
http://wrap.warwick.ac.uk   

 
 

 
 
 
 
 
 
Original citation: 
Ladroue, Christophe and Kalvala, Sara (2015) Constraint-based genetic 
compilation. In: Dediu, Adrian-Horia andHernández-Quiroz, Francisco and Marin-Vide, 
Carlos and Rosenblueth, David A., (eds.) Algorithms for Computational Biology : Second 
International Conference, AlCoB 2015, Mexico City, Mexico, August 4-5, 2015, 
Proceedings. Lecture Notes in Computer Science, 9199 . Springer, pp. 25-38. 
 
Permanent WRAP url: 
http://wrap.warwick.ac.uk/67202                
 
Copyright and reuse: 
The Warwick Research Archive Portal (WRAP) makes this work by researchers of the 
University of Warwick available open access under the following conditions.  Copyright © 
and all moral rights to the version of the paper presented here belong to the individual 
author(s) and/or other copyright owners.  To the extent reasonable and practicable the 
material made available in WRAP has been checked for eligibility before being made 
available. 
 
Copies of full items can be used for personal research or study, educational, or not-for  
profit purposes without prior permission or charge.  Provided that the authors, title and 
full bibliographic details are credited, a hyperlink and/or URL is given for the original 
metadata page and the content is not changed in any way. 
 
Publisher’s statement: 
“The final publication is available at Springer via http://dx.doi.org/10.1007/978-3-319-
21233-3_3 ” 
 
A note on versions: 
The version presented here may differ from the published version or, version of record, if 
you wish to cite this item you are advised to consult the publisher’s version.  Please see 
the ‘permanent WRAP url’ above for details on accessing the published version and note 
that access may require a subscription. 
 
For more information, please contact the WRAP Team at: publications@warwick.ac.uk  

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Warwick Research Archives Portal Repository

https://core.ac.uk/display/29193925?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://wrap.warwick.ac.uk/
http://wrap.warwick.ac.uk/67202
http://dx.doi.org/10.1007/978-3-319-21233-3_3
http://dx.doi.org/10.1007/978-3-319-21233-3_3
mailto:publications@warwick.ac.uk


Constraint-Based Genetic Compilation

Christophe Ladroue and Sara Kalvala

Department of Computer Science
University of Warwick

Coventry, CV4 7AL, UK
Sara.Kalvala@warwick.ac.uk

Abstract. Synthetic biology aims at facilitating the design of new organ-
isms via the standardization of biological parts and following engineering
principles. We present atgc (Assistant To Genetic Compilation), a soft-
ware tool that automatically builds a functional sequence of DNA from a
minimal set of requirements. Through a simple language, the user pro-
vides in-house knowledge about their construct (e.g. relative placement of
parts, number of restriction enzymes). atgc combines information from
established biology, user knowledge and bioinformatics databases, and
maps the problem to a constraint satisfaction setting. The solution is
a functional DNA sequence ready to be assembled and transferred to a
target organism.

Keywords synthetic biology, biocompilation, constraint satisfaction

1 Introduction

Synthetic biology [9] aims at reaching a level of control in biology that is tradi-
tionally found in mechanical or electrical engineering [5]. Its approach consists in
considering biological parts and combining them to achieve a pre-defined task.
Parts are fragments of DNA fulfilling a specific function: promoters, protein
coding sequences (CDS), ribosome binding sites (RBS), terminators and so on. A
device is an ordered collection of parts, that has a specific effect (e.g. producing
a certain protein when sensing a signal). The resulting string of DNA can be
thought of as a blueprint for a program to be run by the cell. The potential
benefit for science and society is immense, from a better understanding of cellular
processes[8], to drug manufacturing [16] to energy production [18].

Following this computer analogy, we present our approach to biocompiling [6]:
deriving, from a high-level, human-readable encoding of desired behavior, the
corresponding set of instructions at a machine (or a cell) level, in this case in
terms of nucleotides (a, c, t and g) instead of zeroes and ones. In this paper
we consider only simple forms of control, where the production of proteins is
controlled by the choice of promoter that precedes the corresponding gene in the
DNA sequence. Nature has evolved many more complex forms of control (such
as the very powerful method known as RNA Interference [11]) but these are still
beyond the scope of most of the projects developing practical design tools for
synthetic biology.



