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Abstract—Differential privacy is widely accepted as a powerful
framework for providing strong, formal privacy guarantees for
aggregate data analysis. A limitation of the model is that the
same level of privacy protection is afforded for all individuals.
However, it is common that the data subjects have quite different
expectations regarding the acceptable level of privacy for their
data. Consequently, differential privacy may lead to insufficient
privacy protection for some users, while over-protecting others.

We argue that by accepting that not all users require the same
level of privacy, a higher level of utility can often be attained by
not providing excess privacy to those who do not want it. We
propose a new privacy definition called personalized differential
privacy (PDP), a generalization of differential privacy in which
users specify a personal privacy requirement for their data. We
then introduce several novel mechanisms for achieving PDP. Our
primary mechanism is a general one that automatically converts
any existing differentially private algorithm into one that satisfies
PDP. We also present a more direct approach for achieving
PDP, inspired by the well-known exponential mechanism. We
demonstrate our framework through extensive experiments on
real and synthetic data.

I. INTRODUCTION

Differential privacy [6], [9] is a powerful framework for
providing strong, formal privacy guarantees for aggregate data
analysis. Differential privacy ensures that no individual user
can significantly affect the output of an aggregate compu-
tation; consequently, an adversary observing the output is
unable to determine, with high probability, whether a particular
user’s data was present in the input. A common approach
for achieving differential privacy is to inject random noise
that is carefully calibrated according to the sensitivity of the
computation (i.e., the maximum impact that any one user can
have on the output), and a global privacy parameter.

In this work we propose a novel privacy definition to
address an important limitation of differential privacy—that
it provides only a uniform level of privacy protection for all
users in a dataset. This “one size fits all” approach ignores
the reality that data privacy is a personal and multifaceted
concept, and that different individuals may have very different
expectations for the privacy of their personal data. Indeed,
several studies in the psychology literature have observed that
individuals typically fall into several distinct groups or clusters
based on their privacy attitudes [4], [2], [1]. In particular,
Berendt et al. conducted a large-scale study of attitudes to
privacy in e-commerce [4]. They were able to distinguish a
clear group of “privacy fundamentalists” and a distinct group
of individuals with only marginal concern for privacy. The

remaining respondents exhibited privacy attitudes in between
the two extremes and differed on the focus of the privacy
concern. Similar clusterings of users based on privacy attitudes
have been observed by other researchers [2], [1], and have
identified other factors which contribute, such as as cultural
values [18], and income, age and political views [19].

In practice, when faced with a dataset comprising multiple
users with different privacy expectations, a data analyst em-
ploying differential privacy has limited options. One possibility
is to set the global privacy level high enough to satisfy even
the privacy fundamentalists in the dataset. This is likely to
introduce an unacceptable amount of noise into the analysis
outputs, resulting in poor utility. On the other hand, setting
a lower privacy level may force the analyst to exclude a
significant portion of the dataset from analysis (i.e., the data
belonging to the fundamentalists), which may also significantly
harm utility. In contrast to traditional differential privacy,
the personalized privacy model we introduce allows privacy
requirements to be specified at the user-level. Within the
proposed model, we present mechanisms that are able to take
these individual privacy requirements into account to guarantee
precisely the required level of privacy to each user, while in
many cases providing significantly better utility than the naı̈ve
options discussed above.

As well as the possibility of improved data utility, allowing
users a degree of control over the disclosure of their data offers
other important benefits. There is evidence that when users
are given control over their privacy they are more inclined to
want to contribute their data for analysis in the first place,
and to do so truthfully [24]. Indeed, the importance of control
in the context of privacy is emphasized in a widely accepted
definition of privacy from the psychology literature, due to
Westin, as “the ability of the individual to control the terms
under which personal information is acquired and used” [30].

A. Contributions

In this paper we consider the setting in which a trusted
data analyst desires to publish aggregate statistics computed
from a dataset comprising personal data of many individual
users. Every user may potentially have a different privacy
requirement for his or her data and the analyst would like
to publish useful aggregate information about the data, while
simultaneously complying with the individual privacy require-
ments of the contributors. To that end, we propose a new
privacy framework called Personalized Differential Privacy
(PDP), a generalization of differential privacy in which the



privacy requirements are specified at the user-level, rather than
by a single, global privacy parameter. The privacy guarantees
of our framework have the same strength and attack resistance
as differential privacy, but are personalized to the preferences
of all users in the input domain. We also show that the
composition properties of differential privacy carry over to
PDP, allowing complex privacy-preserving algorithms to be
constructed from individual PDP components.

We introduce two novel mechanisms for achieving PDP.
Our main goal is to design mechanisms that can take ad-
vantage of the non-uniform privacy requirements to attain
better utility than could be achieved with differential privacy.
Our first mechanism is general and can be used to easily
and automatically convert any existing differentially private
algorithm into a PDP algorithm. The mechanism is a two-
step procedure that involves a non-uniform sampling step at
the individual tuple level, followed by the invocation of an
appropriate differentially private mechanism on the sampled
dataset. In the sampling step, the inclusion probabilities for
each tuple are calculated according to the individual privacy
requirements of the corresponding user. We show that the two
sources of randomness introduced by this two-step procedure
combine to yield the precise personalized guarantee demanded.
Our second mechanism is a more direct approach to achieve
PDP, inspired by the well-known exponential mechanism of
McSherry and Talwar [17]. The mechanism is applicable to
common aggregates such as counts, medians, and min/max and
can be shown to outperform the sampling-based mechanism
in certain scenarios. In particular, we find that it is generally
preferable to the sampling-based mechanism for counts, which
are especially sensitive to the effects of sampling.

We conducted an extensive experimental study of several
instantiations of the PDP framework, on both synthetic and
real datasets. In particular, we studied both of our mechanisms
for the important count and median functions. We then in-
vestigated the application of our sampling-based mechanism
to the more complex task of multiple linear regression. Our
results demonstrate the broad applicability of our framework
and the utility gains that are possible by taking personal privacy
preferences into account.

In the next section, we begin by describing differential
privacy and introducing notation, as well as reviewing related
work. In Section III we introduce our new privacy definition,
followed by a discussion of how to satisfy the definition
for arbitrary tasks, in Section IV. Section V presents our
experimental study and Section VI concludes the paper.

II. PRELIMINARIES

We introduce some notation and initial definitions, and
briefly review the notion of differential privacy, upon which
our work is based. We then discuss related work.

We model a dataset as a set of tuples from a universe D,
with one or more attributes A1, . . . ,Ad . Every tuple in a dataset
is assumed to be associated with a user in U , where U is the
universe of users (e.g., all of the customers of an online store,
all of the patients of a given hospital, etc.).

Definition 1 (Dataset). A dataset D⊂D is a set of tuples D =
{t1, . . . , ti, . . .} from universe D, where ti ∈ A1× . . .×Ad ×U;

the Ai are attributes; and U denotes the universe of users. We
write tU to denote the user associated with tuple t.

The attributes A1, . . . ,Ad may be numeric or categorical.
Note also that a dataset D will not necessarily contain a tuple
for every u ∈ U . Moreover, depending on the semantics of the
data, or the analysis task being considered, it may be possible
for a dataset to contain multiple tuples for the same user (e.g.,
all of the products a user has purchased), while in other cases
it may not make sense for a dataset to contain more than one
tuple per user (e.g., a tuple contains a user’s annual salary).

For both differential privacy and personalized differential
privacy, the notion of neighboring datasets is an important one.
We say that two datasets are neighboring if one is a proper
subset of the other and the larger dataset contains exactly one
additional tuple.

Definition 2 (Neighboring datasets). Two datasets D,D′ ⊂D
are said to be neighboring, or neighbors, denoted D∼ D′, if
D⊂ D′ and |D′|= |D|+1 (or vice versa).

