies all three of the
specified properties.

6 Conclusion

In this work we have applied a general framework similar to that of [22] to fair
nonterminating processes. We show that our definition of refinement for handshake
communication is essentially the same as those in [8,19]. In addition our definition
of refinement for broadcast communication is very similar to those in [23].

The two contributions of this work are:

(i) A definition of vertical refinement between processes with atomic actions that
may be of a distinct kind, e.g. handshake or broadcast;

(ii) The stepwise refinement of some simple specifications that, to the best of our
knowledge, were previously unsatisfiable in existing formal methods.

6.1 Comparison of vertical refinement with the literature

Our vertical refinement is clearly related to non-atomic refinement in Z and Object
Z [13,12], action refinement, i.e. the replacing of a high-level action by a low-level
process, and vertical implementation [4,5] . Non-atomic refinement in Z and Object
Z is defined as a constrained form of action refinement, in particular high-level
actions can only be replaced by a sequence of low-level actions. For an interesting
survey of action refinement see [4].

It has been powerfully argued that action refinement is overly restrictive as a
method of top-down design (see [4, Ch 7]). One solution to the restrictions of
action refinement is vertical implementation [5,4] which like action refinement uses
a function from actions to processes.

Our vertical refinement is based not on a function between high-level actions
and low-level processes but on a relations between high-level processes and low-
level processes. Further, vertical refinement allows the individual layers to have
distinct refinement relations and this means that different layers can model different
kinds of actions, e.g. handshake, broadcast or even abstract data types.

12

Reeves Streader

7 Appendix

Proofs for Section 4.1 Handshake Fair Failure

Lemma 4 A v(ΞHs,T rcf) C ⇐⇒ A vshould C

Proof We use an intermediate definition: P fmust T def
= Trcf([P]T) ⊆ Trcf(T)

A vfmust C
def
= ∀T A fmust T⇒ C fmust T

Step 1. A vshould C ⇐⇒ A vfmust C

A vshould C
def
= ∀T A should T ⇒ C should T. But not all tests T are needed.

Clearly from definition pruning actions after a ω will not affect the success or failure
of test. Hence let ω /∈ α(T) and A vshould C ⇐⇒ ∀T A should T;ω ⇒ C should
T;ω.

Part 1. If P should T;ω then ∀ρ ∈ Act∗.[P]T;ω
ρ−→Q ⇒ ∃µ ∈ Act∗.Q µω−→ . Let

ρ ∈ Trcf and µ = ε gives: ∀ρ ∈ Trcf([P]T).[P]T;ω
ρ0−→Q1,Q1

ρ1−→Q2, . . . ,Qi
ω−→

from which we have P fmust T.
Part 2. If P fairmust T then Trcf([P]T) ⊆ Trcf(T) and

if ρ ∈ prefix(Trcf(P ‖ T;ω)) then ∃µ ∈ Act∗.ρµω ∈ Trcf(T;ω) and
hence P should T;ω.

From Part 1 and Part 2 Step 1 must follow.
Step 2 A vfmust C ⇐⇒ A v(ΞHs,T rcf) C

A vfmust C defined as ∀T.T rcf([A]T) ⊆ Trcf(T)⇒ Trcf([C]T) ⊆ Trcf(T)

A v(ΞHs,T rcf) C defined as ∀T.T rcf([C]T) ⊆ Trcf([A]T)

Hence clearly A v(ΞHs,T rcf) C⇒ A vfmust C 1

Assume A vfmust C

As is usual in testing semantics construct Tρ such that Trcf(Tρ) = Act∗ − {ρ}
Trcf([A]Tρ) ⊆ Trcf(Tρ)⇒ Trcf([C]Tρ) ⊆ Trcf(Tρ)

