1	
2	
3	Psychophysiological Assessment of Stress under Ecological
4	Settings: A Systematic Review
5	
6 7	Susana Rodrigues ¹ , Mariana Kaiseler ² , and Cristina Queirós ¹
8	¹ Psychossocial Rehabilitation Laboratory, Faculty of Psychology and Educational
9	Sciences, Porto University, Portugal.
10	² Institute for Sport, Physical Activity and Leisure, Leeds Metropolitan University, UK.
11	
12	Acknowledgements: The research leading to these results has received funding from the
13	European Union Seventh Framework Programme ([FP7/2007-2013] [FP7/2007-2011])
14	under grant agreement n° [PCIG10-GA-2011-303880] and from Fundação para a
15	Ciência e Tecnologia (FCT), Portugal (DFRH/BI/51845/2012).
16	Address correspondence to: Mariana Kaiseler, Carnegie Faculty, Leeds Metropolitan
17	University, Fairfax Hall 207, Headingley Campus, Leeds, LS6 3QT, UK
18	Email : M.H.Kaiseler@leedsmet.ac.uk
19	
20	
21	
22	
23	
24	

25

Abstract

26 Stress can negatively impact one's health and well-being, however despite the recent evolution in stress assessment research methodologies, little agreement still exist 27 about stress conceptualization and assessment. In an attempt to summarize and reflect 28 on this evolution this paper aimed to systematically review research evidence of 29 30 ecological approaches on psycho-physiological stress assessment. Thus, a literature 31 search of electronic databases was conducted spanning 22 years (1990 - 2012) and 55 studies were reviewed. Studies were considered for inclusion if they contemplated both 32 psychological and physiological measures of stress under ecological settings. This 33 34 review focused on five themes: methodologies terminology; research population; study 35 design; measurement and technology. Findings support the need to use a common methodology terminology in order to increase scientific rigor. Additionally, there 36 37 seems to be an increasing tendency for the use of these methods by multidisciplinary teams among both clinical and non-clinical populations aiming to understand the 38 39 relationship between stress and disease. Most of the studies reviewed contemplated a time-based protocol and different conceptualizations of stress were found resulting in 40 the use of different subjective measures. Findings reinforce the importance of 41 42 combining subjective and objective measures while also controlling for possible time or situation dependent confounders. Advances in technology were evident and different 43 assessment techniques were found. The benefits and challenges of ecological protocols 44 45 to assess stress are discussed and recommendations for future research are provided, aiming to overcome previous limitations and advance scientific knowledge in the area. 46 47 *Keywords:* stress assessment, ecological approaches; psychological and physiological measures, systematic review 48

49

50	
51	Psychophysiological Assessment of Stress under Ecological Settings: A
52	Systematic Review
53	Stress is a wild and well-known term, commonly used by the general population
54	across different settings of life (Maracine, 2010). According to Lazarus and Folkman
55	(1984) stress occurs when pressure exceeds one's perceived ability to cope, resulting
56	from a transaction between the individual and the environment, including the
57	individual's perceptions, expectations, interpretations, and coping responses. Stress
58	involves a complex physiological response aimed to help the person deal with the
59	perceived threat (Sapolsky & McEwen, 1986). Despite the fact that several attention has
60	been dedicated to the study of stress over the years, little agreement still exists among
61	the academic community with respect to its conceptualization and assessment (Monroe,
62	2008). Traditional stress assessment methods in Psychology are often reliant on
63	retrospective designs, are cross-sectional in nature and use only self-report measures. As
64	suggested by Segerstrom and O'Connor (2012) data collected may be plagued by
65	memory biases or distortions associated with time delays, challenging the validity and
66	reliability of the reports. In support of this idea, several studies revealed significant
67	discrepancies between real-time assessments and retrospective recall. As an example,
68	Hufford, Shiffman, Paty, and Stone (2001) suggested that participants are more likely to
69	report experiences that have more personal meaning, occurred more recently, are
70	unusual in meaning, or consistent with their current mood. Laboratory designs are one
71	commonly used solution to the limitations presented above, since they avoid
72	retrospective report problems and can add the rigor of an experimental design (Smith &
73	Stone, 2003). Additionally, laboratory designs also allow physiological stress responses
74	monitoring (Zanstra & Johnston, 2011). However, it is important to bear in mind, that

75 laboratory baseline conditions may not represent real-world conditions. This can be 76 explained by the inherent artificial conditions, which are likely to increase the risk of biasing results. In agreement with this idea, Monroe (2008) suggested that laboratory 77 78 research assessing stress rarely, if ever, includes aspects of the social environment which is an important part of the stress concept. According to Zanstra and Johnston 79 80 (2011) stress reactions should be investigated in relation to discrete and objective 81 stressful situations. Additionally, considering that stress is an interdisciplinary topic, interdisciplinary research methods are needed in order to fully understand the concept 82 (Goldstein & Kopin, 2007). 83

In an attempt to overcome previous research limitations, the 21st century science 84 recommends research methods such as Experience Sampling Method (ESM, Larson & 85 Cskszentmihalyi, 1983), Ecological Momentary Assessment (EMA, Stone & Shiffman, 86 87 1994) and Ambulatory Assessment (AA, Fahrenberg, Myrtek, Pawlik, & Perrez, 2007) to investigate a variety of behaviors, experiences, and conditions, including the 88 experience of stress. ESM is an ecologically-valid methodology, developed to 89 90 understand the dynamic process of person-context interactions. Participants in ESM are signaled with a device (e.g. pager) at random times within a fixed time period and 91 92 booklets where they are required to report their activity, mood and/or thoughts (Kimhy 93 et al., 2010). In 1994 a new approach was proposed denominated EMA (Stone & Shiffman, 1994). Following technological development trends the assessment goals of 94 95 EMA have expanded beyond self-reported subjective states to the monitoring of 96 physiological conditions. AA is another commonly used term in the literature and is often referred to the monitoring of physiological processes through the use of computer-97 98 assisted procedures, sometimes accompanied by diary self-reports of subjective states or contexts (Trull & Ebner-Priemer, 2009). Although a definition of the different research 99

approaches can be found in the literature, the terms are used interchangeably as being 100 101 conceptually the same. Recently, Trull and Ebner-Priemer (2013, p. 4.2) suggested that 102 "AA represent a methodological umbrella that encompasses increasingly computerized 103 or digitized methods of experience sampling, ecological momentary assessment, and 104 continuous psychophysiological, biological, and behavior monitoring". However, the same authors in 2009 appealed for the use of EMA as an "umbrella" term that attempts 105 106 to integrate all these assessment traditions with similar goals. Hence, it is clear that 107 there are a variety of terminologies used to denominate assessment of real world activities. As suggested by Fahrenberg (2006), this multiplicity of terms may be due to a 108 109 disclosure of the author's personal interests in emphasizing their own contribution, or it can be a result of commercial memberships or claims. Despite the lack of agreement in 110 111 the use of a common terminology, the methodologies share some similar features and 112 are essentially modern day tools, allowing for a within-person assessment in natural 113 environments, and contemplating an idiographic approach (Trull & Ebner-Priemer, 114 2009). For the purpose of the current systematic review the term ecological approaches 115 will be used to refer to all real world assessment methods, including ESM, EMA and 116 AA.

117 Considering the relationship between stress and physical illness (Jansson, Wallander, Johansson, Johnsen, & Hveem, 2010) an important advantage of these 118 holistic stress approaches is the opportunity to objectively investigate the cognitive 119 120 processes and behaviors leading to the physical illness. In other words, ecological approaches allow a further understanding of the relationship between subjective 121 122 psychological and objective physiological parameters of stress and health conditions (Yoshiuchi, Yamamoto & Akabayashi, 2008). Thus, several studies have been 123 conducted with clinical (e.g. Kimhy et al., 2010) and non-clinical populations (e.g. 124

Sausen, Lovallo, Pincomb, & Wilson, 1992) in order to better understand this 125 126 relationship and its influence on health outcomes. Furthermore, these approaches provide an interesting opportunity to study daily life events (Fahrenberg et al., 2007) 127 128 across medicine (e.g. Kalpakjian, Farrel, Albright, Chiodo, & Young, 2009) and psychology fields (e.g. Bishop et al., 2003) combining multidisciplinary teams. 129 130 Regarding the techniques used by ecological approaches to assess psychological 131 measures of stress, some examples were found such as paper diaries (e.g. Barnet, 132 Steptoe, & Gareis, 2005), daily phone interviews (e.g., Almeida, Wethington, & Kesseler, 2002), and electronic diaries (e.g. Kimhy et al., 2010). Due to the fast 133 134 technological advances more complex and sophisticated protocols have emerged recently (Shiffman, Stone, & Hufford, 2008) matching closely to the population needs 135 136 and study aims. As an example a study by Kuntsche and Labhart (2013) assessed 137 psychological measures of stress using a new Internet-based, cell phone-optimized assessment technique (ICAT). This method allows a baseline assessment combined with 138 139 text messages sent to the participants' personal cell phones providing a hyperlink to an 140 Internet-stored cell phone-optimized questionnaire. This innovative and flexible way of collecting data reduces recall bias and can be applied in various disciplines. 141 142 In what concerns to the physiological measures of stress, the most commonly used are cortisol (e.g. Collip et al., 2011), Heart Rate (HR), Heart Rate Variability 143 (HRV) (e.g. Dockray et al., 2010) and Blood Pressure (BP) (e.g. Ewart & Johnson, 144 145 2004). Regarding methods used to collect physiological measures of stress under 146 ecological conditions these include Salivette (e.g. Collip et al., 2011), ambulatory BP and HR monitors (e.g. Muraoka, Carlson, & Chemtob, 1998) and more recently 147 wearable T-shirts incorporating ECG (e.g. Kaiseler, Rodrigues, Ribeiro, Aguiar, & 148 Cunha, 2013). When contemplating physiological measures of stress, attention should 149

6

150 be drawn to confounders' variables such as physical activity levels and posture, since 151 these are directly related with cardiac activation and can possibly bias results (Schwerdtfeger, Konermann, & Schonhofen, 2008). In an attempt to overcome this 152 153 challenge, new methods such as accelerometry or actigraphy, including novel technologies were proposed as a possible resource to control for confounders variables 154 155 (Wilhelm & Grossman, 2010). Another important aspect to consider when assessing 156 stress under ecological conditions is the design of the study. Particularly, ecological 157 approaches designs can be divided into event-based sampling and time-based sampling schemes, varying according to the study purposes (Shiffman et al., 2008). The main 158 159 difference between these two sampling schemes is that in an event-based scheme a recording is made each time a predefined event occurs, whereas in the time-based 160 161 sampling a recording is solicited based on a time schedule, often based on random time 162 intervals, without a predefined focus (Shiffman et al., 2008). A combination design can also be used, when the researcher is interested in the conditions that are associated with 163 164 a target event (Bolger, Davis, & Rafaeli, 2003).

