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Abstract

This thesis analyses the role of commitment in bargaining. Chapter 1 looks at how
players could use finite length commitment to affect the bargaining model in a multi-
period model. The idea of this is to complement the existing literature on infinite
length commitment. In line with the infinite commitment literature, a rational player
can mimic a commitment type to gain a considerable advantage, although, as will be
seen, there are key differences.

Chapter 2 analyses whether one should take the opportunity to commit oneself
when the opponent does not perfectly observe the decision taken. Logically, if one’s
opponent sees no difference between a bluff and actual commitment then one may as
well bluff, since the opponent acts the same and committing is a needless sacrifice of
freedom. When the opponent may discover a bluff as such, the situation is far less
clear and this Chapter analyses when a commitment outcome is likely to prevail.

Chapter 3 takes a rather different approach and analyses how hard one should
negotiate when there are other parties who may enter the deal. The general finding
is that one should follow the crowd and act the same way as everyone else. All three
chapters heavily use the mathematical tool of game theory. However, while Chapter
1 uses non-cooperative game theory, the analysis of Chapters 2 and 3 primarily use
evolutionary game theory.
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Introduction

The human race as a whole relies greatly on interactions with others. This is especially

true of the way modern man lives. Very few of us would be able to live a self-sufficient

life, and even those who could generally would not want to. From the basics such as

food, clothing and shelter to all the modern technology and gadgets which enrich our

lives, nearly all of us are reliant on interacting with wider society. In addition to the

mutually beneficial trade of goods and services, we are also a sociable species which

rely on one another for love, friendship and companionship.

When two people co-operate in some form, they generally do so to become better

off than they were before and so a surplus is created. There are countless traditional

economic examples such as a consumer who needs groceries interacting with a seller

of groceries, as well as social examples such as two people who enjoy spending time

together. In the first example, the typical solution is for the consumer to hand some

money to the grocer in exchange for the groceries he wants. The question then be-

comes how much money he should hand over for the groceries he buys. Obviously the

consumer prefers less, while the grocer prefers more and the answer to this question

determines how they share the surplus they have created by coming together to in-

teract. In the second example, while both people want to spend time together, they

will likely have different preferences as to how. This is epitomized in the well-known

“battle of the sexes” game where the woman wants to go to the ballet, while the man

wants to go to the football. While they both gain from spending time together, this
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decision of where to go determines who gains more from this interaction.

In both, of these examples it is in the parties’ mutual interests to interact, but they

have diverging interests on the terms of this interaction. This is the embodiment of

the bargaining problem. In some circumstances how they divide the surplus is clear.

If one goes to a supermarket to buy groceries, the terms of any trade are clear: the

supermarket, in effect, offers the consumer a take-it-or-leave-it offer on every item in

store. Of course, there are questions about what prices the supermarket should offer

but these questions are best answered by models of competition between firms.

Where the literature on bargaining enters the fray is where the terms of any trade

are uncertain. Take for example the buying and selling of a house: the seller may

set an asking price, but trade will not necessarily take place at this price, because

unlike the supermarket, the house seller has a flexibility. If one offers a supermarket

one penny less than what it is demanding for a bundle of goods, the supermarket will

refuse. If one offers the house seller one penny less, the offer would almost certainly

be accepted, as would an offer of one further penny less. This then begs the question

of how far the buyer can haggle down the seller’s asking price and hence at what price

trade will occur. In an example like this, the question is not an easy one and many

of the greatest minds in the discipline of Economics have proposed models to try to

answer it. Particularly notable examples are [34, 39].

The first two chapters of this thesis add to this literature, focusing on the issue that

commitment may have on the outcome. From a non-technical perspective, Schelling

[40] articulated the effect that commitment can have on the bargaining outcome by

constraining one of the parties’ available actions. Schelling expressed this as follows:

The essence of these tactics is some voluntary but irreversible sacrifice

of freedom of choice. They rest on the paradox that the power to constrain

an adversary may depend on the power to bind oneself; that in bargaining

weakness is often strength, freedom may be freedom to capitulate, and to
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burn bridges behind one may suffice to undo an opponent.

The models of the first two chapters assume that a commitment, once made is ir-

reversible. This is in line with most of the literature, although a notable exception

which allows for players to revoke their commitments at a cost is [31]. The power

commitment can have is obvious: if one party is committed to not compromising from

their stated position, then in order to reach what is a mutually beneficial agreement,

the other party is the one who must compromise. Thus by committing to a certain

demand, one can induce the other party to concede to that demand, provided that

the other party is aware of the commitment and not restricted by any commitments

of their own. However if there is uncertainty whether a party is committed or merely

bluffing then the result one would expect is far less clear.

In Chapter 1, this uncertainty is captured by the modeling of two different types:

one who is committed and another who is merely bluffing, but may find it in their

interests to mimic commitment. There is already much literature on this where play-

ers, once committed stay committed forever, see [1, 42] for two of the better known

papers. Chapter 1 departs from this literature by assuming that commitments are

finite. This means that once the commitment period expires without agreement, a

player of commitment type must select another demand to commit to. In particular,

such a player is now required to act strategically. This represents a significant break

from the literature, which assumed that model committed players as unthinking au-

tomata. The question asked here is what effect do such commitment tactics have on

the bargaining outcome? Although there are subtle differences, the broad conclusion,

in line with the literature on infinite commitment, is that even when the probability

of a player being of this committed type is small, it can have a large effect.

Chapter 2, while still on the role of commitment in bargaining asks quite different

questions. Here a player has a choice of whether to actually commit or merely bluff

at commitment. Clearly if the opposing player knows that a commitment has been
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made, then the best response is to give in to the demands, whereas after a bluff, the

best response is to ignore it and not concede. However I assume that the opposing

player has imperfect information about whether the first player actually made the

commitment or not. This structure naturally gives rise to two Nash Equilibria: the

first being commitment followed by concession to the commitment; the second being

a bluff followed by non-concession. I use the evolutionary game theory technique of

stochastic stability to argue under which circumstances each is likely to prevail. The

results support Schelling’s statement that “in bargaining weakness is often strength”.

A player is more likely to be able to commit if a bluff is more likely to be discovered

as such. Also, in the long run, the other player may be disadvantaged by technology

which allows a bluff to be discovered.

The first two chapters focus on bargaining between two parties who must deal

with each other and so it is rational to use commitment tactics or any other tactics to

try to negotiate as hard as possible. In some scenarios such as negotiations between

a firm and a union they can only reasonably bargain with each other. The firm is

unable to hire a whole new non-unionized workforce while the union can only deal

with that firm. However, in other circumstances, one or both parties may have a

choice of who to deal with. Consider once again the house buyer and seller example.

A house buyer would likely be looking at more than just one house, and similarly

the house seller is likely to consider more than just one buyer. This means that if

one buyer is negotiating particularly hard and offering the seller a poor deal, then

the seller may be able to find another buyer who offers a better deal. So a buyer,

while wanting to negotiate more of the surplus for himself, also has to be wary that

he faces competition from other buyers. Similarly, the seller has the same dilemma.

The model of Chapter 3 looks at precisely this issue of how tough agents should be in

an environment where they face such competition. Thus Chapter 3 can be thought

of as sitting in the void between models of bargaining and models of competition
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and auctions. The model of the third chapter predicts a tendency for players to herd

toward homogenoeus behaviour.

As well as asking different questions the models of the three papers also use dif-

ferent techniques to predict the outcome. Chapter 1 makes the hyper-rationality

assumptions of non-cooperative game theory and applies Perfect Bayesian Equilib-

rium. By contrast Chapters 2 and 3 replace this assumption by the evolutionary game

theoretic perspective of players looking around at the wider environment and learning

to adapt their play based on what others are doing. Chapter 2 in particularly, heavily

relies upon the stochastic stability approach pioneered by [24, 45]. All three chapters

here analyze the questions around bargaining from a technical approach. For a less

technical approach and greater detail on the importance of the bargaining question

see [32, 40]
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Chapter 1

Bargaining with strategically

irrational types

1.1 Introduction

This chapter looks at the effect of introducing one period commitment on the classical

alternating offers bargaining model. I modify the classic Rubinstein-Stahl alternating

offers model by allowing players to threaten to reject certain offers. Players can be

one of two types: a “commitment” type who becomes committed to such threats and

a “rational” type for whom such threats are meaningless. I find that introducing

only a small probability of a player being the commitment type can have a large

effect on the equilibrium payoffs when the discount factor is sufficiently large. The

reason for this is rational players looking to build a reputation for being committed.

There is already a reasonably large literature exploring these reputation effects when

commitment is infinite. The approach taken here is very similar in spirit to much of

this literature but with one period commitment instead of infinite commitment. One

particularly notable consequence of this is to make the commitment type a strategic

player, which adds complexity as well as a large multiplicity of equilibria. I will argue
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that some of these equilibria are more compelling than others. The more compelling

equilibria yield results very similar to those in the world of infinite commitment with

one sided uncertainty, but not two sided uncertainty.

Imagine a firm negotiating with a union over wage demands. As the firm is

deciding what to offer, the union makes the statement “we will not accept less than

y”. The firm, unsure whether or not the union is really committed to this position

must decide what offer to make. How should the firm respond to this threat? How

high should the union set the threshold y? What impact does allowing for such

statements have on the outcome of the negotiations? This chapter aims to answer

these questions.

Previous papers have asked similar questions, but with the condition that a com-

mitment, if made, is forever. So in the above example, if the union is committed

to not accepting any less than y next period, it is also committed to this position

for all future periods. This chapter drops that assumption. Here commitments are

only made for one period. In many applications, I would contend that this is more

realistic, or robust to the realities of the real world. In the example above, things

may change during the bargaining process to either strengthen or weaken the union’s

negotiating position, or the firm’s negotiating tactics may change, thus altering the

dynamic of the bargaining game and rendering previously held positions obsolete.

Thus even if commitment was intended to be forever, realities may render such com-

mitments finite. So it would seem useful to have an understanding of the effects of

finite commitment to complement the infinite commitment analysis.

Without commitment, Rubinstein [39] found that the alternating offers bargain-

ing game has a unique subgame perfect equilibrium. Adding commitment dsirupts

the equilbirium. Clearly, if a player knows his opponent is committed, then the only

sensible option becomes to concede to this commitment, but if this player is unsure

about his opponent’s commitment status then the situation is less straightforward.
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This is where the work on reputational bargaining enters the fray, with the compli-

cation that a rational player may look to build a reputation for being committed.

The inaugural work on reputational bargaining is from Myerson [33] who introduced

a small probability of an α- insistent type. That is, one player, say player 1, could

be of this type who is committed to always insisting on α in every subgame, whether

proposing or responding. Myerson showed that as players become increasingly pa-

tient, player 1 will demand α and get it almost immediately, regardless of whether he

is the α- insistent type or not, and even if the opposing player puts very low proba-

bility on him being the α- insistent type. The reason is that when players are very

patient, the rational player 1 sees it in his interests to mimic the α- insistent type

with high probability for a long time. The other player, knowing this concedes almost

immediately to avoid a long and costly period of delay. There has since been much

further research allowing players to mimic α- insistent types [1, 2, 3, 9].

In a slightly different direction, Kambe [23] and Wolitzky [42] allowed players to

choose which commitment they announce, which can be seen as endogenising the α

of the α- insistent type. In their models, a player announces a “posture ”1 and then

finds out whether they are committed to this posture. The alternative assumption is

that a player knows whether he will become committed prior to anouncing his pos-

ture. That is, to introduce two types: a “commitment type” who becomes committed

to the posture he announces, and a “rational type” who does not become committed

but may choose to mimic the commitment type. This assumption leads to the com-

mitment type becoming a strategic player. As will be discussed in Section 2 making

the commitment type into a “strategically irrational” player who decides on what

commitments to make complicates the analysis, and introduces a large multiplicity

of equilibria.
1This is the term used by Wolitzky. Unlike Kambe, in his model, players can announce a posture

which changes the share of the surplus they demand over time. Its also worth noting that unlike
the other papers, Wolitzky looks for maxmin strategies and payoffs under common knowledge of
rationality instead of equilibrium.
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By making the assumption that players only realise whether they are committed

after announcing their posture, Kambe and Wolitzky both remove the need for the

commitment type to act strategically. If a player is subsequently found to be the

commitment type, his moves are forced for the remainder of the game, thus he becomes

an automaton in exactly the same way as Myerson’s α- insistent type. Kambe found

a unique equilibrium. If on the other hand Kambe had assumed that a player knows

whether he will become committed prior to announcing the posture, then while this

equilibrium still holds, i is accompanied by a continuum of others which occur because

of the freedom in updating beliefs off the equilibrium path when a player of unknown

type makes a strategic decision.

This chapter allows players to choose which levels they are committed to, but

unlike [23, 42] the attention here is on finite commitment. This means that if no

agreement is reached before the commitment period expires, then the committed

player must act again. This makes it impossible to avoid the commitment type

becoming a strategic player, in the way that the other reputational bargaining papers

have done. As we shall see, this makes the multiplicity of Perfect Bayesian Equilibria

(henceforth PBE) unavoidable. In essence, the problem is that a player can be forced

into particular actions by being “threatened” by the beliefs stipulating that he is

believed to be rational should he try to deviate to make more effective use of his

commitment. This issue is discussed in Section 2. While this multiplicity might at

first be regarded as a curse, it also has its benefits, as it allows the construction

of equilibria for what would otherwise be an almost unsolvable model without such

threatening by beliefs. I characterise a large chunk of the set of possible PBE payoffs,

and point towards some of these as being more compelling than others.

One alternative approach would be to follow Ellingsen and Miettenen [12, 13] by

supposing that every period the player announces his position, there is a probability

p that he becomes committed to that position and the commitment decays with the
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remaining probability 1− p. This solves the problem of having two types of strategic

players by amalgamating the commitment and rational types into a single stochasti-

cally committed type. However, this assumption means that every period, regardless

of past events, the probability a player is committed is p and so it completely elim-

inates a player’s ability to build a reputation for being of commitment type. I solve

the model under the alternative assumption in order to illuminate the reputation

building effects driving this model. I show that when p is small, the direct effect of

the opposing player being committed to rejecting some offers with probability p is

also small. The big effect which dramatically shifts the equilibrium outcome comes

from a player’s ability to build a reputation for being the commitment type.

For much of the intuition behind the results in this paper, the key concept in this

paper will be the idea of proposer power. In the basic alternating offers bargaining

model solved in [39] players’ power, and hence their equal equilibrium shares comes

from their equal opportunity to propose. By contrast, in an infinite horizon bargaining

game in which the same player proposes all the time, that player holds all the power

and, as a result, will take all the surplus. This argument was made quite forcibly by

Yildiz [43] who looked at what happens when players hold different beliefs about who

will propose in the future. He found that the more optimistic a player is about how

often he will propose in the future, the more he will demand, a phenomenon strong

enough to make the players demand incompatible shares when both are optimistic

and so cause delay to agreement.

The model in this paper is very different, but still, it will be convenient to interpret

the results in terms of players’ proposer power. The threat that a player makes

before the opponent’s offer can be seen as an attempt to steal some of the proposer

power for that period. How successful the attempt is depends on the probability

which the proposing player places on the threatening player being the commitment

type. For example if the proposer believed that the threatening player definitely is
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not the commitment type, then the proposer will simply view the threat as being

utterly irrelevant and ignore it. At the other extreme, if the proposer believes the

threatening player is the commitment type for sure then in order to reach agreement

this period, the proposer must accommodate the threat. So in this latter case, the

threat supersedes the proposer’s offer as the proposing player is left with the choice

of either accepting the terms in the opponent’s threat or rejecting them. Hence the

threatening player has stolen all the proposer power for that period.

The driving force behind many of the results in this paper is that the threatening

player, even if rational, will want to mimic the commitment type and so gain a

reputation for being of commitment type. As players become increasingly patient, it

becomes less costly to mimic the commitment type, and so by the Coasean dynamics2,

that player manages to steal almost all the proposer power and does almost as well

as if he was known to be the commitment type for sure. If only one player might

be of commitment type then that player steals the opponent’s proposer power, while

keeping all his own, and hence takes almost all the surplus. However when both

players could be of commitment type, they steal each others’ proposer power, with

the result that both players still effectively propose half the time, and so we get back

to an equal split of the surplus as in [39].

Throughout the paper, it is assumed players have a common discount rate δ which

could be thought of as δ = e−r4 where r is the rate of time preference and 4 is the

time that elapses between offers. In common with most of the other literature on

bargaining I consider the δ → 1 case of increasing patience or increasingly frequent

offers as being salient and much of the analysis is with respect to this case.

The rest of the chapter proceeds as follows: Section 2 gives the model and explains

the multiplicity of equilibria issue. Sections 3 analyses the one sided uncertainty

case, where the other player is rational for sure and offers an easy to understand
2See [1] for more discussion on this
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decomposition of the reputation effects. Section 4 deals with two sided uncertainty

where both players could be the committed type. Section 5 concludes, while Section

6 discusses some potential further research in this area. The majority of the proofs,

along with some other technical material are in the appendix, Section 7.

