
G
0018-9162/97/$10.00 © 1997 IEEE36 Computer

C
yb

e
rs

q
u

a
re

Teaching Agents
to Learn: From
User Study to
Implementation

raphical user interfaces have helped evolve a world of
easily accessible information, where computer use
centers on viewing and editing, rather than on pro-
gramming. Yet the need for end-user programming is
becoming increasingly apparent: Users, who often find
themselves performing repetitive tasks, want the abil-
ity to customize applications easily. Software devel-
opers have responded to this need with a barrage of
customizable applications and operating systems. But
the learning curve associated with a high level of cus-
tomizability—even in GUI-based operating systems—
often prevents users from easily modifying their
software. So, ironically, the question becomes, “What
is the easiest way for end users to program?”

Most user interfaces eschew formal notation and
encourage concrete expressions of a user’s ideas.1

Perhaps the best way to customize a program, given
current interface and software design, is for users to
annotate tasks—verbally or via the keyboard—as
they are executing them. Experiments have shown
that users can “teach” a computer most easily
by demonstrating a desired behavior.2 Teaching
demands less planning, analysis, and understanding
of the computer’s internal operations than program-
ming does, but it raises new questions about how the
system, as a learning machine, will correlate, gener-
alize, and disambiguate a user’s instructions. Human
pupils can readily interact with their teachers, but a

By testing and critiquing our design

ideas with human users, we were able

to stay focused on our most important

objective: intelligent agents that make

computer-based work more productive

and more enjoyable.

David Maulsby Ian H. Witten
Aurelium Inc. University of Waikato

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Research Commons@Waikato

https://core.ac.uk/display/29194622?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

computer needs more help. In addition, a computer
will likely fail in its mission if it confuses or frus-
trates the user.3

In order to understand how best to create a system
that can learn, we conducted an experiment in which
users attempt to train an intelligent agent to edit a
bibliography. In our experiment, a researcher sat
behind a curtain masquerading as the intelligent
agent, which we named Turvy (after a fictional char-
acter who succeeds in life by appearing more intelli-
gent than he actually is). This experimental
setup—with a hidden researcher simulating computer
behavior—is often called a Wizard of Oz scenario,
the structure of which is shown in Figure 1.4

To make the experiment as useful as possible for
constructing a real software agent, we set limits on
Turvy’s—the researcher’s—abilities. In particular, we
limited the types of instructions Turvy could under-
stand, the features of text it could observe, and the
generalizations it could learn. Users engaged in activ-
ities that ranged from easy (replacing underlining with
italics) to taxing (putting all authors’ given names and
initials after their surnames). In the course of the
experiment, Turvy had to do things like select many
short strings of text, keep track of errant white space,
and handle names containing “van” or “de.” Users
invented their own teaching methods and spoken
commands to help Turvy learn even the most difficult
elements of the experimental tasks.

Armed with the results of these experiments, we
implemented an interactive machine learning system,
which we call Configurable Instructible Machine
Architecture, or Cima. Designed to acquire behavior
concepts from few examples, Cima keeps users
informed and allows them to influence the course of
learning. We have tested Cima on transcripts from
the Turvy experiment and found that it learns at
roughly the same level as the researchers masquerad-
ing as Turvy.

STUDYING USER BEHAVIOR
The best way to understand how we used Turvy to

understand user behavior is to examine Turvy in
action. Figure 2 shows a particular Turvy task: Make
a heading for a bibliography item—showing the
author’s surname and the date of publication—by
extracting the correct information from a bibliographic
listing. With no background knowledge of bibliogra-
phies, names, or dates, Turvy must learn these concepts
on the fly while performing this task. The relevant sur-
name is normally the word before the first comma or
colon, but sometimes includes a lowercase “van,” or
precedes an “ed.” And in some entries the author’s sur-
name and initials are reversed. The relevant date
includes the last two digits before the period at the
paragraph’s end, although sometimes the final period
is missing. Turvy must learn special-case rules to han-
dle these types of exceptions. A transcript from the

Figure 2. As
instructed, Turvy takes
information from a sim-
ple bibliography entry
on the left to make a
heading with an
author’s name and date
of publication on the
right. Figure 3 shows
the transcript of how
one user worked
through this exercise.

November 1997 37

[Agre 88]
Philip E. Agre: The dynamic structure of everyday life: Philip E. Agre: The dynamic structure of everyday life:
PhD thesis: MIT: 1988. PhD thesis: MIT: 1988.

[Angluin 83]
D. Angluin, C. H. Smith: “Inductive inference: theory D. Angluin, C. H. Smith: “Inductive inference: theory
and methods.” Computing Surveys 3 (15), pp. 237- and methods.” Computing Surveys 3 (15),
269: September 1983. pp. 237-269: September 1983.