165 Research on ecological assessments of stress has been privileged by the rapid technological development and benefits from multidisciplinary expertise across 166 167 different life settings allowing for 24h continuous monitoring of physiological data, without interfering with subjects daily life (Houtveen & Geus, 2009). An important 168 aspect to consider is measurement synchronization that allows for the temporal 169 170 associating of psychological stress measures and physiological data, offering unique opportunities to fully understand the stress experience (Kimhy et al., 2010). In support 171 of this argument Wilhelm and Grossman (2010) suggested that when conducting 172 "multichannel studies" with different measures it is important to highlight the need for 173 these measures synchronization. 174

Acknowledging the importance of stress ecological studies in contemporary life 175 176 and their contribution to the development of knowledge, it seems crucial to reflect on the current methodological challenges of this task. This need seems to be reinforced by 177 178 novelty of the research area, which results in a growing number of studies across disciplines aiming to assess similar stress conceptualization but using different 179 180 terminologies, methods, techniques and designs, limiting development of knowledge. 181 For this purpose, the current systematic review aims to summarize, evaluate and 182 synthesize previous research assessing stress in ecological settings combining both psycho-physiological measures. For this purpose, the current paper reviewed over 22 183 184 years of research in this area across the disciplines of medicine and psychology. This systematic review will not only contribute to the development of knowledge in this area 185 186 but will also provide research recommendations for future studies. 187 188 Method 189 Search strategy 190 Eight electronic databases (Medline with full text; Psyarticles; Psycritiques; Psybooks; Psychological and Behavioral Science Collection; Psyinfo; Socindex with 191 192 full text; Fonte Académica) in Ebsco were searched in addiction with the Society for 193 Ambulatory Assessment (SAA) database (http://www.ambulatory-194 assessment.org/typo3/ambulatory/index.php?id=35). The search in Ebsco was conducted using the keyword "stress" combined with each one of the following 195 196 terminologies: "Ecological Momentary Assessment"; "Experience Sampling Method"; "Ambulatory Monitoring". The years of publication were limited between 1990 to 197 198 December 2012. All articles were searched in SAA database, between 2006 to 2012. 199 The methodology used for systematic review was based on the guidelines defined by

200 Chalmers and Haynes (1995), Lloyd Jones (2004) and Mulrow (1995). Lloyd Jones 201 (2004) recommended sifting papers in 3 stages such as review them by title, then abstract and finally by full text, excluding those at each step that did not satisfy the 202 203 inclusion criteria. Due to the difficulty of identifying studies relevant to the research question by only reviewing their title, this criterion was not used in the current review. 204 205 Instead, all papers were reviewed by abstract and then by full text to determine whether 206 they met the inclusion criteria. One thousand, eight hundred and three references were 207 removed after reading their abstract. A total of 322 articles were screened, 270 of which were excluded. Furthermore, the reference lists of all papers were also checked for 208 209 relevant studies, and another 8 studies were screened, 5 of which were excluded. In total, 55 studies were included in this systematic review (Figure 1). Each article 210 211 considered for inclusion was reviewed independently by the first two authors and if 212 differences were found, the article was reconsidered. The two authors agreed on 51 out of the 55 reviewed articles (93%) reported. In the cases of disagreement, discussion was 213 214 followed with the third authors and a decision was made. 215

216

[Figure 1 near here]

217 Inclusion criteria

Studies were considered for inclusion if they provided both psychological and physiological measures of stress under real world conditions and were published as full papers. As suggested by Knipschild (1995) studies published as abstracts or conference proceedings were excluded. Studies that did not assess stress in real world settings were also excluded. It is worth noting that not all included studies considered stress assessment as a primary goal, since in some cases this aim was assessed on a post-hoc basis.

225	
226	Results
227	The initial search resulted in a total of 2125 papers, of which 55 articles deemed
228	potentially relevant. A total of 1813 were excluded for not assessing stress; 149 articles
229	were excluded due to lack of physiological measures; 19 due to lack of psychological
230	measures; 12 were development only in laboratory settings, 27 were not empirical
231	studies and 50 were duplicated. The selected studies were displayed into several themes.
232	These include 1) the terminology used for the methodologies, 2) type of research aim,
233	3) study design, 4) measurement (psychological and physiological) and 5) technology.
234	Findings are displayed in Table 1.
235	
236	[Table 1 near here]
237	1. Terminology used for methodologies:
238	Different terminologies were found across the reviewed studies. As an example,
239	38 studies used Ambulatory terminology, 9 used EMA and 6 used ESM. Additionally,
240	when searching in the SAA database, since no keywords were used, other different
241	terminologies were found, these included Momentary diary assessment (1), Momentary
242	assessment (1), Interval-sampling Methodology (1), Momentary experience sampling
243	(1) and 3 studies did not use any particular terminology.
244	
245	2. Research population
246	The reviewed studies aimed to address particular clinical questions among both
247	clinical and non-clinical populations. Out of the 55 studies reviewed, 39 were
248	conducted among non-clinical population and 16 studies were conducted among
249	subjects with particular clinical conditions such as Posttraumatic stress disorder (PTSD)

(5), asthma (1), psychotic disorders (3), borderline personality disorder (1), medically
unexplained symptoms (1), nondipping phenomena (1), chronic muscle pain (1), spinal
cord injury (1) and 2 with a specific population, pregnant women.

253

254 3. Study design

This systematic review has found different ecological sampling and assessment schemes. As an example, 52 studies used time based-protocols, from which 36 used a time-based protocol with fixed intervals, 15 used random intervals and 1 used both time and random intervals. An event based protocol was found in 1 study. Seven studies recorded physiological data continuously.

260

261 **4. Measurement**

262 Different stress conceptualizations were found across studies, leading to 263 different ways of measuring the concept. Particularly, when analyzing psychological 264 measures of stress, studies used emotion, affect or mood measures (25), event-related 265 stress (12) interpersonal stress (3), psychosocial and social stress (5), chronic stress (4), acute stress (1), pressures (1) and perceived stress over a stressor (9). When analyzing 266 267 physiological measures of stress, the most commonly used measures were BP (35), HR (29), cortisol (18) and HRV (6). Additionally, other complementary biological and 268 269 physiological markers were used such as physiological stress, using locomotor activity 270 (1), steps counting (1) and physical activity (1); airflow assessment (1) and respiration 271 (1), error related negativity (1), carotid artery atherosclerosis (2), intima-medial thickness (1), urine (specific gravity and ketones) (1) and plasma fibrinogen (1). When 272 273 considering synchronization of measures, out of the 55 papers, 38 synchronized both physiological and psychological measures of stress. 274

276 Out of the 55 studies reviewed, 43 used diary techniques, from which 25 used paper diaries, and 19 used electronic diaries. All studies included the complementary 277 278 use of questionnaires. In what concerns to psychological stress assessment, 11 studies used only questionnaires (cross-sectional design), and 29 collected psychological stress 279 280 data on a daily basis using diary based measures. Out of these 29 studies, 15 included 281 daily diaries and complementary questionnaires to assess stress. Regarding 282 physiological measures, out of the 55 studies reviewed, 41 used ambulatory BP and HR monitors (41), life shirt system (1), salivette (13), saliva swabs (2), saliva tubes (1), 283 284 aliquots (1) and straws (1). Additionally, some studies have also used other complementary biological and physiological measurement equipment including mini-285 286 wright peak flow meter (1), portable capnometer (1), electroencephalographic recording 287 and signal processing (1), magnetic resonance imaging (1) and B-mode ultrasound (1). 288 Furthermore, reviewed studies used a variety of additional technology to prompt 289 subjects for assessments such as audible devices like electronic pagers (1), digital 290 wristwatches (6), and alarms (1). Finally, 6 studies also used technology to assess physical activity levels such as pedometer (1), accelerometer (3), physiomodul (1) and 291 292 actiwatch (1).

293

294

Discussion

The aim of this paper was to evaluate and synthesize previous research assessing stress using an ecological approach and combining psycho-physiological measures. An overview of these innovative psycho-physiological stress assessment methods will be discussed, focusing on the benefits of these research approaches, and reflecting on the associated challenges. Findings will be discussed following the results section structure: 1) the terminology used, 2) the research population, 3) the study design, 4) stress

301 measurement considerations and the 5) technology used.