1.2 The Model

The general framework is the same as in the basic alternating offers model: player

A is the proposer in even periods, starting at period 0 and player B is the proposer

in odd periods, until a proposal is accepted. Players discount the future according

to the common discount factor δ ∈ (0, 1) and so if agreement is reached in period t

giving player i ∈ {A,B} share si, this generates payoff U i = δtsi. If players never

reach agreement then both receive payoff of 0.

The difference from the standard model is that at the start of the game, each

player i ∈ {A,B} is endowed with a type θ ∈ {C,R} where C denotes “commitment”

and R denotes “rational”. Let iθ denote player i of type θ. The significance of these

types is in periods when this player is the responder. Before receiving an offer, player i

announces a threat level y, which has the interpretation “I will only accept if you offer

me at least y.” Player i becomes committed to this statement if the commitment type,

while the rational type faces a free decision of whether or not to accept. Notice that

a player of commitment type temporarily becomes an automaton when responding

to his opponent’s offer, but acts strategically in deciding which offers and threats to

make. This is why I call the commitment type “strategically irrational”.

Section 3 considers the one sided uncertainty case where B is rational for sure,

while A is the commitment type with probability pA ∈ [0, 1] and rational with re-

maining probability 1− pA. This means that in even periods, the games is as in the

standard model: A makes an offer x ∈ [0, 1], which if accepted gives shares of x to the
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responder (B) and 1 − x to the proposer (A); if rejected, play proceeds to the next

period. In odd periods before B proposes, A announces a threat y ∈ [0, 1]. Player

B then makes an offer x ∈ [0, 1] which AR decides whether or not to accept, while

the commitment type AC accepts if and only if x ≥ y. If the offer is accepted, this

gives shares of x to the responder (A) and 1−x to the proposer (B); if rejected, play

proceeds to the next period. Section 4 considers the case of two sided uncertainty.

So in even periods B is the commitment type with probability pB ∈ [0, 1] and makes

a threat y before A offers, in exactly the same way as A does in odd periods and the

commitment type BC is compelled to stick to this threat.

Note that the threat a player makes is only valid for that one period. If the

game is still going in two periods time then the player announces a new threat level,

which may be different from the previous one. If pA = pB = 0 then the threats are

irrelevant and we have the basic alternating offers model, for which Rubinstein proved

there is a unique subgame perfect equilibrium. More generally, whenever there is no

uncertainty, that is (pA, pB) ∈ {0, 1}2, the equilibrium is unique. However when there

is uncertainty about the type of at least one player, the question of how to update

beliefs causes multiplicity of equilibria.

Multiplicity of PBE and slackness

Throughout this chapter, the equilibrium concept used is Perfect Bayesian Equilib-

rium (henceforth PBE). This means that at every information set players act se-

quentially rationally given their beliefs, and that these beliefs are consistent with the

strategies played. While the PBE concept requires that on the equilibrium path,

beliefs are consistent with Bayes’ rule, it places almost no restrictions on beliefs off

the equilibrium path. As a result it allows a great multiplicity of equilibria including

some with questionable off equilibrium path beliefs.

The work here is not the first to encounter this problem. Kambe [23] in Section
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4.2 of his paper considers an extension to see what happens when players know their

type before announcement of commitment level. He calls this “inborn stubbornness.”

To illustrate the multiplicity problem, the subsection below considers the one period

version of the game. For more on the multiplicity problem, refinement of PBE and

Kambe’s solution to these issuues see Appendix, Section 7.1

One period game

The game runs as follows: Player A knows his type, which is AC with probability

p and AR with probability 1 − p. However A’s type is unknown to B. Player A

announces a threat, to reject less generous offers than y, then B makes an offer x and

A decides whether to accept or reject. AR has a free choice of whether to accept or

not, while AC abides by the threat, thus accepting if and only if x ≥ y. If A accepts

then the pie is divided (x, 1− x), while if A rejects both get 0.

The first thing to note is that AR will accept any x > 0 and is indifferent about

whether to accept x = 0. The first part of this statement implies that B can guarantee

a share of the pie abritraily close to 1 − p, by offering x = ε, where ε is small. The

question is what happens to the remaining share of the surplus, p? There are many

answers which are consistent with the PBE concept including some or all of it being

lost3 but the focus here is on the Pareto efficient PBE, where agreement is certain.

The following Lemma shows that any split of this surplus can result.

Lemma 1. For each s ∈ [0, p] there exists a PBE with UA = s, UB = (1− p)+(p− s).

Proof. Fix s ∈ [0, p] and consider the following strategies and beliefs. Both types of

A set threat y = s, B sets x = y iff y ≤ s or x = 0 otherwise, and AR accepts all

offers. The beliefs of B are unchanged after y ≤ s, but after any y > s B believes

A is AR for sure. This clearly defines a PBE: beliefs are updated via Bayes’ rule
3Appendix, Section 7.1 shows this with a simpler informed seller sender-receiver game which I

call the informed seller game. The same idea applies in the game here.
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where possible. Working backwards: firstly AR accepting all offers is a best response.

Secondly, given this startegy and beliefs, the offering strategy of B is optimal at every

information set, and thirdly given B’s offering strategy A acts optimally in the choice

of threat.

Basically, given a threat y player B has two possibly optimal moves: either ac-

commodate the threat, setting x = y, or set x = 0 in which case only AR accepts. If A

did not know his type before making the offer then the equilibrium would be unique

and would have A making the highest threat such that B should accommodate, this

being y = p. However in this game A does know his type and so the threat A makes

could influence B’s beliefs about A’s type. This is how we sustain PBE with s < p.

Player A is prevented from making higher threats by B interpreting such threats as

coming from the rational type.

To help describe the set of efficient PBE outcomes of Lemma 1, I introduce the

following notion of slackness.

Definition 2. An equilibrium offer exhibits slackness if the responder strictly prefers

accommodating the threat to not. An equilibrium offer exhibits no slackness if it

leaves the B indifferent between accommodating and not. For a PBE σ, let S (σ)

denote the difference in B’s payoff between accommodating and making the next

best offer. An equilibrium offer exhibits complete slackness if it exhibits slackness

and maximises S (σ) across the set of efficient PBE.

It is immediate to see that the no slackness PBE has A taking p of the pie, while B

takes only his guaranteed 1− p. The complete slackness PBE has beliefs restrincting

A to setting threat y = 0, giving B the contested proportion p of the pie, leading to

payoffs UA = 0, UB = 1.

A key observation here is that a threat is optimal for one type of A if and only

if it is also optimal for the other. This implies that in any PBE UA = UAR =
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UAC and that both types have the same incentive to make any deviation, suggesting

that posterior beliefs should equal prior beliefs off the equilibrium path. While this

argument supports the no slackness PBE, the search for a formal refinement is not

an easy one. See Section 7.1 for more detail.

In the multi-period bargaining model

The multi-period model is slightly more complicated, since after rejection of an offer,

the game continues. However the idea behind the multiplicity of PBE is exactly the

same. Take an even period in which A is the proposer. Player A can be forced into

making a more generous offer than he otherwise would by beliefs stipulating that he

is believed to be of type AR otherwise. Taken to the extreme, we can describe the

PBE with complete slackness: This is where both players play as if A was rational

for sure, and if A tried to deviate from this, would be believed to be rational for sure.

Thus the complete slacknes PBE erodes away all the power A has from possibly being

the commitment type. Such slackness considerations play a role whenever both types

of A are required to move. That is at the start of any even period whn making an

offer, or at the start of any odd period when making a threat.

In addition to the efficient PBE where immediate agreement is certain, there are

also many inefficient PBE, which arise from two different sources. The first source

is the existence of inefficient PBE in the one period game (see Appendix, Section

7.1 for details), while the second is due to the multi-period horizon. We can use the

fact that there are multiplicity of equilibria in every continuation subgame to use the

threat of an unfavourable equilibrium in the continuation game to force players to

play strategies resulting in considerable delay.

Given the huge multiplicity of PBE, my solution is to focus on the more compelling

of these, which I judge to be the PBE with certain immediate agreement. Of the

efficient PBE, I judge those with less slackness to be more compelling than those
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with more, for reasons given in Section 7.1 and so pay particular attention to these.

1.3 With one sided uncertainty

1.3.1 Background

Throughout this section I assume that the only uncertainty is on the type of player

A while B is rational for sure, that is pB = 0 and pA ∈ [0, 1]. Before studying the

more complicated cases, I first consider what happens when A is also of known type.

When pA = 0, we get the following very well known result:

Fact 3. (Rubinstein) With pA = 0 the unique Subgame Perfect equilibrium yields

shares

UA = 1
1 + δ

, UB = δ

1 + δ

As δ → 1, these shares each converge to a half, a result which makes intuitive

sense since each player proposes half the time and so holds half the proposer power.

In this model, players making a threat before the opponent makes an offer can be

seen as an attempt to steal some of the opponents proposer power. As the next result

shows, when player A is believed to be the commitment type for sure, that is pA = 1,

he successfully steals all the proposer power and so takes the entire surplus.

Fact 4. With pA = 1 the unique Subgame Perfect equilibrium yields shares

UA = 1, UB = 0

When B is the proposer A can demand any threat which B knows A is committed

to. So in response to a threat, B can either accommodate the threat or delay the game

to the next period, by offering something lower. However this is simply analogous to

A making the offer and B deciding whether to accept or reject. So the game is as if
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A is proposing in every period, which is well known to result in A taking all the pie.

The SPE strategy for A is to demand the whole pie in even periods and threaten to

accept no less than the whole pie in odd periods. In response to this, B can do no

better than to accept the demand or accommodate the threat immediately.

It will be shown that with uncertainty, that is for any pA ∈ (0, 1), the payoffs in

our favoured PBE approach this outcome as δ → 1. Furthermore, I show that this

is not due to the often slight chance of A being the commitment type per se, but

due to the rightful fear B has of A delaying in order to build a reputation for being

of commitment type. To make this point, I consider what would happen without

any updating of beliefs. That is I tweak the game slightly by assuming each period

that player A makes a threat, this commitment sticks with probability p and decays

with probability 1 − pA; the stochastic commitment asumption of [13]. With this

assumption, there is no point in A voluntarily rejecting an offer to build a reputation

for being committed in the responder subgame since the probability of commitment

is subsequently reset to p.

Lemma 5. With no updating there is an SPE with shares:

UA = 1− δ (1− pA)
1 + δ

, UB = δ (1− pA)
1 + δ

Furthermore, if we do not allow an uncommitted A to reject offers that the com-

mitted type would accept, then the SPE shares are unique.

The proof is in the appendix. The reason for stipulating that an uncommitted A

not, in effect, change his mind, is that this is required for claim 4 of the proof.

The intuition for Lemma 5 is as follows: In odd periods B knows that A’s threat

will be carried through with probability pA, so B has to possibly optimal strategies:

to accommodate the threat so to be accepted by both players or to gamble that

A is not committed and make the lowest offer that the non-committed A accepts,
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while accepting the consequences of delay if A is committed. Knowing this, player A

sets the highest threat which B should accommodate, which results in him stealing

proportion pA of player B’s proposer power. Since this happens every odd period,

while A proposes as per normal in even periods, B’s share of the bargaining power

falls from 1/2 to 1−pA
2 , which is his equilibrium share in the limiting case as δ → 1. A

formal proof is in the appendix.

1.3.2 The PBE with one sided uncertainty

I now return to the original model where A can build a reputation for being of

commitment type. Define ψ (pA, δ) = (1−δ)(1−pA)
pA

Theorem 6. Given parameters (pA, δ) ∈ (0, 1)2 satisfying ψ (pA, δ) ≤ δ
1+δ

4 there

exists a PBE which gives payoffs UA = 1− ψ and UB = ψ.

Noticing that for any pA > 0, limδ→1 ψ (pA, δ) = 0 gives the following:

Theorem 7. For any ε > 0 and pA > 0, there exists δ̄ ∈ (0, 1) such that for any

discount factor δ > δ̄, there is a PBE with payoffs UA > 1− ε and UB < ε.

This means that, no matter how small the initial probability that A is the com-

mitment type, for high enough discount factors, A takes almost the whole pie.

The equilibrium constructed here has immediate agreement at period 0, and also

immediate agreement in any subgame starting from Amaking an offer or threat. That

is, in even periods A makes an offer which B accepts, while in odd periods A makes

a threat which B accommodates. The offers in even periods satisfy the no slackness

condition; while there is a bit of slackness in odd periods but this is disappearing in

the limit as δ → 1.

Finding the no slackness equilibrium for the complete range of parameter values is
4This holds for δ close enough to 1
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not practical5. However, logically we can make some conclusions about it. Slackness

reduces the payoffs of player A and increases the payoffs of player B, since for every

PBE with slackness, there exists another PBE in which A demands slightly more and

B accommodates the demand. Therefore the conclusion of Theorem 7 must also hold

for the no slackness equilibrium.

The construction of the PBE of Theorem 6 relies upon the following property

in odd periods: if B was to deviate away from accommodating the offer, then his

next best action involves making an offer which A always rejects for sure would be

better for him than making an offer A might accept. This property makes it far

easier to calculate continuation payoffs off the equilibrium path, and hence avoids the

difficulties encountered when trying to calculate the no slackness equilibirium. This

property is shared by the no slackness PBE in the finite horizon version of this game

and consequently much of the analysis is shared with this case.

Consider the finite horizon (N + 1 period) version: If by the end of period N

agreement still has not been reached then the game ends with both players receiving

payoff of zero6, otherwise the model is the same as laid out at the start of Section 2.

Lemma 8. Consider the N+1 period finite horizon version with parameters (pA, δ, N)

satisfying δN

1−δ ≥
1
pA
. The PBE satisfying the no slackness condition has payoffs

UA = 1− δN (1− pA) , UB = δN (1− pA)

The proof is by backwards induction argument and is relegated to the appendix,

but the idea is as follows: In even periods, there are no surprises as A makes the

highest offer which B should accept - that is the offer equal to the continuation

payoff if he rejects. The key to calculating this equilibrium is the analysis in odd
5There is a sequence 1 > a1 (δ) > a2 (δ) > a3 (δ) > . . . > 0 such that the equilibrium strategies

constitute a different function of parameters for each interval (ai+1ai) which the belief may fall into
6Considering different disagreement payoffs does not change the structure of the equilibrium

found here
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periods. Consider what would have happened had A set the threat y = 1, so that

B must optimise by offering something AC rejects. The big question is then what

offers AR accepts. This depends on his continuation payoff which is an increasing

function of the belief B attaches to A being of commitment type. If AR accepts with

probability 1 then after a rejection B believes A is of commitment type for sure,

meaning that A takes the whole pie in the continuation game. So any offer below δ

must be rejected by AR with positive probability, and lower offers are accepted with

lower probability.

The proof shows that after an unreasonable threat like y = 1, given a high enough

discount factor so that δN

1−δ ≥
1
pA
, player B does best by offering something that AR

rejects for sure. This means that any threat made by A which leaves B with more than

his continuation payoff from causing a one period delay should be accommodated.

Therefore in equilibrium A sets a threat leaving B with pecisely this amount, and B

accommodates leading to immediate agreement.

The reason that for such a high discount factor B is better off offering something

A is certain to reject than offering something which elicits a mixed response from

AR is the following: If B offers something below the threat and AR accepts for sure

then after a rejection A is known to be the commitment type and so gains a payoff

of 1 in the continuation game. Thus any offer below δ must be rejected by AR with

some probability. If B offers something to which AR mixes between acceping and

rejecting, then the posterior beliefs of the commitment type increase, which lowers

B’s continuation payoffs after a rejection. Given the paramter values assumed in

Lemma 8, this reduction in continuation payoffs after a rejection outweighs the gain

from the possible immediate agreement. Player B would be better off δN (1− pA)

deliberately delaying agreement until the last period, and then offering 0 which A

accepts with probability (1− pA). Lemma 8 says that for sufficiently high discount

factor, player B cannot do any better than this and so in effect, has no proposer
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power until the last period. This enables player A to take almost the entire pie in the

first period.

With Lemma 8 in place, the proof of Theorem 6 becomes a lot simpler. We can

construst an equilibrium with payoffs as follows: in any odd period in which the belief

of A being the commitment type is qo, the continuation payoff to B is δK−1 (1− qo);

while in even periods with belief qe, the continuation payoff to B is δK (1− qe) for

some K ∈ R satisfying δK

1−δ ≥
1
pA
. That B cannot do better follows the same logic

as Lemma 8, while a form of threatening by beliefs is used to ensure that A cannot

profitably deviate - a deviation by A would be interpreted as coming from the rational

type.

