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Experiences using Z animation tools

Greg Reeve and Steve Reeves

Department of Computer Science,
University of Waikato, New Zealand

Abstract. In this paper we describe our experience of using threerdifteanimation systems.
We searched for and decided to use these tools in the corit@xtroject which involved devel-
oping formal versions (in Z) of informal requirements doants, and then showing the formal
versions to people in industry who were not Z users (or useasypformal techniques). So, an
animator seemed a good way of showing the behaviour of ammydgscribed formally without
the audience having to learn Z. A requirement, however, tti@tools used have to satisfy is
that they correctly animated Z (whatever that may mean) heg behave adequately in terms
of speed and presentation. We have to report that none obtie we looked at satisfy these
requirements—though to be fair all of them are still underettgpment.

1 Introduction

In this paper we describe our experiences of using some éinimtaols for the animation and testing
of Z specifications. The purpose of this process was an attenfind a freely available tool that
could be used to demonstrate the benefits of formal spedaificed our industrial partners in the
ISURF research project. (Information about the ISURF ptajan be found at the project web site
http://ww. cs. wai kat 0. ac. nz/ cs/ Research/fm .)

An animator is a system which, given inputs to a formally et (in this case described in
the formal specification language Z) system, calculatethputs. One of the uses of animation
of a specification is to allow us to see how a specified systeimaves without needing to go to
the expense of writing code. Also, we, together with the doreaperts (who may not be Z users),
can validate the specification against the informal requénets of the system without requiring the
experts to understand Z. This seems to us to be a centraleeggnt of such a process—we bring
our expertise of Z to the validation, and the other partictpdoring their domain expertise—neither
side should have to become as expert as the other in ordérigqurbcess to be useful.

So, we have been using animators as a way of validating spe@ifis,.e. detecting errors and
ensuring they do what we expect, and plan to use animatioregept some specifications of real-
world software to non-Z speakers. These uses imply certaioas qualities for an animator: it
should correctly express the semantics of Z; it should beiefft enough to be productively used; it
should have an interface that makes it more understandabidhe Z itself, and also provide useful
feedback about the animation process. These qualitiesravegst the ones against which we finally
judged the systems we used—they seem to be the most obvieasthough others will doubtless
also suggest themselves to the reader.

The three tools that we have used to date are Possum, ZANSEFIAZAP.

Possum is an animator been developed by the Software Védfidaesearch Centre at the Uni-
versity of Queensland in Australia (see [8])

ZANS was created by Xiaoping Jia from the School of Computgerge, Telecommunication
and Information Systems at DePaul University in Chicago

ZETA is a framework for combining tools to edit, browse, asal and animate Z specifications
that was developed (and is still developing) at the Teclnighiversitat Berlid. The animation tool
that ZETA uses is called ZAP.

YURL:http://ww. svrc.it.uq.edu. au/ pages/ Ani mati on. ht m
2URL: http://saturn.cs. depaul . edu/ “f mf zans. ht m
SURL: http://uebb. cs.tu-berlin.delzetal



The plan of the paper is as follows: we have three main sestioach of which describes the
tool and then makes some comments about it. We finish with aratiiconclusions section which
aims to give guidelines, based on our experience, for a gomaadion tool for Z.

2 ZANS

2.1 ZANS strategies

The ZANS animation approach separates operation scheneasvio categories, explicit and non-
explicit. An operation schema is said to be explicit if itsuts can be computed from its inputs.
ZANS animates explicit schemas only as non-explicit screemay require elaborate manipulation.
However it is claimed by the author of ZANS that a study of thedsfications in [2] has shown that
94% of the operation schemas are explicit or can be made sosaihe minor modification®.g.
addingtested= o to the standard version of the class manager assistant€t®e)lis an example
of a necessary minor modification. In the standard versierotily equation in the predicate part
of Classlinitis enrolled = @, and the fact thatested = & is inferred from the state invariant
testedC enrolled but ZANS does not do this, hence the need to add the extrdiequa

ZANS translates explicit operation schemas into an inteliate notation known asxtended
guarded command languageGC). EGC is an extension to Dijkstra’s guarded commangudage.

