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Abstract—Experience of daily stress among bus drivers has
shown to affect physical and psychological health, and can impact
driving behavior and overall road safety. Although previous
research consistently supports these findings, little attention has
been dedicated to the design of a stress detection method able
to synchronize physiologic and psychological stress responses of
public bus drivers in their day-to-day routine work. To overcome
this limitation, we propose a mobile sensing approach to detect
georeferenced stress responses and facilitate memory recall of the
stressful situations. Data was collected among public bus drivers
in the city of Porto, Portugal (145 hours, 36 bus drivers, +2300
km) and results supported the validation of our approach among
this population and allowed us to determine specific stressor
categories within certain areas of the city. Furthermore, data
collected through-out the city allowed us to produce a citywide
”stress map” that can be used for spotting areas in need of local
authority intervention. The enriching findings suggest that our
system can be a promising tool to support applied occupational
health interventions for public bus drivers and guide authorities’
interventions to improve these aspects in ”future” cities.

Index Terms—Public Transportation, Driver, Stress Detection,
Wearable Technologies, Georeferenced Data Analysis

I. INTRODUCTION

Driver behavior constitutes a major concern in road safety
research and policy. Since buses are one of the most used
modes of public transportation worldwide, the behavior of bus
drivers and their occupational health becomes a critical priority
in overall road safety [1].

Epidemiological evidence from several studies conducted
mainly in North America and in Western Europe showed that
urban bus drivers have substantially higher mortality rates and
higher risk to develop physical and psychological diseases
in comparison to many other occupational groups [2]. In
agreement with this findings, a meta-analysis by Tse et al. [1]
reviewing fifty years of research in the area of bus driver well-
being concluded that this population is exposed to several
sources of stress over time. These can be distinguished in
three main categories: physical environment, job design and
organizational issues. Physical environment includes sources
of stress related with cabin ergonomics, exposure to noise,
weather conditions, threat of physical violence, and traffic
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congestion aspects. Job design includes responsibility for se-
curity and schedule obedience, working in shifts, long periods
of social isolation, ticket selling and control. Organizational
issues are related to bus drivers low autonomy and limited
decision-making authority. Finally, bus drivers profession is
associated with high sedentarism levels, which is known to be
a major cause for Cardiovascular Diseases (CVD) [3].

The task of driving involves considerable strain for bus
drivers, ranging from the needed awareness to safeguard pas-
sengers, to traffic hazards [4]. The diversity of daily demands
faced by this population causes detrimental effects to their
physical and psychological health and well-being, as supported
by studies conducted in the occupational [5], ergonomic [6]
and biomedical areas [7]. Furthermore, it can also increase
the risk of accidents, decreasing overall road safety [1]. Also,
stress caused by emotional upsets has been associated with
several incidents among drivers [8]. This is probably explained
by the fact that emotional states of anger and frustration can
increase driver distraction and impair driving performance [9].
Additionally, bus drivers role is often conceptualized as high
in demands (i.e., traffic congestion, rotating shift patterns,
negative passenger interaction, tight running times, workload
demands, etc.) and low in control with respect to limited
decision latitude [6]. This is a main cause for psychological
problems [2] and Coronary Heart Disease (CHD) [10].

In agreement with this idea, an investigation by Baevskii et
al. [7] aiming to study the use of principles of prenosological
diagnosis for assessing the functional state of the body, has
found that bus drivers experienced chronic occupational stress
leading to exhaustion of regulatory mechanisms and to rapid
development of cardiovascular pathology. As explained by the
authors, long-term mental and psychoemotional tension in bus
drivers was associated with occupational stress, and leads to
the worsening of psychophysiological and cardiorespiratory
function of the body. The degree of stress was assessed in this
study based on analysis of Heart Rate Variability (HRV).

While there is no definitive method of directly assessing
physiological stress levels, many techniques have been iden-
tified in the literature, such as heart rate and HRV met-
rics, electrodermal activity, respiration rate, electromyography
and blood volume pressure [11]–[14]. Their results suggest
that stress events do indeed cause a reaction perceivable in
physiological signals, and that using multiple physiological
inputs and incorporating driving event information can greatly
increase drivers’ stress detection accuracy [15], [16].