Discussion of reputation effects

The result of Theorem 7, based on the PBE of Theorem 6 is that for any positive

chance of A being the commitment type, as players become increasingly patient, A

takes the whole pie, whereas with no probability of commitment type, the pie is

shared equally. Where does this dramatic shift come from which enables A to take

B’s half of the pie? As shown in Lemma 5, the direct effect of enabling A to become

committed to a threat with probability pA every odd period has an effect only in

proportion to the size of pA. So for small probabilities the effect is fairly negligible.

The explanation lies in the difference between the models studied in Lemma 5 and

Theorem 6 - that is the ability of A to build a reputation for being of commitment

type. When pA is small and δ → 1 it is this reputation effect which accounts for almost

the entire half of the pie which would otherwise remain with B. Under the stochastic

commitment asumption if AR rejects a reasonable offer from B then this does not

gain him anything. In future periods B still attaches the same probability to A being

committed. However, in the main model, where players can be of commitment type,

they can crucially build a reputation for being of commitment type. So rejecting a
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seemingly reasonable offer can have the consequence that in future periods B thinks

it is more likely that A will be of commitment type. This gives AR an incentive to

reject even very high offers with some probability, and lower offers with far greater

probability. Suppose A sets an unreasonable high threat and so B makes an offer AC

rejects, but that AR should accept with mixed probability. Now there are two effects

working against B: firstly there is a significant probability that the offer is rejected,

thus eroding his bargaining power, and secondly if rejection occurs there is a higher

subsequent belief that A is of commitment type and so the first problem intensifies

for future periods. Of course player A will not set such unreasonable threats in

equilibrium, but knowing the problem B faces, can exploit this by making the threat

as tough as B is willing to accommodate.

1.3.3 Other PBE

There are two classes of other equilibria. The first is efficient PBE in which there is

a greater level of slackness imposed on the offers and threats of A. Allowing for such

equilibria gives a continuum of outcomes from those discussed above to the players

receiving equal shares. A consequence of this multiplicity of efficient PBE is the

existence of a class of inefficient PBE, many of which have considerable delay with

up to half the pie being wasted as a result. This remains true in both the finite and

infinite horizon model. The results are presented in the infinite horizon model.

Equilibria with greater slackness

The PBE of Theorem 6 was just one of many efficient PBE. There are others in which

player A does slightly better (although these are hard to characterise) and many in

which A does much worse. These are constructed by increasing the slackness on the

threats or offers of player A - that is to force him to play a more generous strategy

towards B by stipulating that B believes A to be the rational type otherwise. The
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most extreme example of this is the PBE with complete slackness (see appendix). In

this PBE play simply proceeds according to the Rubinstein equilibrium, so in even

periods, regardless of type, A offers δ
1+δ , keeping

1
1+δ for himself and in odd periods

threatens to reject offers below δ
1+δ . Player A is prevented from deviating to harsher

offers or threats by stipulating that any such deviation would be met by the belief

that he is rational for sure. In a similar way, any payoff between that in Theorem

6 and the Rubinstein outcome can be supported as a PBE as the following theorem

states.

Theorem 9. Let parameters (pA, δ) ∈ (0, 1)2 satisfy ψ (pA, δ) ≤ δ
1+δ . Consider the

interval

J =
[
ψ (pA, δ) ,

δ

1 + δ

]

For all s ∈ J , there exists a PBE with payoffs

UA = 1− s UB = s

Inefficient PBE

The idea of these PBE is to use the above multiplicity of PBE to force players to

play strategies resulting in delay using the threat of a disadvantageous PBE should

they deviate. Doing this we can restrict A to a payoff close to the Rubinstein payoff

of one half and restrict B to a payoff close to 0.

Theorem 10. Let parameters (pA, δ) ∈ (0, 1)2 satisfy ψ (pA, δ) ≤ δ
1+δ . For any

(α, β) ∈ [0, 1]2 and τ ∈ N ∪ {0} satisfying

α ≥ 1
1 + δ

, β ≥ ψ (pA, δ) , α + β = δτ

there exists a PBE with payoffs UA = α, UB = β.
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See appendix for proof. Note that in these PBE, agreement takes place in period

τ and the set of PBE in Theorem 9 correspond to the τ = 0 case.

Taking everything together, the message is that a wide variety of outcomes are

consistent with the PBE solution concept. Some equilibria are efficient, others are

not. All that is known is that player A is guaranteed half the pie, while player B

is guaranteed almost nothing as players become increasingly patient. The intuition

behind this is that player A retains all the proposer from even periods when he is

the proposer, and can thus guarantee himself half the pie. However, depending on

the chosen equilibrium, the proposer power in odd periods could stay with B (as in

high slackness PBE), be stolen by A (as in low slackness PBE), or disappear (as in

inefficient PBE). Among these various PBE, for the reasons given in Section 2 and

Section 7.1, I find the most compelling to be those with little or no slackness. These

have the property that as players become increasingly patient, the reputation effects

allow A to steal almost all of B’s propser power, and hence take almost the entire

pie.

1.4 With two sided uncertainty

I now look at the game where both A and B might be of commitment type, that is

to consider (pA, pB) ∈ [0, 1]2.

By the same logic as before, we get multiplicity of PBE. In fact the multiplicity

of PBE now is even greater because we can get threatening by beliefs whenever two

types of player B are required to act strategically as well as player A. To start with,

it is worth thinking about what would happen if both players were known to be the

commitment type for sure. Here there is only one type of each player and so the

multiplicity described above disappears. In this game, in even periods A knows the

only chance of reaching agreement that period is to accommodate B’s threat, so B
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steals all the proposer power, with the converse happening in odd periods. Thus

the game is practically identical to the game where both types are rational for sure

but their identities are swapped over. As such, in even periods the threat B makes

coincides exactly with the demand A makes in Rubinstein SPE for the game with

both players being rational for sure. This gives:

Lemma 11. If pA = pB = 1 then the unique SPE has payoffs

UA = δ

1 + δ
, UB = 1

1 + δ

1.4.1 With B being the commitment type for sure

The next step is to look at what happens when B is the commitment type for sure,

that is to consider pB = 1. The case of pA = 1 is covered above, while if pA = 0 the

whole pie goes to B as discuused in Section 3, so I now restict attention to pA ∈ (0, 1).

Now once again we have multiplicity of equilibria due to the possibility of threatening

by beliefs whenever player A makes any offers or threats. I start by showing that with

little or no slackness player A manages to get half the pie as δ → 1.

Once again calculating the no slackness PBE is problematic for the same reason

as in Section 3. For this reason, the PBE I give here has a little slackness in odd

periods, although the amount of slackness tends to 0 as δ → 1.

Theorem 12. Let pB = 1. Define

ψ (pA, δ) = 1− δ2 (1− pA)
pA (1 + δ)

Given parameters (pA, δ) ∈ (0, 1)2 such that ψ (pA, δ) ∈ [1/2, 1] (which holds for δ

large enough7) there exists a PBE which gives payoffs UA = 1− ψ and UB = ψ.

The proof is in the appendix.
7ψ (pA, δ)is a decreasing function of δ and limδ→1 ψ (pA, δ) = 1/2

26



Noticing that for any pA > 0, limδ→1 ψ (pA, δ) = 1/2 gives the following:

Theorem 13. For any ε > 0 and pA > 0, there exists δ̄ ∈ (0, 1) such that for any

discount factor δ > δ̄, there is a PBE with payoffs UA > 1/2− ε and UB < 1/2 + ε.

The construction of the the equilibrium in Theorem 12 relied on having a little bit

of slackness in odd periods, so that by accommodating A’s threat B gets a strictly

higher payoff than any alternative offer. Player A is prevented from increasing the

threat slightly by beliefs off the equilibrium path that stipulate A would be believed

to be rational for sure after any such deviation. The no slackness equilibrium would

allow A to make slightly more aggressive demands without changing B’s beliefs about

his type and would thus reuslt in a slighly higher payoff for A. But as Theorem 13

shows, this equilibrium is sufficient for showing that, for any positive prior probability

of A being the commitment type, A can get arbitrarily close to half the pie as δ → 1.

The intuition is that as δ → 1 the cost of mimicking the commitment type decreases,

meaning that A finds it less costly to build a reputation for being the commitment

type. This allows him to do just as well as when he is believed to be the commitment

type for sure, when he gets half the pie as in Lemma 11. In terms of proposer power,

B steals all of A’s proposer power from even periods and as δ → 1 player A steals

(almost) all of B’s proposer power in odd periods.

If we allow slackness then there is a wide range of efficient PBE outcomes. In the

most extreme of these, where we have complete slackness, player B gets the whole

surplus. We achieve this by the following play in period 0: B sets the threat y = 1

and A offers x = 1. We sustain this by stipulating that beliefs after any other offer

would be that A is rational for sure, thus meaning any other offer would also give him

payoff of zero. Just as in Section 3, there is a whole continuum of other efficient PBE

and using the multiplicity, a large range of inefficient PBE. Theorem 14 characterises

some of these:
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Theorem 14. Let pB = 1 and (pA, δ) ∈ (0, 1)2. For any (α, β) ∈ [0, 1]2 and τ ∈

N ∪ {0} satisfying

α ≥ 0, β ≥ ψ (pA, δ) , α + β = δτ

there exists a PBE with payoffs UA = α, UB = β.

We conclude from this, that as δ → 1, B is guaranteed half the surplus, while the

other half could go anywhere. In the no slackness equilibrium A takes the proposer

power from odd periods and so takes the other half of the surplus. In the complete

slackness equilibrium B holds on to the proposer power in odd periods and so takes

the whole surplus. There are also ineffecient PBE where some or all of the unclaimed

half is wasted through delay.

1.4.2 With uncertainty about the type of both players

Now I assume (pA, pB) ∈ (0, 1)2. This creates a greater multiplicity of PBE, so great

in fact that almost any share of the pie can be sustained as a PBE. The reason is the

potential range in ability to steal the opponents proposer power: if we impose little

or no slackness on a player’s offers and threats, then that player can steal almost all

their opponents proposer power as players become increasingly patient. Whereas by

imposing complete slackness on a player’s threats and offers, we restrict that player to

act as if he was rational for sure and so be unable to steal any proposer power when it

is the opponent’s turn to offer. This means that if we impose little slackness on A and

complete slackness on B then A steals almost all B’s share of the proposer power,

while hanging on to his own, and so receives almost the entire surplus. Likewise,

we can construct PBE in which B receives almost the entire surplus, or use this

multiplicity to construct inefficient PBE in which both players receive close to 0, or

virtually anything else in between.

Theorem 15. Let (δ, pA, pB) ∈ (0, 1)3 satisfy (1−δ)(1−pi)
pi

≤ δ
1+δ i ∈ {A,B}. For any
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(α, β) ∈ [0, 1]2 and τ ∈ N ∪ {0} satisfying

α ≥ (1− δ) (1− pB)
pB

, β ≥ (1− δ) (1− pA)
pA

, α + β = δτ

there exists a PBE with payoffs UA = α, UB = β.

See Apppendix for proof.

Using the reults shown throughout this paper, for the limiting case of δ → 1, we

can summarise the range of admissible outcomes under PBE as follows:

1. If a player is the commitment type for sure then he is guaranteed a payoff of at

least one half.

2. If a player is the rational type for sure then the opponent is guaranteed a payoff

of at least one half.

3. Almost any payoffs which satisfy the above two conditions are possible.

The intuition behind the first statement is that if player i is known to be the commit-

ment type for sure then every time player j 6= i comes to make an offer, player i can

steal all the proposer power every time. Since this happens every other period, player

i holds at least half the bargaining power and so receives payoff at least half. On the

other hand if player i is rational for sure, then he has no ability whatsoever to steal

any proposer power from j aand so player j retains his half of the bargaining power,

which explains the second statement. The third statement follows because when there

is uncertainty about the type of player i there is such great multiplicity of equilibria.

In PBE with high levels of slackness on i’s decisions, player j retains his share of the

proposer power, while with low levels of slackness i steals the proposer power from j.

Or we can construct inefficient PBE where j loses his proposer power but not to i.

In these equilibria both players are forced into actions causing delay because failure

to play along would result in an undesirable equilibrium in the continuation game.
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The more compelling PBE

Returning to the case of (pA, pB) ∈ (0, 1)2, Theorem 15 shows that almost any payoffs

can result, however I would argue that some PBE are more natural than others.

Unfortunately once again, constructing a PBE with no slackness is too problematic in

the infinite horizon game, however we can gain some insight by looking at Theorem 13.

If player B is the commitment type for sure then in a PBE with little slackness, player

A can gain half the pie. Now reducing the probability of B being the commitment

type increases player A’s bargaining power at the expense of player B, and so A

should still be able to take half the pie. A symmetric argument implies that B can

gain half the pie when there is little slackness on his threats and offers. Hence we get

the result that for any (pA, pB) ∈ (0, 1)2, as δ → 1, we would expect an equal split of

the surplus.

This is in stark contrast to the infinite horizon results of [23] and [1] which showed

that the expected divisions depends critically on the players’ relative probabilities of

being the commitment type. The intuition for the difference is as follows: Consider

the infinite commitment model in which players have made incompatible demands,

player A has a low probability of being the commitment type and B has a high one.

Player A has little incentive to delay and build a reputation for being the commitment

type, since there is a high probability that B will be unable to concede to his demand

anyway. Whereas with finite commitment, even if B is the commitment type, he

can concede to A’s demand and is likely to do so if he believes A is likely to be the

commitment type.

1.4.3 Other PBE

In the finite horizon version of the game it is possible to construct the no slackness

PBE using backwards induction. However in the infinite horizon case, while such a
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PBE will exist, it is not practical to construct it for a wide range of parameter values.8

So in the pB = 0 case of Section 3, there are PBE giving A more of the pie than in

Theorem 6, which I have been unable to characterise, which is unfortunate, since

these seem the most compelling. However on the bright side, as δ → 1, the payoff to

A in the Theorem 6 PBE approaches 1, and so the distance in payoffs between this

PBE and the no slackness PBE must tend to 0. Similar conclusions hold with respect

to the PBE in Theorem 12 for the pB = 1 case.

With two sided information, as already mentioned, the outcome of the no slackness

PBE gives half the pie to each player and so is included in the set of PBE payoffs

in Theorem 15. However, the set of PBE outcomes in Theorem 15 still is not the

complete set of PBE outcomes. For example, the equilibrium with complete slackness

on B and none on A would give B a payoff less than β. Although as δ → 1, the

set described in Theorem 15 approaches
{

(α, β) ∈ (0, 1)2 | α + β ≤ 1
}
, and so must

approximate the complete set of PBE outcomes.

There is another source of additional PBE. Throughout I have only considered

equilibria whereby both players’ equilibrium payoff is independent of type. However,

especially with uncertainty on the type of both players, it is possible to construct

PBE whereby for one of the two players, the payoff to the rational type is higher

than that to the irrational type. In order to construct such a PBE, it must be that

the threatening player (say A) should make a high threat, which is achievable by

stipulating that he gets punished by a bad equilibrium if he doesn’t. The proposing

player then makes a reasonably generous offer (has to be over half) which is accepted

by AR but not AC . Then the PBE played in the continuation game gives AC less
8In the one sided uncertainty case of Section 3 (pB = 0) I can construct it with , pA ≥ δ6, however

this is of little interest when we are generally concerned with the case of δ → 1. To construct the
no slackness PBE for a larger range of parameters becomes extremely challenging as the PBE takes
the following form (where q is the belief on A being the commitment type): For q ≥ q1 = δ2 we can
find formulae for the continuation payoffs, depending on the identity of the proposer, we then use
this to construct formulae for q ∈ [q2, q1] =

[
δ6, δ2]. The next step is then to construct formulae for

q ∈ [q3q2] for some q2 and keep proceeding in the same manner. However at each step the formulae
become increasingly complex.
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than AR has already accepted.9 When one player’s type is known, it is far harder to

construct such PBE. Take for instance pB = 0 then in any such PBE, the continuation

payoff AC receives next period is 1 as he will be known to be commitment type for

sure. Thus the offer made by B which only AR can accept must have been at least

δ for AR to accept for sure. In addition this means that as δ → 1 the difference in

possible payoffs between commitment and rational types tends to zero. Similar logic

holds for pB = 1 (as δ → 1) player B is guaranteed half the pie and the continuation

payoff to A if revealed to be the commitment type tends to 1/2.

1.5 Conclusion

There is a significant literature on how introducing commitment affects the outcome

of bargaining. However, in the main part, this literature assumes that players, once

they become committed to a position, stay committed until the end of the game.

By making this assumption and assuming that either commitment types have a pre-

determined demand [33, 1] or that players do not know their type when making

a demand [42, 23], these papers produced nice clean results. This paper drops the

assumption of finite commitment and replaces it with finite commitment, which means

that the commitment type necessarily becomes a strategically irrational player as

opposed to the unthinking automaton in previous papers. This creates the problem

that when a player who could be of either type acts, we can use threatening by

beliefs to create an awkward multiplicity of PBE. Section 2 discussed this problem

and suggested that attention should be focused on the PBE exhibiting no slackness.