We write D t∼ D′ to denote that D and D′ are neighbors
and that t ∈ D′ and t /∈ D.

A. Differential Privacy

A mechanism M : D→ R is a randomized algorithm that
takes a dataset as input and returns an output from some range
R. The notationM(x) then denotes the probability distribution
on R induced by input x. Informally, a mechanism is said to be
differentially private if the probability distribution M(D) on
any dataset D is approximately the same as M(D′), for every
D ∼ D′. In other words, the mechanism’s behavior should be
(mostly) insensitive to the presence or absence of any one tuple
in the input. More formally,

Definition 3 (ε-Differential Privacy [6], [9]). MechanismM :
D→ R satisfies ε-differential privacy if for all pairs D∼D′ ⊂
D and any set O⊆ R of possible outputs,

Pr[M(D) ∈ O]≤ eε ×Pr[M(D′) ∈ O]

This definition protects against, for example, an adversary
who knows the full input except for one tuple t: they are
still unable to deduce even whether t was in the input. In
the definition, ε > 0 is a publicly known privacy parameter
that controls the strength of the differential privacy guarantee:
a larger ε yields weaker privacy, while a smaller ε leads to
stronger privacy. When ε is small, eε ≈ 1+ ε .

An important practical property of differential privacy is
composability. That is, if we have k mechanismsM1, . . . ,Mk,
each of which independently satisfies εi-differential privacy,
and we run these mechanisms on an input D in sequence, then
the sequence is ε ′-differentially private, where ε ′ = ∑

k
i=1 εi [7].

For real valued functions, i.e., f : D → Rd , the most
common way to satisfy differential privacy is to inject carefully
chosen random noise into the output. The magnitude of the
noise is adjusted according to the global sensitivity of the
function, or the maximum extent to which any one tuple in
the input can affect the output. Formally,



Definition 4 (Global Sensitivity [9]). The global sensitivity of
a function f :D→ Rd , is

∆ f = max
D∼D′

∥∥ f (D)− f (D′)
∥∥

1

where ‖·‖1 is the L1 norm.

Note that global sensitivity does not depend on the input
data but is a property of function f alone. A function f can
be made ε-differentially private by adding random noise drawn
from the Laplace distribution with mean zero and scale ∆ f

ε
to

its output. We will subsequently use the notation Lap(λ ) to
denote the Laplace distribution with mean 0 and scale λ .

Theorem 1 (Laplace Mechanism [9]). For a function f :D→
Rd , the mechanism that returns f (D)+ zd , where each zi is
drawn i.i.d. from Lap(∆ f

ε
) satisfies ε-differential privacy.

For functions where adding noise does not make sense or
the output space is non-numeric, the exponential mechanism
[17] can be used to achieve differential privacy. The exponen-
tial mechanism uses the concept of a score function, denoted
s(D,r), that returns a real-valued score to indicate the quality
of output r with respect to the true output f (D). A higher score
is assumed to mean that r is closer to the true output f (D). For
a given score function s, the exponential mechanism, denoted
E s

ε is defined as follows.

Theorem 2 (Exponential Mechanism [17]). For a score
function s : D× R → R, the mechanism E s

ε(D) that outputs
r ∈ R with probability proportional to exp( εs(D,r)

2∆s
), satisfies

ε-differential privacy.

Here, ∆s is the global sensitivity of the score function and
is defined slightly differently than in the context of the Laplace
mechanism: ∆s = maxD∼D′,r∈R |s(D,r)− s(D′,r)|.

B. Related Work

A line of work, started by Xiao and Tao [27], introduced
personalized privacy for k-anonymity. K-anonymity requires
that every record in a dataset be indistinguishable from at least
k−1 others, in terms of their identifying attributes [26]. Xiao
and Tao’s generalization was to allow each user to specify the
minimum k they were comfortable with. Subsequently a slew
of related approaches (e.g., [31], [28], [22], [29]) extended
this to other methods for achieving k-anonymity and related
definitions. However, these definitions have been criticized
due to the feasibility of attacks that can lead to disclosure of
sensitive attributes [16], [13], [32], and more robust notions,
led by differential privacy, are now preferred.

Our primary mechanism for achieving personalized differ-
ential privacy involves the use of sampling to introduce non-
uniform uncertainty at the tuple level. Although this is the
first work to use sampling to realize a personalized notion
of privacy, it has previously been combined with differential
privacy for other purposes [11], [14], [15], [12], [10]. Li et al.
showed that uniform random sampling in combination with
differential privacy amplifies the privacy guarantee [14]. The
result in [14] was motivated by the observation that since
random sampling is often already an inherent part of data
collection, one can take advantage of that existing randomness

to lower privacy costs. Prior to this, Kasiviswanathan et
al. implicitly used this amplification effect to build a private
PAC learner for parity functions [11]. Gehrke et al. proposed
a relaxation of differential privacy, called crowd-blending
privacy which, although strictly weaker than differential pri-
vacy alone, when preceded by a random sampling step also
satisfies differential privacy [10]. Aside from targeting a very
different objective, our use of sampling in the present work
also differs from all prior work described above by sampling
tuples from the input data independently, with non-uniform
probabilities: the inclusion probability for each tuple depends
on the corresponding individual’s privacy requirement (as well
as a global threshold). It is this non-uniformity that enables the
personalized privacy guarantees of PDP.

In a very recent manuscript [3], Alaggan et al. have inde-
pendently developed a similar privacy notion to ours, called
heterogeneous differential privacy, which to our knowledge
is the only other work to consider differential privacy with
non-uniform privacy guarantees. Their work differs from ours
both in the presentation and in the technical contributions.
In particular, the “stretching” mechanism proposed in [3],
which is based on the Laplace mechanism and works by
rescaling the input values according to the corresponding
privacy parameters, applies only to a limited subset of real-
valued functions; specifically, it cannot be used for functions
like median, min/max, and many others, that rely on the
exponential mechanism. It is also fundamentally incompatible
with some other types of queries, such as counting the number
of non-zero values in a dataset, where rescaling does not alter
the answer to the query. In contrast, our primary mechanism for
achieving PDP has no such restrictions; it can be used to auto-
matically convert any differentially private algorithm—whether
it is an instance of the Laplace mechanism, the exponential
mechanism or even a composition of multiple differentially
private components—into one that satisfies our personalized
privacy definition. Additionally, unlike [3], we present an
extensive empirical analysis comparing our mechanisms to
several baseline approaches to demonstrate the advantages of
PDP over differential privacy, in terms of utility.

Finally, it is worth mentioning a recent line of work on
privacy auctions (surveyed in [21]), that is ostensibly similar
to the present work. This line of work is mainly concerned
with how to accurately compute statistics over a population
of users who demand financial compensation for any privacy
loss incurred by their participation. Users specify a (possibly
non-uniform) valuation on their privacy that expresses their
privacy cost incurred by participating in an ε-differentially
private analysis (as a function of ε), and hence the amount
of compensation due if their data is used. The analyst’s job
is to choose the users from whom to “buy data”, such that
the analyst’s financial cost is minimized, while the computed
statistic meets some utility goal. In other words, users are not
guaranteed a certain level of privacy, but rather that they will
be compensated in proportion to their privacy valuation, should
their data be used. The privacy auction mechanisms ultimately
provide a uniform privacy guarantee. In contrast, our setting
allows users to individually specify a specific minimum level
of privacy for their data, and the mechanisms that we develop
guarantee at least the required privacy levels of all users.



III. PERSONALIZED DIFFERENTIAL PRIVACY

In this section, we introduce Personalized Differential
Privacy (PDP) and discuss its properties. In Section IV we
present several mechanisms that satisfy the definition.