Although, one can question the ecological validity and
reliability of driver stress measures collected in laboratory con-
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ditions [17]. In opposition, stress assessment research among
drivers should take place in ecological settings including non-
intrusive physiologic stress monitoring. Recent advances in
noninvasive measurement techniques allowed the progression
of human developmental stress research [18], including ambu-
latory monitoring of cardiovascular function [19]–[21]. HRV
can be calculated from the Electrocardiogram (ECG), and is
reported to be an accurate measure of stress [13]. Recent
studies were able to correlate stress with some non-linear
HRV features [22], while time-domain and frequency-domain
features extracted from HRV have been validated multiple
times as stress indicators in the last decades [13], [14], [23].

Nevertheless, stress assessment in ecological settings among
bus drivers is not always an easy task, mainly due to difficulties
faced when aiming to collect their physiologic and psycho-
logical stress responses during operation of public vehicles
in urban centers [24]. Previous research in this area [25],
[26] associated physiologic (e.g., blood pressure levels, pulse,
and urine samples) and psychologic (e.g., self-report and/or
researchers observation) measures of stress, and data was
collected during bus drivers rest periods. Although these
studies provided a crucial contribution to the understanding of
daily stress among bus drivers, they are plagued by limitations
highlighted below. Primarily, physiologic measures used do
not include HRV, considered to be one of the most viable
physiologic assessments of stress [14], [23]. Secondly, these
research designs failed to understand the physiologic and psy-
chologic impact of a specific source of stress on the driver [27].
Thirdly, the retrospective self-report assessments of sources of
stress at the end of a working day may be plagued by attention
and memory bias, limiting the driver ability to recall acute
stressfull events [28]. It is well known that the experience of
stress affects quality of memory recall [29]. Furthermore, bus
drivers deal with numerous tasks and challenges throughout
a day at work (e.g., driving, interaction with passengers and
other drivers). Hence, previous research has shown significant
discrepancies between real-time assessments and retrospective
recall [30], questioning how accurate and valid are results that
rely merely on bus drivers memory construction and retrieval.

Towards this goal, the current paper proposes an interdis-
ciplinary method that combines physiologic, psychologic and
georeferenced data to investigate sources of stress faced by bus
drivers while driving in an ecological setting on a daily work
basis. Our contribution includes the design of stress assessment
software, adapted to the routine needs of bus drivers, and
combines non-intrusive, user friendly and reliable physiologic
and psychologic research methods, providing a continuous
daily monitoring of the driver during the course of a day at
work. To overcome previous retrospective self-report assess-
ments among bus drivers, our methodology provides a digital
contextualization of potential sources of stress, including envi-
ronmental cues to trigger memory retrieval [31]. Furthermore,
this information is synchronized with the physiologic response
for each stressor and the georeferenced location.

Hence, findings will benefit future evaluation of stress
sources among bus drivers and will foster the design of effi-
cient occupational health and local road safety interventions.

II. METHODOLOGY

In this section we describe the technology and methodology
that was iteratively improved by real-world experiments with
professional bus drivers in the city of Porto, Portugal.

A. Sensing Platform

Our project targeted a large population, and thus our plat-
form was designed to be very easy to use and have very low
intrusiveness. These were critical for the wide acceptance and
participation we achieved, with 36 volunteers out of 37 drivers
introduced to the project.

1) Physiologic Sensors: One kit of equipment was provided
to each bus driver, including a VitalJacket R©1, disposable
electrodes, a Global Positioning System (GPS) receiver and
a netbook PC. The Vital Jacket R© (VJ) is a wearable bio-
monitoring platform in the form of a t-shirt that provides real
time electrocardiogram (ECG) with 500 Hz sampling rate, 3
axis accelerometer and an event push-button [21] [32]. This
data is transmitted to the netbook via Bluetooth from a small
box located in an easily accessible pocket on the t-shirt.

2) Self-Report Measures: Health and demographic ques-
tionnaires were completed by participants. This data was used
to analyze the impact that demographic metrics have on the
drivers’ physiologic response (Section IV-C).

Furthermore, bus drivers provided a description of each
potential stressor, followed by a stress intensity rating, based
on their appraisal of the particular situation. Potential stressful
situations were either detected by the system or tagged by the
drivers using the push-button incorporated in the VJ. Stress
intensity was assessed using a ”stress thermometer” where the
participant dissected a 10 cm bipolar line anchored by two
statements (”not at all stressful” vs. ”extremely stressful”). The
”stress thermometer” has demonstrated normal distribution
properties and adequate variability in previous stress assess-
ment research [33] [34].

3) System Architecture: The GPS receiver used was a
Bluemax Bluetooth device that was placed near a bus window
and transmits GPS information to the netbook via Bluetooth.
A small and lightweight netbook, chosen for its portability,
served as the gathering unit. Data processing was performed
on a cloud server to increase processing speed. The netbook
was used further for visualization in the recall phase (see
Section II-B), and the required Internet connectivity was
provided by a 3G network adapter.