ρ /∈ Trcf([A]Tρ)⇒ ρ /∈ Trcf([C]Tρ) and then Trcf([C]Tρ) ⊆ Trcf([A]Tρ)

then A v(ΞHs,T rcf) C and from assumption:
A v(ΞHs,T rcf) C⇐ A vfmust C 2

From 1 and 2 we prove Step 2. From Step 1 and Step 2 we prove our result. •
Proofs for Section 4.2 Broadcast semantics

Lemma 5 P =Tr? Q implies P =oTr? Q

Proof Assume P =Tr? Q and ρ ∈ Tr?(Abso(P)). From Abs there exists µ ∈
Tr(P) such that µ is an interleaving of ρ and a number of τ actions. Because
ρ is fair either a finite number of τ actions are used in the interleaving or P has
reached a state where all branches are τ loops. In either case µ is fair, µ ∈ Tr?(P).
From P =Tr? Q we have µ ∈ Tr?(Q) and by a similar argument we have ρ ∈
Tr?(Abso(Q)). Hence Tr?(Abso(P)) ⊆ Tr?(Abso(Q)) and the equality hold by a
symmetric argument. Finally from definition P =oTr? Q. •
Lemma 6 A v(ΞBC ,T rcf) C ⇐⇒ A v(ΞBC ,T r?) C ⇐⇒ A vTr? C

13

Reeves Streader

Proof From Definition 3 the first ⇐⇒ reduces to: ∀[]x ∈ ΞBC .T r
cf([C]x) ⊆

Trcf([A]x)⇔ Tr?([C]x) ⊆ Tr?([A]x). As Trcf can be constructed from Tr? by
prefixing each trace by any sequence of inputs the result follows.

From Definition 9 A vTr? C
def
= Tr?(C) ⊆ Tr?(A) and result follows from

congruence w.r.t. ‖. •
Proofs for Section 5.1: handshake on broadcast is a vertical refinement

Theorem 2 Functions BAbsH and HJ KB define a vertical refinement from the
high level (THs,ΞHs,va(ΞHS ,T rcf)) to the low level (TBC,ΞBC ,va(ΞBC ,T rcf)).

Proof Monotonicity: PL vaL QL ⇒ vA(PL) vaH vA(QL)

Assume PL vaL QL

∀x ∈ ΞLTr
cf(Abs([QL]x)) ⊆ Trcf(Abs([PL]x)) Definition 3

∀x ∈ ΞLTr
cf ◦ vA([QL]x) ⊆ Trcf ◦ vA([PL]x) From vA

∀x ∈ ΞLTr
cf(Abs([vA(QL)]vA(x))) ⊆ Trcf(Abs([vA(PL)]vA(x))) vA is

distributive

∀y ∈ ΞHTr
cf(Abs([vA(QL)]y)) ⊆ Trcf(Abs([vA(PL)]y)) vA is surjective

vA(PL) vaH vA(QL).

From Fig. 2 we can see that we only need to prove PH =aH vA(JPHK). All
try x!, try x?, rej x? and rej x! actions added by JK will be turned into τ loops by
vA that can be collapsed into a single state by =H. This just leaves the renaming x!
into acc x? plus x? into acc x! and back again. •

References

[1] M. Hennessy, Algebraic Theory of Processes, MIT Press, 1988.

[2] J. C. M. Baeten and W. P. Weijland, Process Algebra, Cambridge Tracts in Theoretical
Computer Science 18, 1990.

[3] A.W. Roscoe, The Theory and Practice of Concurrency, Prentice Hall International
Series in Computer Science, 1997.

[4] R. Gorrieri and A. Rensink, Action Refinement, Handbook of Process Algebra,
Elsevier, 2001, p. 1047-1147.

[5] A. Rensink and R. Gorrieri, Vertical Implementation, Information and Computation,
170-1, 95-133, 2001.

[6] A. Valmari and M. Tienari, Compositional Failure-based Semantics Models for Basic
LOTOS, Formal Aspects of Computing, 7-4, 440-468,1995.