To summarise the ideas and algorithm behind the translat@rhanism:

— predicates involving equalities between post-ndnaesl other simple expressions are converted
to assignmentg.g. X = y + 4 becomex :=y + 4

— these assignments are ordered so that the values of all Hienames can be computezlg.
X =Yy +4; y := 6 is re-written so as to reverse the order of the assignments

— predicates which are not converted and which involve preegibecome entry guards, and
those involving post-names become exit guaedg, Xx=y + 4 is used as an entry guard and
X' xy = 0 is used as an exit guard since it cannot be made into an assidatdeast not in
general by any uniform technique that does not involve thesproving)

The following gives an example of this translation.

Example Z translation Given part of a typical Z specification of a class managestssi [5]:

[Studenit Response= success$ alreadyenrolled ...

— Class
enrolled tested: P Student

testedC enrolled

ClassInit= [Class | enrolled = @ A tested = @]

— Enrolok — AlreadyEnrolled
AClass ZClass
s? : Student s? : Student
r! . Response r! : Response
s? ¢ enrolled s? € enrolled
enrolled = enrolledu {s?} r! = alreadyenrolled
tested = tested
r! = success

Enrol == Enrolok Vv AlreadyEnrolled

ZANS produces the following EGC code ...

4 post-names are those labels in a schema decorated with priexelamation mark.
5 pre-names include undecorated labels and those decorited guestion-mark.



operation Classlnit
egclenrolled, tested : P Studenit
true =
enrolled := @; tested := &;
« tested C enrolled
cge
operation Enrol
egclenrolled tested
enrolled, tested : P Student
s? : Student r! : Responge
s? £ enrolled testedC enrolled=
enrolled := enrolledU {s?};
tested := tested r! := success
« tested C enrolled
( s? € enrolled testedC enrolled=-
enrolled := enrolled
tested := tested
r! .= alreadyenrolled
« tested C enrolled
egc

The way that the translation goes should be quite eviderg.AlhssInit schema hasrue as
its precondition, which becomes its entry guard. Then thekiies involving post-names become
assignments directly and the state invarimsted C enrolled becomes an exit guard. Because the
Enrol operation involves schema disjunction the generated EGIé bas a conditional construct
denoted by|] and is guarded by the entry guards of the respective schentlas disjunct.

ZANS is written in C++, it contains a class library to handie mathematical objects in £&,g.
sets, relationstc. ZANS translates Z into EGC which is then interpreted to pdevthe animation.

The intermediate form (EGC) is proposed as the basis foliefticode generation from Z spec-
ifications.

2.2 Problems—ZANS

The evaluation of many predicates, for some reason, turtodagt ‘undefined’: for instance checking
if a set of pairs is a function. ZANS reports this informataspart of its command line output and
continues the evaluation ignoring undefined predicatesieating them as true. This can allow a
solution despite breaking system invariants. For exaniple imodify the specification of the class
manager system as follows:

—— Class
enrolled: P Student
tested: Student+~ Z

dom testedC enrolled

— Testok
AClass
s? : Student
g’:Z
r! : Response
s? € enrolled
tested = testedJ {s? — g?}
enrolled = enrolled
r! = success




—— Leaveok

AClass

s? : Student

r! : Response

g:Z

s? € enrolled

enrolled = enrolled\ {s?}

((s? € domtestedA tested = {s?} < testedA r! = cert A g! = tested 8)
V (s? € domtestedA tested = testedA r! = nocerd)

ZANS will now allow us to enter more than one grade for a stulereaking the condition that

testedis a function), giving the output:

anim > execute TestoR
...Execute schemarTestok
Enter input arguments

s’ —>a
g7 —>11
###Try branch#1

x x xEntry guards:
s? in enrolled
—— > True
dom tested subseteq enrolled
—— > True
tested in Student—> Z
Exception: ZMT class error@Rel).
Run-time typing error
—— > Undef
* x xStatements
tested := tested|| s?—> g7;
enrolled := enrolled
r! := success

(continued)

* + xEXit guards:
dom testetisubseteq enrolléd
—— > True
tested in Student+—> Z
Exception: ZMT class error@Rel).
Run-time typing error
—— > Undef
#+#+#Branch#1 succeed
Schema Testok

enrolled: a

tested: (a, 10)
enrolled : a

tested: (a, 10), (a,11)
s’:a

g7:11

r!: success

which is clearly incorrect because ZANS is unable to checlketivr the observatiotestedis a

legitimate partial function. In this contrived examplestabvious that the output is not what the
user expects, however as specifications become larger arelaomplex it becomes less obvious.
A revised user interface could improve this problem by eifhji concluding that this is a possible

answer given that some invariants are ignored.