In contrast to traditional differential privacy, in which the
privacy guarantee is controlled by a single, global privacy
parameter (i.e., ε in Def. 3), PDP makes use of a privacy
specification, in which each user in U independently specifies
the privacy requirement for their data. More formally,

Definition 5 (Privacy Specification). A privacy specification
is a mapping Φ : U → R+ from users to personal privacy
preferences, where a smaller value represents a stronger
privacy preference. The notation Φu is used to denote the
privacy preference corresponding to user u ∈ U .

For convenience, we may describe a specific instance
of a privacy specification as a set of ordered pairs, e.g.,
Φ := {(u1,ε1),(u2,ε2), . . .} where ui ∈ U and εi ∈ R+. We
also assume that a privacy specification contains a privacy
preference for every u ∈ U , or that a default privacy level, say
εdef = 1.0, is used. As will become clear, the privacy preference
values in our model can be interpreted similarly to the ε

parameter in traditional ε-differential privacy, so we expect
privacy preferences to fall in the range (0.01,1.0). In practice
it may be unreasonable to expect typical users to choose
a meaningful numerical privacy setting. Rather, we envision
a scenario in which a domain expert associates appropriate
values with user-friendly descriptors (e.g., low, medium and
high privacy) and users choose from those. This represents
one possibility; in general, choosing an appropriate privacy
parameter for differentially private systems is an open problem
and we do not consider it further in this paper.

Our model assumes that the privacy specification is public
knowledge. This mirrors the situation in traditional differential
privacy, where the global privacy setting ε is assumed to be a
public parameter. However, this means that the user’s privacy
parameter must not indicate anything about their sensitive
values. We believe this to be a reasonable assumption, given
that the privacy specification is defined at the user-level, rather
than the tuple level. That is, one can think of the privacy
setting as being a function of the user that owns the data rather
than a function of the data itself. For example, a politician
might have a higher privacy preference for her online browsing
history (for instance) than the average user, by virtue of her
profession—not because the data itself is inherently any more
or less sensitive than that of an average user. In practice, a
user might specify their privacy preferences at registration time
(e.g., upon joining a service), before any data is generated;
then all data that is subsequently produced by that user will
use that previously-specified privacy setting. Nevertheless, it
should be emphasized that the desired privacy guarantees may
not hold in settings where this assumption does not hold. We
now formalize our personalized privacy definition.

Definition 6 (Personalized Differential Privacy (PDP)). In
the context of a privacy specification Φ and a universe of
users U , a randomized mechanism M : D → R satisfies Φ-
personalized differential privacy (or Φ-PDP), if for every pair
of neighboring datasets D,D′ ⊂ D, with D t∼ D′, and for all

sets O⊆ R of possible outputs,

Pr[M(D) ∈ O]≤ eΦ
tU ×Pr[M(D′) ∈ O].

Intuitively, PDP offers the same strong, semantic notion
of privacy that traditional differential privacy provides, but the
privacy guarantee for PDP is personalized to the needs of every
user simultaneously. As we will demonstrate later in the paper,
PDP opens the door for attaining a higher level of utility when
not all users require the same strong privacy level.

A. Properties of PDP

We start by formalizing the relationship between PDP and
traditional differential privacy.

Theorem 3 (Differential Privacy Implies PDP). Let U denote
a universe of users and let D denote the associated universe of
tuples. Any mechanism M :D→ R that satisfies ε-differential
privacy also satisfies Φ-PDP, with privacy specification Φ =
{(u,ε)|u ∈ U}.

The proof follows immediately from the definitions of
differential privacy (Def. 3) and PDP (Def. 6).

The ability to compose nicely is an important property
for practical privacy definitions. The composition properties
of traditional differential privacy extend naturally to PDP. For
simplicity, our statement assumes that mechanisms operate
on datasets with the same schema (i.e., they have the same
attributes). The proof is deferred to the Appendix.

Theorem 4 (Composition). Let M1 : D1 → R and M2 :
D2 → R denote two mechanisms that satisfy PDP for Φ1
and Φ2, respectively. Let U1 and U2 denote the associated
universes of users. Finally, letD3 =D1∪D2. Then, for any D⊂
D3, the mechanism M3(D) = g(M1(D∩D1),M2(D∩D2))
satisfies Φ3-PDP, where Φ3 = ({(u,Φu

1 +Φu
2)|u ∈ U1∩U2} ∪{

(v,Φv
1)|v ∈ U1\U2

}
∪
{
(w,Φw

2 )|w ∈ U2\U1
}
), and g is an ar-

bitrary function of the outputs of M1 and M2.

In other words, the privacy afforded to a user degrades
when multiple computations are run over the same data.

IV. MECHANISMS FOR ACHIEVING PDP

In this section, we present general mechanisms for achiev-
ing PDP for arbitrary functions. We begin by establishing some
naı̈ve baseline mechanisms which represent the limited options
that an analyst when employing traditional differential privacy
in the presence of non-uniform privacy preferences. In that
sense, the baselines will allow us to compare PDP against
traditional differential privacy.

A. Baseline Mechanisms

The naı̈ve baseline mechanisms that we introduce now
technically achieve PDP, but fail to take advantage of the
personalized privacy preferences to benefit utility. In the rest
of the section, we will use the notation DP f

ε (D) to denote
any mechanism that computes the function f on an input D
and satisfies the traditional ε-differential privacy definition.
For example, if f is the mean function, DP f

ε could be an
instance of the Laplace mechanism; or, if f is the median, DP f

ε



might be realized by an instance of the exponential mechanism.
However, DP f

ε could also be a more complex composition of
multiple differentially private components.

The first baseline mechanism is simply a direct application
of Theorem 3. That is, we find the strongest privacy preference
in a given privacy specification (i.e., α = minu Φu) and then
invoke DP f

α using that as the global privacy parameter.

Definition 7 (Minimum). Given function f : D → R, dataset
D ⊂ D, and a privacy specification Φ, the Φ-PDP Minimum
mechanism M f (D,Φ) releases DP f

α (D), where α = minu Φu.

Proof: We need to show that for any arbitrary neighboring
datasets D t∼ D′ ⊂D, and any O⊆ Range

(
M f
)
,

Pr[M f (D,Φ) ∈ O]≤ eΦ
tU Pr[M f (D′,Φ) ∈ O].

Since DP f
α (D) satisfies α-differential privacy for α =minu Φu,

it also satisfies Φα -PDP for Φα = {(u,α)|u∈U} (by Thm. 3).

Thus, Pr[M f (D,Φ) ∈ O]≤ eminu Φu
Pr[M f (D′,Φ) ∈ O]

≤ eΦ
tU Pr[M f (D′,Φ) ∈ O],

as desired.

Although Minimum satisfies PDP, it gains no benefit from
the personalized privacy preferences; most users will receive a
much stronger level of privacy than they require. If we have a
dataset where there are relatively few very privacy conscious
users and a larger set of less concerned users, another option
is to simply discard all of the tuples belonging to the privacy
conscious users. We would then add noise according to the
strictest remaining user. This is the idea behind the next
baseline mechanism.

Definition 8 (Threshold). Given function f : D → R, dataset
D⊂D, and a privacy specification Φ, the Φ-PDP Threshold
mechanism Tf (D,Φ, t) first constructs from D the dataset Dt =

{x ∈ D|ΦxU ≥ t} and then releases DP f
t (Dt).

Proof: First, consider an arbitrary pair of neighboring
datasets D x∼ D′ ⊂ D, with Φx

U < t. In this case, the datasets
Dt and D′t , constructed from D and D′ by removing all
the tuples belonging to users with privacy settings below t,
will be equivalent since x will be one of the tuples omitted
from both Dt and D′t . Then clearly, for any O ⊆ Range(Tf ),
Pr[Tf (D,Φ, t) ∈O] = Pr[Tf (D′,Φ, t) ∈O], which satisfies defi-
nition 6.