[7] C. Bolton and J. Davies, A Singleton Failures Semantics for Communicating
Sequential Processes, Oxford University Computing Laboratory,PRG-RR-01-
11,2001.

[8] E. Brinksma and A. Rensink and W. Vogler, Fair testing, LNCS 962,Springer-
Verlag,313-327,1995.

14

Reeves Streader

[9] E. Brinksma and A. Rensink and W. Vogler, Applications of Fair testing, FORTE, IFIP
Conference Proceedings,69, 1996.

[10] E. Brinksma and G. Scollo, Formal notions of implementation and conformance in
LOTOS, INF-86-13, Twente University of Technology, Department of Informatics,
Enschede, The Netherlands,1986.

[11] E. Brinksma and G. Scollo and C. Steenbergen, LOTOS specifications, their
implementation and their tests., B. Sarikaya and G. V. Bochmann, Protocol
Specification, Testing and Verification, VI, 349–360, 1986.

[12] J. Derrick and E. A. Boiten, Refinement in Z and Object-Z: Foundations and Advanced
Applications, 2001, Formal Approaches to Computing and Information Technology.

[13] J. Derrick and E. A. Boiten, Non-atomic Refinement in Z, FM ’99: Proceedings of
the Wold Congress on Formal Methods in the Development of Computing Systems-
Volume II, 1999, 1477–1496.

[14] C. Ene and T. Muntean, Testing Theories for Broadcasting Processes, Submitted for
publication, http://www.esil.univ-mrs.fr/∼cene, 2004.

[15] C. Ene and T. Muntean, Expressiveness of Point-to-Point versus Broadcast
Communications, In Fundamentals of Computation Theory,12th International
Symposium FCT’99, FCT’99LNCS 1684 1999

[16] C. Fischer and H. Wehrheim, Behavioural Subtyping Relations for Object-Oriented
Formalisms, LNCS,1816,469–483,2000.

[17] C. Hoare and H. Jifeng, Unifying Theories of Programming, Prentice Hall
International Series in Computer Science, 1998 .

[18] R. Milner, Communication and Concurrency, Prentice-Hall International, 1989.

[19] V. Natarajan and R. Cleaveland, Zoltán Fülöp and Ferenc Gécseg, Divergence and Fair
Testing, ICALP, Springer, LNCS, 944, 1995, 648-659.

[20] S. Reeves and D. Streader, Atomic Components, ICTAC 2004,LNCS 3407,128-139.

[21] S. Reeves and D. Streader, Constructing Programs or Processes, Computer Science
Technical Report 09/2005.

[22] S. Reeves and D. Streader, Comparison of Data and Process Refinement, ICFEM 2003,
LNCS 2885, J. S. Dong and J. C. P. Woodcock, 266-285.

[23] R. Segala, Quiescence, Fairness, Testing, and the Notion of Implementation (Extended
Abstract), International Conference on Concurrency Theory, 324-338, 1993.

[24] W.J. Fokkink, J.F. Groote and M.A. Reniers, Process algebra needs proof
methodology, The Concurrency Column (L. Aceto, editor), Bulletin of the EATCS,L.
Aceto, editor, 2004, 82, 108-125.

[25] T. Bolognesi and E. Börger, Abstract State Processes, 218-228, LNCS, 2589, Abstract
State Machines, Advances in Theory and Practice, 10th International Workshop, ASM
2003, Taormina, Italy, March 3-7, Proceedings, 2003.

15

	Introduction
	Example - Use case specification

	Framework for a Single layer
	Refinement, meaning and strong semantics
	Abstraction
	Layers

	Vertical refinement
	Individual layers
	Handshake layer (THs,Hs, Hs)
	Broadcast layer (TBC,BC, BC)

	Building on a broadcast layer
	Handshake on Broadcast
	Continuing the Robot example from Section 1.1

	Conclusion
	Comparison of vertical refinement with the literature

	Appendix
	References