ZANS appears to have shortcomings in the way Z is interprétedxample

— free types are not considered to be sets (or if the are caeside be sets then they are always
empty sets), which means checking membership of an elemmantd free type is not possible.
For example using the free type definitionRésponséom the class manager specification and
using the ZANS command line evaluation of predicates resuithe output:

anim > pred success in Response
Exception: ZMT class error@in().

Run— time typing error Expecting Set

Undef

— ZANS is unable to pick an arbitrary element from a set. Fongxa consider:



on

init =[S | (3a: {1,2,3} & X = a)]

results in the output:

##+#Branch+1 succeed
Schema init
X' : < undef>

— promotion is not well supported because schemas do not afipka considered a set of bind-
ings, but rather as something that has a current state. ergleme want to hide the local state
that is being promoted, however doing this means ZANS failind a solution. For example
consider the specification:

—R — newR — changeR————
X:PZ [24 AR
X =@ Xin? : Z
X' = xU {xin?}
—S — init
db: N--»R S
db = @
— news — rTos
AS AS
(24 AR
db' = db@ {(#db) — OR'} s’ 7
s? € dom dbf
(IR)=dbe
db' = db® {s? — OR'}

addR= (newRA newS \ (x) updateR= changeRA rTos
updateR = (changeRA rTos) \ (x,X)

Now we can add new schema bindings to the partial funatloim the schem& as expected.

anim> execute addR
... Execute schemaaddR

##H#Try branch#1

#++4 Branch+#1 succeed
Schema addR

db:

db' : {0—><]| x: {} |>}

The updateRoperation schema can be used to update one of the bindimtls ifowever each
successive application apdateRwill only work for that binding.



anim> execute addR
... Execute schemaaddR

anim> execute addR
... Execute schemaaddR

(continued)

anim> execute updateR

... Execute schemaupdateR
Enter input arguments
Xin?7— > 6

db: {0—><|x:{}|>} st—>1

db' : {0—><| x: {} |>, #4444 Try branch#1
1-—><|x: {} |>} % x Entry guards:

anim > execute updateR (I[x]]) = db &

...Execute schemaupdateR —— > False

Enter input arguments #4+4 Branch#1 fail.

xin?— >3 Execution of operation schema

s’— >0 updateR failetl

##H#Try branch#1 anim> show —v R

Schema R

##+#Branch+#1 succeed X: {3}

Schema updateR

X: {}

X' : {3}

xin? : 3

db: {0—><|x: {} |>,
I—><|x: {} >}
db' : {1—><| x: {} |>,
0—><|x: {3} >}
s?:0

This appears to be because the state of the sclemabeing remembered by ZANS as is
shown by using the ZANShowcommand to give the current state of the schéhadove. The
obvious solution is to hide the local state (thatR)fas in the schemapdateR. Doing this
causes all attempts to animate this operation to fail in éimeesmanner as the second application
of updateR This happens because thie predicate of the schenmdos cannot be satisfiede.
ZANS cannot pick the appropriate binding from the set désctby the schemia.

— There are semantically equivalent Z statements for whiciN&4ehaves differenthe.g.the
statemenevale @ {(1,2)}’ gives

Exception: ZMT class error@Overridg).
Run-time typing error Expecting Pair

whereasval o @ {(1 — 2)} correctly returng1 — 2}. Also, from the promotion example
given above, the schema definitiaddR= (newRA new$ \ (X) is evaluated as expected in
ZANS whereagddR= 3R e newRA newSis not.

2.3 ZANS—Conclusions

Our conclusions are based on the sort of examples given ara/some subjective impressions.
The animator has a “try to execute at all costs” approachuhtdrtunately allows inconsistency
in the specification. ZANS does not handle general congtsaitisfaction or non-explicit operation
schemas, in particular if an observation in the state is anstrained by an operation ZANS gives
this observation a value of undefined whereas Z assumes tloasinained label can take any value
in its type, therefore picking a value from its type set magvermore fruitful. In larger specifications
it is not always a trivial task to make schemas ZANS-exp#aid it is commonplace to want to pick

" The wordevalcan be used as a command for evaluating expressions in ZANS



values from a set especially when using schemas as recomdgythpromotion. There are a lot of
holes in the execution semantics implemented for Z. Serahtiequivalent Z statements can cause
different behaviour.