[Michalski 86]
Michalski R. S., J. G. Carbonell, T. M. Mitchell (eds): Michalski R. S., J. G. Carbonell, T. M. Mitchell (eds):
Machine Learning II: Tioga: Palo Alto CA: 1986 Machine Learning II: Tioga: Palo Alto CA: 1986

[van Lehn 90]
Kurt van Lehn: Mind bugs: the origins of procedural Kurt van Lehn: Mind bugs: the origins of procedural
misconceptions: MIT Press: 1990. misconceptions: MIT Press: 1990.

Figure 1. The experi-
mental setup show-
ing Turvy on the left
and the user on the
right. Interaction
works bidirectionally
in this Wizard of Oz
scenario that is
designed to help
researchers better
understand how
users might work
with intelligent
agents.

Kurt van Le
What huma
Machine lea

Kurt van Le
What huma
Machine lea

Turvy, I want you to
take titles that are not

bold, and put them
in quotes.

38 Computer

videotaped record of this experiment appears in Figure
3. Pam, the user, has already completed two tasks. Prior
to the experiment, a facilitator told her that Turvy is
simulated by a human being, that it watches her
actions, and understands a bit of English. The facilita-
tor gave no other suggestions on how to teach Turvy.

As the transcript shows, Turvy has a conversational
interface in which either party may take the lead and
both are learning about one another’s goals.5 Turvy
forms an initial hypothesis from the user’s first exam-
ple, and thereafter mixes prediction with conclusions
drawn from other user input. Turvy annotates pre-
dictions with verbal feedback, encouraging the user
to annotate her examples with hints. When testing a
hypothesis for the first time, Turvy offers a detailed
description; as it gains confidence, it reduces feedback
and increases execution speed.

Although they are told to teach Turvy, subjects are
likely to have other goals: to finish the session as
quickly as possible, to make a good impression on the
researcher, or maybe to compete with Turvy. These
motivations influence the number and complexity of
instructions users give. As an experimental instrument,
Turvy probes for more detailed instructions than
might be appropriate in a real system. To elicit as much
experimental data as possible, while keeping the ses-
sion on schedule, the researcher may make Turvy more
passive or more proactive.

Observations and results
The Turvy experiment is an unusual example of par-

ticipatory design applied to an artificial intelligence sys-
tem. In fact, our observations of user interactions with
Turvy led to the functional specification of our learning
algorithm in Cima. We paid special attention to the
forms of instruction users adopted, the ambiguities they

presented, and the possible sources of disambiguation
inherent in natural combinations of demonstrated
action with verbal and gestural annotation. We ana-
lyzed some 20 hours of videotape to identify common
forms of instruction that were both natural for users
and feasible for a computer to interpret.

Four users participated in a pilot study and seven
in the formal experiment. The subjects included sec-
retaries, an office manager, a multimedia artist, and
students in psychology and computer science. Their
level of computer experience ranged from novice to
professional. We attempted to choose a reasonable
cross section of users who might routinely compose
structured text documents with a computer. We also
wanted to include both users who had insight into
computer programming (such as computer science stu-
dents) and those who would have little or no experi-
ence with programming (such as graphic artists). We
were constrained in our choice of subjects by the need
to keep the experiment small enough for a single
researcher to document and assimilate the data. We
did, however, test our observations informally on
many other subjects over a course of three years.

Each subject worked with Turvy for about one hour.
We videotaped each user in action and interviewed the
users afterward. Although the video transcripts were
analyzed quantitatively, we focused more thoroughly
on users’ qualitative accounts of their experiences.

Dialog styles. Users were evenly split between two
dialog styles: talkative and quiet. A typical talkative
user, like Pam, gives a detailed verbal description even
before starting a task, to which Turvy replies, “Show
me what you want.” The user performs a single exam-
ple and asks Turvy to try the next. If Turvy makes a
mistake, the user says, “Stop,” and tells it what to do.
Turvy says, “Show me what you want,” and the user

Pam: Take the last name, before the colon.
[Pam copies “Agre,” pastes it to a new
paragraph, types brackets, and sets style.]

Pam: This is a list of publications. Now we’ll
add the last two digits of the date.

[Pam types “88.”]
Pam: Do you want another demo?
[Turvy interprets Pam’s question to mean the
example is completed. Turvy has formed an
initial generalization and now offers to edit
the second entry.]

Turvy: I can try if you want.
Pam: OK.
Turvy: Looking for word before first colon in
paragraph, OK?