2 C. Ladroue and S. Kalvala

From a conceptual point of view biocompilation should be a simple process:
one can look up parts from the many comprehensive databases of biological
parts available to find ones that provide the required functionality, and string
the corresponding nucleotide sequences together. However, in practice there
are many obstacles to obtaining functional sequences: the quantitative nature
of genetic translation means that there may be many initial designs but they
provide unacceptable reaction rates. Furthermore, there are local interactions
that can occur between specific nucleotide sequences and the underlying cellular
mechanisms which need to be considered. And there are usually some pragmatic
constraints from the specific lab or experimental setting in which the actual
biological experiments are to be performed.

Biocompilation has been addressed by a number of projects in recent years.
Genocad [2] uses a context-free grammar for constraining sequence building
and also verifying existing sequences. proto biocompiler [1] is based on the
spatial language proto. An abstract regulatory network is derived from the
behavioral specifications and then simplified and instantiated to a smaller genetic
circuit. Eugene [4] starts from a collection of parts and devices, and creates all
possible combinations. It then prunes unwanted arrangements following simple
rules. However, these rules are rarely under the control of the user, who is often
unable to control the decisions made by the tools. Therefore, realistic automation
of the biocompilation process has so far been quite elusive.

Our approach, described here and exemplified by our tool atgc, also uses
built-in rules informed from biology to construct a functional device from a
collection of parts, but it also allows users to add simple, specific directives to
control the decisions made. Potential inconsistencies are managed by using a
constraint-based methodology that balances different constraints against each
other. We make extensive use of a CSP solver, the Java library JaCoP [14].
The advantage of this is that our decision making can easily accommodate
more heuristics and user design strategies, without needing to re-structure the
whole process. Our tool automatically completes unfinished devices, lowering the
requirement for genetic knowledge from the user while accommodate user-defined
constraints.

2 General Workflow

In the general workflow of atgc, a user declares a list of parts to be include in
the design, using parts of different types (promoters, CDS, terminators, etc.), and
they can also add extra constraints on the construction of the final sequence, such
as the relative position of parts or the direction of the CDS. The set of constraints
offered may be informed by users’ daily practice. These extra constraints are
encoded in terms of a cost function to be minimized. The task of atgc consists
in 1) taking stock of what parts and devices are used, 2) finding a realistic
arrangement of the parts 3) instantiating their exact nucleotide sequences and 4)
creating an output file that can be fed into a DNA assembly process.



Constraint-Based Genetic Compilation 3

In the simplest use-case, users only specify promoters and CDSs, which provide
enough information to check the desired functionality via simulation. But to be
biologically functional, a device requires extra parts to be integrated into the
design. The biocompiler automatically adds the missing necessary parts, such as
RBS and terminators, as well as, if requested by the user, a number of cloning
sites. Insertion of all these different components can raise several conflicts, and
atgc solves these conflicts in many cases. There are three main steps in the
biocompilation process:

1. The set of parts specified by the user is expanded with other parts needed to
complete the design and the various parts are placed in a coherent sequence,
taking into consideration the fact that devices can be placed in both directions
in the complementary DNA strands.

2. Ribosomal Binding Sites (RBSs) are tags that are translated along with
CDSs and determine the translation rate for the CDSs. atgc chooses the
RBS sequences that implement the translation rate desired by the user.

3. Cloning sites are often desired by users and it is often very difficult to find
appropriate cloning sites because these 4- and 6-mer sequences should not
appear anywhere else in the DNA. atgc has an extensive mechanism to try
to find adequate cloning sites and their corresponding restriction enzymes,
by re-generating nucleotide sequences for the rest of the DNA if required.

The solution found by atgc can be exported in SBOL format [10], which can
be simulated and which is compatible with a large a growing number of synthetic
biology software, such as J5 [12].

In the next sections, we explain the various elements of user input and also
explain the way that atgc processes this information to produce viable designs
at the nucleotide level.

3 User Input Language

The input language for atgc is similar to that adopted by many other biocompiler
tools, and consists mainly in ways in which parts can be accessed from various
databases, and host organisms can be identified and the environment (such as
concentrations of signaling molecules, etc.) can be specified.