The architecture of the system designed and implemented
to integrate the previous materials is shown in Fig. 1. This
architecture and gathering capabilities, such as sensor-data
synchronization, reliability and communications have been
tested and validated in previous work [35].

4) Signal Processing Software: The processing of the ECG
signal was performed using the open-source library Phys-
ioToolkit from Physionet [36], which follows the recommen-
dations proposed by the Task Force of The European Society
of Cardiology and The North American Society of Pacing and
Electrophysiology [13].

1BioDevices S.A., www.vitaljacket.com
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Fig. 1. Hardware architecture

We used the GQRS tool from the library to extract heartbeat
information from the ECG. Fig. 2 shows a 5 second ECG
segment with the R peaks marked at the top. This tool
determines the moment of the peaks for each heartbeat and
outputs the inter-beat intervals (R-R) in a format compatible
with other Physionet tools.

Extra processing and filtering of the cardiac signal was
required, as explained in Secion III-C, due to the presence
of very noisy signals, which can occur in real world research.

We used the HRV Toolkit also from Physionet to perform a
time-domain and frequency-domain analysis of the heart rate
information, as suggested by the Task Force of The European
Society of Cardiology and The North American Society of
Pacing and Electrophysiology [13]. We performed the analysis
using a window size of 100 s with a shift of 60 s between
consecutive windows, and the results are stored for further
statistical analysis (which we denominate HRV blocks). We
decided to use overlapping windows to improve the time
accuracy of the results, but we downsample the results when
independence between samples is required, as will be seen in
Section III-C. The window size of 100 s was chosen in order
to have a 0.02 Hz of frequency resolution in the frequency-
domain results without upsampling. Among others, the met-
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Fig. 3. The Low Frequency Power and the ratio between Low Frequency and
High Frequency power, for a 3 hour long trip. We use the standardized LF
Power to detect stressful events, marked in the top horizontal axis.

rics include the average normal-to-normal (NN) intervals, the
standard deviation of these NN intervals, their low frequency
spectral power (LF) between 0.04 Hz and 0.15 Hz, the high
frequency power (HF) between 0.15 Hz and 0.4 Hz, and the
ratio LF/HF.

The spectral power of different frequency bands is specially
important to our study, because the power in the HF band is
mainly mediated by the parasympathetic system and encom-
passes respiratory sinus arrhythmia, but the LF band is mainly
mediated by the sympathetic component, and so they might
provide a robust way to assess individual stress [37] [13].

Fig. 3 shows an example of the evolution of the LF
power and the LF/HF ratio, which are the two metrics most
correlated to stress [12] [23]. The figure shows that spikes
are more distinct in the LF than the LF/HF case. A statistical
analysis performed over our data confirmed this choice (see
Section III), leading us to use the LF power as a stress
indicator.

5) Detecting Stressful Events: Potentially stressful events
were selected from all the moments the driver pushed the
button on the VJ, combined with additional 10 blocks with
the driver’s highest physiologic stress (LF component) but
separated at least 5 minutes between each other.

6) Enquiry and Visualization tools: The processed ECG
data, together with the GPS information, was used to generate
a map at the end of each driver’s shift.

The map was visualized using the Google Earth platform
(Fig. 4), providing a straightforward approach to overlay
spatial data and correlate different types of information. Free
camera movements and a time toolbar, used to select a time
interval window to be displayed, allowed to easily analyze
the detected events and their context. To facilitate memory
recall, we overlaid information about location and time of the
events, as well as the speed of the bus in the whole trip. This
information was plotted using a line segment over the map,
where the height of the line segments was used to represent
speed. By displaying the speed profile for every second of the
trip, the driver and researcher could easily identify bus stops
and driving events information, such as aggressive braking,
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Fig. 4. Visualization of a trip and stress events in Google Earth. The height
of the traces represents bus speed, ellipses denotes events.

accelerations (as in Rigas et al. [16]) and others, aiding them
recall and characterize the events. In the map, the detected
potentially stressful events were displayed as ellipses spanning
over the area traveled during the corresponding 100 s HRV
block.

The Internet connection from the 3G network adapter was
used to access Google Earth and refresh the maps and to syn-
chronize the driver’s self-report data to the server. Moreover,
the netbook also leveraged this Internet connection to speed
up the processing of the ECG signal, sending the raw data
to a server that performed all the needed computation and
generated the maps. This upload and cloud processing took
around 4 minutes for a 6 hour work shift. If the computation
had been done locally, it would have taken around 15 minutes
for the same workload.