[Turvy picks “Smith.”]
Pam: No, stop! You want the first author.
Turvy: Show me please.
[Pam picks “Angluin.”]
Turvy: You picked word before comma. You
want word before first comma or colon?

Pam: Yes! The first comma or colon.
Turvy: [while doing actions} Copy, go to start
of paragraph, OK?

Pam: OK.
Turvy: Insert new paragraph, type open
bracket, paste, close bracket, change style to

“citation,” OK?
Pam: OK.
[Now Turvy makes a mistake with the date. When
Pam typed “88” Turvy assumed the
number was either a constant or input.]

Turvy: Type in blank space “88,” OK?
Pam: No, the last two digits at the end.
Turvy: Show me please.
[Pam picks “83.”]
Turvy: Two digits before period at end of
paragraph?

Pam: Yes.
[Later, Turvy encounters author “van Lehn,”
mistakenly selecting “Lehn.” When the user
corrects the action, Turvy asks for an
explanation.]

Turvy: What’s different about this case?
Pam: Hmm.
Turvy: You selected these two words. Why?
Pam: Because these two words make up his
last name.

Turvy: Is there some feature of this word [Turvy
highlights “van”] I should look for? Lowercase
word?
Pam: [hesitantly] In this case, yes.
[Turvy accomplishes the rest of the task with-
out error.]

Figure 3. Turvy learns
how to accomplish a
task by watching a
user’s behaviors and
asking questions.

performs the correction, repeating the verbal hint.
Turvy might ask for features that distinguish the user’s
correction from Turvy’s attempts. Sometimes the user
is puzzled, so Turvy proposes a course of action,
which the user either accepts or modifies with another
hint.

Quiet users work through the first task without giv-
ing hints or inviting Turvy to take over. When Turvy
detects repetition, it interrupts, saying, “I’ve seen you
do this before, can I try?” After some hesitation, the
user consents. When Turvy makes a mistake, the user
says, “Stop,” then demonstrates how to correct the
mistake. Quiet users are sometimes reluctant to
answer Turvy’s questions about the features distin-
guishing the correction from Turvy’s attempt. Rather
than explain to Turvy how to handle a troublesome
case, a quiet user will likely tell Turvy to skip it.

Command set. All users discovered the same set of
commands that Turvy could best understand. To con-
trol learning, users would say to Turvy, “Watch what
I do” or “Ignore this.” To control prediction, they
would say, “Do the next one” or “Do the rest.” The
actual wording varied little, and all users adopted
standard terminology once they heard Turvy use it,
as when Turvy asks, “Do the next one?” Subjects used
fewer forms of instruction for focusing attention than
expected. They almost never volunteered vague hints
like “I’m repeating actions” or “Look here,” and
instead mentioned specific features, as in “Look for
the colon before italics.”

TurvyTalk. We found that users do learn to describe
concepts like titles and authors’ names in terms of
syntactic features—but only after hearing Turvy do
so. In the pilot study preceding the formal experiment,
Turvy did not verbalize its actions, so users had no
idea how to answer questions like “What’s different
about this case?” While Turvy had the same learning
abilities in the pilot study as in the formal experiment,
in the pilot study Turvy did not suggest generaliza-
tions to the users. As a result, users did not learn
Turvy’s language and did not readily recognize the
importance of giving Turvy verbal hints. Moreover,
they had very little understanding of Turvy’s native
intelligence—the basic concepts from which it could
build new knowledge. We came to understand that
users learn how to talk to Turvy the way they learn
how to talk to people, by mirroring speech patterns.6

Teaching difficulty. We’ve also determined that pro-
gramming by demonstration should make simple
tasks easy to teach and complex tasks teachable. In
the postsession interviews, all subjects reported that
they found Turvy easy to teach, especially once they
realized that it learns incrementally, so that they need
not anticipate all special cases Turvy might encounter.
In fact, the ability to infer and generalize was Turvy’s
most popular feature.

General observations. After their sessions, most sub-
jects commented that they had more confidence in
Turvy’s ability to understand speech because they
knew Turvy was human. Even so, we found ample evi-
dence in the video record that our subjects were inter-
acting with Turvy as if it were a real computer agent.
In particular, after the first few minutes, the subjects
would commonly adopt a terse, clipped form of
speech such as one might expect a machine to under-
stand. They dispensed with social niceties of turn-tak-
ing in conversation and were often brusque and even
impolite toward Turvy. Moreover, they consistently
referred to the agent as “it” when talking to the
researchers, and they often expressed doubt as to
whether “it” would understand what they were trying
to do or explain. When Turvy made a mistake, the
quiet users in particular became anxious, evidently
believing it would be impossible to make the agent
understand what was to be done. Clearly, our users
were not ascribing human-level capabilities to Turvy.