Sections 3 and 4 have found PBE approximating the payoffs in the no slackness

euilibrium for one and two sided uncertainty and also characterised the other PBE.
9As an example of this consider the following: Both types of A make threat y = 1 and then

B offers x = 0.7, which AR accepts if either player deviates, he is punished by a PBE giving the
deviating player utility of 0.1. In the continuation game A is known to be commitment type for sure
and the PBE played gives AC utility of 0.6.
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In the one sided uncertainty case it is well established that the possibly committed

player uses the reputation effects to take all the pie. In the finite commitment case,

restricting attention to the no slackness PBE this is still true. Although in the finite

commitment case there will also be many other PBE giving a large range of outcomes.

Depending on how we specify the infinite commitment game, these can also persist

in the infinite commitment case, but previous authors have understandably made

assumptions that eliminate this multiplicity. If we take the no slackness equilibrium

to be the most compelling one, then we can conclude that the predictions under finite

commitment coincide with those under infinite commitment.

If there is uncertainty about the type of players, again a similar statement is

true: with both finite and infinite commitment, almost any division of the pie can

result, including inefficient ones in the finite commitment case. More interesting is

what happens when we restrict attention to the equilibrium without threatening by

beliefs. With finite commitment as δ → 1 the PBE with little or no slackness have

players sharing the pie evenly, regardless of the exact probabilities of commitment, as

long as both are positive. That is, as players become increasingly patient, the exact

probabilities of being the commitment type at the start of the game have decreasing

significance, so long as both are positive. By contrast, with infinite commitment,

Kambe found that the shares both players receive depends critically on the relative

probabilities of the two players being the commitment type. Thus with two sided

uncertainty, we have a subtle but significant difference between the results of finite

and infinite commitment.

In my finite commitment model, we can describe any equilibrium as δ → 1 in

terms of adding up proposer power. In odd periods: if pA = 0 then player B keeps

all his proposer power; if pA ∈ (0, 1) then in the no slackness equilibrium A steals

all the proposer power, while in the wider set of PBE any distribution of proposer

power can result, including those where some proposer is lost (inefficient equilibria);
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if pA = 1 then A takes all the proposer. An analogous analysis describes B’s ability

to steal proposer power in even periods. The resulting PBE payoffs for each player is

then the average of his proposer power in even and odd periods.

1.6 Further research

The first area I see is to tackle the multiplicity of PBE issue better. The concept

introduced here of slackness has not been formally defined mathematically. It would

be good to do so and construct a sensible measure for slackness. None of the PBE

constructed here in the infinite horizon satisfy no slackness, however some of the PBE

constructed do approach the payoffs that the no slackness PBE must give as δ → 1.

Thus it would seem logical that in such a PBE the slackness measure would tend to

0 as δ → 1. A second aim in this area is to construct a sensible refinement to justify

the no slackness PBE.

The second area is to investigate what happens as we vary the length of commit-

ment, and if we allow players to have different lengths of commitment. Throughout

this paper, I assumed that the commitment type is a one period commitment type,

which means that in every period players can agree even if both are the commitment

type. Crucially it means that the cost of building a reputation for the commitment

type, is small since the size of the pie will only have shrunk to δ before players get

another chance to negotiate. By contrast, consider the case where players’ commit-

ment lasts for k periods and pB = 1. Now if player A wishes to build a reputation

for being of commitment type, he must wait k periods before B can accept, by which

time the pie will have shrunk to δk, which is in effect the new discount factor. This

makes it more expensive for A to build a reputation for being of commitment type.

This leads me to conjecture that as the length of commitment increases, the prior

probabilities with which each player is the commitment type become increasingly im-
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portant. Although this logic suggests that as δ → 1, it would require k to increase to

∞ sufficiently quickly to keep δk bounded away from one to have a significant effect.

As already argued, I would expect that as the length of commitment increases,

the probabilities of commitment become more relevant. When players have differing

lengths of commitment, I would expect the advantage to lie with the player who has

the larger commitment length, although how large that commitment would be is not

obvious. Another thing to consider is the timing of commitment as well as the length.

For example, if both players can commit for a week, then the player who commits

every monday is at an advantage against the player who commits every tuesday. The

reason is the following: The monday player, by re-committing instead of giving in

to the opponenent’s demand only delays agreement by one day, whereas the tuesday

player doing the same would cause a six day delay before agreement can be struck

again.

1.7 Appendix

1.7.1 For Section 2

To simplify matters, I introduce a slightly simpler sender-receiver game which has a

multiplicity of PBE problem caused by the same phenomenon as in our bargaining

game.

Informed seller game:

A seller, player A, owns some product, which can be high quality (AH) or low quality

(AL). A buyer, player B, values the product to be worth 1 if it is high quality and

to be worth 0 if it is low quality. A has no value for the product. The quality of the

product is known to A but not B, who believes it is the high quality with probability

p, with all this being common knowledge. A announces a price and B decides whether

35



or not to buy. Naturally, the seller’s payoff is the price he receives if the buyer buys,

while the buyer gets payoff of the expected value of the good minus expenditure.

In solving this game, we can proceed via backwards induction, noticing that B

should buy if and only if the probability of the high type is at least the price, i.e.

µ (z) ≥ z, where µ (z) is the probability of AH in the updated belief after announce-

ment of price z. Combine this with the observation that both types of player A have

the same payoff function, so if a strategy is optimal for one type then it must be op-

timal for the other type, and we are naturally led to the following equilibrium: both

types of seller always set price z = p and B buys after any z ≤ p. Beliefs following

any price are the same as the prior beliefs i.e. µ (z) = p for any offer z. This gives

(ex ante) expected payoffs of p to the seller and 0 to the buyer.

However, there are also many other PBE with certain trade, hence Pareto effi-

ciency, but with a different split of the surplus, as well as ineficient PBE10.The idea

is to threaten with beliefs so that both types set a low price, because a higher price

would be interpreted by B as meaning the seller has the low quality product. Note

that UAH = UAL in any PBE, since if UAH > UAL then AL could profitably de-

viate by copying the strategy of AH , and vice-versa if UAH < UAL . Thus I write

UA = UAH = UAL .

Lemma 16. The above game has the following set of pure strategy pooling PBE

outcomes, in which trade always takes place: For each s ∈ [0, p] there exists a PBE

with UA = s, UB = p− s.

Proof. Fix s ∈ [0, p] and consider the following strategies and beliefs. Both types of

A set price z = s, B buys iff y ≤ s and beliefs are µ (z) = p when z ≤ s and µ (z) = 0

otherwise. This clearly defines a PBE since B acts optimally given beliefs, A acts

optimally given B’s strategy and beliefs are updated via Bayes’ rule on the equilibrium
10Consider a pure strategy pooling PBE where both types of seller sets a price above p and any

other price is believed to have come from AL. Here the buyer refuses to buy and no trade occurs.
There is also a wide spectrum of mixed PBE in which trade sometimes occurs - see appendix 7.1.
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path. There are no equilibria whatsoever with UA > p because the aggregate utility

in the game is equal to p, and B’s utility in any equilibrium is bounded from below

by zero, the payoff from rejecting all offers.

The expected value of the gains from trade in this problem is p. Notice that these

PBE admit any split in the gains from trade, despite A having all the bargaining

power from being the sole proposer. This is in contrast to when A is of known type

or when A only discovers his type after setting a price. In both of these instances,

the outcome is unique: player A would take the entire surplus.

With the above notion of splitting the surplus in mind, I introduce the idea of

slackness and a measurement of it for pure strategy pooling PBE:

• Stage 0: Nature selects the type of player A: The “high quality” type, AH , has

probability p; the “low quality” type, AL, has probability 1− p.

• Stage 1: A selects price z ∈ [0, 1]

• Stage 2: B (after observing z and updating belief of AH to some µ (z) ∈ [0, 1])

chooses buy (b) or not buy (nb)

• Payoffs are UA (z, b) = z, UA (z, nb) = 0, UB
(
z, b, AH

)
= 1−z, UB

(
z, b, AL

)
=

−z, UB
(
z, nb, AH

)
= UB

(
z, nb, AL

)
= 0.

To see this suppose that the two types of seller play mixed strategies over some set of

prices Z in such a way that for any price z ∈ Z the posterior probability of the seller

being high quality is z. This leaves the seller indifferent between buying or not, and so

allows for a PBE whereby for, each price, the buyer mixes betweeen buying and not in

such a way that all prices give the seller the same expected revenue. As an example,

let p = 1
2 and consider the following strategies where A mixes over Z =

{
1
3 ,

2
3

}
: AH

sets price 1
3 twice as frequently as price 2

3 , while A
L does the opposite. This gives

µ
(

1
3

)
= 1

3 and µ
(

2
3

)
= 2

3 and B responds by always buying after price of 1
3 and half
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the time after price of 2
3 . After any other price A is believed to be AL for sure, ie

µ (z) = 0 for all z /∈ Z and so B never buys. It is easy to see this constitutes a PBE.

In fact, using similar logic, it is even possible to construct PBE where Z is the entire

price space and so there are no prices off the equilibrium path, and so no hope of

applying refinements on beliefs off the equilibrium path.

On the search for refinement

Due to the observation about the seller’s payoff function being type independent, it

is not possible to refine the set of equilibria using standard refinements such as the

intuitive criterion [8] or divinity [4] which rely on some actions being more suitable

for some types than others.

Kambe’s solution was to use a modification of perfect sequential equilibrium (PSE)

[19] which he clled semiperfect sequential equilibrium. The idea here behind PSE is

that when the seller announces an unexpected price, the buyer should ask “what is

the seller trying to tell me? Who benefits by setting this price?” Roughly speaking,

the buyer should look for a consistent belief: that is a subset of types K such that the

set of types who gain from this deviation is precisely K given that the seller believes

K is the set of types who would make this deviation. However things are greatly

complicated by [19] having two defeinitions of PSE. Following their language (p.101-

103 of their paper) I call these the “rough” and the “formal” definition. 11 As will

be seen, the difference between the two is important. I am of the firm opinion that

the “formal” definition is the more proper one, since the “rough” definition allows for

strange inconsistencies as the following example shows.

Example 17. Investment Game
11The Grossman and Perry paper (1986) is less than clear on this point. In defining perfect

sequential equilibrium for sender-receiver games, they first define it roughly, whereby those types
who are indifferent must either always take part in the deviation or never do so (p.101). They then
define it more formally, allowing indifferent types to take part in the deviation with any probability
between 0 and 1 (p102-103). Then they define perfect sequential equilibrium in multi-period games
building on the “rough” definition (p.115).
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Entrepreneur (E) has two equally probable types {G,B}, meaning Good and Bad.

He offers a financier (F ) either 1/3 or 1/2 of the company for an investment of 1. If F

invests, then the good entrepreneur uses the money well and the company becomes

worth 4 units, whereas a bad entrepreneur fails to make any profitable use of the

money and the company’s value remains at 1. There are two pooling PBE:

1. Entrepreneur pools on 1/3 and financier invests.

2. Entrepreneur pools on 1/2 and financier invests. This requires F to believe that

E is probably12 of Bad type if he offered 1/3.

The “rough” definition of PSE eliminates the second PBE because after the offer

1/3 the only consistent belief places probability 1/2 on each type, supported by K =

{G,B}. With these beliefs, both types of E deviate to offer 1/3.

Now consider a slight adaptation of the above game: the Good type is split in

two so that the types are now {G1, G2, B} which occur with probabilities (1/6, 1/3, 1/2).

Now the “rough” definition of PSE fails to remove the second PSE, because after an

offer of 1/3, a belief of 2/5 on G2 and 3/5 on B is consistent, supported by K = {G2, B}

and the financier investing with probability 3/4 after an offer of 1/3.

Thus the “rough” definition of PSE gives different results for two games which

are strategically equivalent. The “formal” definition of PSE is not subject to this

criticism. It never eliminates the second PBE.

Returning to the informed seller game, consider a PBE where both types of seller

pool on the price s < p. Does PSE refine away such a PBE? To answer this, consider

what the buyer should believe after observing a price z ∈ (s, p). It is a consistent belief

to keep the posterior beliefs supported by the assumption that both types of seller

make this deviation. Under the “rough” definition of PSE this is the only consistent

belief and hence the seller has an incentive to deviate to this price z. However, when

the formal definition of PSE is applied, it is also a consistent belief to believe that
12with probability at least 3/5
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the probability of high quality is z (the buyer buys with probability s/z), and under

this belief neither type of seller gains by deviating to price z. Hence the “rough”

definition of PSE rules out this equilibrium, while the formal definition does not.

Kambe’s semiperfect sequential equilibrium does refine away pooling equilibria with

prices below p and so is not a weakening of the “formal” definition of PSE.

In my opinion, the most compelling argument for refinement of those PBE with

slackness comes from the work on Neologism proofness, due to Farrell [15, 16]. This

was introduced to refine the set of PBE in cheap talk games, although it can be ex-

tended in a routine manner for more generall games as discussed in [19]. This allows a

player to make a statement of the form “my type is in the set K” and if this statement

is credible then it should be believed and beliefs updated accordingly. Farrell says

a statement should be believed if the set of types who gain from this message being

believed is precisely K, although other papers ([28], [37]) have disagreed over which

statements should be accepted as credible. However, in this specific setting here, we

have the seller’s payoff function being independent of type, and so the disagreements

over which statements should be viewed as credible disappear.

Neologism proofness refines away all PBE except the no slackness PBE. The reason

is straightforward: the no slackness PBE gives the seller a payoff of p, while all other

PBE give the seller a smaller payoff. Consider another PBE giving the seller payoff

s < p. Now the seller deviates to offering a price of s+p2 , accompanied by the message

“I would make this move regardless of which type I am”. Such a statement is credible

and so the buyer believes that the probability of high quality is still p and so buys

at this price. This refinement is also supported by [27] who define the notion of

“undefeated equilibrium” which refines away all the pure strategy PBE except the

no slackness one. There is no refinement or no argument that I am aware of that

questions the validity of the no slackness PBE.
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Period Player Action

Even A offers xA
B accepts iff the offer is ≥ xA

Odd

A
threatens to reject any offers < yA (A1)

(when not committed) accepts iff the offer is ≥ x̂B (A2)

B
after any threat y ∈ [ŷ, yA] offers y (B1)

otherwise offers x̂B (B2)

Table 1.7.1: Equilibrium strategies with no updating of beliefs

1.7.2 For Section 3

I will prove Lemma 8 with quite detailed explanation before Theorem 6 since it

gives some insight into the proof of the latter. Theorem 7 follows immediately from

Theorem 6 and so its proof is omitted.

Proof of Lemma 5

Proof. Let xA = δ(1−pA)
1+δ , yA = 1− 1−pA

1+δ , ŷ = 1−δ
pA

+ δxA, x̂B = δ (1− xA) and consider

the strategies represented in Table 1.7.1 on page 41.

These strategies constitute a SPE.

To check this is a SPE is reasonably straightforward. In even periods this is

clearly optimal for B since his next period continuation payoff from rejecting is 1−pA
1+δ .

Likewise it is clearly optimal for A since larger offers would leave him a lower share of

the pie and smaller offers would be rejected leading to a payoff of δ
(
1− 1−pA

1+δ

)
which

is less than δ(1−pA)
1+δ , the payoff from offering xA.

In odd periods the clause (A2) is clearly optimal for A since rejecting the offer

would lead to him receiving (1− xA) next period, giving payoff δ (1− xA). Given

(A2), a straightforward calculation of B’s payoffs shows that clauses (B1) and (B2)

are optimal for B. Given (B1) and (B2), it is then clear that clause (A1) is the best

strategy for A.

The proof of uniqueness is as follows: Let MA (mA) be the supremum (infimum)
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payoff for A in any subgame starting from an even period (where A is the proposer).

Let MB (mB) be the supremum (infimum) payoff for B in any subgame starting from

an odd period (where B is the proposer). I show that mA = MA = 1 − δ(1−pA)
1+δ and

mB = MB = 1−pA
1+δ , in agreement with the SPE in the table above. First I show that

MA = 1− δ(1−pA)
1+δ by the showing the following two claims:

Claim 1: mB ≥ (1− pA) (1− δMA) + pAδ (1−MA). Consider an odd period.

Note that the uncommitted A accepts offers above δMA and the continuation payoff

for B after a rejection is bounded below by δ (1−MA). This means that for any

ε > 0, B can guarantee himself (1− pA) (1− δMA − ε) + pAδ (1−MA) by offering

(1− δMA − ε)

Claim 2: MA ≤ 1 − δmB. Consider an even period. If B is guaranteed at least

mB next period, then his payoff this period is at least δmB. Since the sum of players’

payoffs is bounded above by 1, this implies that A cannot get more than 1− δmB.