What is unique in atgc is the way directives can be specified. These are
interspersed into the input file and are all preceded by the ATGC keyword. User
expertise is often difficult to formalize as it contains ad-hoc rules and rules of
thumb. The various directives which have been implemented so far will be shown
in the next section alongside the algorithms we developed to process them. Here
we explain how parts, devices, and cells are specified by users.

Parts are declared by the user by specifying their types and sequences, as
both information will be required for building the final sequence. That is, a
biological part in atgc is just an ordinary variable. Four types of parts are
available: promoter, gene, RBS and terminator. Each of these types take one
argument: either an explicit DNA sequence, or a pointer to a database entry.



4 C. Ladroue and S. Kalvala

Users need to specify the set of parts that they may want to use in their
designs: we believe this is more sensible than hard-wiring our favorite parts, which
may unnecessarily increase the search space for designs. Fig. 1 shows the various
ways in which parts can be defined: directly as sequences (PromD, GeneD), or as
named parts in popular databases, for example PromB from biofab [3], GeneP

from the Parts Registry ([13], and PromV and GeneV from the Virtual Parts
Repository [7], which we use in our running example. These repositories contain
promoters, genes, RBSs and terminators that have been used extensively by the
synthetic biology community.

PromD =
PROMOTER( sequence = ”TGTGCATGACAAATCAGATTAACAC” )

GeneD =
GENE( sequence = ”ATGAGTCAGTTTCGATAATC” )

PromB =
PROMOTER(URI = ”ATGC:// b io fab / part /PLTETo1” )

PromP =
PROMOTER(URI = ” http :// par t s . igem . org /Part : BBa I14033” )

GeneP =
GENE(URI = ” http :// par t s . igem . org /Part : BBa K592009” )

PromV =
PROMOTER(URI = ” http :// sbo l . nc l . ac . uk :8081/ part /BO 2689” )

GeneV =
GENE(URI = ” http :// sbo l . nc l . ac . uk :8081/ part /BO 28536” )

Fig. 1. Declaring parts that can be used in the biocompiler

Genetic designs involve specifying the assembly of parts into devices and the
placement of these devices into a context, such as a host cell. These structures
are specified as given in Fig. 2. Devices are understood in synthetic biology
as composite genetic units with functional parts such as promoters and CDSs.
Devices are declared analogously to functions in a typical programming language,
with a signature specifying the parts used. The actual placement of the parts
is the goal of biocompilation. Thus, initially, this section may be empty, but is
filled in by the biocompiler. Devices are used in cells, which in turn are placed
in a region. The information about the cell and the region provide important
information that is used to simulate the dynamics of the cell and thus verify the
results of the biocompiler.

An important aspect for atgc is that descriptions may be (and in fact are
expected to be) incomplete: the goal of biocompilation is to fill in the design to
make a feasible complete specification. This is done by automatically searching
through a large space of genetic parts and configurations and finding consistent



Constraint-Based Genetic Compilation 5

DEVICE myDevice = new DEVICE( par t s =
[ myPromoter , aGene , anotherGene ] ) ( ) {

// body o f the dev i c e }

define myCell typeof CELL( ){
( . . . ) // dec l a r e par t s and de v i c e s }

define myRegion typeof REGION( ){
CELL s t ra in2015d = new myCell ( ) }

Fig. 2. Declaring devices, cells and regions

and good solutions, not only in terms of syntax but also in terms of quantitative
analysis and analysis of the actual nucleotide sequences.

4 Biocompilation Step : Arranging the Bio-parts

The biocompiler will use the parts required for building the whole construct,
following rules from known biology. There can be many equivalent ways to place
the parts in the final piece of DNA, and some might be preferred by the user.
For example, they might want to reproduce an existing construct that has been
reported to work in previous studies.

atgc finds the position of each part by using built-in biological knowledge
as directives for placement. But some hard constraints, such as the notion that
a device should start with a promoter and end with terminators, or that genes
must be preceded by an RBS, cannot be violated. Extra constraints provided by
the user, like relative positions of parts, are captured in a cost function.