Firstly it is worth reflecting on the existence controversy across the terminology 302 303 used for the methodologies. As an example, a study by Stiglmayr et al. (2008) investigating the interaction of dissociative symptoms and subjective assessments of 304 stress within participants over time, referred the "use of EMA, also known as 305 306 ambulatory assessment or experience sampling method" (p. 140). As mentioned above, 307 despite the similarities, there are differences across these methodologies that should be considered (Trull & Ebner-Priemer, 2009). It is believed that this limitation restricts 308 309 conclusions in the understanding of what exactly each method aims for and what research measures should be contemplated. Additionally, when conducting a search 310 311 across the SAA database we found that other terminologies were used to address the 312 same type of methodology (e.g. Interval-sampling methodology, Momentary 313 experience sampling). This terminological confusion can impair scientific rigor. Thus, it 314 is important to find consistency in the terminologies in order to choose the correct term 315 that best fits this type of methodology. Results showed that the majority of studies (38) found in the current systematic review used the ambulatory terminology (AA). 316 317 According to Wilhelm and Grossman (2010) AA has progressed more rapidly in 318 medical application, when compared to the psychology field. Thus, a possible explanation for the use of this terminology (AA) across most of the reviewed studies 319 320 may be the fact that most of these studies were multidisciplinary in nature, 321 concentrating in the disciplines of medicine and psychology across the health and 322 organizational settings. 323 Secondly, when analyzing the research population, the majority of ecological

324 approaches studies (39) seem to be conducted among non-clinical populations. These

325 findings support previous recommendations suggesting the importance of studying 326 stress from a prevention perspective (e.g. Holt-Lunstad, Birmingham, & Light, 2008). Furthermore, ecological approaches seem also to be appropriate and useful among 327 328 clinical populations. As an example, an ambulatory psychophysiological study, with a multidisciplinary team conducted by Ebner-Priemer, Kuo, and Schlotz (2008) among 329 330 patients with Bipolar disorder, used a combination of physiological and psychological 331 measures to understand the relationship between psychological distress and affective 332 dysregulation. The authors found that conflictive emotions were related to psychological distress and psychological distress was related to physiological arousal 333 334 (HR). Indeed, multidisciplinary ecological approaches provide accurate information about physiological and psychological symptoms and their relationship with health 335 336 conditions in clinical and non-clinical populations (Yoshiuchi et al., 2008).

337 Thirdly, regarding the study design, the majority of studies (52) were timebased. These findings support Shiffman et al. (2008) suggestion that time-based 338 339 sampling is usually concerned with ongoing experiences that can be assessed within the 340 course of a typical period and aim to characterize experience in a more broadly and inclusively way. On the other hand, according to the same authors, rare or highly 341 342 specific experiences are difficult to be evaluated by using a time-based design and should be studied using an event-based design. Event-based schemes are focused on 343 particular discrete events in which assessments are prompted by the occurrence of a 344 345 predefined event of interest to the investigator. As an example, a study conducted by 346 Sausen et al. (1992) aiming to investigate psychological stress in medical students, conducted assessments only before, during, and after specific events such as the lecture 347 348 and examination day. It is important to highlight that future studies contemplating event-based schemes should pay special attention to compliance, since it may be 349

350 difficult to assess or verify whether occurred events were entered or not, or if entries 351 were made for events that did not occur (Shiffman et al., 2008). Additionally, it is also important to consider also the risk that the participant may not reliably identify relevant 352 353 events and event-based responses should not be overgeneralize to the person's general experience (Bolger et al., 2003). Ecological study designs have different schedules or 354 355 intervals that should be theoretically and/or empirically guided. Thus, in this review 356 there are designs with fixed schedules (e.g. Barnett, Steptoe, & Gareis, 2005), variable 357 (e.g. Carels, Sherwood, Szczepanski, & Blumenthal, 2000) or combined (e.g. Entringer, Buss, Andersen, Chicz-Demet, & Wadhwa, 2011). As suggested by Bolger et al. (2003) 358 359 when using a fixed-time schedule, one of the greatest challenges is to decide the suitable spacing of intervals between the assessments. Thus, long intervals may error natural 360 361 cycles, exclude important events and also contribute to the risk of biased recall. On the 362 other hand, intervals that are too short may miss slower processes (e.g., day-to-day changes), so they are more suitable to be used when assessing processes that change 363 364 quickly (e.g. mood) and may also increase participant's burden (Iida, Shrout, 365 Laurenceau, & Bolger, 2012). Alternatively, researchers may use variable or mixed schedule designs that allow the possibility to randomly sample moments, which may 366 367 reduce the potential for biased reports (Bolger et al., 2003). According to Shiffman et al. (2008), when using time-based assessment schedules, especially with variable intervals, 368 ecological studies should include some method of signaling subjects when an 369 370 assessment is scheduled.

Fourthly, when considering stress measurement it is important to address how stress is defined, according to the literature, definitions of stress can differ in the extent to which they valorize stressful events, responses or individual assessments of situations (Cohen, Kessler, & Underwood Gordon, 1995). When considering psychological stress

measures, some limitations can be found. As an example, in the reviewed studies 375 376 conducted by Kamarck et al. (2004; 2007) one of the limitations addressed was the subjectivity of the reports, since they involved a cognitive appraisal and inferences from 377 378 the participant. Additionally, in a reviewed study conducted by Buckley, Holohan, Greif, Bedard, and Suvak, (2004), the authors highlighted that psychological 379 measurements were limited to "yes" or "no" answers as to whether participants felt 380 381 "stressed". However, these single one item answers do not provide a complete 382 assessment of the concept, since other dimensions of stress are not being contemplated. It seems crucial to appeal for the complementary use of objective physiological data, 383 considering the complexity of the stress concept. In the reviewed studies, BP, HR, 384 Cortisol and HRV were the most commonly used measures, known as being robust 385 indicators of the stress response. However, caution should be drawn when analyzing this 386 387 data during real world settings since "variation in physical activity and posture, social 388 interaction and ingestion across the assessment can mask more subtle emotion effects 389 on dependent variables" (Wilhelm & Grossman, 2010, p.566). In order to overcome this 390 limitation, some traditional studies relied on self-reported physical activity, excluding physiological data from the analysis for times when physical activity was reported. In 391 392 agreement with this idea, 24 studies in this review rely on self-report measures to 393 indicate the activity and the contextual information, after or during each record. As an 394 example, a study conducted by Brondolo et al. (2009) with 73 city traffic agents, aiming 395 to investigate trait hostility and cardiovascular reactivity in potential stressful situations, 396 assessed mood and BP variables. In order to address control variables that can 397 influence BP readings, the authors included in the ambulatory diary additional questions 398 including participants' activities, location, and posture at the time of each cuff inflation. Although an attempt was made to control confounder variables in this study, the method 399

400 used may be simplistic and unreliable, since the exact time of the changes in behavior 401 are dependent on the participant availability/willingness to record the data. Hence, in order to control these confounder variables, several modern tools (Houtveen & Geus, 402 403 2009) discussed in the following paragraph should be considered. Additionally, as pointed by Wilhelm and Grossman (2010) the synchronization of data is a very 404 405 importance aspect when aiming to fully understand the impact of stress responses. In 406 this review, out of the 55 reviewed studies, 38 synchronized psychological and 407 physiological measures of stress. The same authors suggested that ecological approaches should employ a synchronization timing signal to all devices, since no 408 409 available ambulatory solution currently exists for this purpose.

Finally, regarding the use of technology, 19 studies used electronic diaries as a 410 411 technique for psychological stress data assessment. Tough, we found that some of the 412 reviewed studies (23) still used paper and pencil format diaries. However, these may be 413 more prone to a potential risk of retrospective completion of entries and completing 414 entries in advance (Beckham et al., 2005). To overcome these limitations, Boody and 415 Smith (2008) recommended the use of electronic diaries, since most ambulatory studies using electronic devices have conceived methods of self-reminder, prompting 416 417 participants' to respond and releasing them of the need to worry for the appropriate times for response (Trull & Ebner-Priemer, 2013). Additionally, Bolger et al (2003) 418 suggested that most recent technologies allow to integrate diary reports with 419 physiological measures. Thus, regarding physiological data, new modern methods are 420 421 emerging, allowing the measurement of physiological stress indices as participants undergo their daily life. As an example, in a reviewed study conducted by Kimhy et al. 422 423 (2010) aiming to measure concurrent stress and arousal in individuals with psychosis during daily functioning in natural environment, an ESM with electronic diaries and a 424

wearable Life-shirt system to assess stress and psychosis were used. The methodology 425 allows continuous and simultaneous assessments and provides the opportunity to 426 understand dynamic variations in stress, arousal, and psychosis with an accurate, high 427 428 time resolution measurement. This new technology was initially used in the medicine area, but today this equipment is even more elaborated, non-invasive and easy to use, 429 suitable for applications in other areas, such as psychology (Fahrenberg et al., 2007). An 430 431 important aspect to consider when assessing stress physiological data is the influence of 432 confounders variables such as physical activity and posture levels. In order to overcome this limitation, modern technological recording devices should be used. As an example, 433 a study conducted by Pieper, Brosschot, van der Leeden and Thayer (2007) with 73 434 teachers aiming to understand cardiac effects during worry episodes and stressful 435 events, used an ambulatory HR and HRV device including a accelerometer, aiming to 436 437 identify and remove episodes with high physical activity that can bias stress physiological data. Despite this need, only 7 studies were found recording physical 438 439 activity with technology. The limited number of studies found that used this technology, 440 may be explained by the fact that sophisticated analysis software and equipment are required to analyze this data, which can be a limitation for research teams (Wilhelm and 441 442 Grossman, 2010). To address this limitation a variety of low-cost devices and software possibilities can be found (http://www.ambulatory-assessment.org). 443

This review should be considered in light of some limitations, such as lack of statistical appliance or software to analyze data, and conclusions are exclusively based on published studies. Regardless of its challenges, the present review provides strong support for the use of ecological approaches contemplating both psycho-physiological measures for stress assessment investigation, due to their capacity to capture experiences (e.g., stress) in a way that traditional designs cannot. These methodologies

permit to obtain more accurate and detailed data, as participants are usually able to 450 451 provide greater detail about their experiences, reducing errors and retrospective bias, without interfering in daily life flow (Vannier & O'Sullivan, 2008). Moreover, data has 452 453 strong ecological validity, combining daily tasks with self-report information and physiological data (Hoppmann & Riediger, 2009). Furthermore, in agreement with 454 Youshiuchi et al. (2008) ecological approaches lead to more profitable findings about 455 456 the relationships between psychosocial factors and stress-related diseases when using 457 wearable devices to assess physiological and behavioral data in natural settings.