B. Procedure

On the day prior to data collection, participants completed a
demographic and health questionnaire, and received a kit con-
taining the required equipment. At this time they were given
a detailed explanation of the procedures by a researcher. On
the data collection day, the bus driver followed the workflow
depicted in Fig. 5, wearing the VitalJacket R© and turning on the
netbook and GPS receiver at the beginning of the work shift.
Following this procedure, the bus driver was ready to start his
work shift, carrying the kit for a full day. The participant was
instructed to press the button on the VitalJacket R© in case of
appraising a potentially stressful event during the day, affecting
his or the passengers well-being. At the end of the shift, a
researcher met the participant at the station, and ran the cloud
processing algorithms over the gathered data. A map was then
produced displaying the information for the full workday of
that participant, as described in Section II-A6.
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Fig. 5. Workflow on daily data collection

Fig. 6. Close-up of a stress event in Google Earth. The height of the traces
represents bus speed.

For each of the displayed ellipses, the driver visualized
the exact location and extra information using Google Earth
(Fig. 6). For the cases when the participant could remember
the event, he was asked to recall that particular situation, and
to provide a brief description followed by the stress intensity
evaluation for that particular event. The description of the
events and stress intensity evaluation were completed in the
netbook, but stored and synchronized with the physiologic data
on the cloud server.

The protocol was designed to obtain the following indepen-
dent data sets to help in the detection and categorization of
the events:

• Tagged events, providing annotations of on-site self-
reported stressors including a description of the situation
experienced and stress intensity evaluation;

• Physiologic responses measured with biomedical sensors
- HRV blocks;

• Location and velocity information assessed from the GPS
data, used to detect driving events and facilitate memory
retrieval.

• Short annotations for every stressful event detected by
the system and confirmed by the driver as stressful,
including a description of the situation experienced and
stress intensity evaluation.

This method provided an accurate connection between the
georeferenced data, description of the stressor experienced
and stress appraisal evaluation for a particular stressor, syn-
chronized with physiologic and driving response data. The
ellipses provided a general vicinity to the memory retrieval
of the event, contextualizing time and location information.
Additionally, the method allowed the driver to isolate certain
events during the working day by pushing the button. These
were saved in the system and available for description and
stress intensity evaluation later at the end of the work shift.

III. DATA ANALYSIS

A. Samples and Population

Thirty-six male professional bus drivers, aged between 29
and 55 years old (Mean = 41; Standard Deviation = 6.5)
with experience in bus driving between 3 and 25 years (M
= 13; SD = 6.0), participated in this study. All participants



5

worked for the major transportation company in the city of
Porto, Portugal. The exclusion criteria for the study were
participants having a history of cardiovascular disease and/or
taking prescription drugs known to affect cardiovascular func-
tion. Participants volunteering to participate in the study were
instructed to perform no changes in their daily routine, such as
sport activities and caffeine, nicotine and food consumption.

Following approval of the study by the bus company ad-
ministration, bus drivers were invited to participate. For this
purpose a presentation session was organized by researchers,
explaining the aim and protocol of the study. Participants
provided informed consent forms prior to participation.

Data was collected for each bus driver over a full working
day, corresponding to approximately 5 hours of driving, di-
vided in one or two daytime shifts occurring between 8 AM
and 8 PM. In total, this study gathered 151 hours of data,
including 500 Hz ECG and location information stored every
second that spanned more than 2.500 kms.

B. Stressor Categories

Each situation of stress described by the drivers in the 86
events was subjected to a content analysis to identify stressors
categories. The identified categories are similar to a great
extent to the job hassles reported by previous research [27],
with a few exceptions discussed in Section V.

The first two authors then independently assigned each event
into 5 major stressor categories or event types.

1) Social interactions (e.g., with passengers or friends);
2) Unexpected situations (e.g., mechanical failures, driving

mistakes, unexpected changes);
3) Other drivers or pedestrians behaviors (e.g., other drivers

risky behaviors and lack of politeness);
4) Events that impact time schedule (e.g., traffic conges-

tion);
5) Difficult driving due to urban planning (e.g., narrow

roads and tight corners).
A reliability check showed a level of agreement of 98.8%

between both researchers after the first categorization. Follow-
ing some discussion, this agreement increased to 100%.

C. Filtering and Processing the Physiologic Data

1) Synchronizing the VJ and GPS clock: The Physionet
library can process the cardiac signal and outputs the metrics
we need. However, some extra steps were required in order to
synchronize the Physionet output with our GPS data.