All experimental subjects said they would use
Turvy if it were a real system. All were concerned
about completeness, correctness, and their own
autonomy. They believed it would be foolhardy to
leave Turvy unsupervised, but they concluded, on the
basis of their experience, that using Turvy would save
them time and effort, freeing them to concentrate on
the more important aspects of writing.

One user refused to work with Turvy altogether.
This person rejected the very idea of an instructable
agent, believing that he would have to anticipate all
special cases in advance, as in writing a program.

Lessons for intelligent agents
Researchers have implemented programming-by-

demonstration techniques in an assortment of research
projects, ranging from systems that automatically gen-
eralize user actions to ones that allow users to control
generalization explicitly. None, however, provide the
flexibility of interaction and learning strategies that
we designed into Turvy. Based on our observations,
the key learning strategies include generalizing from
a single example and from multiple examples; using
background knowledge to make plausible general-
izations; and evoking and interpreting verbal and ges-
tural hints from the teacher to focus the learner’s
attention.

We learned several things that apply to intelligent
agents in general, and which existing research systems
do little to address:

• Users appreciate and exploit incremental learn-
ing. They are content to teach special cases as
they arise, rather than anticipating them.

• Many users want to augment demonstrations
with verbal hints, and find it easy to do so.

Clearly, our
users were
not ascribing
human-level
capabilities
to Turvy.

November 1997 39

40 Computer

• Users don’t require static description of what the
agent has learned. Concise verbal feedback, given
while predicting actions, maintains user confi-
dence.

• By using its input language in feedback, an agent
helps users learn how to teach.

• To elicit a hint, it is better to propose a guess than
to ask the user, “What’s relevant here?”

• Both agent and user must be able to refer to past
examples and instructions.

The manifest advantages of this style of interaction—
and the general success of the Turvy study—led us to
develop Cima, an agent implementation of Turvy’s
learning mechanism.

IMPLEMENTING CIMA
Cima is a machine learning system that implements

Turvy’s learning strategy and techniques. It is readily
configurable with primitive, general knowledge of a
domain (such as textual syntax) and specialized
knowledge of a particular application (such as word
processing). The learning algorithm in Cima forms
rules for identifying patterns in data from the forms of
instruction Turvy could handle: a single example, mul-
tiple examples, negative examples, and user hints.

Connected to a text editor within the Macintosh
Common Lisp environment, Cima learns concepts that
characterize textual structures. It learns from positive
and negative examples: Positive examples are either
text selections the user actually edits or predicted selec-
tions the user accepts; negative examples are predic-
tions the user rejects. To give a “pointing hint,” the
user selects text and chooses “look here” from a pop-
up menu. Users type verbal hints in a separate window.
Our experience with Turvy demonstrates that hints are
bound to be ambiguous, incompletely specified, and
sometimes even misleading. Therefore Cima interprets
them in light of two factors: domain knowledge about
text editing and the situations already encountered in
a particular user session.

Cima learns to describe a concept, such as a sur-
name, in terms of rules that classify examples as pos-
itive (members of the concept) or negative (not a
member). For instance, “surname” might be defined
as follows:

An example text is a surname if and only if it satisfies
one of the following rules:

1. the text is a capitalized word AND the text fol-
lows a single capital letter ending with a period;
OR

2. the text comprises “van” followed by a capital-
ized word.

Each rule represents one “special case” of the concept,
and all examples under a given case have all the attrib-
utes specified by the rule, though they may have other
attributes as well. Attributes are the observable or log-
ically deducible characteristics of an example, such as a
word distinguished by its capitalization or a text string
matching the pattern <capital letter><period>.
Where each rule is a conjunction of tests joined by AND,
the set of rules forms a disjunction joined by OR, the
structure of which is called a Disjunctive Normal form
(DNF). Such rule sets may be constructed by a “greedy”
covering algorithm, as shown in Figure 4.7

We modified the learning algorithm shown above in
two important ways. First, the algorithm’s inner loop
continues to add features until a classification rule not
only excludes all negative examples (as in the standard
algorithm) but also meets operational criteria, which
set the conditions a generalization must meet if it is to
be translated into a specific, concrete action when the
agent makes a prediction. Second, the system selects
features not only for their statistical utility, but also for
a combination of other criteria: whether the user has
suggested new operational criteria, whether those cri-
teria are used in other rules, whether they contribute to
operationality, and whether they are salient (a priori)
to the system’s domain knowledge.