Concluding, current findings suggested that literature in ecological approaches 458 459 is vast and involves controversial theoretical and methodological issues. Our findings suggest that AA terminology is the most commonly used terminology to denominate 460 461 ecological approaches of psychophysiological assessment, and should be used in the 462 future as a standard assessment terminology in this area. Additionally, findings suggest that there is a multidisciplinary research approach to this area, in an attempt to fully 463 464 understand the impact of stress on psychological and physical health. Acknowledging 465 the fact that the design of an ecological study is a challenging task, future studies designs including assessment schedules or intervals should always be theoretically 466 467 and/or empirically guided. Furthermore, accurate and reliable measurements of stress should be supported by both psychological and physiological data, preferably 468 synchronized and including control technologies for possible confounder variables 469 470 affecting physiological data. Hence, findings suggest that ecological approaches 471 combining psychophysiological measures of stress, offer a promising promise avenue for future prevention and/or rehabilitation stress research, by offering a unique 472 473 opportunity to obtain a detailed examination of stress causes and impact while maintaining natural context conditions. 474

References¹ 475 1 Asterisks indicate studies included in systematic review 476 Almeida, D.M., Wethington, E., & Kessler, R.C. (2002). The daily inventory of 477 478 stressful events: an interview-based approach for measuring daily stressors. Assessment, 9(1), 41-55. doi: 10.1177/1073191102091006 479 *Barnett, R.C., Steptoe, A., & Gareis, K.C. (2005). Marital-role quality and stress-480 481 related psychobiological indicators. Annuals Behavioral of Medicine, 30(1), 36-482 43 *Beckham, J.C., Feldman, M.E., Barefoot, J.C., Fairbank, J.A., Helms, M.J., Haney, 483 T.L., Hertzberg, M.A., Moore, S.D., & Davidson, J.R.T. (2000). Ambulatory 484 cardiovascular activity in Vietnam combat veterans with and without 485 posttraumatic stress disorder. Journal of Consulting and Clinical Psychology, 486 487 68(2), 269-276. doi:IO.I037//0022-006X.68.2.269 488 *Beckham, J.C., Feldam, M.E., Vrana, S.R., Mozley, S.L., Erkanli, A., Clancy, C.P., & 489 Rose, J.E. (2005). Immediate antecedents of cigarette smoking in smokers with 490 and without posttraumatic stress disorder: A preliminary study. Experimental and Clinical Psychopharmacology, 13(3), 219-228. doi:10.1037/1064-491 1297.13.3.219 492 493 ^{*}Bedford, J. L., Linden, W., & Barr, S. I. (2011). Negative eating and body attitudes are associated with increased daytime ambulatory blood pressure in healthy young 494 women. International Journal of Psychophysiology, 79, 147–154. 495 496 doi:10.1016/j.ijpsycho.2010.09.013 *Benotsch, E.G., Christensen, A.J., & McKelvey, L. (1997). Hostility, social support, 497 498 and ambulatory cardiovascular activity. Journal of Behavioral Medicine, 20(2), 163-176 499

500	*Bishop, G.D., Enkelmann, H.C., Tong, E.M.W., Why, Y.P., Diong, S.M., Ang, J., &
501	Khader, M. (2003). Job demands, decisional control, and cardiovascular
502	responses. Journal of Occupational Health Psychology, 8(2), 146–156.
503	doi:10.1037/10768998.8.2.146
504	Boody, J., & Smith, M. (2008). Asking the experts: Developing and validating parental
505	diaries to assess children's minor injuries. International Journal of Social
506	Research Methodology, 11(1), 63-77. doi:10.1080/13645570701621894
507	Bolger, N., Davis, A., & Rafaeli, E. (2003). Diary methods: Capturing life as it is lived.
508	Annual Review of Psychology, 54, 579-616. doi:10.1146/54.101601.145030
509	*Brondolo, E., Grantham, K.I., Karlin, W., Taravella, J., Mencía-Ripley, A., Schwartz,
510	J.E., Pickering, T.G., & Contrada, R.J. (2009). Trait hostility and ambulatory
511	blood pressure among traffic enforcement agents: The effects of stressful social
512	interactions. Journal of Occupational Health Psychology, 14, 110-121. doi:
513	10.1037/a0014768110
514	*Buckley, T.C., Holohan, D., Greif, J.L., Bedard, M., & Suvak, M. (2004). Twenty-
515	four-hour ambulatory assessment of heart rate and blood pressure in chronic
516	PTSD and non-PTSD veterans. Journal of Traumatic Stress, 17(2), 163–171.
517	*Campbell, T.S., Lavoie, K.L., & Bacon, S.L. (2006). Asthma self-efficacy, high
518	frequency heart rate variability, and airflow obstruction during negative affect in
519	daily life. International Journal of Psychophysiology, 62(1), 109-114.
520	doi:10.1016/j.ijpsycho.2006.02.005
521	*Carels, R.A., Sherwood, A., Szczepanski, R., & Blumenthal, J.A. (2000). Ambulatory
522	blood pressure and marital distress in employed women. Behavioral Medicine,
523	26(2), 80-85. doi:10.1080/08964280009595755

524	Chalmers, I., & Haynes, B. (1995). Reporting, updating, and correcting systematic
525	reviews of the effects of health care. In I. Chalmers and D.G. Altman (Eds.),
526	Systematic reviews (pp. 86-95). London: BMJ Publishing Group.
527	Cohen, S., Kessler, R., & Underwood Gordon, L. (1995). Strategies for measuring stress
528	in studies of psychiatric and physical disorders. In S. Cohen, R. Kesseler and L.
529	Underwood Gordon (Eds.), Measuring Stress (pp.3-28). New York: Oxford
530	University Press.
531	*Collip, D., Nicolson, N.A., Lardinois, M., Lataster, T., van Os, J., & Myin-Germeys,
532	I. (2011). Daily cortisol, stress reactivity and psychotic experiences in
533	individuals at above average genetic risk for psychosis. Psychological Medicine,
534	41, 2305-2315. doi:10.1017/S0033291711000602
535	*Compton, R.J., Robinson, M.D., Ode, S., Quandt, L.C., Fineman, S.L., & Carp, J.
536	(2008). Error-monitoring ability predicts daily stress regulation. Psychological
537	Science, 19(7), 702-708.
538	*Conley, K. M. & Lehman, B. J. (2012). Test anxiety and cardiovascular responses to
539	daily academic stressors. Stress and Health, 28, 41-50. doi:10.1002/smi.1399
540	*Dennis, M.F., Clancy, C.P., & Beckham, J.C. (2007). Gender differences in immediate
541	antecedents of ad lib cigarette smoking in smokers with and without
542	posttraumatic stress disorder: A preliminary report. Journal of Psychoactive
543	Drugs, 39(4), 479-485.
544	*DeSantis A.S., Adam, E.K., Doane, L.D., Mineka, S., Zinbarg, R.E., & Craske, M.G.
545	(2007). Racial/ethnic differences in cortisol diurnal rhythms in a community
546	sample of adolescents. Journal of Adolescent Health, 41(1), 3-13.
547	doi:10.1016/j.jadohealth.2007.03.006

- *Doane, L.D., & Adam, E.K. (2010). Loneliness and cortisol: Momentary, day-to-day,
- 549and trait associations. Psychoneuroendocrinology, 35(3), 430-441.
- 550 doi:10.1016/j.psyneuen.2009.08.005
- *Dockray A., Grant, N., Stone, A.A., Kahneman, D., Wardle, J., & Steptoe, A. (2010).
- 552 Comparison of affect ratings obtained with ecological momentary assessment
- and the day reconstruction method. Social Indicators Research, 99,269–
- 554 283.doi:10.1007/s11205-010-9578-7
- *Dollan, C.A., Sherwood, A., & Light, K.C. (1992). Cognitive coping strategies and
- blood pressure responses to real-life stress in healthy young men. *Health*

557 *Psychology*, *11*(4), 233-240. doi:10.1037/0278-6133.11.4.233

- *Ebner-Priemer, U.W., Kuo, J., & Schlotz, W. (2008). Distress and affective
- 559 dysregulation in patients with borderline personality disorder: A
- 560 psychophysiological ambulatory monitoring study. *Journal of Nervous and*
- 561 *Mental Disease, 196,* 314-320. doi:10.1097/NM D.0b013e31816a493f
- *Entringer, S., Buss, C., Andersen, J., Chicz-Demet, A., & Wadhwa, P. D. (2011).
- 563 Ecological momentary assessment of maternal cortisol profiles over a multiple-
- day period predicts the length of human gestation. *Psychosomatic Medicine*, *73*,
 469-474.
- *Ewart, C.K., & Jorgensen, R.S. (2004). Agonistic interpersonal striving: social-
- 567 cognitive mechanism of cardiovascular risk in youth? *Health Psychology*, 23(1),
- 568 75–85. doi:10.1037/0278-6133.23.1.75
- Fahrenberg, J. (2006). Assessment in daily life. A review of computer- assisted
 methodologies and applications in psychology and psychophysiology, years
- 571 2000–2005. Retrieved from http://www.ambulatory-assessment.org/