We used the GQRS tool from Physionet to detect heart
beats, which takes the ECG signal as input with a specified
starting time and sample frequency, and outputs the times-
tamps of every detected beat. Even though the VitalJacket R©,
our ECG sensor, has a fixed 500 Hz sampling rate, small errors
in the VJ clock precision and in the Bluetooth communication
can cause discrepancies between the timestamps and duration
of the ECG and the GPS data. This clock drift is negligible
at the beginning of a trip, since a starting timestamp is given
to the application, but naturally increases as the time passes,
and sometimes resulted in errors of more than 15 minutes

at the end of the 6 h trips in our pilot experiments. A small
desynchronization between the VJ and GPS clocks can cause a
huge misplacement of a stressful event, since buses can travel
at up to 50 km/h (14 m/s)

To correct this synchronization issue our processing algo-
rithm keeps track of the GPS clock and also of a virtual one
that follows the beat-detector fixed 1/500 s per data sample.
The differences between both clocks is constantly analyzed,
and the ECG stream is split and given a new corrected
timestamp every time a shift of more than 10 s is detected.

2) Detecting noisy ECG data: Another problem we de-
tected in our pilot experiments when processing the data was
ECG noise. The heartbeat detectors perform poorly in the
presence of very noisy signals that can occur in real world
scenarios like ours, leading to the detection of false-positive
stressful events. There are many sources of noise in a real
world environment, such as from other muscular activity or
electrode misplacement, which can significantly reduce the
accuracy of the heartbeat detection algorithms.

We implemented a Standard Deviation (SD) filter to detect
extremely noisy blocks of data and improve the reliability
of the ECG data. This filter calculates the SD of the raw
ECG every second (500 samples), discarding an HRV block
from the analysis if it contains any second with an SD
higher than a threshold. The filter successfully detected the
trips belonging to 2 drivers who misplaced the electrode
patches, and also other 3 trips that presented problems with
the electrodes’ connection after some point in the middle of
the trip. After analyzing these trips, the threshold was set as
the 90th percentile of all of our data, eliminating the 10%
noisiest ECG data gathered in our real world scenario. The SD
filter was applied to 151 h of gathered data, resulting in 1470
discarded HRV blocks. From these, 1349 (92%) belonged to
5 trip segments with problems in the electrode patches.

3) Push-button time correction: Another filtering step was
the correction of tagged events’ timestamps. This consisted
in correlating the push-button events with the correct HRV
block of physiologic sensor data by analyzing the driver
description of the event and surrounding trip data, such as
location and speed. Most of the events were associated with the
block that immediately preceded it, meaning that the drivers
pressed the button right after they experienced a stressful
situation. However, in some cases they were associated with
the following block, because some drivers pressed the button
when approaching a known dangerous place.

4) HRV metrics standardization: Different drivers have
different cardiac characteristics and baselines, preventing us
from comparing HRV metrics between multiple drivers. Since
we could not collect a baseline for each driver in a relaxed
and controlled environment, we decided to standardized the
cardiac metrics per driver. To this end, the HRV metrics of
each driver’s entire collection day were transformed to have
zero mean and unit variance.

5) Downsampling to independence: The final step in our
processing algorithm was the downsampling of the HRV
blocks for each driver in order to increase independence
between samples. The recalled events were already selected
with at least 5 min of data between them. However, the rest of
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the ECG was analyzed every minute but with a window size
of 100 s, resulting in 40 s overlap between HRV blocks, and
producing a dependent dataset of HRV metrics. To make the
HRV blocks independent, the processed and filtered blocks
were downsampled for each driver, removing the minimum
number of blocks that guarantees the same 5 min distance
between HRV blocks or any recalled or tagged events.

IV. RESULTS

We gathered a total of 9081 HRV Blocks, from which
1470 were filtered as noise and 6050 were removed in the
downsampling process. From the 36 drivers, 2 had misplaced
electrodes providing no useful ECG data and other 2 forgot
to turn on the GPS device. 29 events were tagged on-site as
stressful by 11 drivers. Some drivers forgot they were being
monitored and thus forgot to press the button in stressful
situations, others were distracted dealing with the situations.

To facilitate the events recall, 320 distinct blocks were
identified by the system and shown to the 32 drivers in the map
at the end of the day. From these, 57 blocks were recalled as
stressful events and evaluated by 27 bus drivers, 2 drivers did
not recall any additional events besides the ones they tagged,
and 3 stated they did not experience any stressful situations
during their work shift.