Figure 5 shows a sample of Cima’s background
knowledge for matching, generalizing, and assessing
feature relevance in the domain of text editing. (Cima
is not an algorithm for learning textual patterns per se,
and in fact it has been tested in other domains, includ-
ing number patterns, Lego block assembly, and file
management.) The system encodes knowledge in Lisp
as association lists, predicates, and procedures. It
includes facts about data types, generalization hierar-
chies, methods for matching and generalizing exam-
ples, default rankings for the salience (that is,
“interestingness”) of example attributes, and directed
graphs that encode suggested changes in focus of atten-
tion. Details of these mechanisms, which are complex
and not particularly elegant, can be found elsewhere.8

The best way to understand what Cima does is to
see it in action. Although the system was evaluated on
the Turvy tasks described above, for variety’s sake we
use a different example here.

Suppose the user wants to train an agent to dial
phone numbers contained in a text file of addresses.
When she clicks the mouse anywhere inside a phone

Figure 4. Cima
induces a concept
using the greedy cov-
ering algorithm,
which starts with a
most general descrip-
tion and repeatedly
specializes it by
adding attribute-value
tests, until the
description covers
only positive
examples. It forms
rules that are guaran-
teed to distinguish
positive examples
from negative,
provided the language
of attribute-values
permits such distinc-
tions at all.

repeat until all positive examples are covered
by some rule

make a new empty rule R
inner loop: repeat until rule R covers no
negative examples

choose an attribute value A that
maximizes coverage of positive
examples not already covered by
some rule,
and minimizes coverage of negative
examples

add (conjoin) A to R
end inner loop

prune attributes from R that were rendered
unnecessary by those added later

add (disjoin) R to the set of rules

number and presses the command key, she wants the
agent to copy the phone number to a telephone dialer
widget. Figure 6 on the next page shows some sample
addresses.

In a typical exercise, the user tells the agent to start
watching. Then, while holding down the command
key, the user clicks between the “6” and “1” in “243-
6166,” selects the string “243-6166,” copies it, pastes
it into the dialer widget, and tells the agent she is done.
Cima must learn how to select these phone numbers,
which it does not yet know how to parse as concepts.
Moreover, Cima must learn to distinguish local num-
bers from long distance numbers, so that it can strip
off the local area codes from local numbers.

Here we describe two scenarios for teaching Cima
this task. The first uses examples only; the second uses
hints. These two methods correspond roughly with
the talkative and quiet user dialog styles that emerged
from the Turvy experiment.

Learning by example
To provide Cima with the first example phone num-

ber, the user selects “243-6166” with the mouse. When
recording this action, Cima notes the selection and its
surrounding text. An operational description of this
action must specify where the selection starts and ends,
and so Cima forms a text-selection rule, shown as item
A in Table 1 on page 43. When the user gives a second

example, “220-7299,” the rule is generalized to item
B. Cima correctly predicts the third example, “284-
4707.”

When Cima predicts “255-6191,” a nonlocal num-
ber, the user corrects Cima by selecting “(403) 255-
6191,” implicitly classifying “255-6191” as a negative
example. Since no generalization covers all four pos-
itive examples while excluding the negative, Cima
forms a rule with four special cases, shown in item C.
Being forced to create new special-case rules is symp-
tomatic of an inadequate attribute language; Cima
therefore widens its focus of attention to include fea-
tures of the surrounding text. Three of the positive
examples follow “617,” while the negative example
does not. Using this information, Cima forms the two
rules shown in item D. The string “617_” is proposed
rather than merely “7_,” which would discriminate
equally well, because Cima is matching text at the
word level. It matches at the character level when its
focus of attention is directed there.

When the user selects the next positive example,
“(415) 457-9138,” the second rule in item D is gen-
eralized to MATCHES (Number(length 3))
Number(length 3)-Number(length 4). The
rules predict the remaining positive examples, except
for an anomalous one, “339-8184,” which lacks an
area code. When the user selects this number, Cima
forms the set of rules in item E. We configured Cima

Figure 5. Cima’s
background
knowledge—as
encoded in Lisp—
includes built-in con-
cept patterns, attrib-
utes or relations,
salience of features
relative to actions,
and the ability to
widen the focus of
attention when the
current feature set
proves inadequate.

November 1997 41

1. Built-in Concepts (Patterns)

Pattern-matching knowledge is declarative or procedural:

(declare_class ‘EnclosureChar `(‘(‘ ‘)’ ‘[‘ ‘]’ ‘{‘ ‘}’ ‘\’’ ‘\”’))
(defmethod isa ((theToken TextToken) (eql theClass :EnclosureChar))

(find (text theToken) EnclosureChar))

Generalization hierarchies are used for matching or finding a generalization:

(declare_hierarchy ‘TokenTypes
(:Character (:Alphanumeric (:Alphabetic (:Lowercase :Capital)))

(:NonAlphanumeric (:EnclosureChar :Punctuation ... etc.))))