Next we consider the case where Φx ≥ t. In this case, Dt
x∼

Dt
′. Now, observe that Tf (D,Φ, t) = DP f

t (Dt), which satisfies
t-differential privacy, and therefore also satisfies Φt -PDP for
Φt = {(u, t)|u∈U} (by Thm. 3). Then, for any O⊆Range(Tf ),

Pr[Tf (D,Φ, t) ∈ O]≤ et Pr[Tf (D′,Φ, t) ∈ O]

≤ eΦ
xU Pr[Tf (D′,Φ, t) ∈ O],

as desired.

B. Achieving PDP via Sampling

We now present a smarter general purpose mechanism for
achieving PDP that in many cases is able to attain a higher

level of utility than the baselines. The mechanism works by
introducing two independent sources of randomness into a
computation: (1) non-uniform random sampling at the tuple
level, where the inclusion probability for a tuple depends
on the personal privacy preference of the corresponding user
(and a global threshold t), and (2) additional uniform random-
ness introduced by invoking a traditional differentially private
mechanism on the sampled input, where the privacy parameter
ε depends on t. Combined, the two sources of randomness
yield the precise amount of privacy required by each tuple.

Definition 9 (The Sample Mechanism). Consider a function
f :D→ R, a dataset D⊂D, and a privacy specification Φ. Let
RS(D,Φ, t) denote the procedure that independently samples
each tuple x ∈ D with probability

πx =

{
eΦ

xU −1
et−1 if ΦxU < t

1 otherwise

where minu Φu ≤ t ≤maxu Φu is a configurable threshold. The
Sample mechanism is defined as

S f (D,Φ, t) = DP f
t (RS(D,Φ, t))

where DP f
t is any t-differentially private mechanism that

computes the function f .

Theorem 5. The Sample mechanism S f satisfies Φ-PDP.

Proof: We will use the notation D−x (or D+x) to mean the
dataset resulting from removing from (adding to) D the tuple
x. Thus, we can represent two neighboring datasets as D and
D−x. We will show that for any D,D−x and any O∈Range(S f ),

Pr[S f (D,Φ, t) ∈ O]≤ eΦx
Pr[S f (D−x,Φ, t) ∈ O].

Observe that all of the possible outputs of RS(D,Φ, t) can be
divided into those in which x was selected, and those in which
x was not selected. Thus, we can write Pr[S f (D,Φ, t) ∈ O] as

∑
Z⊆D−x

(
πx Pr[RS(D−x,Φ, t) = Z]Pr[DP f

t (Z+x) ∈ O]
)

+ ∑
Z⊆D−x

(
(1−πx)Pr[RS(D−x,Φ, t) = Z]Pr[DP f

t (Z) ∈ O]
)

= ∑
Z⊆D−x

(
πx Pr[RS(D−x,Φ, t) = Z]Pr[DP f

t (Z+x) ∈ O]
)

+(1−πx)Pr[S f (D−x,Φ, t) ∈ O].
(1)

Since DP f
t satisfies Φt -PDP, for Φt = {(u, t)|u ∈ U} (Thm. 3),

Pr[DP f
t (Z+x) ∈ O]≤ et Pr[DP f

t (Z) ∈ O].

Thus, equation (1) can be rewritten as

Pr[S f (D,Φ, t) ∈ O]

≤ ∑
Z⊆D−x

(
πx Pr[RS(D−x,Φ, t) = Z](et Pr[DP f

t (Z) ∈ O])
)

+(1−πx)Pr[S f (D−x,Φ, t) ∈ O]

= πx(et Pr[S f (D−x,Φ, t) ∈ O])+(1−πx)Pr[S f (D−x,Φ, t) ∈ O]

= (1−πx +πxet)Pr[S f (D−x,Φ, t) ∈ O].
(2)

In substituting for πx in (2), there are two cases for x that we
must consider: the case in which Φx ≥ t, and the case in which



Φx < t. Let us consider the former case first. By definition,
when Φx ≥ t, tuple x is selected with probability πx = 1; thus
substituting 1 for πx in (2), we have

Pr[S f (D,Φ, t) ∈ O]≤ (1−πx +πxet)Pr[S f (D−x,Φ, t) ∈ O]

= etPr[S f (D−x,Φ, t) ∈ O]

≤ eΦx
Pr[S f (D−x,Φ, t) ∈ O],

as desired. Let us now consider the case in which Φx < t.
Expanding πx in (1−πx +πxet) in equation (2), we get:

(1−πx +πxet) = 1− eΦx−1
et−1 + eΦx−1

et−1 et

=
et − eΦx

+ eΦx+t − et

et −1

=
−eΦx

+ eΦx+t

et −1
=

(et −1)eΦx

et −1
= eΦx

.

Thus, we have Pr[S f (D,Φ, t) ∈O]≤ eΦx
Pr[S f (D−x,Φ, t) ∈O],

and therefore S f (D,Φ, t) satisfies Φ-PDP.

Remark. Our Sampling mechanism is inspired by a result from
[14], where the authors observed that random sampling has a
“privacy amplification” effect when combined with differential
privacy. Further discussion of prior work related to sampling
in the context of differential privacy is made in Section II-B.

Discussion. We make a few important observations regarding
the Sample mechanism. First, we emphasize that the Sample
mechanism is not limited to simple aggregates like counts,
sums, etc. In fact, the Sample mechanism is immediately
applicable to arbitrarily complex functions, so long as there
is a known differentially private algorithm for computing f ,
i.e., DP f . The mechanism DP f could be a simple instantiation
of the Laplace or exponential mechanisms, or a more complex
composition of several differentially private mechanisms. The
Sample mechanism essentially treats DP f as a black box that
operates on a dataset of tuples.

Second, we note that the Sample mechanism effectively
introduces two types of randomness—and hence two types of
error—into f . The threshold t optionally1 provides a means of
balancing these types of error. A small t results in fewer tuples
being discarded by the sampling step (and lower sampling
error), but results in more randomness (e.g., noise) due to DP f

t .
Observe that when t = maxu Φu, every tuple is provided with
the precise amount of privacy it requires. When t = minu Φu,
the Sample mechanism collapses down to the Minimum base-
line mechanism.

The tunable threshold is useful because the two types of
error can impact the resulting output differently. Using t =
maxu Φu, so that all users receive exactly the required amount
of privacy, may not always give the best results; often, by using
a lower threshold we can significantly reduce the sampling
error while not introducing too much extra noise. As a concrete
example, consider the count aggregate. In this case, we have
D∈ {0,1}n, and DP f

t = f (D)+Lap(1/t), where f = count(D)
is the function that counts the number of non-zero tuples in D.
Observe that the magnitude of the Laplace noise depends only
on the sensitivity of f (which is 1 in this case) and t. Thus,

1Simply setting t = maxu Φu offers good results any many cases, as we will
show later in our experimental study.

the larger D is, the smaller the noise relative to the count.
The error due to sampling, on the other hand, depends not
only on the privacy specification, but also on the density of
the data. Thus for sufficiently large datasets, setting a lower
threshold (i.e., t�maxu Φu) could greatly increase the sample
rate for the users with strong privacy requirements, at the cost
of slightly more noise, but a lower total error. The following
example illustrates.