572	Fahrenberg, J., Myrtek, M., Pawlik, K., & Perrez, M. (2007). Ambulatory Assessment –
573	monitor behavior in daily life settings. A behavioral-Scientific Challenge for
574	Psychology. European Journal of Psychological Assessment, 23(4), 206-213.
575	doi:10.1027/1015-5759.23.4.206
576	*Giesbrecht, G. F., Campbell, T., Letourneau, N., Kooistra, L., & Kaplan, B. (2012).
577	Psychological distress and salivary cortisol covary within persons during
578	pregnancy. Psychoneuroendocrinology, 37, 270-279.
579	doi:10.1016/j.psyneuen.2011.06.011
580	Goldstein, D., & Kopin, I.J. (2007). Evolution of concepts of stress. Stress, 10(2), 109-
581	120. doi:10.1080/10253890701288935
582	*Habets, P., Collip, D., Myin-Germeys, I., Gronenschild, E., van Bronswijk, S.,
583	Hofman, P., Lataster, T., Lardinois, M., Nicolson, N.A., van Os, J., & Marcelis,
584	M. (2012). Pituitary volume, stress reactivity and genetic risk for psychotic
585	disorder. Psychological Medicine, 42, 1523-153.
586	doi:10.1017/S0033291711002728
587	*Hallman, D. M., & Lyskov, E. (2012). Autonomic regulation, physical activity and
588	perceived stress in subjects with musculoskeletal pain: 24-hour ambulatory
589	monitoring. International Journal of Psychophysiology, 86, 276–282.
590	doi:10.1016/j.ijpsycho.2012.09.017
591	*Hanson, M.D., & Chen, E. (2010). Daily stress, cortisol, and sleep: the moderating role
592	of childhood psychosocial environments. Health Psychology, 29(4), 394-402.
593	doi:10.1037/a0019879
594	*Holt-Lunstad, J., Birmingham, W., & Jones, B.Q. (2008). Is there something
595	unique about marriage? The relative impact of marital status, relationship
596	quality, and network social support on ambulatory blood pressure and mental

- 597 health. Annals of Behavioral Medicine, 35, 239–244. doi:10.1007/s12160-008-
- 598 9018-y
- *Holt-Lunstad, J., Birmingham, W., Howard, A.M., & Thoman, B.S.D. (2009). Married
 with children: The influence of parental status and gender on ambulatory blood
 pressure. *Annals of Behavioral Medicine*, *38*, 170-179. doi:10.1007/s12160-0099152-1
- *Hoppmann, C.A., & Klumb, P.L. (2006). Daily goal pursuits predict cortisol secretion
 and mood states in employed parents with preschool children. *Psychosomatic Medicine*, 68(6), 887-894. doi:10.1097/01.psy.0000238232.46870.f1
- 606 Hoppmann, C. A., & Riediger, M. (2009). Ambulatory assessment in lifespan
- psychology: An overview of current status and new trends. *European Psychologist*, *14*, 98-108. doi: 10.1027/1016-9040.14.2.98
- Houtveen, J.H., & Geus, E.J.C. (2009). Noninvasive psychophysiological ambulatory
 recordings. *European Psychologist*, *14*(2), 132-141. doi:10.1027/1016-
- 611 9040.14.2.132
- ⁶¹² *Houtveen, J.H., & van Doornen, L.J. (2007). Medically unexplained symptoms and
- between-group differences in 24-h ambulatory recording of stress physiology.
- 614 *Biological Psychology*, 76, 239–249. doi:10.1016/j.biopsycho.2007.08.005
- Hufford, M. R., Shiffman, S., Paty, J., & Stone, A. A. (2001). Ecological momentary
- assessment: Real-world, real-time measurement of patient experience. In J.
- 617 Fahrenberg & M. Myrtek (Eds.), *Progress in ambulatory assessment: Computer-*
- 618 assisted psychological and psychophysiological methods in monitoring and field
- 619 *studies* (pp. 69–92). Seattle, WA: Hogrefe & Huber.
- 620 Iida, M., Shrout, P.E., Laurenceau, J.P., & Bolger, N. (2012). Using diary methods in
 621 psychological research. APA Handbook of Research Methods in Psychology:

Vol. 1. Foundations, Planning, Measures, and Psychometrics, H. Cooper. 622 623 doi:10.1037/13619016 Jansson, C., Wallander, M., Johansson, S., Johnsen, R., & Hveem, K. (2010). Stressful 624 625 psychosocial factors and symptoms of gastroesophageal reflux disease: a population-based study in Norway. Scandinavian Journal of Gastroenterology, 626 45(1), 21-29. doi:10.3109/00365520903401967 627 Kaiseler, M., Rodrigues, S., Ribeiro, V., Aguiar, A., & Cunha, J.P.S. (2013, June) 628 629 Ambulatory Assessment of stress and coping among Portuguese police officers. Poster presented at 3rd Conference of Society of Ambulatory Assessment. 630 631 Amsterdam. *Kalpakjian, C.Z., Farrell, D.J., Albright, K.J., Chiodo, A., & Young, E.A. (2009). 632 Association of daily stressors and salivary cortisol in spinal cord injury. 633 634 Rehabilitation Psychology, 54(3), 288-298. doi:10.1037/a0016614 635 *Kamarck, T.W., Muldoon, M.F., Shiffman, S., Sutton-Tyrrell, K., & Janicki, D.L. 636 (2004). Experiences of demand and control in daily life as correlates of 637 subclinical carotid atherosclerosis in a healthy older sample. *Health Psychology*, 23(1), 24-32. doi:10.1037/0278-6133.23.1.24 638 *Kamarck, T.W., Muldoon, M.F., Shiffman, S.S., & Sutton-Tyrrell, K. (2007). 639 640 Experiences of demand and control during daily life are predictors of carotid atherosclerotic progression among healthy men. Health Psychology, 26(3), 324-641 332. doi:10.1037/0278-6133.26.3.324 642 *Kamarck, T.S., Schwartz, J.E., Janicki, D.L., Shiffman, S., & Raynor, D.A. (2003). 643 Correspondence between laboratory and ambulatory measures of cardiovascular 644 645 reactivity: A multilevel modeling approach. Psychophysiology, 40, 675-683

646	*Kamarck, T. W., Shiffman, S., Sutton-Tyrrell, K., Muldoon, M. F., & Tepper, P.
647	(2012). Daily psychological demands are associated with 6-year progression of
648	carotid artery atherosclerosis: The Pittsburgh Healthy Heart Project.
649	Psychosomatic Medicine, 74, 432-439. doi:10.1097/PSY.0b013e3182572599
650	*Kneipp, S.M., Welch, D.P., Wood, C.E., Yucha, C.B., & Yarandi, H. (2007).
651	Psychosocial and physiological stress among women leaving welfare. Western
652	Journal of Nursing Research, 29(7), 864-883. doi:101177/0193945906297378
653	*Kimhy, D., Delespaul, P., Ahn, H., Cai, S., Shikhman, M., Lieberman, J.A.,
654	Malaspina, D., & Sloan, R.P. (2010). Concurrent measurement of 'real-world'
655	stress and arousal in individuals with psychosis: Assessing the feasibility and
656	validity of a novel methodology. Schizophrenia Bulletin, 36(6), 1131–1139.
657	doi:10.1093/schbul/sbp028
658	Knipschild, P. (1995). Some examples of systematic reviews. In I Chalmers and D.G.
659	Altman (Eds.), Systematic reviews (pp. 9-16) London: BMJ Publishing Group.
660	*Kudielka, B.M., Buchtal, J., Uhde, A., & Wust, S. (2007). Circadian cortisol profiles
661	and psychological self-reports in shift workers with and without recent change in
662	the shift rotation system. Biological Psychology 74(1), 92-103.
663	doi:10.1016/j.biopsycho.2006.08.008
664	Kuntsche, E., & Labhart, F. (2013). ICAT: Development of an internet-based data
665	collection method for ecological momentary assessment using personal cell
666	phones. European Journal of Psychological Assessment, 29(2), 140-148. doi:
667	10.1027/1015-5759/a000137
668	Larson, R., & Cskszentmihalyi, M. (1983). The experience sampling method. New
669	directions for methodology of Social and Behavior Science, 15, 41-56.

- Lazarus, R.S., & Folkman, S. (1984). Coping and adaptation. In W. Gentry (Ed.), *Handbook of behavioral medicine*. New York: Guilford.
- *Linden, W., Klassen, K., & Phillips, M. (2008). Can psychological factors account for
 a lack of nocturnal blood pressure dipping. *Annals of Behavioral Medicine, 36*,
 253-258. doi:10.1007/s12160-008-9069-0
- Lloyd Jones, M. (2004). Application of systematic review methods to qualitative
- 676 research: Practical issues. *Journal of Advanced Nursing*, 48, 271-278.
- ⁶⁷⁷ *Luecken, L.J., Kraft, A., Appelhans, B.M., & Enders, C. (2009). Emotional and
- 678 cardiovascular sensitization to daily stress following childhood parental loss.

679 *Developmental Psychology*, 45(1), 296-302. doi:10.1037/a0013888

- *Maina, G., Bovenzi, M., Palmas, A., Prodi, A., & Filon, F.L. (2011). Job strain, effort-
- reward imbalance and ambulatory blood pressure: results of a cross-sectional
- 682study in call handler operators. International Archives of Occupational and

683 Environmental Health, 84, 383–391. doi:10.1007/s00420-010-0576-5

Maracine, M. (2010). The concept of stress and ways of managing it. *The Young*

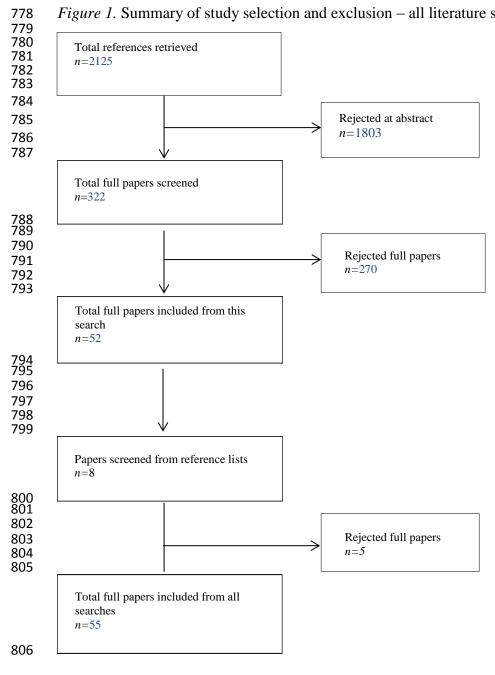
Economist Journal - Revista Tinerilor Economisti, 8, 14, 69-74.