2. Types of Features (Attributes or Relations)

A feature is defined by its type and methods for matching and generalizing examples:

(declare_feature ‘TextMatches :printname “Matches” :type TextTokenSequence)
(defmethod match ((f1 TextMatches) (f2 TextMatches))

(match (tokenSequence f1) (tokenSequence f2))
(defmethod generalize ((f1 TextMatches) (f2 TextMatches))

(generalize (tokenSequence f1) (tokenSequence f2)))

3. Salience of Features Relative to Actions

The salience of a feature value (or pattern) is defined relative to actions and features in which it occurs;
salience of a type of feature is defined relative to actions:

(declare_salience EnclosureChar :action ‘SelectText
:features `(TextMatches) :score Medium)

4. Widening the Focus of Attention When the Current Feature Set Proves Inadequate

The knowledge engineer can specify that features be added or removed when the learner fails to find a
consistent or reasonably compact description:

(declare_focus ‘add_features :when `(special_case_disjunct_created)
:given_feature TextBegins :add_features `(TextFollows)))

42 Computer

to maximize the similarity between rules by reusing
features, which allows Cima to adopt a generalized
pattern for this final phone number, even though it is
the only example of the new rule.

Learning by suggestion
Now consider the same concept taught by exam-

ples and hints from the user. To point out the local
area code, the user selects “(617)” and chooses “look
at this” from a pop-up menu. This action directs
Cima to focus on text preceding the selected phone
number, and to construct a rule incorporating that
text. The rule is shown in item F of Table 1. After the
second positive example, the rule is generalized as
shown in item G. Cima learns the other two rules as
before.

Rather than point at “(617)” while selecting the first
example, the user could have given a verbal hint, such
as “It follows my area code.” Looking in its thesaurus
of feature words, Cima finds the keyword “follows,”
which suggests two features, FOLLOWS and PRE-
CEDES, with preference given to the former. The sys-
tem parses two lines of the address file around the
example and picks out several features: the literal text,
its tokenization, and the string “)_” just before the
example. Built-in knowledge (indicating that punctu-
ation and parentheses are salient features) biases the
learning algorithm to choose FOLLOWS “)_” as the
relevant attribute. A second verbal hint, “any num-
bers,” which the user gives while selecting the phone
number, causes Cima to generalize MATCHES, focus-
ing on tokens of type Number and ignoring other
properties such as string value and length.

Thus, after one example and two hints, the system
forms the rule shown in item H in Table 1. But this
rule predicts a negative example, since the FOLLOWS
pattern is too general. To eliminate the negative exam-
ple, Cima specializes the FOLLOWS attribute value to
“617)_,” forming the rule in item I.

A taxonomy of instructions
The various forms of examples and hints can be

abstracted to three types of instruction:

• Classify. (Example, {+ve,-ve}, Concept,
Subset)

• Relevancy. (Feature, {relevant, irrel-
evant}, Concept, Subset)

• Consistency. (Rule, {correct, overgen-
eral, overspecific, incorrect},
Concept)

In practice, users omit or underspecify some of the
arguments related to these instructions.

Classify. The first form of instruction classifies an
example as positive or negative with respect to some
concept, and may indicate that it belongs with some
subset of its examples, which is the usual instruction
(subset omitted) given to inductive learning programs.
The user implicitly classifies example data by select-
ing or inserting it while demonstrating a task.

Relevancy. The relevancy instruction states that an
attribute, such as FOLLOWS, or value, such as FOL-
LOWS (617)_, is relevant or irrelevant to some sub-
set of examples. This type of instruction is known to
accelerate learning because it reduces the dimensions
of the search space.9 There are a number of different
ways to deliver relevancy instructions to Cima: a
pop-up menu for “pointing,” verbal hints typed or
spoken, and more formal partial specifications using
terms like MATCHES. Typically, because a hint
describes the attribute or value ambiguously, the
learner must therefore explore several interpreta-
tions.

Consistency. The consistency instruction states
whether a given rule is valid. Consistency rules have
been studied in systems that learn from an infor-
mant.10 Although not illustrated in the previous exam-
ple scenario, Cima can interpret one form of this
instruction, namely when the user classifies the rule as
correct or incorrect through a menu command. If
incorrect, the rule must contain incorrect or irrele-
vant features, and so Cima asks the user for relevancy
instructions to guide it in generating a new rule.