Example 1. For the count aggregate, suppose that we have
a dataset D with n = 200 tuples, each corresponding to one
user, with a selectivity value of 0.1. For simplicity, assume
that users fall into either one of two groups, w.r.t. privacy
preferences: conservative users have a strong privacy re-
quirement, say εC = 0.1, and liberal users have a relatively
weak requirement, say εL = 1. If we set t = εL, then each
of the conservative tuples would be retained with probability
πC = eεC−1

et−1 = e0.1−1
e1−1 ≈ 0.0612. Let D̃= RS(D,Φ, t = εL) denote

the sampled dataset. If we assume that a majority of the users,
say 65%, are conservative, then the squared error due to
sampling is calculated as

Err(count(D̃)) = Var(count(D̃)+Bias(count(D̃))2 =
(n ·0.65 ·0.1) ·πC · (1−πC)+((n ·0.65 ·0.1) · (πC−1))2 ≈ 150,

while the (additional) error due to the Laplace noise in-
jected by DP f

t=1 is Var(Lap(1/1)) = 2(1/1)2 = 2. However,
observe that if we instead set t = 0.2, we get πC ≈ 0.475 and
Err(count(D̃)) is reduced to ≈ 50, while the noise-related error
increases to 50. Thus, the total squared error is reduced from
152 to 100.

More complex functions that have a relatively high sensi-
tivity, but are robust to sampling, especially for larger datasets,
will see less benefit from threshold optimization. Recall that
global sensitivity is a worst case measure of the impact a single
tuple can have on the output of a function; however, for many
functions, while the global sensitivity may be quite high, the
impact that most tuples will actually have on the output is
relatively small. For such functions, the same level of sampling
error buys a significantly greater reduction in error due to DP f ,
as the sampling rate is independent of the sensitivity.

Precisely optimizing t for an arbitrary f may be non-
trivial in practice because, although the error of DP f

t may
be quantified without knowledge of the dataset, the impact
of sampling does depend on the input data. Therefore, care
must be taken so as to not leak privacy through the tuning
process. A possible option, in some cases, is to make use
of old data that is no longer sensitive (or not as sensitive),
and that comes from a similar distribution, to approximately
optimize the threshold without violating privacy2. In other
cases, it might be feasible to use a portion of the privacy
budget of the more conservative users and estimate the required
quantities from that subset of the data. We postpone an in-depth
study of threshold optimization strategies for future work. In
Section V, we will demonstrate that for many functions, the
simple heuristics of setting t = maxu Φu or t = 1

|U | ∑u Φu, often
give good results on real data and privacy specifications.

2The idea of using older data is commonly used to estimate parameters for
differentially private systems (e.g., in the GUPT system [20]).



C. Direct Approach

In the previous section, we introduced a two-step mecha-
nism that achieves PDP by a sampling step, followed by a stan-
dard differentially private mechanism. Next we develop a more
direct approach for achieving PDP, analogous to the exponen-
tial mechanism [17] for differential privacy. Our approach can
be applied easily to aggregates like counts, medians, min/max
and others. We first review the exponential mechanism and
show that the score functions used to instantiate it for many
aggregate functions can be represented in a common general
form. We then show how that general form can be made to
satisfy PDP.

In this section we assume that a dataset contains tuples
with a single numeric attribute A. We use a slightly different
definition of neighboring datasets to other sections to simplify
the presentation. Here, we assume that D and D′ differ only
in the value of a tuple t (instead of in the presence of t)3. We
also consider datasets that have different values for an arbitrary
number of tuples and will use the notation D⊕D′ to denote
the set of tuples in which D and D′ differ.

Given a function f : D → R, recall that the exponential
mechanism E s

ε(D) outputs r ∈ Range( f ) with probability pro-
portional to exp( εs(D,r)

2∆s
), where s(D,r) is a real-valued score

function that outputs a higher score the better r is relative to
f (D), and ∆s is the sensitivity of s. We observe that one form of
score function can be used to instantiate E for many common
aggregate functions. For brevity, we consider three exemplar
aggregates: count, median, min. For the count function, A is a
binary indicator; for the other functions we assume that the
value is an integer in the range [lo,hi]. The general score
function is:

s(D,r) = max
f (D′)=r

−|D⊕D′| (3)

That is, the score is inversely related to the number of changes
to D that would be required for r to become the true answer.
It is easy to see that ∆s = 1 for all three of the exemplar
aggregates. Next observe that s(D,r) is maximized when
r = f (D) (that is, when r is the true answer), and the score
becomes smaller (more negative) the further r is from the
true answer. For example, suppose we have D = 〈3,5,6,9,11〉.
With respect to min, we have s(D,2) = s(D,4) = s(D,5) =−1,
because we only need to change one element of D to make any
of those the minimum value; making 11 the minimum would
require changing four values, so s(D,11) = −4. Similarly,
for median we have, s(D,5) = s(D,9) = −1 and s(D,3) =
s(D,10) = s(D,11) = −2, since changing a single element
could cause 5 or 9 to become the median, while making 3,
10 or 11 the median requires two changes.

We need to understand the structure of this function further
to satisfy PDP. For any D, r, there may be many D′ that
maximize equation (3). For instance, in the example above,
we can make 5 the median by changing either 6, 9 or 11
to any value that is ≤ 5. In traditional differential privacy
it is sufficient to treat all such D′ equivalently. However, in
the context of PDP, where each element has its own privacy
setting, it becomes necessary to make a distinction among
the different D′ that maximize (3) for a given r. To make

3This alternate definition is used in the differential privacy literature when
it simplifies the task at hand [8].

the intuition more concrete, consider the privacy specification
Φ = 〈0.1,1,1,0.5,1〉 corresponding to D = 〈3,5,6,9,11〉 from
the earlier example. According to the PDP definition, we need∣∣∣ Pr[Es(D)=5]

Pr[Es(D′)=5]

∣∣∣≤ e0.5 when D′ is formed by modifying the 9 (e.g.,

D′ = 〈3,4,5,6,11〉), but we only require that the ratio is ≤ e1.0

when D′ is formed by changing the 6 or the 11. However,
the definition must hold regardless of what D′ happens to
be. That is, when computing the probability distribution for
E s(D), the probability for r must assume that D′ could be
any neighboring dataset. Thus, in the example above, the
probability of outputting 5 must be based on the strongest
privacy requirement among the elements 6, 9 and ll, i.e., 0.5.

By modifying the exponential mechanism using the general
score function of equation (3), with weighting to incorporate
the privacy specification Φ in place of the fixed ε , we arrive
at the following PDP mechanism.

Definition 10 (PE Mechanism). Given a function f :D→ R,
an arbitrary input dataset D ⊂ D, a privacy specification Φ,
the mechanism PE f

Φ
(D) outputs r ∈ R with probability

Pr[PE f
Φ
(D) = r] =

exp
( 1

2 d f (D,r,Φ)
)

∑q∈R exp
( 1

2 d f (D,q,Φ)
) (4)

where d f (D,r,Φ) = max
f (D′)=r

∑
i∈D⊕D′

−Φ
iU (5)

It is easy to verify that for the special case where the
privacy preferences in Φ are uniform, PE f

Φ
reduces to an

instance of the original exponential mechanism. We now prove
that PE satisfies PDP. The proof (deferred to the Appendix)
modifies that of the original exponential mechanism [17].

Theorem 6. The PE mechanism satisfies Φ-PDP.

Concrete Examples: We describe how d f can be efficiently
computed for our exemplar aggregates. In general, finding an
efficient algorithm to compute d f for an arbitrary f may be
non-trivial.

Count: Let count : {0,1}n → R, R = {0,1, . . . ,n}, be the
function that returns the number of 1’s in the input. Consider
an arbitrary input D for which count(D) = x,x≤ n. To compute
dcount(D,r,Φ) for an arbitrary r ∈ R, there are three possible
cases to consider: (1) when r > x, dcount(D,r,Φ) is the sum of
the r− x smallest privacy settings among all the 0 bits in D;
(2) when r < x, dcount(D,r,Φ) is the sum of the x− r smallest
privacy settings corresponding to the 1 bits in D; (3) when
x = r, dcount(D,r,Φ) = 0. Note that this algorithm requires
sorting the privacy specification Φ, although this need only
be done once.