The directive ARRANGE, followed by a list of parts, will force the compiler
to favor an arrangement that matches the relative positions of the parts involved
in the directive. This directive makes it easy to guide the biocompiler to generate
solutions that fit a pre-determined, in-house design. For example, the directive:

ATGCARRANGE nahR , Pnah , Psal , xys l2

directs the biocompiler to try to place these four parts in this particular order—
for example, when such a component has already been produced in-house.
ARRANGE is a ‘soft’ constraint, in that it favors solutions where it is sat-
isfied, but not if it is in direct contradiction with hard-coded rules for genetic
constructs.

The DIRECTION directive forces the direction of a device: forward or reverse.
For example, the requirement that a device is to be read in a specific direction
can be specified as:

ATGC myDevice DIRECTION: FORWARD



6 C. Ladroue and S. Kalvala

Mapping to a Constraint Satisfaction Problem The corresponding con-
straint satisfaction problem (CSP) has 2 types of objects: parts p ∈ {P,R,G, T,C}
and devices i ∈ i1, i2, . . ., each of which is associated with a set σ of parts. The
goal is to assign locations L() ∈ {1, . . . ,#parts} to parts and to assign a direction
D() ∈ {F (= 0), B(= 1)} to devices.

The biocompiler adds a number of constraints in order to build a functional
piece of DNA, such as the following:

– No two parts can be at the same location: ∀p, p′.L(p) 6= L(p′)
– A device in either direction should start with a promoter:

∀i.D(i) = F → minL(p).p∈σ(i) → p = P
∀i.D(i) = R→ maxL(p).p∈σ(i) → p = P

– Each gene must be preceded by a RBS sequence:
∀i.D(i) = F → ∀G ∈ σ(i). ∃R ∈ σ(i).L(G) = L(R) + 1
∀i.D(i) = R→ ∀G ∈ σ(i). ∃R ∈ σ(i).L(R) = L(G) + 1

– Devices do not overlap: Given the relative order σ. of the devices
∀i.∀p. p /∈ σ(i)→ L(p) < minL(p).p∈σ(i) ∨ L(p) > maxL(p).p∈σ(i)

– Terminators should be the last parts of a device:
∀i.D(i) = F → maxL(p).p∈σ(i) → p = T
∀i.D(i) = R→ minL(p).p∈σ(i) → p = T

To these and other in-built numerical constraints, the biocompiler then adds
any user-specified constraints:

– The directive ATGC ARRANGE P1, P2, ..., Pk is translated into the con-
straints: L(P1) < L(P2) < · · · < L(Pk).

– The directive ATGC Dev DIRECTION = REVERSE is translated into the
constraint: D(Dev) = R.

These conditions are expressed as a system of numerical constraints that
can be solved by the JaCoP CSP solver. Once the program is run, a solution
(if it exists) is found, with all constraints satisfied and the positions of each
parts assigned a particular value. Currently the tool only produces one (the best)
solution, but we plan to extend it to export an arbitrary number of solutions,
which can then all be tested through parallel wet-lab experiments. This extension
is not conceptually difficult, but we need to ensure we provide solutions in a style
that is easily integrated into lab protocols.

5 Biocompilation Step: RBS Selection

An RBS sequence needs to precede each gene in order to initiate translation. It
is tailored for individual contexts: it depends on the CDS, the pre-sequence, and
the type of host organism. The RBS sequences are computed via a stochastic
process and can be very different even given the same initial conditions. The Salis
RBS calculator [17] is well established as providing acceptable RBS sequences, so
atgc simply calls this tool with the specific parameters to generate this sequence
which is then inserted into the emerging design.



Constraint-Based Genetic Compilation 7

In the Salis RBS Calculator, translation rates are specified in an arbitrary
unit, and the default rate is set to 1000. atgc also uses this default rate, but
also allows it to be overridden by the user. To specify a particular initiation
translation rate, users specify the value they would like to achieve:

ATGC TRANSLATION RATE: 50000

The RBS calculated for this device will have an initiation translation rate 50
times higher than the rate for a default RBS. Note that the sequence generated
in this way may result in a conflict in the next step, so the RBS Calculator may
be called several times during the biocompilation process.