EVALUATING THE IMPLEMENTATION
We tested Cima on learning the text structures—

surnames, publication dates, and other bibliographic
information—encountered in the Turvy tasks. For the
purpose of understanding user input in the Turvy
experiment, Cima coded pointing gestures as selec-
tions of text, and it coded spoken hints as text strings.
Cima and Turvy use the same attribute-value lan-
guage, but Cima learns DNF rules only, whereas Turvy
can disjoin attribute values and thus learn simpler,
more general descriptions.

By searching forward from the start of a paragraph
(a feature of both rules), Turvy uses the following logic:

• Selected text MATCHES CapitalWord or
LowercaseWord “_” CapitalWord and
PRECEDES “:” or “,” or

• Selected text MATCHES “Michalski”

In contrast, Cima learned a somewhat more complex-
looking description. Searching forward from the start
of a paragraph (a feature of all four rules), Cima uses
the following logic:

Figure 6. From a list
of addresses, Cima
can be trained to rec-
ognize a phone num-
ber, so that whenever
the user clicks within
a number, the system
will select the entire
number and dial it.

Sample data for teaching:
Me (617) 243-6166 home; (617) 220-7299 work; (617) 284-
4707 fax

Cheri (403) 255-6191 new address 3618 — 9 St SW
Steve C office (415) 457-9138; fax (415) 457-8099
Moses (617) 937-1064 home; 339-8184 work

Positive examples:
243-6166, 220-7229, 284-4707, (403) 255-6191, (415) 457-
9138, (415) 457-8099, 937-1064, 339-8184

• Selected text MATCHES CapitalWord and
PRECEDES “:” or

• Selected text MATCHES CapitalWord and
PRECEDES “,” or

• Selected text MATCHES “Michalski” or
• Selected text MATCHES LowercaseWord “_”
CapitalWord.

Despite such differences, Cima achieved 95 percent of
Turvy’s predictive accuracy, measured over the course
of both learning and performing tasks. In normal use,
learning and performance are of course inextricably
interleaved. Cima’s performance on some tasks fell
short of Turvy’s, due to the way Cima primitively
interprets hints. Cima merely spots keywords; Turvy
parses sentences. Even so, we concluded that Cima
satisfies our design requirements for the concept learn-
ing part of the system, and that the agent’s user inter-
face should be designed to ensure that users always
associate hints with examples, in order to reduce
the set of plausible interpretations that an agent might
rely upon.

Capturing a user’s intentions is one of the most dif-
ficult problems in programming intelligent, user-
friendly agents. By paying very close attention to

the forms of instruction that people naturally adopt
when communicating their intentions, we believe that
we can greatly refine the structures computer agents
use to interpret intentions. Such a conclusion may seem
obvious, but machine learning systems have not com-
pletely exploited this observation.

Our experience with both Turvy and Cima demon-
strates that even ambiguous hints improve learning
from examples, provided the learning system uses
other sources of knowledge to interpret the ambigu-
ous hints and measure their credibility.

The potential applications of agents that learn from
their users are legion. Most interactive tasks involve a
degree of repetition that can become intensely annoy-
ing to users. Programming by demonstration offers a
general solution to reduce boring, repetitive work. We
have explored one domain—repetitive text editing—
and believe that the ideas presented here apply to other
applications as well, such as spreadsheets, scheduling
programs, and personal digital assistants.

Designers of intelligent agents have tended to focus
on technology, assuming that any intelligent agent will
be easy for humans to deal with. Perhaps the most
important lesson we learned in this research, however,
is the value of involving users in the design process.
By testing and critiquing our design ideas, they keep
us focused on our objective: agents that make
computer-based work more productive and more
enjoyable. ❖

Acknowledgments

This research was supported by the Natural Sciences
and Engineering Research Council of Canada and Apple
Computer. Many thanks to Craig Nevill-Manning and
the anonymous reviewers, whose suggestions helped us
improve the presentation of this work.

November 1997 43

Table 1. Three scenarios for teaching phone number tasks.