- 686 Monroe, S.M. (2008). Modern approaches to conceptualizing and measuring human life
- 687 stress. *Annual Review of Clinical Psychology*, *4*, 33–42.
- 688 doi:0.1146/annurev.clinpsy.4.022007.141207
- Mulrow, C.D. (1995). Rationale for systematic reviews. In I. Chalmers & D.G. Altman,
 (Eds.). *Systematic reviews* (pp.1-8). London: BMJ.
- ⁶⁹¹ *Muraoka, M.Y, Carlson, J.G., & Chemtob, C.M. (1998).Twenty-four-hour ambulatory
- blood pressure and heart rate monitoring in combat-related posttraumatic stress
 disorder. *Journal of Traumatic Stress*, *11*(3), 473-484.

694	*Parshuram, C.S., Dhanani, S., Kirsh, J.A., & Cox, P.N. (2004). Fellowship training,
695	workload, fatigue and physical stress: a prospective observational study.
696	Canadian Medical Association Journal, 170(6), 965-970.
697	*Pieper, S., Brosschot, J.F., van der Leeden R., & Thayer, J.F. (2007). Cardiac effects
698	of momentary assessed worry episodes and stressful events. Psychosomatic
699	Medicine, 69(9), 901-909. doi:10.1097/PSY.0b013e31815a9230
700	*Piferi, R.L., & Lawler, K.A. (2006). Social support and ambulatory blood pressure: An
701	examination of both receiving and giving. International Journal of
702	Psychophysiology, 62(2), 328-336. doi:10.1016/j.ijpsycho.2006.06.002
703	*Rau, R. (2006). The association between blood pressure and work stress: The
704	importance of measuring isolated systolic hypertension. Work & Stress, 20(1),
705	84-97. doi:10.1080/02678370600679447
706	*Richman, L.S., Pek, J., Pascoe E, Bauer, D.J. (2010). The effects of perceived
707	discrimination on ambulatory blood pressure and affective responses to
708	interpersonal stress modeled over 24 hours. Health Psychology, 29(4), 403-11.
709	doi:10.1037/a0019045
710	Sapolsky, R.M., & McEwen, B.S. (1986). Stress, glucocorticoids and their role in
711	degenerative changes in the aging hippocampus. In T. Crook, R. Bartus, S.
712	Ferris, & S. Gershon (Eds.). Treatment Development Strategies for Alzheimer's
713	Disease. (pp 151-171). New Canaan, CT: Mark Powley Associates.
714	*Sausen, K.P., Lovallo, W.R., Pincomb, G.A., & Wilson, M.F. (1992).Cardiovascular
715	responses to occupational stress in male medical students: A paradigm for
716	ambulatory monitoring studies. Health Psychology, 77(1), 55-60.

717	*Schlotz, W., Schulz, P., & Hellhammer, J. (2006). Trait anxiety moderates the impact
718	of performance pressure on salivary cortisol in everyday life.
719	Psychoneuroendocrinology, 31, 459-472. doi:10.1016/j.psyneuen.2005.11.003
720	*Schoenthaler, A.M., Schwartz, J., Cassells, A., Tobin, J.N., & Brondolo, E. (2010).
721	Daily interpersonal conflict predicts masked hypertension in an urban sample.
722	American Journal of Hypertension, 23(10), 1082-1088.
723	*Schwerdtfeger, A., Konermann, L., & Schonhofen, K. (2008). Self-efficacy as a
724	health-protective resource in teachers? A biopsychological approach. Health
725	Psychology, 27(3), 358-368. doi:10.1037/0278-6133.27.3.358
726	Segerstrom, S.C., & O'Connor, D.B. (2012). Stress, health and illness: Four challenges
727	for the future. Psychology & Health, 27(2), 128-140.
728	doi:10.1080/08870446.2012.659516
729	Shiffman, S., Stone, A.A., & Hufford, M.R. (2008). Ecological Momentary Assessment.
730	Annual Review of Clinical Psychology, 4, 1–32.
731	doi:10.1146/annurev.clinpsy.3.022806.091415
732	*Smith, T. W., Birmingham, W., & Uchino, B. N. (2012). Evaluative threat and
733	ambulatory blood pressure: Cardiovascular effects of social stress in daily
734	experience. Health Psychology, 31(6), 763-766. doi:10.1037/a0026947
735	Smith, T.W., & Stone, A.A. (2003). Ecological momentary assessment research in
736	behavioral medicine. Journal of Happiness Studies, 4, 35-52.
737	*Steptoe, A., Cropley, M., & Joekes, K. (2000). Task demands and the pressures of
738	everyday life: Associations between cardiovascular reactivity and work blood
739	pressure and heart rate. Health Psychology, 19(1), 46-54.
740	*Steptoe, A., Wardle, J., & Marmot, M. (2005). Positive affect and health-related
741	neuroendocrine, cardiovascular, and inflammatory processes. Proceedings of the

- National Academy of Sciences, of the United States of America, 102(18), 65086512. doi:10.1073/pnas.0409174102
- Stone, A.A., & Shiffman, S. (1994). Ecological momentary assessment (EMA) in
 behavioral medicine. *Annals of Behavior Medicine*, *16*, 199-202.
- 746 Stiglmayr, C.E., Ebner-Priemer, U.W., Bretz, J., Behm, R., Mohse, M., Lammers, C-H.,
- 747 Anghelescu, I-G., Schmahl, C., Schlotz, W., Kleindienst, N., & Bohus, M.
- 748 (2008). Dissociative symptoms are positively related to stress in borderline
- personality disorder. *Acta Psychiatrica Scandinavica*, *117*, 139-147.
- 750 doi:10.1111/j.1600-0447.2007.01126.x
- *Tobe, S.W., Kiss, A., Sainsbury, S., Jesin, M., Geerts, R., & Baker, B. (2007). The
- impact of job strain and marital cohesion on ambulatory blood pressure during 1
- year: the double exposure study. *American Journal of Hypertension*, 20(2), 148-
- 53. doi:10.1016/j.amjhyper.2006.07.011


755 Trull, T., & Ebner-Priemer, U.W. (2009). Using Experience Sampling

- 756 Methods/Ecological Momentary Assessment (ESM/EMA) in clinical assessment
- and clinical research: Introduction to the special section. *Psychological*

758 Assessment, 21(4), 457-462. doi:10.1037/a0017653

- Trull, T., & Ebner-Priemer, U.W. (2013). Ambulatory Assessment. *Annual Review of Clinical. Psychology*, 9, 4.1-4.27. doi:10.1146/annurev-clinpsy-050212-185510
- *Uchino, B.N., Berg, C.A., & Smith, T.W. (2006). Age- related differences in
- ambulatory blood pressure during daily stress: Evidence for greater blood
- pressure reactivity with age. *Psychology and Aging*, 21(2), 231-239.
- 764 doi:10.1037/0882-7974.21.2.231

- Vannier, S.A., & O'Sullivan, L. (2008). The feasibility and acceptability of handheld
 computers in a prospective diary study of adolescent sexual behavior. *Canadian Journal of Human Sexuality*, *17*(4), 183-192.
- Wilhelm, F.H., & Grossman, P. (2010). Emotions beyond the laboratory: Theoretical
 fundaments, study design, and analytic strategies for advanced ambulatory
- assessment. *Biological Psychology*, *84*, 552-569.
- 771 doi:10.1016/j.biopsycho.2010.01.017
- 772 Yoshiuchi, K., Yamamoto, Y. & Akabayashi, A. (2008). Application of ecological
- momentary assessment in stress-related diseases. *BioPsychoSocial Medicine*,
- 774 2(13), 1-6. doi:10.1186/1751-0759-2-13
- Zanstra, Y.J., & Johnston, D.W. (2011). Cardiovascular reactivity in real life settings:
- 776 Measurement, mechanisms and meaning. *Biological Psychology*, *86*, 98-105.
- 777 doi:10.1016/j.biopsycho.2010.05.002

Figure 1. Summary of study selection and exclusion – all literature searched.