Median: Let R= {lo, lo+1, . . . ,hi} for lo,hi∈Z. For a sorted
dataset D ∈ Rn, the median function med : Rn→ R returns the
element with rank m = bn/2c in D (for simplicity, we assume
that |D| is odd). For an arbitrary r ∈ R, let i denote the rank
of r in D. To compute dmed(D,r,Φ), there are three cases to
consider: (1) if i < m, then the D′ that minimizes equation
(5) is the one derived from D by changing the m− i elements
to the right of element i with the smallest privacy settings
in Φ; thus dmed(D,r,Φ) is just zero minus the sum of those
privacy settings. For example, if D = 〈3,5,6,9,11〉 and Φ =



〈0.1,1,1,0.5,1〉, then we have dmed(D,3,Φ) = dmed(D,4,Φ) =
−1.5 and dmed(D,5,Φ) = −0.5, and so on. (2) Conversely,
when i > m, we must consider all elements to the left of i in
D. In this case, dmed(D,r,Φ) will be zero minus the sum of
the i−m smallest privacy parameters among those elements
of D with rank < i. For example, considering the D,Φ given
above, dmed(D,11,Φ) =−0.6. (3) When i=m, dmed(D,r,Φ) =
0. Compared to finding a median with differential privacy, the
PDP implementation additionally needs to sort Φ, leading to
only a slight increase in computational overhead.

Min: As before, let R = {lo, lo+1, . . . ,hi} for lo,hi ∈ Z. For
a sorted dataset D∈ Rn, the min function min : Rn→ R returns
the smallest element of input D. For an arbitrary r ∈ R, there
are again three cases: (1) when r > min(D), observe that for
r to become the minimum, all elements q ∈D in which q < r
would have to be changed so that their values are ≥ r. Thus
dmin(D,r,Φ) would be equal to the sum of the privacy settings
of all elements in D with a value less than r. (2) When r <
min(D), for r to become the minimum, the value of any single
element in D could be changed to r; thus, dmin(D,r,Φ) equals
the minimum privacy setting among the elements in D. (3)
When r = min(D), dmin(D,r,Φ) = 0.

For large R, we can improve efficiency for median and min
by observing that all r ∈ R that fall between two consecutive
elements in D, say p and q, have the same rank as either p or
q. Therefore, we can divide the output space into ranges and
compute probabilities for each range (multiplied by the size of
the range). When a range is selected by the mechanism, the
returned value is sampled uniformly from within it.

V. EXPERIMENTAL STUDY

Next, we apply our PDP mechanisms to two common
aggregate functions, count and median, as well as to the
more complex task of multiple linear regression. Although
count and median are relatively simple functions, they are
important primitives for building more complex algorithms [5].
For the count and median functions, we compare the Sample
mechanism and the exponential-like PE mechanism. For linear
regression, we use the Sampling mechanism to transform a
recent differentially private approach for linear regression,
introduced by Zhang et al. [33], yielding a PDP version of
the algorithm.

Our main goal for this experimental study is to demonstrate
that by taking personal privacy preferences into account, our
proposed PDP mechanisms can often attain more accurate data
analysis results, compared to traditional differential privacy,
which provides only a uniform privacy guarantee. To that
end, we compare to the baseline mechanisms Minimum and
Threshold (see Section IV-A), in terms of root mean squared
error (RMSE) on real and synthetic data, under different data
distributions and privacy specifications.

Datasets: We evaluate mechanisms for count and median
on synthetic data. For count, we generate datasets with 1,000
records, each with a single binary attribute. The fraction of
records with a value of ‘1’ is controlled by a density parameter,
δ , in the range (0,1) (default δ = 0.15). For the median
function we generate datasets with 1,001 records, where the
attribute values are randomly drawn from a normal distribution
with mean µ and standard deviation σ (defaults, µ = 500,

σ = 200), rounded to the nearest integer in the range [1,1000].
For the linear regression task, we use a dataset containing
100,000 records (representing 100,000 users) from the 2012
US Census [23], detailed in in Section V-B.

Privacy Specification: To generate the privacy specifications
for our experiments, we randomly divided the users (records)
into three groups: conservative, representing users with high
privacy concern; moderate, representing users with medium
concern; and liberal, representing users with low concern4. The
fraction of users in the conservative and moderate groups were
determined by the parameters fC and fM; the fraction of users
in the liberal group is 1.0−( fC + fM). The default values used
in our experiments were fC = 0.54 and fM = 0.37 and were
chosen based on findings reported in [2] in the context of a
user survey about privacy concern. The privacy preferences for
the users in the conservative and moderate groups were drawn
uniformly at random from the ranges [εC,εM] and [εM,εL],
respectively (and rounding to the nearest hundredth), with
εC,εM,εL ∈ [0.01,1.0]; the users in the liberal group received
a privacy preference of εL, which was fixed at εL = 1.0 for all
of the experiments in this paper. The defaults for the other two
parameters were εC = 0.01 and εM = 0.2, where a smaller value
yields greater privacy. Table I lists the various parameters used
in our experiments and the ranges of values we tested for each,
with the default values underlined.

TABLE I. EXPERIMENT PARAMETERS (DEFAULTS UNDERLINED).

n (count, median) 1000 (count); 1001 (med.)
n (lin. regression) 10000,20000, . . . ,100000
δ (count only) 0.01,0.05,0.1,0.15, . . . ,0.5
εC 0.01,0.05,0.1,0.2, . . . ,0.5
εM 0.05,0.1,0.15,0.2, . . . ,0.5
εL 1.0
σ (median only) 100,200, . . . ,1000
µ (median only) 500
fC 0.1,0.2, . . . ,0.6; 0.54
fM 0.37
fL 1.0− ( fC + fM)

A. PDP for Count and Median

In this section we apply our two PDP mechanisms to the
count and median functions. We compared the RMSE of four
main approaches: the Minimum and Threshold baselines (M
and T , respectively), the Sampling mechanism with threshold
t = maxu Φu = εL (denoted S), and the exponential-like PE
mechanism. Recall that M invokes a standard differentially
private mechanism (the Laplace mechanism for count and the
exponential mechanism for median), using εC as the privacy
parameter. T works by first discarding all but the liberal
user data and then invoking a differentially private mechanism
with εL as the privacy parameter. Additionally, we investigated
a variation of S with the heuristic of setting the sampling
threshold to t = 1

n ∑u Φu (i.e., the average privacy setting), as
suggested in Section IV-B; we denote this approach S-avg.
Finally, for the count task, we also considered the Stretching
mechanism introduced by Alaggan et al. [3] in the context

4The choice to partition users into low/medium/high privacy groups was
based on findings from several studies by other researchers regarding user
privacy attitudes (e.g., [4], [2], [1]).
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Fig. 1. (Count) RMSE of each mechanism for the count task, as four parameters are varied.
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Fig. 2. (Median) RMSE of each mechanism in for the median task, as four parameters are varied.

of their similar privacy model, HDP (it does not apply for
the median task). Translated to our framework, the Stretching
mechanism works by (1) multiplying the data value of each
tuple i by a scaling factor εi

εL
, where εi is the privacy setting

for tuple i, and (2) releasing f (D′)+Lap(1/εL), where D′ is
the scaled dataset. We write Alag. to denote this approach in
the results.

For a given configuration of the parameters in Table I,
we computed the RMSE for each mechansim (between the
private count/median and the true count/median) over 1,000
runs, using a different randomly generated dataset and privacy
specification for each run.