Some of the advantages of ZANS include: its speed of exetutie reordering of equalities
algorithm appears to be sophisticated, for example degidimether a predicate using equality (“=")
should be animated as assignment (“:=") or a guaedgiven the specification:

—S — initl — init2
X:PZ S S
y:PZ o FEvE
X=y y =92

the schemanit1 causes the state predicate: y to be translated to an exit guard whergai causes
the same predicate to be translated to an assignment op@ratiiain a value foy’ as demonstrated
in the following ZANS output.

... Execute schemainitl

#+4# Try branch#1 (continued)
* % x Statements
X = {}h ... Execute schemainit2
y = {}h ##4# Try branch#1
x * *x EXit guards: * % x Statements
X' =y Note! X = {}h
—— > True y = x; Note!
### Branch#1 succeed ##4# Branch#1 succeed
Schema initl Schema init2
X {} X {}
y:{} y: )

ZANS allows a specification to be loaded from more than oneditea promotion can be done
in separate files and then loaded over the top of the file auintathe local definitions; ZANS allows
batch files to be run that specify an animation sequence sfigracommand line argument allows
the user to set values for settc, of the system. For example

anim> assign Response= {successnoroom}
{successoroom}

anim> pred succesd in Response

True

allows the aforementioned problem with free types to beesbhwy assigning the free type identifier
to equal the set of alternatives described for that free.type

Considering ZANS as it is designdd. ignoring development errors:

— the large amount of modification to a specification (whichiéases with the size and complexity
of the specification) needed before ZANS can be used for aiimaakes it unusable on 'real-
world’ examples.

— the speed of execution of ZANS is refreshing and could beidensd advantageous for valida-
tion of a specification during development. However, thepdified model of execution imple-
mented by ZANS could cause the specifier to forsake eloguestribtion and abstraction for
the purpose of writing a ZANS-executable specification.



3 ZETA/ZAP
3.1 ZETA's strategy/philosophy

ZETA aims to be a framework for combining established madgHiechniques with formal ones—
e.g. State-charts and Z. The developers of ZETA see this as a wayowfding an “incremental
migration” of formal methods (FM) into industry. ZETA is ifgmented in Java using the Pizza
superset to provide algebraic data typésand has a Java-based API.

The integration of tools by ZETA happens on three levels:

— Dataintegration—the environment provides uniform datenfats into and out of which different
tools can map their own data—there is also a common dataitepgs

— Control integration—automatically controlled ‘tool chal which ensureg.g, that if an anima-
tor requires type-checking to be done on a part of the spatiiit because it has changed, the
type-checking tool is run;

— Presentation integration—attempts to standardise tkesdction with the different tools by pro-
viding a common user interface as far as possible. In somesdhss is not possible.g. State-
mate has its own ‘closed world’, hence there are ‘rough €dges

There are two user interfaces for using ZETA, a graphicat irterface (GUI) using the Java
Swing libraries, figure 1(a), and an XEmacs based interfagpae 1(b).

=Bl emacs: “ZETA" -8 X
File Edt Apps Opfians Buffers Tools Complete InfOUt Signals ZETA He\pl

& | & alreadyenrolled \Y 2]
& & alreadgtested \\
| % roroon .

“end{zed}

— = -0
A A &S \begin{schema} {Class}
Shell Source Operation configure errolled, tested: ‘pouwer Student
R e S Y rolied ey size %
&% installed Z/mSZ LaTeX adaptor w1.03, (o) 189 wgdcs.tu-berlin.de tested ‘subseteq enrolled
& installed Standard Z/mSZ parmer v1.03, {c) 1908 wgdcs.tu-berlin.ds “enel {schenal .
4 installed Standard Z/m3Z type checker v1.03, |c) 1998 wg@os.tu-berlin.de| || |[ooo WEnacs: classwan.zed (- loten)——-[ 35--16% |

4 installed pretty printer v1.00, {c} 1398 ughesagedcs.tu-berlin.de Current directory is /home/gregr/isurf/tools/zeta/vellat_exps/

4 ZETA 1.03betad, (c) 1998 The ZETA Team, zeta@uebb.cs.tu-berlin.de
£y aieriiles) Eoifiossh et Gildilly () SEED ettt installed Z/nSZ LaTel adaptor v1.03, () 1998 wgtcs.fu-herlin,de
4 installed MicroZ rewriter w1.00, {c) 1998 wg@os.tu-berlin.de installed Standard 2/mSZ parser v1,08, (c) 1998 uglcs,tu-berlin,.de