Authors	Aim of the study	Research population	Study design	Measur Psychological	ement Physiological	Stress measurement synchronization	Technology	Terminology used for the methodology
Barnett et al. (2005)	Estimate the relationship between marital- role quality and 3 psychobiological stress indicators	105 middle-age adults	Time – based (fixed intervals) during 1 day	Subjective stress; Marital-role quality; negative affect	Cortisol, BP	Yes	Paper diaries; SpaceLabs 90217; Salivette	Momentary Experience Sampling; AM;
Beckham et al. (2005)	Investigate the association between smoking and situational cues	63 smokers with PTSD and 32 smokers without PTSD	Time – based (random intervals) during 1 day	Mood states (feeling distressed); PTSD symptoms; psychopathology	HR; BP	10 minutes before	Paper diaries; Accutracker II	AM
Beckham et al. (2000)	Investigate the relationship between daily diary affect ratings and ambulatory CV activity	117 male Vietnam combat veterans (61 with PTSD and 56 without PTSD)	Time – based (fixed intervals) during 12 to 14 hours	PTSD symptoms; psychopathology; mood states (stressed)	HR; BP	10 minutes before	Рарет diaries <u>:</u> Accutracker П	АМ
Bedford et al. (2011)	Examine whether negative eating/body attitudes were associated with cortisol and ABP	120 non-obese, healthy women aged 19 –35	Time – based (fixed intervals) during 1 day	Eating and body attitudes; perceived stress	Cortisol; HR; BP	No	Aliquots; Spacelabs 90207	АМ
Benotsch et al. (1997)	Compare ABP and investigate interpersonal daily stress as a possible mediational mechanism	48 students pre- selected for high and low hostility scores	Time – based (quasi random intervals) during 2 days	Perceived social support; hostility; daily interpersonal stress	HR; BP	No	Paper diaries; Accutracker II	АМ
Bishop et al.	Test de demand-	118 police	Time – based	Occupational stress	BP; HR	Yes	Electronic diaries;	AM; EMA

Table 1. Summary table of the reviewed studies using ecological approaches on stress assessment

(2003)	control model for coronary disease	patrol officers	(fixed intervals) during a morning shift	(job demands; decisional control)			Accutracker II; BP monitors	
Brondolo et al. (2009)	Investigate trait hostility and CV reactivity to potentially stressful social interactions	73 (39 women) New York City traffic enforcement agents	Time – based (fixed intervals) during 1 day	Mood; Hostility; state affect; Quality of interactions	BP; HR	Yes	Paper diaries; Suntech Accutracker II	EMA
Buckley et al. (2004)	Examine the relationships between diagnostic status, basal CV activity, and CV reactivity to stress	2 groups:19 with chronic PTSD and 17 without PTSD	Time – based (fixed intervals) during 1 day	Personality and behavior traits, PTSD symptoms; depressive symptomatology; state and trait anxiety, affective distress	HR; BP	Yes	Electronic diaries; Dinamap automated BP monitor; Dynapulse 5000A	АМ
Campbell et al. (2006)	Investigate between peak expiratory flow rate (PEFR) and high frequency heart rate variability (HFHRV) during periods of negative affect and physical activity associations	53 patients with mild to moderate asthma	Time- based (fixed intervals) with continuous monitoring of HRV during 1 day	Asthma self- efficacy; mood (stressed; frustrated, sad, tense)	Airflow assessment; HFHRV	Yes	Paper diaries; Timex wristwatch; Polar R–R monitor; Mini-Wright Peak Flow Meter	AA
Carels et al. (2000)	Examine the relationship between marital distress and BP during daily life	50 married employed women	Time – based (random intervals) during 1 day	mood (angry, sad, stressed, frustrated, tense, happy, in control) marital distress	BP; HR	Yes	Paper diaries; Accutracker II	АМ

Collip et al. (2011)	Investigate whether HPA axis functioning is altered in individuals at above average genetic risk for psychotic disorder	60 siblings of patients with a psychotic disorder and healthy comparison group (N=63)	Time – based (random intervals) during 6 days	Event stress; psychotic symptomatology; negative affect, Trait psychosis liability; childhood trauma	Cortisol	Yes	Paper diaries; Digital wristwatch; Salivette	ESM
Compton et al. (2007)	Examine individual differences in error-related self-regulation predict emotion regulation in daily life	47 participants	Time-based (fixed intervals with a frequency of one per day) during 14 days ERN was recorded continuously	Personality; stress; anxiety	ERN	No	Electroencephalogra phic Recording and Signal Processing	ESM
Conley and Lehman (2012)	Examine CV activity when an academic stressor was occurring and when an academic stressor was not occurring.	99 undergraduate students	Time – based (fixed intervals with a frequency of one per day) during 4 days	Stress events; anxiety; depression	BP; HR	No	Electronic diaries; Spacelabs Healthcare	AM
Dennis et al. (2007)	Investigate gender differences regarding the association between smoking and situational cues	63 smokers with PTSD and 32 without PTSD.	Time – based (fixed intervals) during 1 day	Psychopathology; affect; PTSD symptoms; restlessness; worry; hunger	HR; BP	Yes	Paper diaries; Accutracker II	AM
DeSantis, et al. (2007)	Identify potential physiological pathways to racial	255 adolescents	Time – based (fixed intervals) during 3 days	Negative emotion; chronic stress; episodic life stress;	Cortisol	Yes	Paper diaries; programmed watch; Saliva swabs	ESM

	disparities in health outcomes			personality				
Doane and Adam (2010)	Understand momentary/daily changes in loneliness or chronic, ongoing feelings of isolation and loneliness with HPA axis activity	108 participants	Time – based (fixed intervals) during 1 day	Mood (stressed); anxiety; stress (chronic and episodic); loneliness trait	Cortisol	Yes	Paper diaries; Actiwatch Score; Straws; Mechanical Kitchen Timer; Straws;	EMA (Momentary diary method)
Dockray et al. (2010)	Validate DRM affect ratings by comparison with contemporaneous EMA ratings	94 women aged 21-54 years working at University college London	Time – based (fixed intervals) during 2 days	Happiness, tiredness, stress, anger/frustration	Cortisol; HR; HRV	Yes	Paper diaries; DRM online entries; Saliva swabs (the other instruments were not described here)	EMA; DRM
Dollan et al. (1992)	Understand coping styles in the relation between real-life stress and BP	20 male college students	Time – based (random intervals) during 2 typical school days 1 with an examination	mental effort; emotional stress, anger, coping	BP; HR	Yes	Paper diaries; Accutracker 102	АМ
Ebner- Priemer et al. (2008)	Investigate the relation between psychological distress and components of affective dysregulation	50 BPD and 50 healthy controls	Time - based (fixed intervals) during 1 day with continuous monitoring of ECG	Psychological distress; emotions	HR; PA	Yes	Electronic diaries; Vitaport II;	АМ
Entringer et al. (2011)	Assess whether EMA of cortisol sampling improves the ability to predict the length	25 healthy pregnant women	Time – based (EMA random intervals and fixed sampling design for measures of	Negative affect (stressed)	Cortisol	No	Electronic diaries; Medication Event Monitoring System; Salivette	ЕМА

	of human gestation		cortisol) during 4 days					
Ewart and Jorgensen (2004)	Test Social Competence Model on adolescents who completed the SCI and later underwent ABP monitoring	187 Black and White adolescents	Time – based (fixed intervals) during 1 day	Social Competence; Social Impact; stress; interpersonal skills, styles and strivings	BP	No	Paper diaries; Dinamap Vital Signs Monitor:ECG; Accutracker DX monitor; Interview audiotapes	АМ
Giesbrecht et al. (2012)	Assess the plausibility of cortisol as a biological link between maternal psychological distress during pregnancy and fetal development	83 women (gestational ages 6—37 weeks)	Time – based (quasi random intervals) during 3 days	Mood; psychological distress; daily stress; depression; anxiety; stress history	Cortisol;	Yes	Electronic diaries; Salivette	EMA
Habets et al. (2012)	Examine the association between pituitary volume, real-life stress reactivity and genetic liability for psychotic disorder	20 patients with psychotic disorder, 37 non-psychotic siblings of these patients, and 32 controls	Time – based (random intervals) during 6 days	Psychotic symptoms Event stress; Social stress; Emotional stress;	Cortisol	Yes	Paper diaries; MRI scans; Freesurfer stable release v5.0. digital wristwatch; Salivette; GIANT	ESM
Hallman and Lyskov (2012)	Investigate autonomic nervous system regulation, PA and perceived stress and energy during daily activities	23 subjects with chronic muscle pain in the neck–shoulders (trapezius myalgia) and 22 symptom-free controls	Time-based (fixed intervals) and HRV continuous monitoring during 1 day	Perceived stress; energy; pain	HRV; PA	Yes	Paper diaries; Bipolar electrocardiogram; Intelligent Device for Energy Expenditure and Activity	АМ

Hanson and Chen (2010)	Explore the relationship between childhood family environments, daily stress and daily biological outcomes	87 participants, ages 19 to 25	Time – based (fixed intervals) during 7 days	Childhood family psychosocial environment; daily stress; sleep	Cortisol	No	Paper diaries; Actiwatch; Salivette; MEMS 6 TrackCap Monitor	None
Holt-Lunstad et al. (2009)	Examine the competing predictions regarding the directional influence of parental status and its interaction with gender	198 married males and females	Time – based (random intervals) during 1 day	Dyadic adjustment; depression; perceived stress; sleep quality; satisfaction with life	BP	No	Accutracker II	АМ
Holt-Lunstad et al. (2008)	Examine the influence of marital status, relationship quality, and network support on measures of psychological and CV health.	204 married and 99 single males and females	Time – based (random intervals) during 1 day	Marital quality; network support; mental health; depression; satisfaction with life; perceived stress	ВР	No	Accutracker II	АМ
Hoppmann et al. (2006)	Examine the relationship between the personal relevance of daily activities with respect to self-set work and family goals and affective and	53 dual-earner couples with preschool children	Time-based (fixed intervals) during 6 days	Personal goals; goal relevance of daily activities; affect quality	Cortisol	Yes	Electronic diary; Salivette	Interval- sampling methodology

	neuroendocrine stress reactions							
Houtveen and van Doornen (2007)	Examine the relationship between MUS and peripheral stress physiology	74 participants with heterogeneous MUS were compared with 71 healthy controls	Time – based (fixed intervals) during 1 day	Momentary experienced somatic complaints; mood	Cortisol; HR; Cardiac autonomic activity; Respiration	Yes	Electronic diaries; VU-AMS; Capnometer; Salivette	АМ
Kalpakjian et al. (2009)	Examine the diurnal variation of salivary cortisol in adults Spinal Cord Injury and the effect of stressors on cortisol and mood	51 persons: 25 persons with Spinal Cord Injury and 26 without.	Time – based (random intervals) during 2 days	Stress and mood	Cortisol	Yes	Paper Diaries; Salivette; electronic pager	EMA (includes ESM as a structured diary technique)
Kamarck et al. (2012)	Examine associations between the perception of ongoing psychological demands by EMA and 6-year changes in carotid artery atherosclerosis	270 initially healthy participants	Time-based (fixed intervals) during 3 days	Psychosocial stress	IMT, BP	Yes	Electronic diaries; B-mode ultrasound; Accutracker DX	EMA
Kamarck et al. (2007)	Examine correlates of 3-year carotid artery disease progression using longitudinal design	335 healthy individuals	Time – based (fixed intervals) during 6 days	Job strain; Psychosocial stress	BP; HR; Carotid Artery Atherosclerosis	Yes	Electronic diary; Accutracker DX; B- mode ultrasound scanner	EMA
Kamarck et al. (2004)	Evaluate the role of psychological	337 healthy adults	Time – based (fixed intervals)	Perceived stress ; Depression; Hate	BP; Carotid Artery	Yes	Electronic diaries; Accutracker DX;;	EMA