Impact of Data Distribution. We first examine the impact
of the data density δ (i.e., the fraction of 1’s in the input
data) on the count function. Figure 1(a) shows the RMSE for
count as a function of increasing δ . The results indicate that
when density is low (e.g., δ < 0.1), S and S-avg offer the
lowest error, since most of the discarded tuples have a value
of zero and the count is only affected when a 1 is discarded.
However, we see that in general counts are highly sensitive
to sampling, and as the density increases, the error of the
sampling-based approaches quickly exceeds that of the M
baseline. For denser datasets (e.g., δ > 0.1), PE is the clear
winner, outperforming all other approaches by a significant
margin. For example, when δ = 0.3, the error of PE is less than
half that of the next best mechanism. An important observation
is that, unlike the sampling-based mechanisms, PE is able to
make use of all of the data in the input and, like the original
exponential mechanism, is generally unaffected by the data
density. This also means that, as the density (or the size of
the dataset) increases, the relative error will tend toward zero,
yielding highly accurate counts. For Alag. we observed slightly

lower error than for S; however, Alag. was still significantly
outperformed by PE . Finally, we observed that the simple
threshold heuristic employed by S-avg works surprisingly well
here, offering a significant reduction in error compared to S
(which uses t = maxu Φu).

For median, we vary the standard deviation σ . Figure 2(a),
shows that as σ increases, and the data become more spread
out, the errors of all approaches increase. When σ is small,
there are many values concentrated around the median and
the output is therefore less affected by individual values that
are discarded due to sampling. Likewise, for M and PE ,
when the values are concentrated around the median, most
of the probability mass will be concentrated on a small range
of output values close to the true median. Compared to the
count function, the median is far more resistant to sampling;
consequently S and S-avg offer a considerable reduction in
error, relative to the baseline approaches. For the same reason,
T fares much better in this task, compared to count; however,
it is still significantly outperformed by the S. Although PE
significantly outperforms M, it appears to be no better than
T in this scenario. Finally, we note that, in contrast to the
count task, S-avg offers only a slight improvement over using
the default threshold; again, this appears to be a consequence
of the median’s stronger resistance to sampling.

Varying the Privacy Specification: In the previous exper-
iments, a majority of the users (54%) were assumed to be
in the conservative group; that is, most of the data records
were assigned privacy preferences in the range [εC,εM], while
relatively few were assigned privacy preferences equal to εL.
In cases where a larger fraction of the users are liberal (i.e.,
when fC is small) we would expect the PDP mechanisms to
perform even better. We confirmed this by varying fC, while



keeping the other parameters at their defaults. Note that for
each setting of fC, the fraction of liberal users is equal to 1
- ( fC + fM), so decreasing fC increases the number of liberal
users. The results are shown in Figures 1(b) (for count) and
2(b) (for median). The sharp increase in the error of T when
fC = 0.6 (Figure 2(b)) is when the median is being computed
over only 3% of the dataset (30 records). Note thatM does not
depend on the fC parameter, which is why its RMSE appears
unaffected.

Next, we vary εC, which controls the lower bound on
the range of privacy settings generated for the conservative
users. Figures 1(c) and 2(c) show the results for count and
median, respectively. Note that we used εM = 0.5 (rather
than the default of εM = 0.2) for this experiment, to ensure
εC ≤ εM in all cases. The key observation here is that the
benefits of PDP, in terms of reduced error, diminish as the
privacy requirements of the conservative users become weaker
(closer to εL). This is because the error for the M decreases
exponentially with increasing εC, while the reduction in error
for the PDP mechanisms is much more subtle. For the count
function, we see that when εC is larger than about 0.08, M
becomes the best choice. For median, on the other hand, S-avg
remains the best choice until εC is larger than about 0.25, at
which point the benefits of using PDP diminish. We note that
the εC parameter is not used by T , so observed variations are
from the independent repetitions.

We now look at the impact of varying εM . Recall that
increasing εM has the effect of raising the upper (lower)
bound on the range of conservative (moderate) privacy settings.
Therefore, we would expect the error for the PDP approaches
to be smaller with a higher εM . Figures 1(d) and 2(d) show the
results for count and median, respectively. For the sampling-
based approaches, the error reduction was much more pro-
nounced for count than for median, due to count’s considerably
lower resistance to sampling. The PE mechanism benefited
greatly, with respect to both tasks, from the larger number of
users with weaker privacy requirements.

B. PDP for Multiple Linear Regression

In this section, we demonstrate how the Sampling mech-
anism can be easily used to convert an existing differentially
private algorithm into one that satisfies PDP. In particular, we
focus on the task of linear regression, where the objective is
to learn a linear model that can be used to predict the value
of a response variable y from one or more predictor variables
A. That is, given training dataset DT , with rows of the form
Ai1, . . . ,Aik,yi, we wish to learn a model y = A×w+b, where
the parameter vector w and the intercept term b are the outputs
of the training process. For the experiments in this section, our
goal was to (privately) learn a model to accurately predict an
individual’s income based on a set of other attributes (e.g., age,
gender, number of children, etc.).

To do so, we adapt a differentially private linear regression
algorithm, due to Zhang et al. [33], to satisfy PDP. The
approach perturbs the coefficients of the objective function
with Laplace noise, and then optimizes the perturbed objective
function. The sensitivity—and hence the scale of the Laplace
noise—depends on the number of attributes in the dataset. The
algorithm can be easily extended to satisfy PDP by applying

it in Definition 9. In other words, we choose a threshold
t, sample the tuples in the input according to their privacy
preferences and t, and then pass the sampled data directly into
the differentially private algorithm described in [33], using t as
the privacy parameter. We modified a publicly available Matlab
implementation5 of the original algorithm.

Dataset: We used a random sample of the 2012 US Census
data from the Integrated Public Use Microdata Series [23]
comprised of 100,000 records, each representing a unique
individual living in the US. The dataset contained 12 attributes
(five nominal and seven numeric): receivesFoodstamps, gen-
der, maritalStatus, employmentStatus, ownsHouse, nBedrooms,
nVehicles, nChildren, age, timesMarried, nHoursWorked, and
income. We restricted the sample to only those individuals
with a positive income. Of the nominal attributes, only mar-
ritalStatus had more than two values (i.e., married, single,
divorced/widowed). Following [33], and others, we replace
this attribute with two binary attributes isMarried and isSingle.
Thus, the final dataset contained 13 attributes.

Experiment Setup: Our task is to model the income attribute
based on the other attributes. We compared S and S-avg to the
two baseline mechanisms, M and T as well as the Stretching
mechanism, Alag. [3]. Note that PE is not applicable to this
task. For each experiment, we performed 500 runs of five-fold
cross-validation, using a different randomly generated privacy
specification for each run. We computed the RMSE of each
approach over the 500 runs. As a preprocessing step, the linear
regression implementation normalizes all attributes to the range
[−1,1]; thus, the reported errors are interpreted relative to that
range.

Results: As we did for count and median, we vary εC, εM and
fC to obtain different privacy specifications (Figures 3(a), 3(b)
and 3(c), respectively). We also investigated the impact of the
dataset cardinality n (Figure 3(d)) by running the mechanisms
(with default parameters) on different sized random subsets
of the main dataset. We also plot the error of the non-private
linear regression algorithm (denoted non private in the plots).

Looking at Figure 3(a), we see that S significantly outper-
formed the baselines for εC < 0.3. In contrast to the previous
experiments, the threshold heuristic S-avg, performs less well
here. This can be explained by the fact that the linear regression
algorithm has a much higher sensitivity than count and median;
consequently the effect of the Laplace noise is far more
significant than the effect of sampling (up to a point), and
so trading more noise for a higher sampling rate turns out
to be a bad strategy. In contrast to what was seen for count,
S significantly outperformed the HDP mechanism Alag. This
is perhaps not too surprising since, intuitively, rescaling the
values causes them to lose much of their meaning.