6 Biocompilation Step: Cloning Sites Selection

atgc also allows the user to ask for a number of cloning sites, non-coding
fragments of DNA that can be cleaved with a restriction enzyme specific to each
nucleotide sequence. Cloning sites are useful for in vivo use, e.g. by allowing
reporters to be inserted at these locations. However, it is often difficult to find
restriction enzymes that can be used because the cleavage sequences can appear in
other places in the DNA, and cleaving the DNA at these sites can be catastrophic.

Users can insert a request for a number of cloning sites (say 5) within the
specification of devices with a simple directive:

ATGC CLONING SITES : 5

General Strategy atgc attempts to find a selection of restriction enzymes that
cut only at the desired location in the final sequence. Since the restriction enzymes
will cut the DNA string at any occurrence of their characteristic nucleotide
sequence, they have to be chosen so as not to cut the DNA sequence anywhere
else. Since restriction enzymes (and therefore cloning sequences) are in limited
number, it might not be possible to find enough fitting restriction enzymes given
a particular sequence. If this is the case, the algorithm is allowed to change the
rest of the sequence: either RBS can be recalculated or codons can be changed
to suit more restriction enzymes.

This work-flow is described in Fig. 3. From the whole sequence (with all
devices) and the number of required cloning sites, we first build a list of potential
restriction enzymes (line 5), i.e. with cloning sequences that do not appear in the
whole sequence. In a first pass, in case of conflict with calculated RBSs, the RBS
are re-calculated to achieve the previously set translation rates but with different
sequences. This is done at most twice (to avoid infinite loops). In a second pass,
if there is a conflict with some coding sequences, the biocompiler proceeds to
find the optimal codon change that will both: 1) free up previously conflicting
restriction enzymes, and 2) minimize the disruption to the CDS (by applying
a cost dependent on the codon usage). This is done through the mapping to a
constraint satisfaction problem described in the next subsection.



8 C. Ladroue and S. Kalvala

1 foreach device do
2 get the whole sequence (including all devices)
3 get the number of required restriction enzymes
4 while RBS have been updated at most twice do
5 build a list of potential restriction enzymes
6 attempt to find enough restriction enzymes (Fig. 4)
7 if successful then
8 replace the place holders by the actual sequences
9 exit

10 else
11 recompute the RBS’s if it might free up some restriction enzymes
12 try again

13 end
14 if unsuccessful then
15 attempt codon optimization via CSP (Fig. 5)

16 end

Fig. 3. General workflow for finding restriction enzymes

1 use the list of non-cutting REs
2 repeat
3 replace a placeholder by an actual RE in the list
4 if it cuts more than once then
5 remove from the list and the placeholder

6 until the list of non-cutting RE is exhausted or enough RE’s have been found

Fig. 4. Finding fitting restriction enzymes

Given a list of non-conflicting restriction enzymes and the whole sequence,
the algorithm in Fig. 4 attempts to find a suitable selection. A restriction enzyme
is selected from the list one at the time, and the corresponding cloning sequence
is inserted into the sequence if there is no conflict. This ensures that the added
sequences are not in conflict with the newly selected sequence. The algorithm
either succeeds to fit the necessary number of cloning sites, in which case the
search ends, or it fails, in which case the original CDS is modified if possible.

Mapping to a Constraint Satisfaction Problem Fig. 5 shows the algorithm
used for updating the codons in CDSs in order to fit more restriction enzymes.
It starts by considering the restriction enzymes that only have a conflict with
the CDS, from the list of potential enzymes built in Fig. 3 (line 5). It then
makes a list of the specific codons which cause conflicts, and for each such codon,
finds possible alternatives according to the genetic code (e.g. Alanine can have 4
forms:gct, gcc, gca, gcg). A reified Boolean variable REi is created for each
candidate restriction enzymes (lines 3-6) that is true if and only if the codons
each take a form such that the final sequence does not conflict with the enzyme.