Claim 3: mA ≥ 1 − δMB. Consider an even period. B must accept any offer of

the form δMB + ε, where ε > 0. This shows the claim since if mA < 1 − δMB, it

would be possible to find an ε > 0 such that A would get more than mA by offering

δMB + ε.

Claim 4: MB ≤ (1− pA) (1− δmA)+pAδ (1−mA). Consider an odd period. Note

that the uncommitted A rejects offers below δmA and the continuation payoff for B

after a rejection is bounded above by δ (1−mA). This means that if A sets a threat y

such that 1− y = (1− pA) (1− δmA) + pAδ (1−mA) + ε, where ε > 0 then B should

accommodate the threat, setting x = y, giving B a payoff of 1 − y. Furthermore, if

MB > (1− pA) (1− δmA)+pAδ (1−mA) then for small enough ε it is in the interests

of A to do this, since at this SPE, A is getting no more than 1−MB which for small

enough ε is less than y = 1− (1− pA) (1− δmA)− pAδ (1−mA)− ε. Thus for each

ε > 0, MB < (1− pA) (1− δmA) + pAδ (1−mA) + ε and hence the claim follows.

Claims 1 and 2 taken together imply that MA ≤ 1 − δ(1−pA)
1+δ and mB ≥ 1−pA

1+δ .
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Claims 3 and 4 imply that mA ≥ 1 − δ(1−pA)
1+δ and MB ≤ 1−pA

1+δ . Furthermore, by the

SPE given in the table above mA = MA = 1 − δ(1−pA)
1+δ and mB = MB = 1−pA

1+δ , thus

the unique SPE shares are as claimed.

Notation: since only A can be committed, I shorten pA to p in the following proofs.

Proof of Lemma 8

First, a quick note on notation: In any period t subgame, I let xt, yt and ρt be

the offers made players, the threats made by A and the probability with which AR

accepts an offer. At the start of a period t subgame, I let qt be the probability B

attaches to type AC , andU i
t (q) be the continuation payoff to player i at the start of

a period t subgame with beliefs q. When I talk about payoffs at a period t subgame,

it is always in period t units, not the total utility from the game as a whole, which

would be obtained by multiplying these payoffs by δt. Also note that, in any PBE,

when a player is faced with the choice of accepting or rejecting an offer where he

is indifferent between both actions, he will accept for sure. If there was a positive

probability of rejection then the other player would be best off offering slightly more

but the problem maxx {1− x : x > k} has no solution and hence no equilibria of this

form can exist. I proceed by backwards induction.

Proof. (Lemma 8) Period N : We first calculate the best option for B given that AC

always rejects (equivalent to when A sets yN = 1), and then use this to determine the

highest y that A can get away with setting. When A sets yN = 1, the best option for

B is xN = 0, the lowest offer AR accepts, which generates B utility of 1− qN . So A

should set y such that the payoff to B from accommodating, 1− y, equals this. That

is, A sets yN = 1− (1− qN) = qN , which generates

UA
N (q) = q, UB

N (q) = (1− q)
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Period N − 1: Both types of A offer B the lowest offer B will accept. This is

xN−1 = δUB
N (qN−1) = δ (1− qN−1), generating payoffs

UA
N−1 (q) = 1− δ (1− q) , UB

N−1 (q) = δ (1− q)

Period N−2: Things start getting more complicated as we begin to see reputation

effects. This is because AR has an incentive to mimic AC by rejecting offers that he

would accept if B knew his type. As above, the method is to find the optimal

strategies if A had set y = 1 so that AC rejects all offers less than one and use this

to determine what level A should set y at. Given offer x, the payoff from accepting

is simply x, but the payoff from rejecting is δUA
N−1

(
quN−2

)
where quN−2 is the updated

belief from qN−2 depending on the acceptance function AR uses. The updated belief

is calculated via Bayes’ rule, and so for any xN−2 < 1 (since AC rejects), must satisfy

quN−2 = 1 if AR always accepts and quN−2 = qN−2 if AR always rejects. Also note that

δUA
N−1

(
quN−2

)
is strictly increasing in quN−2. So the payoff to AR from rejecting is in

the interval

IN−2 =
[
δUA

N−1 (qN−2) , δUA
N−1 (1)

]
= [δ (1− δ (1− qN−2)) , δ]

So AR will accept for sure any offers above this interval and reject all offers below.

For x ∈ IN−2, AR will mix between accepting and rejecting; accepting x ∈ IN−2

with probability ρN−2 (x) ∈ [0, 1]. When AR accepts for sure, that is ρN−2 = 1,

beliefs following a rejection are updated to quN−2 = 1 so AR could get payoff δ by

rejecting. So for any x ∈ IN−2 \ δ player A reduces ρN−2, lowering quN−2 and hence

also δUA
N−1

(
quN−2

)
until δUA

N−1

(
quN−2

)
= x, the point at which AR is indifferent
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between accepting and rejecting. Putting all this together gives

ρN−2 (x) =



0 x < inf IN−2

x−δ+δ2(1−qN−2)
(1−qN−2)(x−δ+δ2) x ∈ IN−2

1 x > sup IN−2

Note this is only the probability with which AR accepts an offer x < 1, since AC

must reject. The total probability an offer is accepted is aN−2 = (1− qN−2) ρN−2.

Now we can write the expected utility to B from offering x. This is

uB (x) = aN−2 (1− x) + (1− aN−2) δUB
N−1

(
quN−2

)

where aN−2 and UB
N−1

(
quN−2

)
have already been described as functions of ρN−2, which

is in turn a function of x. Now B has to maximise uB (x) over x, which yields the

following solution:

x =



δ δ2

1−δ < qN−2

δ − δ2 + δ
√
qN−2 (1− δ) qN−2 ≤ δ2

1−δ ≤
1

qN−2

< δ (1− δ (1− qN−2)) δ2

1−δ >
1

qN−2

which in turn generates the following payoffs for B:

uBN−2 (qN−2) =



(1− qN−2) (1− δ) δ2

1−δ < qN−2

1− δ + δ2 − 2δ
√
qN−2 (1− δ) qN−2 ≤ δ2

1−δ ≤
1

qN−2

δ2 (1− qN−2) δ2

1−δ >
1

qN−2

Note that when δ2

1−δ >
1

qN−2
, B maximises his payoff by offering something which

will be rejected for sure, and so any x < inf IN−2 does the trick. Now, these were the
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best strategies and payoffs for B if A had set y = 1. With this knowledge, A sets

the highest yN−2 which B should accommodate. This entails making B indifferent

between accommodating and following the above strategy and so setting yN−2 =

1− uBN−2 (qN−2), which generates payoffs

ÛA
N−2 (q) = 1− δ2 (1− q) , ÛB

N−2 (q) = δ2 (1− q)

Previous periods: Having three different cases complicates analysis for previous

periods. Fortunately, with players playing the strategies prescribed at the start, every

time beliefs are updated, the probability of type AC can only increase. So for any t,

p < qt. This means that, provided the discount factor is high enough so that the (δ, p)

combination at the start of the game satisfies δ2

1−δ >
1
p
, it must also be the case that

δ2

1−δ >
1

qN−2
. So I concentrate on the third case and obtain solutions which work for

discount factors close to 1. In period N − 3, I use the same logic as in period N − 1

to say that both types of A offer xN−3 = δÛB
N−2 (qN−3), where ÛB

N−2 (q) = δ2 (1− q).

Since B accepts this, for δ2

1−δ >
1

qN−2
we have

ÛA
N−3 (q) = 1− δ3 (1− q) , ÛB

N−3 (q) = δ3 (1− q)

Similarly at period N − 4 we can apply the same logic as in period N − 2. This

would show that after A sets y = 1 in period N − 4, provided that δ4

1−δ >
1

qN−4
, B’s

optimal strategy is to offer something that is rejected for sure, giving B a continuation

payoffs of

uBN−4 (qN−4) = δ4 (1− qN−2)

Observe that if δ4

1−δ >
1
p
then both δ4

1−δ >
1

qN−4
and δ2

1−δ >
1

qN−2
are also satisfied.

Knowing this, A sets yN−4 = 1− δ4 (1− qN−4) and continuation payoffs are

ÛA
N−4 (q) = 1− δ4 (1− q) , ÛB

N−4 (q) = δ4 (1− q)
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Proceeding in this way we find that for any odd t, so that period N − t is even,

both types of A pool on xN−t = δt (1− qN−t); B accepts this offer and all higher

offers, but would reject any lower offer. For even t so that N − t is odd, both types

of A pool on yN−t = 1 − δt (1− qN−t). In reply to this, and for any lower threats,

B accommodates the threat by setting xN−t = yN−t, while for higher threats, B

sets xN−t < δ (1− δt−1 (1− qN−t)) which AR would reject. Formally, the acceptance

strategy of AR to general offers x is described byρN−t (x), calculated in the same

way as ρN−2 (x) above. These strategies together with beliefs that update according

to Bayes’ rule after offers from B, and leave beliefs unchanged after A makes offers

or threats off the equilibrium path constitutes a PBE. Furthermore at each period

the equilibrium actions were unique, hence this is the unique PBE outcome under

the no slackness assumption. Rolling back to period A offers x0 = δN (1− p) and B

accepts.

The complete slackness equilibrium

Before giving the proofs of Theorems 7 and 11, it is a good idea to define the complete

slackness equilibrium. This is the PBE which erodes all power from A from possibly

being the commitment type every period. This is defined by the following strategies.

Player A: in even periods A (both types) offer x = δ
1+δ ; in odd periods sets threat

y = δ
1+δ and AR accepts offer x if and only if x ≥ δ

1+δ . Beliefs are updated via

Bayes’ rule on the equilibrium path, but after offers or threats off the equilibrium

path, B believes A is rational for sure. Clearly beliefs are consistent with PBE and

the strategies are the same as the Rubinstein strategies in the standard model, so

neither player has an incentive to deviate. Hence this defines a PBE.
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Proof of Theorem 6

Proof. Given p and δ, let s = (1−δ)(1−p)
p

. The object is to show that there is a PBE

giving UB = s. Define K = log s−log(1−p)
log δ , which implies s = δK (1− p) and also

δK

1−δ = 1
p
. Consider the following strategies and beliefs:

In any even period with belief q ≥ p that A is the commitment type, both types

of A set x = δK (1− q); B accepts an offer x iff x ≥ δK (1− q) and rejects otherwise;

given x, beliefs are updated to qu (x) given by qu (x) = q if x ≥ δK (1− q) and

qu (x) = 0 otherwise. In any even period with qe < p play proceeds according to the

complete slackness equilibrium: A offers x = δ
1+δ and any other offer generates beliefs

that A is rational for sure. B accepts x if and only if x ≥ δ
1+δ

In any odd period with belief q ≥ p that A is the commitment type, both types

of A set y = 1− δK−1 (1− q); for any y ≤ 1− δK−1 (1− q), B accommodates, setting

x = y.13 After any y > 1− δK−1 (1− q), B sets x = δ
1+δ ; after y = 1− δK−1 (1− q),

the acceptance function of AR is ρo to be defined below, while after any other y

the acceptance function for AR is whatever the PBE concept requires it to be.14

Beliefs after a threat are qu (y) = q if y ≤ 1 − δK−1 (1− q) and qu (y) = 0 after

y > 1 − δK−1 (1− q); beliefs after A’s acceptance decision are updated via Bayes’

rule. In any odd period with q < p play proceeds according to the complete slackness

equilibrium: A sets y = δ
1+δ and B would believe that A is rational for sure following

any other threat. B offers x = δ
1+δ and A accepts x if and only if x ≥ δ

1+δ

According to these strategies, given that A has not deviated, so q ≥ p continuation
13Strictly speaking this might not be true if A sets y < δ

1+δ - see AR’s acceptance function in next
footnote. But A setting such a low y is clearly so far off the equilibrium path that the details do
not seem important.

14This is far off the equilibrium path and so I won’t bother calculating it precisely, but do give some
idea. After y ∈

[
δ

1+δ , 1− δ
K−1 (1− qo)

]
, this is similar to ρo, for y < δ

1+δ or y > 1− δK−1 (1− qo)
this is to accept x iff x ≥ δ

1+δ .
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payoffs from even periods will be

UA
e (q) = 1− δK (1− q) UB

e (q) = δK (1− q)

and payoffs in odd periods will be

UA
o (q) = 1− δK−1 (1− q) UB

o (q) = δK−1 (1− q)

In even periods clearly beliefs are updated via Bayes’ rule where possible and given

these beliefs and future play, B is behaving optimally. It is then easy to check that A

cannot do any better than offering x = δK (1− q) given future play. In even periods,

there is no slackness, since A makes B an offer he is indifferent between accepting

and rejecting.

Consider what happens in odd periods if AC rejects every offer and beliefs are

q ≥ p. What should B offer? An offer of x from B would be met by the following

acceptance function from AR:

ρ (x) =



0 x ≤ δfA (q)

x−δ+δK(1−q)
(1−q)(x−δ+δK) x ∈ (δfA (q) , δ)

1 x ≥ δ

Since q ≥ p and δK

1−δ ≥
1
p
, we have that δK

1−δ ≥
1
q
, and so given the acceptance

function above, it can be shown in the same way as in Lemma 9 that the best strategy

for B is to offer x ≤ δfA (q) so that AR always rejects. Given that B follows this

strategy, his expected payoff would be

UB
na = δfB (q) = δK+1 (1− q)
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so if there is no updating of beliefs, A could set any threat up to

y = 1− UB
na = 1− δK+1 (1− q)

and still haveB accommodate. However, by the way beliefs are updated the maximum

threat A can set is y = 1 − δK−1 (1− q) because our updating rule specifies that

B believes A is rational for sure after any higher threat, and play would proceed

according to the unique SPE giving A payoff of δ
1+δ . So, clearly the best strategy for

A is to set y = 1 − δK−1 (1− q) which causes us to alter the acceptance strategy of

AR to

ρo (x) =



0 x ≤ δfA (q)

x−δ+δK(1−qo)
(1−qo)(x−δ+δK) x ∈ (δfA (q) , y)

1 x ≥ y

Given these strategies, B is strictly better off accommodating the threat, giving

payoff gB (q) = δK−1 (1− q) than he would be after making the best non-accommodating

offer, which would give utility UB
na = δK+1 (1− q). In this equilibrium there is this

slackness in every odd period. The slackness measure for this equilibrium σ is

SMA,t (σ) =


0 t = 0, 2, 4, ...

δK+1 (1− q)− δK−1 (1− q) t = 1, 3, 5, . . .

Note that this tends to 0 as δ → 1.

The result of Theorem 9 is contained in Theorem 10, so its proof omitted.

50



Proof of Theorem 10

Proof. Given (pA, δ) ∈ (0, 1)2 satisfying ψ (pA, δ) ≤ δ
1+δ . Take (α, β) ∈ [0, 1]2 and

τ ∈ N ∪ {0} satisfying

α ≥ 1
1 + δ

, β ≥ ψ (pA, δ) , α + β = δτ

I construct an equilibrium with agreement in period τ giving payoffs of α and β

to A and B respectively. In each period t < τ we require that players choose actions

resulting in delay. This uses the existence of the complete slackness equilibrium and

the Theorem 6 PBE. Throughout this equilibrium, beliefs are updated as specified

already if players play strategies which take us to either the aforementioned PBE.

Otherwise, beliefs are updated via Bayes’ rule on the equilibrium path and remain

unchanged after actions off the equilibrium path.

For each t < τ players act as follows: in even periods A offers x = 0, which B

rightfully rejects. In odd periods A sets the threat y = 1, B sets x = 0 and A rejects.

If player A deviates to either a different threat or offer in any period t < τ then play

thereafter proceeds according to the complete slackness equilibrium, which results in

A getting a continuation payoff of no more than 1
1+δ . If player B deviates to make a

different offer then play proceeds according to the equilibrium of Theorem 7. Thus

neither player has an incentive to make a different offer or threat given that they get

payoffs α ≥ 1
1+δ and β ≥ ψ (pA, δ) by sticking to the prescribed strategy. Also, clearly

neither player gains from accepting the offer of the other since that would lead to a

payoff of 0.

Suppose τ is even then we can construct a PBE with agreement in period τ as

follows: At any even period t ≥ τ player A makes offer xA = β
δτ

which B accepts. In

odd periods t > τ player A sets the threat yA = 1− β
δτ+1 to which B accommodates,

setting xB = yA and both types of A accept. If A deviates from this offer in even
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periods or threat in odd periods, play proceeds according to the complete slackness

equilibrium thereafter. If B deviates in odd periods by making a different offer then

play proceeds according to the Theorem 6 equilibrium. It is clear to see that neither

player has an incentive to deviate when making a threat or offer. In even periods the

payoff (in period t units) to B from accepting xA is β
δτ

which equals δ
(
1− xB

)
which

his payoff from accepting and so accepting this offer is a best response. Likewise, in

odd periods the payoff (in period t units) to AR from accepting xB is 1− β
δτ+1 which is

greater than δ
1+δ , the payoff from rejecting. The payoff to A is UA = δτ

(
1− β

δτ

)
= α

and to B is UB = δτ
(
β
δτ

)
= β.