The observations regarding the impact of εM (Figure 3(b))
and fC (Figure 3(c)) are similar to those for the median
task. As εM gets larger, the average privacy preference for
the conservative and moderate users increases (i.e., becomes
weaker), leading to fewer records being discarded due to
sampling, and consequently a lower RMSE. When fC is small
(i.e., there are fewer conservative users and more liberal users),
the error for the sampling-based mechanisms is lower, but the

5http://sourceforge.net/projects/functionalmecha/
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Fig. 3. (Linear Regression) RMSE of each mechanism for linear regression, as four parameters are varied.

improvement relative to T is also quite small. On the other
hand, when the conservative users make up half of the users
in the dataset, the RMSE of S is about 36% lower than that of
T . We also note the spike in error for T when fC approaches
0.6, which we also observed for the median task (Figure 2(b));
again, this appears to be due to the fact that the input to T
is only about 3% of the total records in that case. Since M
does not take the parameter εM or fC, we chose to focus on
the other mechanisms in the respective plots. We note that the
RMSE for M was > 0.77 and generally unstable, due to the
high noise variance associated with a privacy setting of 0.01.

Finally, Figure 3(d) shows that the size of the dataset n has
a big impact on all approaches, as expected. The larger the
dataset, the more data that is left after sampling and the better
the PDP approaches perform. Moreover, since the sensitivity of
linear regression is independent of n, the signal to noise ratio
improves with increasing input size. In Fig. 3(d), the RMSE
of M remained above 1.4 until n≥ 40,000.

VI. CONCLUSIONS AND FUTURE WORK

We have introduced PDP, a personalized privacy framework
that combines the strength of differential privacy with the
added flexibility of user-specific privacy guarantees. Mech-
anisms based on non-uniform sampling and extensions of
the exponential mechanism can achieve PDP effectively and
efficiently.

There are many avenues for future work. With respect to
the Sampling mechanism, although we have shown that simple
threshold heuristics work well in practice, it is likely that the
error could be further reduced through a more careful tuning
of the threshold for specific tasks. As with differential privacy,
although the exponential mechanism is quite general, getting
the best results require a careful choice of quality function,
and the use of the seemingly “obvious” quality function can
be beaten by tailored approaches in terms of accuracy and
scalability. It will also be of interest to extend notions of
personalized privacy to social networks, where the individuals
are nodes, and edges represent connections between pairs.
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APPENDIX

Theorem 6. The PE mechanism satisfies Φ-PDP.

Proof: Let D x∼ D′ ⊂ D be two arbitrary, neighboring
datasets that differ in the value for tuple x. In the following,
let εx =ΦxU , the privacy requirement for tuple x. First, observe
that for any D and r, if d f (D,r,Φ) = y, then there is a dataset
X such that f (X) = r and ∑i∈D⊕X ΦiU =−y (by Eq. 5). Then,
since D⊕D′ = {x}, it follows that

∑
i∈D′⊕X

Φ
iU ≥ ∑

i∈D⊕X
Φ

iU − ∑
i∈D′⊕D

Φ
iU ≥−y− εx.

Since f (X) = r, it follows that

d f
(
D′,r,Φ

)
≤ y+ εx = d f (D,r,Φ)+ εx (6)

We will use this fact below. To prove that PE satisfies
Φ-PDP, we need to show that,

Pr[PE f
Φ
(D)=r]

Pr[PE f
Φ
(D′)=r]

≤ exp(εx) .

By equation (4), we have

Pr[PE f
Φ
(D) = r]

Pr[PE f
Φ
(D′) = r]

=

 exp

(
d f (D,r,Φ)

2

)

∑q∈R exp

(
d f (D,q,Φ)

2

)


 exp

(
d f (D′,r,Φ)

2

)

∑q∈R exp

(
d f (D′,q,Φ)

2

)


=

 exp
(

d f (D,r,Φ)

2

)
exp
(

d f (D′,r,Φ)
2

)
∑q∈R exp

(
d f (D′,q,Φ)

2

)
∑q∈R exp

(
d f (D,q,Φ)

2

)
= A ·B

Rewriting A using equation (6), we have

A =
exp
(

d f (D,r,Φ)

2

)
exp
(

d f (D′,r,Φ)
2

) = exp
(

d f (D,r,Φ)−d f (D′,r,Φ)
2

)
≤ exp

(
εx
2

)
Similarly, rewriting B we get

B =
∑q∈R exp

(
d f (D′,q,Φ)

2

)
∑q∈R exp

(
d f (D,q,Φ)

2

) ≤ ∑q∈R exp
(

d f (D,q,Φ)+εx
2

)
∑q∈R exp

(
d f (D,q,Φ)

2

)

=
exp( εx

2 )∑q∈R exp
(

d f (D,q,Φ)

2

)
∑q∈R exp

(
d f (D,q,Φ)

2

) = exp
(

εx
2

)
Thus, we have A · B ≤ exp

(
εx
2 + εx

2

)
= exp(εx). It can be

similarly shown that the ratio is also ≥ exp(−εx). Therefore,
the PE mechanism satisfies Φ-PDP.

Next, we prove the composition theorem (Theorem 4)
stated in Section III-A.

Theorem 4 (Composition). Let M1 : D1 → R and M2 :
D2 → R denote two mechanisms that satisfy PDP for Φ1
and Φ2, respectively. Let U1 and U2 denote the associated
universes of users. Finally, letD3 =D1∪D2. Then, for any D⊂
D3, the mechanism M3(D) = g(M1(D∩D1),M2(D∩D2))
satisfies Φ3-PDP, where Φ3 = ({(u,Φu

1 +Φu
2)|u ∈ U1∩U2} ∪{

(v,Φv
1)|v ∈ U1\U2

}
∪
{
(w,Φw

2 )|w ∈ U2\U1
}
), and g is an ar-

bitrary function of the outputs of M1 and M2.

Proof: Let D t∼D′, with D,D′ ⊂D1,2 be an arbitrary pair
of neighboring datasets. First, let us consider the case where
tU ∈ U1 ∩U2. We have that t ∈ D′ ∩D1, and t ∈ D′ ∩D2. To
simplify notation a bit, let ε1 = Φ

tU
1 and ε2 = Φ

tU
2 . For any

O⊆ Range(M3), we can write

Pr[M3(D)∈O] = ∑
(r1,r2)∈O

Pr[M1(D∩D1)= r1]·Pr[M2(D∩D2)= r2].

Applying Def. 6 for both A1 and A2, we have that for any
O⊆ Range(A3),

Pr[A3(D) ∈ O]≤ ∑
(r1,r2)∈O

(
eε1 Pr[A1(D′) = r1]

)(
eε2 Pr[A2(D′) = r2]

)
= e(ε1+ε2) ∑

(r1,r2)∈O
Pr[A1(D′) = r1]Pr[A2(D′) = r2]

= e(ε1+ε2) Pr[A3(D′) ∈ O]

Thus, Φt
3 =(ε1+ε2)= (Φt

1+Φt
2) as claimed. Next we consider

the case in which tU ∈ U1\U2. Observe that Pr[A2(D) = r2] =
Pr[A2(D′) = r2], since D∩U2 = D′∩U2. Thus, we have

Pr[A3(D) ∈ O]≤ ∑
(r1,r2)∈O

(
eε1 Pr[A1(D′) = r1]

)
Pr[A2(D′) = r2]

= eε1 ∑
(r1,r2)∈O

Pr[A1(D′) = r1]Pr[A2(D′) = r2]

= eε1 Pr[A3(D′) ∈ O]

and Φt
3 = ε1 = Φt

1, as claimed. An analogous argument can be
made for the case in which tU ∈ U2\U1.