Our final dataset to be analyzed contains stress information
from 29 drivers, with 29 on-site tagged events, 57 events
recalled at the end of the day, and other 1475 HRV blocks
not identified as stressful. Thus, a total of 1561 independent
rows of data standardized per driver.

Due to non-normalized distributions of the data, non-
parametric tests were used. The Mann-Whitney U-Test [38]
was chosen to compare the distributions of two populations,
the Kruskal-Wallis Test [39] to verify if more than two popu-
lations have the same distributions, and the Kendalls Tau [40]
to check for statistical dependence between variables in the
same population. To this end, multiple pairwise MannWhitney
U-Tests were conducted to analyze differences in the main
HRV metrics between the samples classified as tagged events,
recalled events and others. Kruskal-Wallis Test was conducted
to test for differences in the LF spectral power across stressor
categories in both self-reported and cardiac stress responses.
Kendall’s Tau rank correlation test was used to search for
statistical association between demographic and physiologic
variables.

A. Physiologic vs Recalled Stress Assessment

Our system used the LF component of the interbeat intervals
as a stress indicator, as proposed by [12] [23]. To validate this
proposition, we compared the LF frequency component of all
blocks, the tagged events, and the stress events recalled at the
end of the day (Fig. 7).

The MannWhitney U-Test showed significant difference
between the distributions of LF power for other and tagged
events (z = -4.91, p = 9.16×10−7), indicating that there is a
significant increase of the LF power during events appraised
as stressful by the driver. The recalled events also presented
a statistically higher LF component than the tagged events (z
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TABLE I
DISTRIBUTION TESTS’ RESULTS BETWEEN OTHER AND TAGGED EVENTS

OF DIFFERENT HRV METRICS FROM THE HRV TOOLKIT

MannWhitney AVNN SDNN pNN50 LF HF LF/HF
Z value -0.68 -4.19 -2.75 -4.91 -2.39 -1.42
P value 0.50 <0.01 <0.01 <0.01 0.02 0.16

= -4.85, p = 1.23×10−6), even when analyzing only the 11
drivers who tagged events.

The same statistical analysis between tagged and other
events was performed for every HRV metric, and some are
presented in Table I. The metric that showed the most statisti-
cally significant difference was the LF power, followed by the
time-domain metrics that detect variability, such as standard
deviation of heart beat intervals.

B. Analysis of Stressor Categories

1
2
3
4
5
6
7
8

R
e

p
o

rt
e

d
 S

tr
e

s
s

-1
0
1
2
3
4
5

S
ta

n
d

a
rd

iz
e

d
  
L

F

1-
 S

oc
ia
l i
nt

er
ac

tio
ns

2-
 U

ne
xp

ec
te

d 
si
tu

at
io
ns

3-
 E

xt
er

na
l f
ac

to
rs

4-
 T

im
e 

sc
he

du
le

5-
 U

rb
an

 p
la
nn

in
g

9
10

Fig. 8. Distribution of the stress level throughout the different stress
categories, for both reported stress evaluated by the stress thermometer, and
calculated from the ECG signal

Fig. 8 shows an overview of the distributions for physiologic
and self-reported stress intensity evaluation for each stressor
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TABLE II
FREQUENCY ANALYSIS FOR REPORTED STRESSOR CATEGORIES: NUMBER
OF REPORTS, FREQUENCY RELATIVE TO THE TOTAL NUMBER OF EVENTS,
NUMBER OF DISTINCT DRIVERS THAT REPORTED THAT CATEGORY, AND
CORRESPONDING RELATIVE FREQUENCY TO THE NUMBER OF DRIVERS.

Stressor Category 1 2 3 4 5 Total
Total Count 14 7 30 16 19 86
Relative Frequency 16% 8% 35% 19% 22%
Drivers 11 6 18 12 12 29
Drivers Frequency 38% 21% 62% 41% 41%

category, introduced in Section III-B. An event was only
considered to be stressful when appraised by the bus driver
as higher than 0 in the stress thermometer scale (51 of the 86
identified events).

The Kruskal-Wallis Test showed that no significant differ-
ences across stressor categories exist either for self-reported
X2(4, N = 51) = 7.62; p = 0.11; or for cardiac stress
responses X2(4, N = 51) = 4.82; p = 0.31.