Suppose τ is odd then we can construct a PBE with agreement in period τ as

follows: At any odd period t ≥ τ player A sets the threat yA = α
δτ

to which B

accommodates, setting xB = yA and both types of A accept. In even periods t > τ

player A makes offer xA = δ
(
1− α

δτ

)
which B accepts. If A deviates from this offer

in even periods or threat in odd periods, play proceeds according to the complete

slackness equilibrium thereafter. If B deviates in odd periods by making a different

offer then play proceeds according to the Theorem 6 equilibrium. Clearly neither

player has an incentive to make a different offer or threat, and as above, each player

is best responding by accepting the offers of the other. The payoff to A is UA =

δτ
(
α
δτ

)
= α and to B is UB = δτ

(
1− α

δτ

)
= β.

1.7.3 For Section 4.1

This is where pA ∈ [0, 1], pB = 1. Lemma 11 is obvious and so its proof is omitted. I

prove Theorem 12 and Theorem 14. Theorem 13 follows immediately from Theorem

12. First I define the complete slackness equilibrium which is useful for these proofs.
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Complete slackness equilibrium

This is the PBE which imposes complete slackness on the threats and offers of player

A resulting in player B taking the whole pie.

In every even period B sets threat yB = 1 and A accommodates with xA = yB

after any threat yB ∈ [0, 1]. Since pB = 1, it is pre-determined that B will accept xA

if and only if xA ≥ yB. The beliefs on the type of player A remain unchanged after

xA = yB (by Bayes’ rule), however after any other offer B believes A is rational for

sure. In every odd period A sets yA = 0; playerB offers xB = 0; AR (as well as AC)

accepts any offer xB ∈ [0, 1]. Beliefs following yA = 0 remain unchanged, but after

any different threat B believes A is rational for sure.

Clearly beliefs are consistent with Bayes’ rule and both players are best responding

given these beliefs so this is a PBE.

Proof of Theorem 12

Proof. Here pB = 1, so we only have uncertainty about the type of player A, thus I

let q denote the probability with which A is the commitment type at any given stage

of the game. Let ψ (q) = 1−δ2(1−q)
q(1+δ) . I find a PBE giving payoffs in even periods of

UA
e (q) = 1 − ψ (q), UB

e (q) = ψ (q) and in odd periods of UA
o (q) = 1−ψ(q)

δ
, UB

o (q) =

1− 1−ψ(q)
δ

, which substituting pA for q as the the belief in period 0 gives the desired

result. When q = 0 or q = 1 play proceeds as per the unique SPE in either case.

When q ∈ (0, 1) the equilibrium play is as follows:

In even periods B sets yB = ψ (q); player A accommodates any yB ≤ ψ (q), setting

xA = yB, while after yB > ψ (q), he makes any offer xA < yB. Since pB = 1, it is

pre-determined that B will accept xA if and only if xA ≥ yB. The beliefs on the type

of player A remain unchanged after any offer.

In odd periods A sets threat yA = 1−ψ(q)
δ

, B accommodates this threat setting

xB = yA, and A accepts. If A had set a different threat, he would be believed to be
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the rational type for sure and play would proceed according to the complete slackness

equilibrium defined above. If B had made a different offer, AR would use the following

acceptance strategy:

ρ (x) =



1 x ≥ min
{

δ2

1+δ ,
1−ψ(q)

δ

}
0 x ≤ δ (1− ψ (q))

qx+δ(1−q(1−x))−δ2q−δ3(1−q)
δ(1−δ2)(1−q) otherwise

The reason for this acceptance strategy is the same as in the Lemma 9 proof - AR

should always accept when offered something high enough that AC accepts or which

gives greater utility than he could achieve next period; he should reject if offered

something beneath his continuation payoff; for offers in between he should mix such

that given the updated beliefs (by Bayes’ rule), he is indifferent between accepting

and rejecting x.

To check this defines a PBE: Clearly beliefs are updated in accordance with Bayes’

rule where possible. In even periods, A is acting optimally by only accommodat-

ing threats which leave him with at least his continuation payoff. Player B can

do no better than making the threat yB = ψ (q) since lower threats yield lower

payoffs and higher threats would not be accommodated, leading to delay and pay-

off δUB
o (q) < UB

e (q). In odd periods, A cannot deviate from the threat, since

the no slackness equilibrium would then take charge in which he gets 0, and as

already covered, the acceptance strategy defined for AR is optimal. For player

B, offering x ≥ min
{

δ2

1+δ ,
1−ψ(q)

δ

}
generates payoff (1− q) (1− x) + qδ

1+δ which is

less than UB
o (q), the payoff from complying with the prescribed strategy. Offering

x ≤ δ (1− ψ (q)) generates payoff δUB
e (q) < UB

o (q). The payoff from offering some

x which AR accepts with positive probability is a (x) (1− x) + (1− a (x)) δUB
e (q),

where a (x) = (1− q) ρ (x) is the probability that x is accepted by A. This function
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has no turning points in the required interval and so is less than the payoff from one of

x ≤ δ (1− ψ (q)) and x ∈
{

δ2

1+δ ,
1−ψ(q)

δ

}
and so in turn must be less than UB

o (q).

Proof of Theorem 14

Proof. This is very similar to the proof of Theorem 10. Take any α, β, τ satisfying the

conditions of the Theorem. We need disagreement until period τ and then agreement

in this period. For each t < τ the threatening player sets threat y = 1, the offering

player offers x = 0, which is rejected. If player A deviates by making a different offer

or threat the complete slackness equilibrium is played thereafter, while if B deviates

the PBE of Theorem 13 is played thereafter.

Let κ = β
ψ(pA,δ) (note that κ ≥ 1 by assumption on β). Note that by using the

same structure of equilibrium as in Theorem 12, and imposing more slackness on the

threat of A we can construct a PBE with payoffs UA
e (q) = 1 − ν (q), UB

e (q) = ν (q)

and in odd periods of UA
o (q) = 1−ν(q)

δ
, UB

o (q) = 1 − 1−ν(q)
δ

for any ν (q)satisfying

ν (q) = cψ (q) for any c ≥ 1. If τ is even then we use this to construct a PBE such that

f (q) = κψ(q)
δτ

, while if τ is odd we construct a PBE such that g (q) = 1−δ
(
1− κψ(q)

δτ

)
.

This gives agreement in period τ and payoffs to B of δτf (q) = κψ (q) if τ is even

and δτ
(
1− 1−g(q)

δ

)
= κψ (q). If both players follow this equilibrium, the belief on

A’s type in period τ will still be pA and so this gives B a payoff of κψ (pA) = β with

player A getting δτ − β = α.

1.7.4 For Section 4.2

This is where (pA, pB) ∈ (0, 1)2. In order to prove Theorem 15, I will first describe two

PBE which may be of some interest in themselves. In one A gets almost everything,

while in the other B gets almost everything.
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Equilibrium A1 - A gets almost everything

This PBE is formed by putting complete slackness on the offers and threats of B,

while very little slackness on those of A. This means that B acts like the rational

player in Theorem 6. Let δ be sufficiently large so that (1−δ)(1−pA)
pA

< δ
1+δ , then we

can construct a PBE giving UB = (1−δ)(1−pA)
pA

and UA = 1− UB. The strategies and

beliefs for player A are exactly the same as in Theorem 6. In even periods B makes

the threat equal to the offer A makes in Theorem 6. Had he made any other threat,

he would be believed to be rational for sure and play continues exactly as in Theorem

6. In odd periods, the offer B makes is exactly the same as in Theorem 6 and after

any other offer he would be believed to be rational for sure and play continues exactly

as in Theorem 6.

Equilibrium B1 - B gets almost everything

The idea is very similar to the above but with the roles of A and B reversed. By

putting complete slackness on the actions of A and very little on B, we generate

payoffs UA = (1−δ)(1−pB)
pB

and UB = 1− UA.

Proof of Theorem 15

Proof. Again the idea is similar to that of Theorem 10. Take any α, β, τ satisfying the

conditions of the Theorem. We need disagreement until period τ and then agreement

in this period. For each t < τ the threatening player sets threat y = 1, the offering

player offers x = 0, which is rejected. If player A deviates by making a different offer

or threat then equilibrium B1 is played thereafter, while if B deviates the equilibrium

A1 is played thereafter.

In period τ : if τ is even B sets threat β
δτ
, A accommodates, offering β

δτ
and B

accepts, while if τ is odd A sets threat α
δτ
, B accommodates, offering α

δτ
and A accepts.

If player A deviates, he is punished by equilibrium B1 being played thereafter and if B
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deviates he is punished by equilibrium A1. Clearly this is a PBE since neither player

has incentive to deviate, and the payoffs to A and B are α and β respectively.
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Chapter 2

Stochastic stability and the use of

commitment in bargaining

2.1 Introduction

How two players will divide a given amount of surplus is one of the oldest questions

in Economics. In this paper I present a model in which one player may try to increase

his share of the surplus by committing himself to a favourable division. Schelling [40],

in his Essay on Bargaining, says such a commitment is only effective if the other side

realises this commintment is in place. In particular I find that the advantage one

has by being able to use a commitment technology is eroded away by the ability to

bluff at commitment. This is because we would prefer to bluff since it is safer, in case

our opponent does not back down. However, knowing this, our opponent will then

refuse to back down since he expects us to bluff. Using the evolutionary game theory

technique of stochastic stability, I argue when commitments are likely to be used.

Furthermore I find that the presence of either an outside option or an observation

technology can alter the dynamics so that commitment is used in the long run, even

though these options are not used in this long run equilibrium.
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The question of how two players will split a surplus arises in many different con-

texts and is such a difficult question to answer due to the vast range of possible

outcomes. Take, for example a firm negotiating with the union representing its work-

force. If the two can come to an agreement, they will both be better off; if they feel

to reach agreement and strikes occur then both lose out. Suppose that the workers’

reservation wage is £8 per hour and the firm can make profit with any wage up to

£13 per hour, then we have a range of possible agreement outcomes between the

two which are of benefit to both parties. The question is how much of the economic

surplus created by the two working together should go to the workers (in the form of

wages) and how much should go to the firm (in the form of profits).

This chapter looks at the role of commitment on the outcome. The model here is

best suuited to situations in which one party can threaten to do something mutually

disadvantageous if his demands are not met. For example consider the workers’

union who threaten to go on strike unless their wage is increased, or the employee

who threatens to look for another job if he is not given a better office or other better

working conditions. Or in a modern political context, the European country who

threatens to leave the EU unless they get a better deal from it1. Schelling [40] in

his well renowned essay on bargaing talks about many ways in which one of the

two parties may commit themselves. Commitment works by tying the hands of the

committed party so that the sole responsibility of avoiding disagreement now falls

upon the other party.

Schelling talked about a few methods which one party, which I denote A, could

use to achieve commitment thus forcing the other party, denoted B to make the

concession. One method is contracting with a third party. Schelling gives the example

ofA valuing a house at $20, 000 but wishes to commit to paying no more than $16, 000.

To do this A signs a contract with a third party stipulating that A is to forfeit $5, 000
1In UK this is something the Conservative party are saying they will do if they win the 2015

general election.
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to the third party should A pay more than $16, 000 for the house. As Schelling noted

this might not necessarily work if the third party can be persuaded to release A

from the contract for a lesser sum2. Although if A can find a third party who has

their own reasons for wanting A to keep to the commitment, then this may be more

successful. For example suppose that A is a supplier to B and the third party is a

rival of B, then it would be in the third party’s interests to help A to commit to

not selling goods to B below a certain price. Another example is for A to employ

a bargaining agent who is given strict instructions. A particular example of this in

the structure of a firm is a manager who has been given a budget for the purchase

of some product by the board of directors. Another possible commitment device is

staking one’s reputation or staking one’s reputation on not being prepared to give

ground. This may be particularly possible if A has many other similar negotiaton

with others and so could use the argument “If I did it for you, I’d have to do it for

everyone else”

Returning to the firm union example, suppose that the current wage is £10 per

hour and that the union is demanding an increase to £11 per hour. The firm could

simply refuse since they know it is not in the workers’ interests to withdraw their

labour. On the other hand, suppose that the workers could somehow commit to not

working for any less than £11 per hour. If this is truly an irrevocable commitment,

and the firm knows this, then it will have to concede to this demand. By committing,

the workers have displaced the responsibility of having the last chance to avoid the

mutually disastrous consequence of non-agreement from themselves onto the firm.

This forces the frim to concede to their demand.

This chapter makes the important point that, just because a commitment tech-

nology is available, it won’t necessarily be used. Schelling, throughout his essay on

bargaining, is careful to stress that in order for commitment to work, the other party
2Note that the third party does not expect to receive anything, since A will not be prepared to

break his commitment given this side deal
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must realise such a commitment has been made. In the above example, if the firm is

unaware that the workers are committed to £11 per hour, the firm will simply refuse

this demand, believing that there is no chance of the workers deciding to withdraw

their labour. When the workers do in fact withdraw their labour, this hurts both the

firm and themselves, thus rendering the workers’ decision to commit unwise.

This example shows that the key is not commitment itself, but the opponent

believing that you are committed. One might think this to be the easy part: if the

workers are in fact committed to £11 per hour, then it is in the interests of both the

workers to pass this information to the firm and of the firm to receive this information.

However, in reality this is often not so easy. Suppose that there is one day left for

the union and the firm to reach agreement before the strikes begin. The union could

commit itself by sending into the negotiation a low-level official with the instruction

to demand £11 per hour and no authority to make any other decisions, and no means

of contacting any higher ranking union officials. Now all the union has to do is tell

the firm this is what it has done and the firm will have no choice but to concede

to the union’s demand. However, the problem with the union’s masterplan is this:

for all the firm knows, the low ranking union official may have been sent into the

negotiation with the instruction to demand £11 per hour until the very last moment

of the day and then settle for £10 per hour if the firm doesn’t give in.

To be more precise, when the firm hears the union’s message of “we are committed

to £11 per hour”, the firm does not know whether the union has actually committed

itslef or whether it is merely bluffing. If it is bluffing then the firm should take

the hardline stance of not making any concessions; whereas if the union is actually

committed, the firm should give in and accept the union’s demand. It is exactly this

choice of whether the party with the commitment technology should really use it,

or just bluff, and how the other party should repond that we model here. In the

base model, I suppose there is some allocation, (w, 1− w), that can be thought of

61



as a status quo allocation as it would pertain in the case that neither player has a

commitment technology. Now let one player, which I denote as A, have a commitment

technology allowing him to commit himself to receiving no less than c > w which he

must decide whether or not to use. Whether he uses the commitment technology or

not, he will try to convince the other player, denoted B that he is in fact committed.

Unsure about whether A is committed to c or not, B must decide whether to respond

by conceding to the alleged commitment by offering c, or resisting it by sticking to

the offer of w.

Note that whether A is committed or not, it is in the interests of A to convince

B believe that he is indeed committed, so that B will give up a larger proportion

of the surplus. If A is able to be just as convincing whether committed or not, so

that the action taken by A conveys no information to B, the action chosen by B will

then be completely independent of whether A is actually committed or not. In this

circumstance, one may wonder why A would ever bother to commit, since bluffing is

just as likely to induce B to offer c, while at the same time ensuring he has the back up

option of being able to settle for w if B refuses to offer c. Indeed I find that A does not

commit and so B responds by offering w, thus we get the non-commitment outcome

(w, 1− w). However, one might ask whether this is really a fair assumption. Schelling

[40] argued that it is easier to convince your opponent that you are committed if you

actually are committed:

How does one person make another believe something? The answer

depends importantly on the factual question, “Is it true?” It is easier to

prove the truth of something that is true than of something false. To prove

the truth about our health we can call on a reputable doctor; to prove the

truth about our costs or income we may let the person look at books that

have been audited by a reputable firm or the Bureau of Internal Revenue.

But to persuade him of something false we may have no such convincing

62



evidence.

In order to address this point, I assume that B may discover a bluff with some prob-

ability, in which case, as one would expect, he automatically restricts his offer to w.

If B always discovers bluffs then we have perfect information and so A will commit,

knowing that B will observe his commitmnet and hence concede to the commitment

and so we end up with the commitment outcome (c, 1− c). In general, when the

probability of bluffs being discovered is in the open interval (0, 1), we have two strict

Nash Equilibria and using the evolutionary game theory technique of stochastic sta-

bility to determine what will be termed the long run equilibrium, I make an argument

as to which outcome is likely to predominate. I find the nice intuitive result that

the greater the ability of A to bluff (that is the smaller the likelihood of a bluff be-

ing discovered as such), the more likely we are to end up with the non-commitment

outcome.