Constraint-Based Genetic Compilation 9

1 Consider REs that cut in CDS only
2 Build the list of conflicting codons and their possible alternative forms
3 Create a reified Boolean variable for each restriction enzyme:
4 foreach REi do
5 REi :=

W
All fitting combinations(codon1 = form2 ∧ · · · ∧ codonn = form4)

6 end
7 Assign the cost of changing a codon to a particular form
8 cost(codonj , formk) =(

− log fj,k with fj,k :natural frequency of formk for codonj

0 if codonj has the current form: formk

9 Set that there must be at least enough fitting restriction enzymes:
10

P
REi ≥ # requested RE

11 And that codons are changed with minimal cost:
12 Minimise

P
all codons codonj takes form k

Fig. 5. Fitting restriction enzymes with codon modifications

In other words, they are all acceptable alternative codes for the aminoacids coded
by the initial codons, but which do not give rise to forbidden sequences.

The program does not simply search for codon alternatives to free up at least
a minimal number of enzymes (lines 9-10). It also does it in such a way that the
original sequence is minimally disrupted: each codon change is associated with a
cost (lines 7-8). If the original form is kept, the cost is 0. Otherwise, the cost is
− log(fk), where fk is the natural codon bias for the species. Thus, not changing
a codon does not cost anything and changing a codon to a less common form is
more expensive. The codon usage frequencies are found from the Codon Usage
Database (http://www.kazusa.or.jp/codon/ [15].

The overall goal of the algorithm is thus to change codons in order to free up
a minimal number of restriction enzymes (lines 9-10) while minimizing the total
cost of the changes (lines 11-12).

7 Example

In this section, we build a biological AND operator with two devices, following
the approach taken in [19]. The aim is to make a cell produce a fluorescent
protein (GFP) when two molecules IPTG and aTc are present. Fig. 6 shows the
regulatory network designed to achieve this goal. The first device produces the
molecules lacI and tetR. The production of GFP by the second device is inhibited
by lacI and tetR. IPTG inhibits laclI and aTc inhibits tetR. As a result, GFP
will be produced only when aTc and IPTG are present. The inhibition for the
second device is achieved with two promoters PlacI and PteR.

In Fig. 7 we show the directives coded by experimentalist colleagues in
specifying some requirements. Typically, they wished to specify only the promoters
and genes and leave other decisions to the tools. For experimental reasons, they

http://www.kazusa.or.jp/codon/


10 C. Ladroue and S. Kalvala

Fig. 6. Regulatory network and construct resulting from the biocompilation.



Constraint-Based Genetic Compilation 11

wished to enforce the order of the two promoters. They also wanted to add a
couple of cloning sites to the second device for testing purposes.

The biocompiler automatically completed the devices with RBS and termi-
nators and found a functional arrangement for the parts. The sequences for the
parts were obtained in the Biobricks online database. The compiler also selected
2 non-cutting restriction enzymes once the rest of the sequence had been decided.
In this case, the compiler found the following two restriction enzymes: BstI
(ggatcc) and Bst6I (ctcttc).

define myCell typeof CELL( ) {
// par t s f o r the f i r s t d ev i c e

cprom =
PROMOTER(URI = ” http :// par t s . igem . org /Part : BBa J23100” )

LacI =
GENE(URI = ” http :// par t s . igem . org /Part : BBa C0012” )

Tetr =
GENE(URI = ” http :// par t s . igem . org /Part : BBa C0040” )

// par t s f o r the second dev i c e
PLacI =

PROMOTER(URI = ” http :// par t s . igem . org /Part : BBa R0010” )
PtetR =

PROMOTER(URI = ” http :// par t s . igem . org /Part : BBa R0040” )
GFP =

GENE(URI = ” http :// par t s . igem . org /Part : BBa E0040” )

DEVICE dev ice1 =
new DEVICE( par t s = [ cprom , LacI , Tetr ] ) ( )
{ ATGC TRANSLATION RATE: 5000 }

DEVICE dev ice2 =
new DEVICE( par t s = [ PLacI , PtetR , GFP] ) ( )
{ ATGC CLONING SITES : 2

ATGCARRANGE PLacI , PtetR } }

define myRegion typeof REGION( ){
CELL s t ra in2015d = new myCell ( ) }

Fig. 7. User directives for example device

8 Interface

atgc’s user interface is shown in Fig. 8. The central panel contains the editor.
The left panel contains a project manager, where multiple files and folders can
be created. The right hand-side panel shows the current understanding of the



12 C. Ladroue and S. Kalvala

biocompiler for the current model. The user updates its content by clicking on
Refresh model. The panel then shows an overview of the construct and enables a
second button labeled Compile. Pushing this button starts the biocompiler. Every
step, as well as warnings and errors, are shown in the console (bottom panel). If
the compilation is successful, the final construct, with the parts arranged and
assigned a nucleotide sequence, is shown in the results panel. The corresponding
SBOL file can be found the folder src-gen in the project manager.