Table II shows a frequency analysis of stress categories
combining all tagged and recalled events appraised as stressful
by bus drivers. Other drivers or pedestrians behaviors were
the most commonly reported source of stress, reported for
34.9% of the recalled or tagged events and mentioned at least
once by 62.1% of the 29 bus drivers. Difficulty driving due
to urban planning was the second most reported source of
stress, reported for 22.1% of the events recalled or tagged,
and mentioned by 41.4% of the drivers (12/29). Also, events
that impact time schedule was a frequently reported source of
stress, accounting for 18.6% of the events and mentioned by
41.4% of the drivers.

C. Questionnaires and per Driver Analysis

In this project we also analyzed the questionnaires data
and their correlations with the cardiac metrics. We combined
the questionnaires answers with the HRV analysis over each
driver’s full dataset, resulting in metrics such as a driver’s
age, height, weight, years of experience as a bus driver, usual
exercise routine, and also the full day’s average heart rate,
average spectral power for different frequencies, and others.

To analyze the data we performed cross-correlation analysis
between all variables using Kendall’s Tau (τ ) rank correlation
test [40]. The main results are presented in Table III, with
correlated variables resulting in a p-value lower than 0.05
marked in bold.

The results show a strong correlation between the cardiac
metrics and the years of experience of the drivers, and not
with any other demographic metric.

D. Geo-Referenced Stress Analysis

Furthermore, the analysis of the tagged and recalled stress
events showed that more than 75% (65/86) of the stressors
are location-dependent, such as tight roads, low-visibility
crosswalks and drivers not respecting signalization on some
crossroads. This data suggests that the geographic reference
of detected events provided by our method was efficient in
facilitating bus drivers’ memory retrieval, and also that it is

TABLE III
KENDALL’S TAU TEST RESULTS FOR DEMOGRAPHIC AND FULL-DAY
CARDIAC METRICS. P VALUES LOWER THAN 0.05 ARE MARKED AS

BOOLEAN

Age Weight Experience
Tau P Tau P Tau P

AvgAVNN 0.0 0.84 0.3 0.06 -0.3 0.02
AvgSDNN 0.0 0.87 0.1 0.72 -0.3 0.01
AvgLF -0.1 0.32 0.1 0.63 -0.3 0.04
AvgHF -0.2 0.09 0.1 0.45 -0.3 0.02
AvgLF/HF 0.1 0.37 -0.1 0.72 0.0 0.93

possible to provide valuable stress-maps to decision makers.
With both physiologic and psychologic stress assessment
performed with our methodology, we are able to map their
intensity and detect systematically stressful locations.

Fig. 9 shows a stress map of the city of Porto, where lighter
areas represents less stressful and darker areas represents
highly stressful places. Also, darker symbols mark the spots
where stressful events were tagged, lighter ones were recalled
at the end of the day, and the numbers correspond to the event
category as stated in Section III-B. The map was generated by
clustering and averaging the Standardized LF information of
the HRV blocks.Additionally, in order to eliminate biases in
the cardiac data associated with physical activity, we discarded
data gathered while the bus was almost stopped (less than
5 km/h) and only map clusters with data from at least 3 distinct
drivers.

Based on Fig. 9 it is clear that the city downtown, near
the center of the map, is a stressful region with many highly-
stressful roads being detected in that dense urban zone. How-
ever we can also find other less obvious highly-stressful zones,
such as in the left-middle edge of the map, where a roundabout
caused a cardiac response in all of the 4 drivers that passed
by and even a tagged event from one of the drivers.

V. DISCUSSION

The aim of the current paper was to investigate daily
sources of stress faced by bus drivers while driving in an
ecological setting during their daily work. Results suggest that
the proposed method is accurate in detecting psychological and
physiological stress responses. Despite the divergence in the
concept definition and assessment of stress, our findings are
consistent with previous research recommendations [41].

Particularly, results showed a significant increase of the
LF component of HRV during events appraised as stressful
by the driver, suggesting that the stress concept assessment
can combine both psychologic and physiologic dimensions of
stress, while also contemplating an integrative approach in the
real world. Contrary to the results presented by McCraty et
al. [12] and Healey and Picard [23], the LF/HF does not show
a statistically different distribution between tagged stressful
events and other HRV blocks, which may be due to the higher
HF noise present in real word scenarios like the one in this
study.This indicates that the LF power is the best stress metric
for our scenario.

Regarding demographic factors and their impact on the
drivers’ physiologic response, results indicate that years of
experience of the driver is an important factor to consider.
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Fig. 9. Stress map of Porto with placemarks on detected stressful events. The numbers represent the event category, the darker marks are tagged events and
lighter are events recalled at the end of the day.