. . installed Standard Z/nSZ tupe checker v1.03, (c) 1998 wg@cs.tu-berlin.de
4 insealled P compiler v1.03. {=) 1998 wgacs.wu-berlin.ds installed pretty printer v1.00, (c) 1998 ughosagefics tu-berlin.ce
installed Z-to-MicroZ reducer v1,00, () 1998 wglcs,tu-berlin,de
installed MicroZ rewriter v1.00, (c) 1998 ug@cs.tu-berlin.de
installed ZAP compiler v1.03, () 1998 wg@cs.tu-herlin.de
R latex-load classnan.zed
g Bcarning /hone/gresr/isurf/tools/zetafuellet_exps/classnan,zed

L

=) 1
- KMEmacs: ¥ZETAY (ZETHzrun) ——-L11-—A1l- |
scanning /hone/gregr/ isurf/tools/zeta/uel lgt_exps/Classnan.zed over.

4

(a) Java-GUI (b) In XEmacs

Fig. 1. ZETA User Interfaces

ZAP—Z Animation program ZAP (Z animation program) is an animation tool for Z specifimas
that was developed to be integrated with ZETA. Accordindneoduthor of ZAP the execution model
implemented for Z is ‘oriented towards higher-order fuantl languagesi,e. ZAP is best used on
specifications that have a functional (‘constructive nfisdation. The model also includes:

— atransparent concept for sdts, they can be described intensionally or extensionally;

— the ability to enumerate intensionally defined sets thobgh'should be done sparingly’ since
ZAP has no techniques for dealing with them efficiently;

— a complete treatment of the schema calculus;

Efficiency in general has not been a big issue for the deveto¢her experimentation with
the implemented execution model, for example ZAP spawnsalwreently executing Java thread
for each predicate in an operation schema, i.e. concurrgfitation of schema properties, while
this is conceptually clean and convenient for implemenitassnot very efficient.e.evaluation of a
recursive definition may create thousands of threads.
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3.2 ZETA/ZAP—examples/problems

The ZETA environmentimplements the concept of tool-chdewcribed under “Control Integration
above. It appears that ZETA checks the date stamp of thertdiles containing the Z-specification
that is being examined to decide what tools need to be run achvithes. This makes ZETA in-
efficient when making small modifications to a large Z-speatfon that is presented in one file.
Between each modification to the specification ZETA will nézdun the type-checker, code com-
piler, etc.before the specification can be animated again. While atiguwiultiple files to be used to
present specifications in general a small modificationgilises a non-negligible delay.

Another problem concerning ZAP is the number of additioredeel to the specification before
it can be animated. For example functions need to be definedafth operation to be animated
to allow inputs to be given for the evaluation of operatiohesnas.e.g.a function for the enrol
operation given in section 2.1 would be:

enrol== \s: Studen®
(3s? == s e Enrol)

Rather than maintaining a current state for the system bemiimgated, ZAP appears to unfold
the schema derived from the composition of all operatiomitgeénd including the operation being
animated. For example a typical input to ZAP for animatingTastoperation of the class manager
specification would be,

Classlnit
g enrol(Steve \ (r!)
5 tes(Steve10)

where Classinit is the initialisation schema anehrol and testedare functions defined for their
corresponding operations as described above. This meanththinput to ZAP (a composition of

a sequence of operations) must be compiled and then evdligateach operation animated. When
an error occurs in this sequence it is not obvious which djmeravas the cause of the error. For
testing an operation in a sequencenabperations, we must insure that the animation of the first
n — 1 operations of the sequence provide the expected state.

It is possible to provide an alternative initialisation sofa to initialise to a particular state to
which the operation can be applied, hence replacing thialisgquence of operations, however this
method allows the error of providing an initial state that c@t be reached by any sequence of the
operations specified. Also a separate initialisation seheould be needed for each operation being
tested.

Evaluating an animation by unfolding the composition ofguence of operation schemas means
ZAP cannot prompt the user for inputs and uncomputable ¢sitfoperations, which is considered
by your author to be a good mode of interaction for animation.