Fig. 8. User interface for atgc with a fully-featured editor and project manager.

atgc’s interface is built on the Eclipse platform, and is compatible with
Windows, Mac OS, and Linux. The user interface language is a simple domain-
specific language developed with Xtext (http://www.eclipse.org/Xtext),
which provides a text editor with keyword completion and syntax coloring.

9 Conclusion

atgc is a biocompiler that facilitates the building of a functional string of DNA
from an initial specification of functionality, an initial collection of parts, and
heuristics expressed through constraints. The compilation is done in three stages:
initial parts placement, RBS optimisation, and insertion of cloning sites. It uses
constraint solving for dealing with conflicts and choices, through the powerful,
stable and well-established CSP solver JaCoP.

http://www.eclipse.org/Xtext


Constraint-Based Genetic Compilation 13

The approach taken here is one that favors readability of the code (by using a
domain-specific language), design automation (to facilitate the access to synthetic
biology for non-specialists) and extensibility. By mapping the searches and the
user-specified requirements to a constraint satisfaction program, atgc leverages
the tools and techniques developed by the CSP community; adding new types of
constraint or new assumptions will not require the development of new ad-hoc
algorithms but simply the addition of extra rules to the CSP basis.

In our experience and through discussion with biologists, there is a reluctance
to use specialized software tools to complete genetic designs, as users often
feel hindered by the lack of control in guiding the decision making. By using a
constraint-based approach where user directives are injected directly into the
decision process, we leave users in the driving seat. On the other hand, atgc is
very helpful in how it handles the low-level book-keeping issues, such as finding
restriction enzymes that are compatible with the rest of the design.

atgc is also part of an upcoming platform for synthetic biology, which will
integrate the modeling, verification and biocompilation into a unified language
and system. All three aspects will be seamlessly intertwined to produce a one-stop
shop for designing new organisms in silico.

Acknowledgments This research was supported by EPSRC through grant
EP/I03157X/1, Towards Programmable Defensive Bacterial Coatings and Skins.
We are grateful for the collaboration within the Roadblock consortia.

References

1. Beal, J., Lu, T., Weiss, R.: Automatic Compilation from High-Level Biologically-
Oriented Programming Language to Genetic Regulatory Networks. PLoS ONE
6(8), e22490+ (Aug 2011), http://dx.doi.org/10.1371/journal.pone.0022490

2. Bilitchenko, L., et al.: Eugene, A Domain Specific Language for Specifying and
Constraining Synthetic Biological Parts, Devices, and Systems. PLoS ONE 6(4)
(Apr 2011), http://dx.doi.org/10.1371/journal.pone.0018882

3. Biofab: Data Access Web Service. http://biofab.synberc.org/data (2015)
4. Cai, Y., Hartnett, B., Gustafsson, C., Peccoud, J.: A syntactic model to de-

sign and verify synthetic genetic constructs derived from standard biological
parts. Bioinformatics 23(20), 2760–2767 (Oct 2007), http://dx.doi.org/10.1093/
bioinformatics/btm446

5. Church, G.M., Elowitz, M.B., Smolke, C.D., Voigt, C.A., Weiss, R.: Realizing the
potential of synthetic biology. Nature reviews. Molecular cell biology 15(4) (Apr
2014), http://dx.doi.org/10.1038/nrm3767

6. Clancy, K., Voigt, C.A.: Programming cells: towards an automated ’Genetic
Compiler’. Current Opinion in Biotechnology 21(4), 572–581 (Aug 2010), http:
//dx.doi.org/10.1016/j.copbio.2010.07.005

7. Cooling, M.T., et al.: Standard virtual biological parts: a repository of modular
modeling components for synthetic biology. Bioinformatics 26(7), 925–931 (2010),
http://bioinformatics.oxfordjournals.org/content/26/7/925.abstract