Surprisingly, even the age, which is correlated with the years
of experience, is not significantly correlated with the physio-
logic metrics. This suggests that, although cardiac response is
known to decrease with age [42], more experienced drivers
(not necessarily older ones) have less cardiac response to
stressful events and a smoother physiologic response through-
out the entire working day. This finding can be possibly
explained [43] by the fact that experienced workers tend
to develop protective mechanisms against harmful effects of
stress in order to protect their mental health. Further attention
should be dedicated to this finding to understand what are
effective coping interventions for bus drivers.

In what concerns to sources of stress found in our study
(Section III-B), these are similar to a great extent to the job
hassles reported by Johansson et al. [27] among bus drivers
working in the city of Stockholm (e.g., traffic congestion,
illegal parking of vehicles, risky or impolite behaviors of
other divers or pedestrians, mechanical difficulties, timetable
restrictions). However, in the current study, social interactions
with passengers or friends and bus driving mistakes were also
reported as stressors in 18% of the reported events and by
41% of the drivers (12/29). We believed that this fact may
be mainly related to the methods used in this study that
facilitated the drivers memory retrieval of events. On the other
hand, previous research methods used across studies relied on
retrospective self-reports following long periods of time what
may had affected the type of stressors reported. Additionally,
previous studies relied on the researcher observations, whereas

our study relied on a more ecological setup and based on the
inputs of the drivers themselves, i.e. their own perceptions and
experiences of stress. As a result, stress categories such as the
experiences of interpersonal stressors are unlikely to be re-
ported by others, who merely described what they can observe.
Also, the constant presence of an observer may produce biased
results, making the driver less likely to do driving mistakes and
avoid communicating with friends entering the bus. Hence,
we believe that the type of stress categories found in this
study complements the literature in the area and reinforce the
strengths of the methodology used to capture drivers acute
stressors experienced on a daily basis.

It is important to highlight that the current ecological
method culminates a previous limitation in the area of stress
reactivity assessment [44], and provides a crucial contribution
to the study of cardiovascular reactivity to stress in real world
scenarios. This is a fundamental relationship when investigat-
ing sources of stress, critical to the etiology of cardiovascular
disease [27]. Furthermore, as suggested by Myin-Germeys et
al. [45] stress responses assessed in real life situations are
more likely to be closer to reality than those collected under
laboratory settings.

Additionally, the inclusion of georeferenced information
and its visualization by bus drivers was a key aspect in this
methodology, facilitating memory retrieval of the experienced
situations, thus providing a detailed description and specificity
of stressors. To support this argument the proposed method-
ology allowed the collection of 57 additional stressors in the
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city of Porto, compared with only 29 voluntarily tagged by
bus drivers.

In sum, the proposed methodology provides detailed infor-
mation of different stressors experienced by bus drivers, and
their specific location in a city. It is believed that this informa-
tion can induce evidence based decisions across a variety of
areas (e.g., ergonomics, security, management, technological,
public policy, psychologic and urban planning). Additionally,
the system is able to map exactly where in the city these events
have occurred and the average stress intensity for the sensed
areas, what is likely to result in more efficient decision making.
Furthermore, the mapped placemarks are clickable on Google
Earth, allowing decision makers to see detailed information of
each stress event, such as intensity and description.

VI. CONCLUSIONS

We proposed an interdisciplinary methodology for assessing
sources of stress in professional bus drivers based on the
populations real world needs. The system was designed by
an interdisciplinary team, in cooperation with bus drivers
working in the city of Porto. The method validation was tested
among a sample of bus drivers in their day-to-day routine.
Results showed that the methodology is successful in detecting
stressful events based on bus drivers physiologic responses.
Furthermore, the system provides real world visual cues and
information, which seems to facilitate driver memory retrieval,
enriching description of stressful events, and findings provide
contextualized sources of stress within a city. Applied impli-
cations of this method will foster evidence based solutions at
enterprise, policy-makers and government levels, providing an
open approach to improvement and change towards developing
bus drivers occupational health, improving driver performance,
and enhancing overall road safety. Theoretical implications of
this paper also include contributions to the stress assessment
literature in general and particularly to the occupational health.

Findings provide strong theoretical and practical implica-
tions. Respectively, the method makes a valuable contribution
to the occupational health stress assessment literature. Ad-
ditionally, practical implications will facilitate the design of
holistic occupational health interventions for bus drivers while
also guiding authorities interventions aiming to increase road
safety. Current ongoing work is deploying this methodology
over a larger population in order to perform a comprehensive
characterization of sources of stress among professional bus
drivers in the city of Porto.
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