Item Example Class Rule: “Search Backward from Click Location for Text That…”

Learning from examples only:
A) 243-6166 + MATCHES “243-6166”
B) 220-7299 + MATCHES Number(length 3)—Number(length 4)
C) 255-6191 -

(403) 255-6191 + MATCHES “243-6166” or “220-7299” or “284-4707” or “(403) 255-6191”

D) After change of focus to include features of neighboring text:
FOLLOWS “617)_” and MATCHES Number(length 3)—
Number(length 4) or text that MATCHES “(403) 255-6191”

E) After the final positive example:
339-8184 + FOLLOWS “617)_” and MATCHES Number(length 3)Number(length

4)or text that MATCHES (Number(length 3)) Number(length
3)—Number(length 4) or text that FOLLOWS “;_” and MATCHES
Number(length 3)—Number(length 4)

Learning from examples and by pointing at “(617)”:
F) 243-6166 + FOLLOWS “(617)_” and MATCHES “243-6166”
G) 220-7229 + FOLLOWS “(617)_” and MATCHES Number(length 3)—Number(length 4)

Learning from examples and through verbal hints:
H) 243-6166 + FOLLOWS “)_” and MATCHES Number—Number
I) 255-6191 - FOLLOWS “617)_” and MATCHES Number—Number

References

1. D.C. Smith, Pygmalion: A Creative Programming-
Environment, Birkhäuser Verlag, Basel, Switzerland, 1977.

2. A. Cypher, ed., Watch What I Do: Programming by
Demonstration, MIT Press, Cambridge, Mass., 1993.

3. B. Shneiderman, “Beyond Intelligent Machines: Just Do
It!,” IEEE Software, Jan. 1993, pp. 100-103.

4. D. Maulsby, S. Greenberg, and R. Mander, “Prototyping
an Intelligent Agent through Wizard of Oz,” Proc. Inter-
CHI, ACM Press, New York, 1993, pp. 277-285.

5. S.E. Brennan, “Conversation As Direct Manipulation:
An Iconoclastic View,” in The Art of Human-Computer
Interface Design, B. Laurel, ed., Addison Wesley, Read-
ing, Mass., 1990, pp. 383-404.

6. R.G. Leiser, “Exploiting Convergence to Improve Nat-
ural Language Understanding,” Interacting with Com-
puters, No. 3, 1989, pp. 284-298.

7. D. Maulsby, Instructible Agents, doctoral dissertation,
Univ. of Calgary, Dept. of Computer Science, 1994.

8. J. Cendrowska, “PRISM: An Algorithm for Inducing
Modular Rules,” Int’l J. Man-Machine Studies 27, 1987.

9. D. Haussler, “Quantifying Inductive Bias: AI Learning
Algorithms and Valiant’s Learning Framework,” Artifi-
cial Intelligence, No. 2, 1988, pp. 177-221.

10. D. Angluin, “Queries and Concept Learning,” Machine
Learning (2), 1988, pp. 319-342.

David Maulsby is an independent consultant and
product designer. He is interested in moving pro-
gramming-by-example technology out of the labora-
tory and into commercial applications for personal
finance and computer-based learning. Maulsby
received a PhD in computer science from the Univer-
sity of Calgary. He is coeditor of the book Watch What
I Do: Programming by Demonstration (MIT Press,
1993).

Ian H. Witten is a professor of computer science at the
University of Waikato. He is interested in machine learn-
ing, adaptive text compression, and user modeling. Wit-
ten is the author of nearly 200 refereed papers on
machine learning, speech synthesis, signal processing,
text compression, hypertext, and computer typography
He has written six books, the latest being Managing
Gigabytes: Compressing and Indexing Documents and
Images (Van Nostrand Reinhold, 1994).

Contact Maulsby at Aurelium Inc., 430, 820-89 Ave.
SW, Calgary T2V 4N9, Canada; maulsbyd@
aurelium.com. Contact Witten at the Department of
Computer Science, University of Waikato, Hamilton,
New Zealand; ihw@cs.waikato.ac.nz.

C A L L F O R P A P E R S

DESIGN CHALLENGES FOR
HIGH-PERFORMANCE NETWORK INTERFACES

N O V E M B E R 1 9 9 8
Submission: February 12, 1998 Acceptance: May 15, 1998 Final version: July 15, 1998

Topics for this special issue include, bust are not limited to:
■ Impact of emerging technology on network protocol and NI designs

Parallel network protocols for SMPs
Protocol optimizations for >1 gigabit/second networks
NI designs for novel network services/applications
Novel protocols for emerging networks

■ Interaction of NIs with internal computer hardware and software
Interaction of NIs with microprocessors and memory hierarchies
Interaction of NIs with protocol stacks
Hardware support for hardware and software shared-memory machines

■ Interaction of NIs with the operating system
NI support for Quality of Service
Interaction of NIs and virtual memory
NIs and scheduling, memory management, input/output

Submissions can be sent either electronically (preferred) or by surface mail. Electronic submissions should be in a
format of Adobe PostScript viewable by ghostview and should be sent to shubu@cs.wisc.edu. Surface mail submissions
should be made by sending seven copies of the manuscript to Shubhendu S. Mukherjee.
For more detailed Computer author guidelines, contact the guest editors, or access the Web at http://www.computer.org.