8. Elowitz, M., Lim, W.A.: Build life to understand it. Nature 468(7326), 889–890
(Dec 2010), http://dx.doi.org/10.1038/468889a

http://dx.doi.org/10.1371/journal.pone.0022490
http://dx.doi.org/10.1371/journal.pone.0018882
http://dx.doi.org/10.1093/bioinformatics/btm446
http://dx.doi.org/10.1093/bioinformatics/btm446
http://dx.doi.org/10.1038/nrm3767
http://dx.doi.org/10.1016/j.copbio.2010.07.005
http://dx.doi.org/10.1016/j.copbio.2010.07.005
http://bioinformatics.oxfordjournals.org/content/26/7/925.abstract
http://dx.doi.org/10.1038/468889a


14 C. Ladroue and S. Kalvala

9. Freemont, P.S., Kitney, R.I., Baldwin, G., Bayer, T., Dickinson, R., Ellis, T.,
Polizzi, K., Stan, G.B., Kitney, R.I.: Synthetic Biology - A Primer. World Scientific
Publishing, 1 edn. (Jul 2012), http://www.worldcat.org/isbn/1848168632

10. Galdzicki, M., et al.: The Synthetic Biology Open Language (SBOL) provides
a community standard for communicating designs in synthetic biology. Nature
Biotechnology 32(6), 545–550 (Jun 2014), http://dx.doi.org/10.1038/nbt.2891

11. Hannon, G.: RNA interference. Nature 418(6894) (2002)
12. Hillson, N.J., Rosengarten, R.D., Keasling, J.D.: j5 DNA Assembly Design Automa-

tion Software. ACS Synth. Biol. 1(1), 14–21 (Dec 2011), http://dx.doi.org/10.
1021/sb2000116

13. iGem: Parts Registry. http://partsregistry.org/ (2015), http://partsregistry.

org/

14. Kuchcinski, K.: Constraints-driven scheduling and resource assignment. ACM
Trans. Des. Autom. Electron. Syst. 8(3), 355–383 (Jul 2003), http://dx.doi.org/
10.1145/785411.785416

15. Nakamura, Y., et al.: Codon usage tabulated from the international DNA sequence
databases. Nucleic acids research 24(1) (Jan 1996), http://www.ncbi.nlm.nih.

gov/pmc/articles/PMC145571/

16. Paddon, C.J., et al.: High-level semi-synthetic production of the potent antimalarial
artemisinin. Nature advance online publication (Apr 2013), http://dx.doi.org/
10.1038/nature12051

17. Salis, H.M.: The Ribosome Binding Site Calculator, vol. 498, chap. 2, pp. 19–42.
Elsevier (2011), http://dx.doi.org/10.1016/b978-0-12-385120-8.00002-4

18. Schirmer, A., Rude, M.A., Li, X., Popova, E., del Cardayre, S.B.: Microbial Biosyn-
thesis of Alkanes. Science 329(5991), 559–562 (Jul 2010), http://dx.doi.org/10.
1126/science.1187936

19. Tamsir, A., Tabor, J.J., Voigt, C.A.: Robust multicellular computing using geneti-
cally encoded NOR gates and chemical /‘wires/’. Nature 469(7329), 212–215 (Jan
2011), http://dx.doi.org/10.1038/nature09565

http://www.worldcat.org/isbn/1848168632
http://dx.doi.org/10.1038/nbt.2891
http://dx.doi.org/10.1021/sb2000116
http://dx.doi.org/10.1021/sb2000116
http://partsregistry.org/
http://partsregistry.org/
http://dx.doi.org/10.1145/785411.785416
http://dx.doi.org/10.1145/785411.785416
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC145571/
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC145571/
http://dx.doi.org/10.1038/nature12051
http://dx.doi.org/10.1038/nature12051
http://dx.doi.org/10.1016/b978-0-12-385120-8.00002-4
http://dx.doi.org/10.1126/science.1187936
http://dx.doi.org/10.1126/science.1187936
http://dx.doi.org/10.1038/nature09565

	Constraint-Based Genetic Compilation