Some semantically equivalent Z statements do not give thee sasult when animated. This
appears to be because, as mentioned above, the executi@himptemented in ZAP is ‘oriented
towards higher-order functional languages’. For exanqgasider the example where the class sys-
tem specification has grades added as in Section.2.#e state schem@alassis:

—— Class
enrolled: P Student
tested: Student+~ Z

dom testedC enrolled

Given an operation to enquire about a students grade spkoifithe schem&nquireas,

10



— Enquire
ZClass

s? : Student

r! : Response
g:Z

s? € domtested

r! = alreadytested
g! =tested s

Also a semantically equivalent alternative for this operaEnquire2,

— Enquire
ZClass

s? : Student
r! : Response
o:7Z

s? € domtested

r! = alreadytested
(s?,9!) € tested

Using ZAP to animate these operations provides the expeetedt for the operation described by
the schem&nquire

ClasslInit
g enrol(Sally) \ (r!)
g tesi(Sally, 10) \ (r!)
s enquird Sally)
— {<enrolled == {Sally},g! == 10,r! == alreadytested,
tested’ == {(Sally, 10)}>}

However, trying to animate the operation schelEmguire fails.

Classlnit
g enrol(Sally) \ (r!)
gtes(Sally, 10) \ (r!)
s enrol(Sally)
— ERROR[ LTX: cl asstest. zed(60.5-63.29)]:
execution failed
r eason:
unr esol vabl e constraint in value of enuneration:
val ue: <enrolled == _,g! == _,r! == | tested == _>
constraint: LTX classtest.zed(60.5-63.29)
backt race:
at eval uating conmand i nput

Itis reasonably obvious in this case that the preditsitgy!) € testedrom the schem&nquire2
can be transformed (preserving semantics) ghte tested 8, which allows ZAP to evaluate a result.
However, the output from ZAP does not help in locating thiser

The text[LTX : classteszed60.5 — 63.29)] from the ZAP output is a link that can be clicked
on to identify where in the specification the error was causédortunately in this, and several
other cases, the link is pointing to the input string of cosgmboperators. Another problem with this
output is that the reason given for failure is

11



—— unresol vabl e constraint in value of enuneration:
val ue: <enrolled == ,g! == ,r! ==  tested == >

which does not identifg! as being the uncomputable observation.

The algorithms used by ZAP to convert a Z specification int@aJade contains an error that
discards some simple equality predicates from schemasinEtance take th&nrolok operation
from the modified class manager specification,

— Enrolok
AClass

s? : Student

r! : Response

s? ¢ enrolled
#enrolled < size
enrolled = enrolled
tested = tested)

r! = success

The predicatenrolled = enrolledin this operation schema is discarded by ZAP during trans-
lation, leaving an unresolvable value femrolled. This happens, we believe, because somewhere in
the process of developing code an equation with, what carede as, variables on either side will
‘'unify away’. Since the equation can be made true by sulistdeither for the other. This can be
avoided by changing this predicate to a non-trivial expogssuch agnrolled = enrolledJ @. This
has been identified as an error by the author of ZAP and is goibg fixed.

3.3 Conclusions—ZETA/ZAP

Some of the considered advantages of ZETA/ZAP include:

— Z sections and the related idea of refinements;

nice XEmacs user interface features

good feedback as computation proceeds

concept of tool chains;

compiling to Java means that there is the opportunity offaténg code to a GUI;
can lift the interface by functional programming in Z to alitest sequences;
philosophy behind framework compelling

To expand these points ZETA/ZAP allows a specification tot@ionZ sections which can be
used to divide a specification into logical units in one or ynéiles . One example of this is that
a specification written for use with ZETA/ZAP can have a sfiegiion section and an execution
section that refines the specification to make it more aniohatahis is a particularly nice feature of
ZETA that allows, for example, given sets in the specifiaatection to be overridden by free-types
in the execution section.

The ideas behind ZETA's XEmacs user interface are good. itticpéar expandable list items
allow ZETA's details of an operation to be expanded or hideenlicking on an icon; the hyper-link
style indexes that allow the user to be directed to apprtgpplkaces in the specification, though the
calculation of the relevant point in the specification neegsoving in ZAP.

There is little user documentation for ZETA and ZAP and it ifficult to distinguish exactly
the boundaries between what ZETA is responsible for and @hA&tis responsible for. This tool is
being actively developed.