This means that as long as the chance of a bluff being discovered is not too large,

the non-commitment outcome still predominates. One may wonder how robust this

result is. Section 4 shows that if we combine the assumption of a bluff being discovered

with either the presence of an outside option for A or an opportunity for B to observe

the commitment stauts of A then we may get the opposite result. As long as the

cost of observation is sufficiently small, or the outside option is in the relevant range

(between £10 and £11 per hour in the example above) then the long run equilibrium

is for A to commit and B to concede to this commitment. That is, neither the outside

option or the commitment technology are used in the long run equilibrium, but their

mere presence as alternatives means that the long run equilibrium switches from the

bluffing equilibrium to the commitment equilibrium.

The idea that a player in a bargaining situation may pretend to be committed

even when he is not, in order to induce the other player to concede a larger chunk of

the surplus is well-established. Indeed Chapter 1 presents a model of precisely this
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occurrence, as do many of the other papers referenced there. However what we model

here is rather different. This chapter analyses whether a player with a commitment

technology should actually commit, or merely pretend to be committed. I am not

aware of any other papers investigating this issue.

In general we find more than one Nash Equilibrium, so to make a prediction about

which is likely to predominate, the solution concept used is stochastic stability. This

works by considering an evolutionary dynamic in which players switch from less to

more successful strategies. Such a dynamic will generally lead us to an equilibrium.

To choose among equilibria when more than one exists, we perturb the dynamic by

introducing mutations, and roughly speaking stochastic stability finds the equilibrium

which is most resistant to these mutations.

There is a reasonable sized literature applying evolutionary game theory tech-

niques to bargaining. Particularly relevant in terms of the solution cocept used is [44]

where Young applies his version of staochastic stability to a two population bargain-

ing model in which agents play a finite strategy version of the Nash Demand game.

He found that, if all agents have the same sample size, then agents will split the

surplus equally, and allowing for heterogeneous sample sizes, agents split the surplus

according to a generalization of the Nash Bargaining Solution. Also worth mentioning

are Ellingsen [11] and following on from this paper, Poulsen [36], who like here, use

evolutionary game theory to investigate the impact of commitment on bargaining.

Although their model considers a single population of agents interacting in a sym-

metric role game and they use Evolutionary Stable Strategy (ESS) as the solution

concept.

I begin the analysis in Section 2 with an outline of the model and a discussion of

the solution concept, stochastic stability, in the context of asymmetric games. There

are many different specifications of stochastic stability in the literature, depending

on when and how agents revise their strategy. I give a brief account of this literature
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and explain where the specification I use sits in comparison to others. Sections 3 and

4 apply stochastic stability to the bargaining situation described above to get clear

predictions of when A will be able to make use of his commitment technology in the

long run equilibrium. Section 5 has a brief look into a more complicated scenario,

where B receives a random, partially informative signal about the action taken by A.

2.2 Basic model and Solution concept

There will be a few different commitment stage games considered in this chapter.

Here I present the most basic one, that future stage games are built upon.

Two players, labelled A and B are bargaining over a surplus of size normalized to

1. Let 0 < w < c < 1. There is a status quo share (w, 1− w) which represents the

shares that A and B respectively would obtain absent any commitments. Now player

A is given a commitment technology which allows him to commit to accepting no less

than c (binding himself to being unable to accept the status quo offer w). The fact

that this commitment technology is available is common knowledge.

Player A moves first and has two actions to choose from {C,B} . Action C means

to employ the commitment technology, often termed “to commit”. Action B means

not to employ the commitment technology. It is labelled B for “bluff” since player

A will clearly find it in his interests to pretend to be committed even if he is not.

For interpretation purposes we can think of player A sending the costless message

“I will accept no less than c” regardless of whether he is committed or not. Once

player A has chosen his action, player B, unaware of the action chosen by A, must

decide whether to concede to the alleged commitment or not. More formally, he has

two actions: {S,H}, where S (standing for “Soft”) means to concede to the alleged

commitment by offering c, while H (standing for “Hard”) means to refuse to give in

to the alleged commitment and continue offering A the status quo share of w.
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B concedes 
to alleged (in 
this case real) 
commitment. 

B concedes 
to alleged (in 
this case 
false) 
commitment. 

B doesn’t give 
in, and A is 
committed so 
unable to back 
down. Result is 
disagreement. 

B doesn’t give 
in, and A is 
not committed 
so backs down. 

Figure 2.2.1: Basic perfect disguise game

Payoffs are then determined by A responding optimally to the offer received, given

his commitment position: If B chooses “Soft” then A accepts the offer of c, so that

payoffs are
(
UA, UB

)
= (c, 1− c). If B chooses “Hard” then A will accept the offer of

w if he can. Thus payoffs are (w, 1− w) if A is bluffing and (0, 0) if A was committed.

This game is represented in Figure 2.2.1 on page 66

Note that the reaction of A to the offer from B is assumed rather than modeled,

and the reason for this will be made clear. This point may at first seem inconsequential

since restricting the game in this way has no effect on the Subgame Perfect Equilibria.

However, when applying a technique like stochastic stability, allowing for mutations

at such points can have an adverse effect. 27 and the discussion after explains why

it is necessary to restrict the strategy space to what can be thought of as “sensible”

strategies instead of considering all possible strategies.

This game can be thought of as the base game, on top of which other more com-

plicated games will be built. In this game there are two Nash Equilibria: (C, S) and

(B,H), although only (B,H) is a strict Nash Equilibrium and C is a weakly domi-

nated strategy. However more complicated games will follow in which committing is
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not weakly dominated and so both (C, S) and (B,H) are strict Nash Equilibria. To

obtain predictions for such games I apply the solution concept of stochastic stability

Solution concept

Instead of assuming only a single player A playing a game with a single player B,

we now assume that there is a large population of agents in the player A role and

another large population of agents playing the player B role. Now agents can use the

precedent of how the game has been played in the wider population to help them

decide how to play. I present two ways of doing this, all of which give similar results.

The first follows Young [45], one of the pioneers of the stochastic stability literature.

This model has an infinite sequence of agents in the roles of A and B, and each period

the players who are playing the game base their play on a random sample which is a

subset of the last m observations. He called this an “adaptive” dynamic.

The other route builds on the idea of [24], a paper so widely cited it is now

known in the literature by the abbreviation KMR. To do this we set up a population

game, in which we assume two distinct populations of agents, one for each of the

A and B roles. Agents’ payoffs are determined by a round-robin format, in which

each period every agent plays against every other agent of the opposing population.

Players then adapt their behaviour either by copying the most successful strategies in

their own population (imitative dynamic) or by playing a best response to the current

distribution of play among agents in the other population (best response dynamic).

1. Young’s adaptive dynamic

Consider a 2 player fixed finite game, with players {A,B}, where Si with typical

element si denotes the set of pure strategies available to player i ∈ {A,B} and payoff

functions {U i (sA, sB)}i∈{A,B}. Let time be discrete, indexed by t ∈ {0, 1, 2, . . .}. In

each time period t two new players enter the scene, one in the role of player A and
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one in the role of player B to play the game once, against each other. Each pair of

players plays the game only once and is replaced by a new pair of players who play

the game the following period. At period t > m, a state h (t) is defined as the record

of play in the last m periods, i.e.

h (t) = ((sA (t− 1) , sB (t− 1)) , . . . , (sA (t−m) , sB (t−m)))

After two players have played the game in period t, the state for period t + 1 is

then updated to include (sA (t) , sB (t)), while (sA (t−m) , sB (t−m)), the play from

period t−m drops out. The process by which players choose their strategies is time

ivariant and so a state will simply be an m-dimensional vector of pairs (sA, sB), with

typical element denoted h, and the set of states is the set of all such m-dimensional

vector pairs, denoted H.

Definition 18. A successor to x ∈ X is any state ĥ ∈ H obtained by deleting the

right-most strategy pair and adjoining a new left-most strategy pair.

Note that a state ĥ can only follow h if it is a successor of h.

The adaptive dynamic is then defined as follows: Each player samples a randomly

chosen subset of the last m periods played. A player in the role of player i ∈ {A, B}

will inspect ki of the previous m periods drawn randomly without replacement, where

1 ≤ kA, kB ≤ m in which he observes how the game was played. Using this information

each player plays a best response3 to the plays of the game which he has sampled.

So a player in the A-role will get kA observations from the set SB, which I label{
s

(1)
B , s

(2)
B , . . . , s

(kA)
B

}
and will play ŝA with positive probability if and only if

ŝA ∈ arg max
sA∈SA

1
kA

kA∑
i=1

UA
(
sA, s

(i)
B

)
(2.2.1)

3if there is more than one best response then each is chosen wth positive probability
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While a player in the B-role reacts analogously to his kB observations from the set

SA. We can thus calculate the probability of state ĥ following h, denoted Phĥ, under

the adaptive dynamic, which defines a Markov chain on the state space H. Moreover,

for each state h ∈ H we can find which successors have a positive probability of

following h. Suppose ĥ is obtained from x by the addition of the new left-most pair

(ŝA, ŝB). The state h lists the last m plays in each of the A and B roles and so for the

A-role player to play ŝA, we require that there exists some subset
{
s

(1)
B , s

(2)
B , . . . , s

(kA)
B

}
of the B-role plays for which (2.2.1) holds. Similarly for the B-role player to play ŝB

we need that there exists some kB size subset of the last m plays in the A-role such

that the analog of this equation for the B-role player holds.

Definition 19. An absorbing state is a state that, once entered, the process will

never leave. In other words h is an absorbing state if and only if Phh = 1

Clearly h is an absorbing state if and only if it consists of a strict Nash Equilibrium

played m times in succession. To select among the set of absorbing states, Young

then perturbs this dynamic with mutations. This means that each period, there is an

ε > 0 probability of making a mistake, meaning the player picks a startegy at random

instead of following the process of the adaptive dynamic. This gives us an alternate

Markov chain defined by transition probabilities P ε. Now, for any ε > 0, we have

P ε
hĥ
> 0 for any ĥ which is a successor of h. This ensures that the Markov chain is

ergodic and so will have unique invariant distribution µε over H which solves

∑
h∈H

µεhP
ε
hh′ = µεh′ ∀h, h′ ∈ H

or more succinctly, µεP ε = µε. We then define states as stochastically stable if

they survive with positive probability in the limit as ε → 0 and as the Long Run

Equilibrium (LRE) if it is the only stochastically stable state.

Definition 20. A state h ∈ H is stochastically stable relative to the process P ε if
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limε→0 µ
ε
h > 0 and the LRE if limε→0 µ

ε
h = 1.

I now summarise how Young calculates the stochastically stable states. The basic

idea is to count the number of mistakes needed to nove between absorbing states. To

do this we introduce the following definitions:

Definition 21. For any two states h, h′ ∈ H the resistance r (h, h′) is the minimum

number of mistakes involved in the transition form h to h′ if h′ is a successor of h;

otherwise r (h, h′) =∞.

Note that in our two population setting r (h, h′) ∈ {0, 1, 2,∞}. Let us now view

the state space H as the vertices of a directed graph. For every pair of states (h, h′),

insert a dirceted edge h→ h′ if r (h, h′) is finite and call r (h, h′) its resistance. Now

let Ω1,Ω2, . . . ,ΩJ be the recurrent communication classes of P ε. These classes are

disjoint and characterized by the following three properties: (i) From every state

there is a path of zero resistance to at least one of the classes Ωi; (ii) within each

class Ωi there is a path of zero resistance from every state to every other; (iii) Every

edge exiting any Ωi has positive resistance.

Often, especially in the examples considered here, a recurrent communication class

will simply consist of a singleton absorbing state. Noting property (ii) of recurrent

classes we can define the resistance between any two communication classes. Young

then applies the Friedlin and Wentzell [17] tree algorithm to find which recurrent class

contains the stochastically stable states (Theorem 2 of [45]). Much of the analysis

can be captured by Ellison’s [14] rather simpler radius-coradius theorem, which relies

on the Strong and Weak Basins of Attraction of a recurrent class, where these are

defined as follows:

Definition 22. The Strong Basin of Attraction of a recurrent class Ω is those states

from which the unperturbed Markov process, P 0 converges to Ω with probability

one. While the Weak Basin of Attraction of a recurrent class Ω is those states from
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which the unperturbed Markov process, P 0 might converge to Ω. These are given

respectively by the formulae:

SB (Ω) =
{
h ∈ H | ∀ζ > 0 ∃T s.t ∀t > T Pr

((
P 0
)t

(h) ∈ Ω
)
> 1− ζ

}

WB (Ω) =
{
h ∈ H | ∃T s.t ∀t > T Pr

((
P 0
)t

(h) ∈ Ω
)
> 0

}

Note that given a stochastic adaptive dynamic like the one here, a state can be

in the Weak Basin of several recurrent classes, whereas if it is in a Strong Basin of a

recurrent class, then this is the only Basin it can be in. The Strong Basin is important

for determining how hard it is to escape Ω, while the Weak Basin determines how

hard it is to enter Ω. More formally, letting Ω be a union of recurrent classes, Ellison

[14] defines the Radius R (Ω) to be the minimum resistance for any path from Ω to

H \ Ω and the coradius CR (Ω) is the maximum resistance among states outside Ω

for minimum resistance paths from H \ Ω to Ω. Ellison then proves the following:

Theorem 23. If R (Ω) > CR (Ω) then the set of stochastically stable states is con-

tained in Ω.

Note that adaptive play requires a sample of m periods, so we suppose random

play in the first m periods and start in period m + 1. While this initial draw effects

which recurrent communiation class the process will most likely enter at the start of

the game (depending on which basin of attraction(s) it is in), it does not affect the

invariant distribution of the process.

2. Population game

The other route is to introduce a large population NA of A-role players and another

large population NB of B-role players and to form a population game in which agents

utility is determined by their average payoff against the strategy mix in the opposing
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population. Agents switch to more successful strategies via an evolutionary dynamic

which is then perturbed by mutations. The state space then measures the strategy

mix within each population. The pioneering paper of KMR was principally concerned

with a single population of agents playing a symmetric game. Although they did

mention the two population case in section 9 and there have been subsequent papers

to take up the two player case. Two of the papers to really focus on this, whose

models are particularly close to mine are Hehenkamp [22] and Staudigl [41].

More formally, there are two distinct populations, labeled as p ∈ {A,B}, where

population p has Np agents, each of has with pure strategy set Sp = {p1, p2, . . . , pnp}.

Let xpi be the fraction of agents in population p playing strategy i ∈ Sp. We thus

describe a state of population p by a vector xp = (xp1, xp2, . . . xpnp) which keeps track

of the fraction of agents playing each strategy. The set of population-p states is then

given by

Xp =
{
xp = (xp1, xp2, . . . xpnp) | xpi ∈

{
0, 1
Np

, . . . , 1
}
,
np∑
i=1

xpi = 1
}

and the set of social states is

X = XA ×XB =
{
x =

(
xA, xB

)
| xA ∈ XA, xB ∈ XB

}

This is quite a different state space than in Young’s model, but the definitions of

absorbing states, recurrent classes, basins of attraction and Ellison’s radius-coradius

Theorem can equally well be applied here.

Agents in population A are continually randomly matched to play agents in pop-

ulation B, so that the current expected utility of an agent in population p playing

strategy i ∈ Sp given population state x−p of the opposing population is simply the
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average utility from pairwise matches. Payoffs are given by the formula:

Up
(
i | x−p

)
=

n∑
j=1

x−pj up (i, j) (2.2.2)

where x−pj is the proportion of agents in the other population playing strategy j and

agents in population p get utility up (i, j) when playing strategy i against startegy j.

This can have two interpretations: the first is that every agent plays against every

other agent in the opposing population in a round-robin format; the second is that

are continually randomly matched to play agents in the opposing population. Either

way, (2.2.2) captures the average payoff per interaction.

Within the population game approach, there are two main classes of dynamic

to consider. The first is the best response dynamic in which agents, knowing the

proportion of agents in the opposing population using each strategy, update their

own strategy to a current best response. The second type is the imitative dynamic

in which agents copy the most successful agents in their own population. With two

populations instead of a single population, these two dynamics are virtually identical4,

since a strategy which is a best reply to the strategy mix in the opposing population

will have a higher payoff than one that isn’t. The only issue arises when a strategy

in one population is extinct, that is, has nobody playing it and so there is no payoff

from this strategy to compare. Here an imitative dynamic like the one suggested

by Hehenkamp [22] would require a mutation to introduce a new strategy into the

population even if that strategy was a best response; whereas under a best response

dynamic, like in Staudigl [41], this is not the case. This distinction is not big enough

to have much effect on the results. In the interests of making the analysis slightly

simpler, I will use a best response dynamic, although the results would be very similar

with an imitation dynamic.
4This is not necessarily the case in a single population when agents must factor in that they do

not interact with themselves.
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The best response dynamic used is the following indivdualistic best response dy-

namic as described in Example 1 of Staudigl [41]. Every period a single randomly

drawn agent, which could be from either population, is selected to revise his strategy.