	demands and decision latitude as correlates of subclinical carotid disease		two 3-days period	and anger; Job strain	Atherosclerosis		B-mode ultrasound scanner	
Kamarck et al. (2003)	Examine the correspondence between laboratory measures of CVR and within-person changes in CV activity during daily life	335 Healthy adults	Time – based (fixed intervals) during 6 days	Mood; psychosocial demands (Negative affect; Arousal; Task demand; Decisional control; Social conflict)	HR; BP	Yes	Electronic diaries; Accutracker DX; Two-lead EKG; impedance cardiography; IBM 486 PC	AM
Kimhy et al. (2010)	Test the feasibility and validity of a novel methodology designed to measure concurrent stress and arousal	20 patients with psychosis	Time – based (random intervals) during 2 days and 36 hours of arousal continuous monitoring	Subjective stress (negative mood) anxiety; loneliness; irritation; sadness; happiness/relaxation ;	HR	Yes	Electronic diaries; Holter monitor; Lifeshirt system	ESM ; AA
Kneipp et al. (2007)	Examine psychosocial stress, salivary cortisol, 24-hr ambulatory BP and HR and health among single mothers before and after exiting Temporary Assistance for Needy Families (TANF)	40 single mothers before and after exiting TANF	Time – based (fixed intervals) during 1 day	Psychosocial stress; depression; general health;	Cortisol; BP	No	Paper diaries; Salivette; Spacelabs Medical 90207; alarm	ΑΑ
Kudielka, et al. (2007)	Understand Circadian cortisol	102 healthy permanent day	Time-based (fixed intervals) during 2	health status, sleep, vital exhaustion,	Cortisol	No	Sallivette	None

	profiles and psychological self- reports in shift workers with and without recent change in the shift rotation system	and night shift workers (comparison groups) and former permanent day and night shift workers	morning shifts, 2 evening shifts, and up to 3 night shifts, followed by 1–4 days off.	perceived chronic stress, effort–reward imbalance and overcommitment.				
Linden et al. (2008)	Investigate the nondipping phenomenon	62 patients (30 nondippers)	Time – based (fixed intervals) during 1 day	Anger, hostility, coping, depression, anxiety and perceived stress	BP; HR	No	Spacelabs 90207	AM
Luecken et al. (2009)	Examine stress sensitization and inoculation models of the impact of early parental death on stress exposure and reactivity in late adolescence/young adulthood	91 late adolescents/you ng adults (43 early bereaved, 48 non bereaved).	Time – based (fixed intervals) during 1 day	Parental caring; depression; anxiety trait; stress; positive and negative affect	BP	Yes	Electronic diaries; Suntech Oscar II ABP monitors	АМ
Maina et al. (2011)	Examine the association between two job stress models—the job strain and the effort-reward imbalance model—and ambulatory BP monitoring	100 call handler operators	Time – based (fixed intervals) during 2 days	Perceived stress; job strain	BP; HR	No	Paper diaries; BP One OPCB Monitor	АМ
Muraoka et al. (1998)	Examine the CV correlates of PTSD using 24-hr ABP and HR	11 veterans with PTSD and 7 without PTSD.	Time – based (random intervals) during 1 day	PTSD symptoms; depressive symptoms; mood (stress; anxiety and	HR; BP	Yes	Paper diaries; Accutracker II	AA

	monitoring			anger)				
Parshuram et al. (2004)	Examine the workload and the level of fatigue and physical stress	11 senior fellows	Continuous monitoring during 35 shifts	Workload stress; fatigue	HRV; Physical stress (steps); urine (specific gravity and ketones)	No	Pedometer; Marquette Series 8500 recorders MultiStix 10 SG	АМ
Pieper et al. (2007)	Hypothesize that increased HR and decreased HRV occurs not only during stressful events but also during episodes in which stress is cognitively represented	73 teachers	Time – based (fixed intervals) during 4 days	Job strain; trait worry; depression; anxiety; hostility	HR; HRV	Yes	Electronic diaries ; VU-AMS device with an accelerometer	Momentary Assessment; AA
Piferi and Lawler (2006)	Investigate the relationship between giving and ambulatory BP	96 undergraduates	Time – based (fixed intervals) during 1 day	Tendency to give social support; perceived stress; socially supportive behaviors; self- esteem; self- efficacy; depression	BP; HR	Yes	Paper diaries ; DynaPulse 5000A	АМ
Rau (2006)	Examine the relationship between work- related stress and hypertension	126 healthy men employed in white collar jobs	Time – based (fixed intervals) during 1 day	Work related stress, relaxation-related experiences; Disturbed ability to relax; vital exhaustion	BP	No	BOSO TM2420; Physiomodul	АМ
Richman et al. (2010)	Examine the impact of perceived discrimination on ABP and daily level affect during	63 participants	Time – based (random intervals) during 1 day	Perceived discrimination; hostility; neuroticism; affective states (stressed)	BP; HR	Yes	Electronic diaries; AccuTrackerII ABP	АМ

	social interaction							
Sausen et al. (1992)	Examine hemodynamic responses to systematic variations in occupational stress using ABP monitors	44 healthy male medical students	Event-based	Psychological stress (mood)	HR; BP	Yes	Accutracker BP and HR monitor; Dinamap vital signs monitor	AM
Schlotz et al. (2006)	Examine the associations of specific task- related stressors and negative affective states on salivary cortisol and explores the mediating and moderating role of state negative affect and trait anxiety, respectively.	71 participants	Time – based (fixed intervals) during 2 days	Subjective stress; state affect; trait anxiety	Cortisol	Yes	Electronic diaries; Salivette; Medication Event Monitoring System	None
Schoenthaler et al. (2010)	Examine the effect of psychosocial stressors on Masked Hypertension	240 unmedicated black and Latino(a) adults with optimal office BP readings $(\leq 120/80 \text{ mm})$ Hg)	Time – based (fixed intervals) during 1 day	Daily interpersonal stress	BP; HR	Yes	Electronic diaries; OMRON HEM 704; Suntech; Accutracker II	AM
Schwerdtfeg er et al. (2008)	Examine the psychobiological correlates of self- efficacy	Study 1:58 school teachers Study 2: 50	Continuous monitoring during a day	Study 1: self- efficacy; perceived stress; burnout; affect	Study 1: HR; HRV; Locomotor activity	No	Study 1: Three- dimensional Accelerosensor; VARIOPORT-b;	АМ

		school teachers		Study 2: self- efficacy; Physical complaints		Study 2: saliva cortisol		ECG Study 2: Salivette	
Smith et al. (2012)	Measure the momentary experience of social- evaluative threat, concerns about physical appearance, and confidence in abilities, and related these factors to concurrent variation in ABP	94 married, working couples	Time-based (random intervals) during 1 day	Negative aff (stressed)	ect	BP	Yes	Electronic diaries; Oscar 2 - Suntech monitor	AM
Steptoe et al. (2005)	Show that positive affect is associated with reduced neuroendocrine inflammatory, and CV activity	116 men and 100 women	Time–based (fixed intervals) during 1 day	Positive affe Stress; Contr Tiredness; Psychological distress; Psychopathology		Cortisol; BP; HR; Plasma fibrinogen	Yes	Paper diaries; Space Labs 90217 monitor; Salliva tubes; Portapres-2	AM; ESM
Steptoe et al. (2000)	Analyze associations between CV Stress Reactivity and BP and HR in everyday life	102 female and 60 male school teachers	Time – based (fixed intervals) during 1 day	Pressures		HR; BP	Yes	Paper diaries; BPM – spacelabs 90217; A&D UA-751 electronic sphygmomanometer ,Bedfont portable smokerlyzer	АМ
Tobe et al. (2007)	Evaluate whether job strain and marital cohesion continued to be	248 participants	Time-based (fixed intervals) during 1 day	Job strain; marital cohesion	l	BP	No	Spacelabs Medical	AM

	associated with ABP in a longitudinal design							
Uchino et al. (2006)	Examine the association between age and daily stress processes that might have implications for CV disease	428 middle- aged to older adults	Time-based (random intervals) during 1 day	Negative affective states (feeling stressed)	BP	Yes	Paper diaries; Accutracker II	AA

808 Note. AA- Ambulatory Assessment; AM – Ambulatory monitoring; BP – Blood Pressure; BPD – Borderline Personality Disorder; CAPS – Clinical Administrated PTSD- Post-Traumatic Stress

809 Disorder; CV – Cardiovascular; DRM – Day Reconstruction Method; ERN – Error-related negativity; EMA – Ecological Momentary Assessment; MRI - Magnetic Resonance Imaging

810 GIANT - General Image Analysis Tools; HPA - Hypothalamic-pituitary-adrenocortical HR- Heart Rate; HRV – Heart Rate Variability; IMT - Intima-Medial Thickness; MUS – Medically

811 Unexplained Symptms; PA – Physical Activity; PDA – Personal Digital Assistant; PTSD- Posttraumatic Stress Disorder; SFC- Self-focused-coping SCI – Social Competence Interview

812