12



4 Possum

4.1 Strategy/philosophy

The design goal and mode of evaluation adopted by the dex @ Possum was to build a system
that would work on a collection @xistingspecifications. Possum was designed to animate the SUM
specification language [3] but can also be used to animate Z.

Possum was originally implemented in Qu-Prolog and thesr lasing Mercury. It has a GUI
builtin Tcl/TK, figure 4.1.

state

ed \E"Steve™3

ed [NiN3

&
-3
g
2 ||~

File Dialogs Display - B
eve \hEE?ngzedl

=

ini
endtzed}

rrow \f\3, tested’ \Rrightarrow \E\} \rangle

angle!
\tL \M enrolled \Rrigl \fA1, tested \Rrigl AN
enroll \Rrightarrou \E"Steve™3, tested’ \Rrightarrou \E\3 irangle \0
=

enrolled ,\z_s;
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Fig. 2. The Possum Graphical User Interface

The algorithm used for evaluation of specified operationBassum simplifies predicates into
subgoals that can be categorised as ‘chests’ or ‘checkerdéscribed below. The algorithm then
attempts to order sub-goals in the evaluation process lmasptbjected chest sizes.

— Chests are predicates that can be used to generate valugsifdilese.g.for x, in predicates
likex=10r0 < x<10;

— Checkers are predicates which are used to decide whethet arvalue of a variable meets a
condition.

— e.g.for the set comprehensidm : 0..5000 | d = 4} — d = 4 would be used as a chest and
thend : 0..5000 used as a checker—if we useéd 0 . . 5000 as a chest and = 4 as a checker,
we would haves001 numbers generated to check;

If a predicate is to generate a binding for a label there measttlbeast one chest for that label. Some
predicates contain no chests and therefore cannot be adrbgtPossum. Whether a predicate is
a chest or not has been decided by the Possum implementdrheinchoices were made on the
grounds of whether a predicate can in principle be a chestifigd whether it is computationally
feasible for it to be one. It may be ruled out, for examplet, ¥Would take too long to compute.

4.2 Possum—example/problems

The state schema of a specification must be called “statePdssum to carry out animation. For
instance take the class manager specification from sectioagain. If we attempt to animate this
specification with Possum th@assInitoperation schema can be evaluated, however following this
by the Enrol operation results in 'solution unknown:e. Possum is unable to evaluate the effect
Enrol has on the state. If we then change the name of the state s€lassto statePossum is able
to animate the other operations.

Possum does not accept all of Z as described by Spivey [4$.i$mot surprising given the ani-
mator was written for the SUM specification language and supp Z is secondary to its purpose.
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For example, axiomatic definitions evaluate to false if thaye no predicate parts. Also the schema
operatord, used to select a binding from the set of bindings given byhemsa, is not handled by
Possum as expected. Further, set union is permitted betseterof different typee.g.the state
schemaClassfrom the class manager specification could be defined asvs|lo

—— State
enrolled tested: P Studenty N
#enrolled < size
testedC enrolled

which allows students or integers to be 'enrolled’.

Possum does not appear to treat schemas as sets of bindkBANS, Possum keeps a record
of the current values for the state throughout animatioris @bes not generalise well, particularly
for promotion because there are generally several pasigibifor the value of the local state being
promoted. If we hide the local staieg. try to recreate the binding each time it is used, Possum fails
to find a solution.

When attempting to animate Z specifications the order ofidigs seems to defeat the algorithm
that selects the best order to simplify/evaluate predécatbis can be demonstrated by using the
class manager specification with two alternative operatgpecified for indicating a student has
been testedlestandTest:

— Testok — AlreadyTested——— — NotEnrolled
Astate Estate Z'state
s? : Student s? - Student s? : Student
r! : Response r! : Response r! : Response
s? € enrolled | s? € tested s? ¢ enrolled
s? ¢ tested r! = alreadytested r! = notenrolled
tested = testedJ {s?}
enrolled = enrolled
r! = success

Test= NotEnrolledV AlreadyTested/ Testok
Test = Testokv AlreadyTested/ NotEnrolled

When Testis tried by animating the operatiot@assinit Enrol and Test Possum returns a result
reasonably quickly.

3 sum: Classlnit
4 sum: Enrol[”Jo€’ /s?]>>
5sum: Tes{’Stevé/s?]>>

— (enrolled= {”Jo¢€’},tested= {}, enrolled = {"Jo€'},tested= {})
r! := notenrolled

However, if this process is repeated using the operatiorreeifesi Possum does not return a
result.

When an operation that cannot be evaluated or has a largehsgaace is being evaluated by
Possum there is no progress feedback. This makes it diffcddihow whether the evaluation will
take five minutes or will never evaluate.

Possum has two outputs for un-animatable operations, 'hdi@o’ and ’solution unknown’.
The first means there is no possible solution to the operafiven the specifications constraints.
The second means Possum cannot evaluate any solutionshthioerg may be some. These error
messages are the only given and there is no indication of ndpperation could not be animated.
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Therefore the user is left to inspect the specification apddrguess why, which clearly makes
Possum less valuable for verifying the correctness of fipations.

4.3 Conclusions—Possum
Possum has several features we consider advantageous.iitiesle:

— A well thought out GUI,
— The ability to create, record, save and re-run scripts,
— Tcl/Tk graphical visualisations of system.

Possum’s GUI provides a main interpreter window in whiclkeiattive commands can be entered
and a script window that is used to open previously savedeaated scripts. The script commands
can be sent to the interpreter as a whole script or one commiaadime. There is a parameter
window to modify the variable behaviours of Possum. Alsortieximum integer that Possum will
use in its evaluation can be set here.

The user can open a window representing each schema thatésttyiloaded in the interpreter.
These windows have a field for each label in the schema. Whandow is in focus there are key
combinations defined for the available operations.

Possum allows Tcl/Tk graphical visualisations of the sfiettisystem to be controlled by Possum
during animation. This increases the utility of Possum asohtb validate a specification against
informal requirements by demonstration of the specifietesy’s behaviour. The visualisations were
not explored, although some examples distributed with thassppear to work well.

One of the major criticisms of Possum is that it has no docuatiem to speak of. This means
learning to use the tool through experimentation.

5 Conclusions

5.1 Other work

Breuer and Bowen'’s paper (see [1]) talks about some morediarharacteristics of animation tech-
nigues. These are:

correctness—qgiving only correct answers, partial or catepl
coverage—the portion of the Z grammar handled by the animato
efficiency—the speed at which the animator can evaluatdtsesu
sophistication—the ability of the animator to terminate

In particular they are concerned with a trend for animatoifetsake correctness for the other three
categories mentioned above, whereas these issues shautithbgonal (considered as well as) cor-
rectness. Breuer and Bowen also give one possible clasisifidar animation techniques by means
of their treatment of sets:

a) sets must be finite and are modelled by finite arrays;
b) sets may be countably infinite and are modelled by an eratineralgorithm;
c) sets are cardinally unbounded and modelled by their cheiatic function.

A comparison of each of these is given.

5.2 Some properties of a good animator

From evaluating the three animators discussed in this papgeconsider the following list to be
desirable properties for a usable Z animation system.

— A Z animator must preserves the semantics of Z;
— should have dedicated human computer interaction techrigpplied for user interface design;
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— supply the ability to refine (make more concrete for the paepaf executability) a specification
in well defined, distinguishable sections of the speciftcaiocument.

— provide good feedback as computation proceeds, clearlyrdent partial results including rea-
sons for their partiality.

— be free in terms of the GNU Projettefinition of free;

— be distributed with good user documentation, not contgioinly a dedicated example;

— support from developers—especially if it is an experimesyatem;

— have the ability to connect to graphical visualisationsha specified system to allow better
validation of specification with non-Z users.

5.3 Final conclusions

This paper is rather uneven since tools have varying amewtiitsn about them. Bad or non-existent
documentation means that discovering what the tools carcamaot do was done by experimenta-
tion. This is an inefficient way of evaluation that is slow agmlor prone. Therefore the results
presented here are qualitativee. subjective, rather than quantitativieg. a corpus of specs and
measurements under well defined categories.

The examples in this paper are taken from a specification ¥ialtsystem. The problems get
worse as the problem being specified increases in size anplexity.

Some of the conclusions from the experimentation preseftisdsuch hard work getting speci-
fications into an animatable form that the verification ofrectness of the specification obtained by
the animation itself is almost negligibie. getting ready for animation subsumes inspection! More
seriously, since specifications need adapting for animdkiere are issue of proving these changes
preserve meaning, which would ask efficiency questionseftiimation process. Whaightpresent
adaptations as alternative formalisations of informalregments. This means there is proof obliga-
tions to show the more abstract original specification ismote or less constraining.
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