If this agent is currently playing a best reply to the strategy mix in the opposing

population, that agent does not change his strategy. If he is not currently playing a

best reply he switches to a best reply, picking each best reply with equal probability

if there is more than one. Note that this ensures that the absorbing states correspond

to Nash Equilibria, and that due to the stochastic nature of this model, a state can be

in the Weak Basin of Attraction of more than one absorbing state. This is in contrast

to the deterministic dynamic used in KMR. Section 9 of KMR and Hahn [20] discuss

the trouble with using deterministic dynamics in a two population model.

Note that here only one agent is allowed to change strategy at a time. This ensures

that only transitions to neighbouring states are possible, these are states connected

by dotted lines in Figure 2. This simplifies the analysis and isn’t quite as large a

restriction as one may at first think. Another common method is to suppose agents

are given opportunities to update via a stochastic alarm clock as in [6], where at the

end of each period of length τ , each agent updates with probability τ . As Binmore

and Samuelson noted, as τ → 0, as in their model, the occurrence that tow or more

agents update strategy simultaneously becomes very rare.

The process is now disturbed by the presence of mutations: with a small probabil-

ity ε > 0, the agent chosen to update his strategy makes a mistake. That is, instead

of choosing a best reply, that agent picks a strategy at random. Given ε > 0, this

process defines an irreducible Markov chain on X, where, for x, y ∈ X, P ε
xy is the

probability of moving from x to y in a single period.

This process defines a Markov chain on the state space X, where, for x, y ∈ X,

P ε
xy is the probability of moving from x to y in a single period. Notice that the set of

transitions with positive probability are precisely those between neighbouring states.
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B1 B2

A1 (a11, b11) (a12, b12)
A2 (a21, b21) (a22, b22)

where a11 > a21, b11 > b21,a22 > a12 and b22 > b12.

Table 2.2.1: General 2x2 game with two pure strategy NE

This is sufficient to ensure that any state has a positive probability of being reached

from any other state in at most NA + NB periods. So given ε > 0, the Markov

chain , P ε is irreducible and hence admits a unique invariant distribution, that is a

probability distribution µε over X such that µεP ε = µε.

Once again we will be interested in the limit, ε→ 0. We use the above analysis of

basins of attraction and resistance to find the stochastically stable states and LRE.

This is now presented below for 2x2 games.

Consider the class of 2x2 games with two strict, pure strategy Nash Equilibria.

Without loss of generality we may write the payoff matrix as in Table 2.2 on page 75

where the two strict, pure strategy strict Nash Equilibria are (A1, B1) and (A2, B2).

In addition there is also a mixed strategy Nash Equlibirum at (βA1 + (1− β)A2, αB1 + (1− α)B2),

where

α = (a22 − a21)
(a11 − a12) + (a22 − a21)

β = (b22 − b21)
(b11 − b12) + (b22 − b21)

There are two5 absorbing states corresponding to the two pure strategy Nash Equi-

libria

x(1) = ((1, 0) , (1, 0)) x(2) = ((0, 1) , (0, 1))

The mixed strategy equilibrium is unstable, but the numbers α and β will have a

crucial role to play in determining the basins of attraction as seen in Figure 2.2.2 on

page 76.
5Depending on population size, it can also be the case that the state((α, 1− α) , (β, 1− β)) is

also an absorbing state, although generically this will not be the case
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α 

0 
0 

1 

1 

Possible one 
period transitions 

Absorbing state 𝑥(1) 

Direction of travel 
without mutations 

(DTWM) 

Mixed strategy Nash 
Equilibrium 

𝑥1
𝐵 

𝑥1
𝐴 

Absorbing state 𝑥(2) 

Figure 2.2.2: Basin of attraction diagram for 2x2 games with two pure strategy NE

Figure 2.2.2 on page 76gives an example with NA = NB = 7 where 5/7 < β < 6/7

and 2/7 < α < 3/7. As can be seen above, the absorbing states have the following

Basins of Attraction:

SB
(
x(1)

)
=
{
x ∈ X | xA1 > β, xB1 > α

}
, WB

(
x(2)

)
= X \ SB

(
x(1)

)

In other words the Strong Basin of x(1) is the those states to the northeast of mixed

strategy Nash Equilibrium, while the Weak Basin of x(2) is the entire state space

minus this segment. Similarly the Weak Basin of x(1) is precisely those states not in

the bottom left segment, the Strong Basin of x(2).

SB
(
x(2)

)
=
{
x ∈ X | xA1 < β, xB1 < α

}
, WB

(
x(1)

)
= X \ SB

(
x(2)

)

Figure 2 also allows us to see the resistance of any transition between a pair

of states. This is displayed by the arrows showing the direction of travel without

mutations (DTWM). A transition in one of the two directions obeying the DTWM
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can be achieved without mutations and so has cost 0. While a transition going against

the DTWM requires a mutation and so has resistance of 1. With this in mind, we

can see that leaving the Strong Basin of x(1) requires two mutations in population A,

while leaving the Strong Basin of x(2) requires three mutations in population B. This

means that transitioning from x(1) to x(2) can be done with only two mutations while

the reverse transition requires three mutations and so as ε → 0, the latter becomes

infinitely less likely and so x(2) is the LRE in this example. This can also be seen

applying Ellison’s radius-coradius Theorem since R
(
x(2)

)
= 3 and CR

(
x(2)

)
= 2.

More generally, for population A, A1 is the best reply if and only if xB1 > α ; while

for population B, B1 is a best reply if and only if xA1 > β. This means that from

state x ∈ X, moving towards x(1) requires mutations if xB1 ≤ α and xA1 ≤ β. On the

other hand, if xB1 > α, then xA1 can increase without the need for any mutations, and

once xA1 is high enough that xA1 > β, strategy B1 becomes a best reply for population

B, and we reach x(1) without the need for any mutations. Similarly there exists a

mutationless path to x(1) from any x ∈ X with xA1 > β. From this it is clear that the

path from x(2) to x(1) requiring fewest mutations is either by having either
⌈
βNA

⌉
consecutive population A mutations or

⌈
αNB

⌉
consecutive population B mutations,

where dxe denotes the smallest integer strictly greater than x. This leads to the

following formula:

M
(
x(2) → x(1)

)
= min

{⌈
βNA

⌉
,
⌈
αNB

⌉}

whereM (x→ y) is defined as the minimum number of mutations needed in any path

from state x to state y. Similar logic shows that

M
(
x(1) → x(2)

)
= min

{⌈
(1− β)NA

⌉
,
⌈
(1− α)NB

⌉}

This leads us to the following result:
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Proposition 24. IfM
(
x(2) → x(1)

)
> M

(
x(1) → x(2)

)
then x(2) is uniquely stochas-

tically stable. If M
(
x(2) → x(1)

)
< M

(
x(1) → x(2)

)
then x(1) is uniquely stochasti-

cally stable. IfM
(
x(2) → x(1)

)
= M

(
x(1) → x(2)

)
then both x(1) and x(2) are stochas-

tically stable.

Hehenkamp [22] showed something almost identical6. With this Proposition in

place, the following Corollary becomes obvious.

Corollary 25. (i) As long as both population sizes are even or sufficiently large if

odd, if α and β are both greater than 1/2 then x(2,2) is the LRE. Similarly x(1,1) is the

LRE if α and β are both less than 1/2. While if α and β are either side of 1/2, relative

population sizes matter.

(ii) For equal population sizes, NA = NB = N , in the limit as N → ∞,

stochastic stability coincides with risk dominance. In other words, if min {α, β} >

min {1− α, 1− β} then x(2,2) is the LRE ; while if min {α, β} < min {1− α, 1− β}

then x(1,1) is the LRE. However, this does not extend beyond the 2x2 case.

We obtain very similar results in Young’s model. Young’s original model [45]

only considered the two populations having equal sample sizes, that is kA = kB = k,

and found that given sample size m ≥ 3k stochastic stability coincided with risk

dominance as suggested above. When Young applied this model to a bargaining

scenario [44] he allowed for different sample sizes. Here this difference in sample size

has as a very similar effect to the difference in population size. As Hehenkamp noted,

we can associate the sample size of one population with the population size of the

other in the population game, when considering the effect it has. To demonstrate

this, suppose we are at the absorbing state of (A2, B2) having been played in the last

m periods, which I denote h(2). Then to escape this state and move to m repetitions

of (A1, B1), which I denote h(1), would require dβkBe consecutive mutations of the A
6They obtain the same formula, the difference being that they define dxe as the smallest integer

greater than or equal to x. I actually believe their Theorem is incorrect for reasons related to this

78



player playing A1. From here, if all dβkBe of these observations make their way into

the sample of B for the next dαkAe+ dβkBe then B plays B1 throughout this period.

After dαkAe periods of this, it is then possible that the A player then samples at least

dαkAe observations of B1 in the next dβkBe periods inducing him to play A1 in each

of these. Thus from here we can get to the state h(1) if each i-player simply samples

the most recent ki plays. For this to happen requires m ≥ 2 dβkBe+dαkAe. Similarly

if m ≥ dβkBe+2 dαkAe, we can have dαkAe population B mutations shifting the state

from h(2) to h(1). Thus, provided m ≥ 3k, we obtain

M
(
h(2) → h(1)

)
= min {dβkBe , dαkAe}

I work with the population game model, but the analysis above shows that very

similar results will hold in Young’s model. I now discuss a few critiques of the model.

The first and most common critique is that we are declaring one state stochastically

over another because it requires slightly less highly improbable mutations. For exam-

ple if the transition from x(1) to x(2) requires 1000 highly improbable mutations will be

judged infinitely more likely than the transition from x(2) to x(1) requiring 1001 mu-

tations as ε→∞. However, whichever state’s basin of attraction we start in, is likely

to persist for a very long period of time. Thus the model perhaps works better when

the population sizes are relatively small. Robson and Vega-Redondo [38] presented

a similar model which requires fewer mutations, although produces different results,

with the payoff dominant, instead of risk-dominant equilibrium being selected.

A second critique, due to Bergin and Lipman [5], is that the model is sensitive

to the specification of mutations. By allowing mutations to be state dependent they

show that any invariant distribution of the mutationless process is close to an invarint

distribution of the process with appropriately chosen small mutation rates. Their

analysis works by allowing mutations to occur with probability εκ where κ is higher
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for less likely mutations. A third critique is from Kim and Wong [25] who show

that the outcomes is sensitive to the addition and deletion of strictly dominated

strategies which should be completely irrelevant. They did this in the one population

symmetric game model, but their logic nevertheless carries over to the two population

case. Intuitively, the reason is that a mutation towards a crazy strategy can impact

which of the sensible strategies should be played in the opposing population and so

provide a shortcut to an absorbing state requiring fewer mutations than would be the

case otherwise. This demonstrates that to obtain sensible results, it is necessary to

restrict the strategy space to prevent this. Another alternative would be to follow

Bergin and Lipman’s approach of making crazy mutations far less likely than more

sensible ones. With the right specification this would do the trick, but given the great

many crazy strategies to consider, I think it is cleaner to restrict the strategy space

to sensible strategies as I argue in Section 3.

Interpretation of stochastic stability in the bargaining game

Stochastic stability relies upon agents being able to learn from how the game has

been played in the past, so it is most applicable to scenarios which are often re-

peated, preferably with a large pool of agents in each role. For example suppose one

population is the set of upstream firms and the other population the set of down-

stream firms in an industry. The upstream firms which apply the most sucessful

negotiation tactics are set to make more profit and so grow faster, gaining market

share, while those who apply unsuccesful tactics will see the amount of business they

do diminish. So as time progresses, those strategies which have been more succesful

in the past will be used a greater proportion of the time.

Or in a more local setup, consider, a firm interacting with a union, who interact

often, and over a range of different issues both big and small: one day they could be

discussing what powers the firm should have to discipline workers who fail to arrive on
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time, the next day they might be discussing employee perks. Both sides have a pool of

“agents” they could send to the negotiations whenever an issue arises. So that we can

ignore the longer term reputation effects, suppose that both parties are sufficiently

impatient or that the agents at both have reasonably short expected tenures in the

current job, so that at any point in time, each is more concerned about the present

deal than building a reputation for toughness which might be advantageous in future

negotiations. If a particular agent has achieved a good outcome for the side he was

representing in the past then he is more likely to be asked to represent his side again

in the future and so the strategy that agent was using is set to grow. Alternatively we

might think that the union’s agents discuss strategy and hence learn off each other,

and similarly with the firm’s agents. Either way, strategies which have done better

in the past are more likely to grow in popularity in the future.

2.3 The failure of commitment

In this Section I show that the result of our commitment game displayed in Figure

2.2.1 on page 66 is the non-commitment outcome, that is population A players will

choose to bluff instead of commit and this is met with the Hard response by population

B players. Furthermore this result is reasonably robust to a change in the model,

allowing B to discover bluffs with small probability.

Perfect disguise

To start with I assume perfect disguise. That is A is perfectly adept at bluffing

commitment so that B receives no information whatsoever about the action chosen

by A. This has already been discussed in Section 2 and fully represented in Figure

2.2.1 on page 66.

Note that under the perfect disguise assumption there is no drawback of bluffing
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instead of committing and so B weakly dominates C. In addition to the obvious Nash

Equilibrium (B,H), there is also a connected component of Nash Equilibria giving

the commitment outcome (c, 1− c): B plays S and A plays C with probability at

least c−w
1−w . The absorbing states of the population game correspond to these Nash

Equilibria:

{(
xA, xB

)
= ((x, 1− x) , (1, 0)) : x ∈

[
c− w
1− w, 1

]
, NAx ∈ Z

}
∪ {((0, 1) , (0, 1))}

If the process is in any one of these states, it will require a mutation to leave that

state. The connected component with S being played are linked by a chain of single

population A mutations. From any member of this component, we require just one

population B mutation to get to the (B,H) equilibrium of ((0, 1) , (0, 1)). However,

as long as population A is large enough, it requires more than one mutation to get

from ((0, 1) , (0, 1)) to a member of the connected component. This gives the following

result:

Theorem 26. For any population sizes
(
NA, NB

)
satisfying NA ≥ 1−w

c−w and NB ≥ 1,

the LRE is x(B,H) = ((0, 1) , (0, 1))

Proof. The result follows from Ellison’s radius-coradius theorem. CR
(
x(B,H)

)
= 1

since a single Hard agent in population B is enough to induce all population A agents

to bluff, which in turn induces all population B to to act hard. While R
(
x(B,H)

)
> 1,

since NA ≥ 1−w
c−w ensures that one population A mutation is not enough to entice

agents in population B to switch to soft.

An important note, in light of the Kim and Wong [25] critique, is that these are

the only strategies considered. Consider the following Example:

Example 27. Suppose that the method A agents use to claim commitment is em-

ploying a bargaining agent allegedly under contract not to accept less than c, where
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S H bribe
C (c, 1− c) (0, 0) (2 + w,−1− w)
B (c, 1− c) (w, 1− w) (w,−1− w)

Table 2.3.1: Adding “bribe” strategy

the terms of the contract compel the bargaining agent to pay 2 (in payoff units) to A

should he break this. Now, one option available to B, albeit a deliberately nonsensical

one, is to bribe the bargaining agent 2 units to accept w. Then denoting this new

strategy by “bribe”, the new payoff table is given in Table 27 on page 83

Note that this option to bribe the bargaining agent with 2 units will always give

B a payoff of −1 − w < 0 and so is strictly dominated and hence should never be

played. But the fact that agents in population B could mutate to this strategy affects

the results by reducing R
(
x(B,H)

)
. If NB ≤ 2+w

w
then from x(B,H) a single mutation

of a population B agent from “H” to “bribe” is sufficient to make C the best response

for population A agents and thus allow us to reach state x(C,S) = ((1, 0) , (1, 0)). So

now we can connect the set of absorbing states via a cycle with resistance 1 between

any two adjacent states. Hence7 they are all stochastically stable.

I take the view that in this scenario the correct solution is obtained by not allowing

the strategy “bribe” since it clearly is not a sensible strategy for B to consider thinking

about players mutating through making mistakes, it is really easy to comprehend how

an agent might mutate between “Soft” and “Hard” since both strategies are in some

contexts sensible. Indeed, such a mutation could be from a mis-reading of the current

population state. However it is far harder to make an argument for why an agent

would mutate to “bribe”, since this is guauranteed to worse than either of the other

two strategies. One way to model this is to allow for state dependent mutation rates

as in [5] and make such mutations far less likely, but then that raises the question how

unlikely to make them. Then there is also the same issue with any other dominated
7This is fairly obvious. Either directly apply the Freidlin and Wentzell tree surgery or see for

example Lemma 3 and 4 of [35]
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strategies that players have. So, with this in mind, I think it is more appropriate to

proceed by restricting the strategy space to “sensible” strategies.

This consideration of restricting the strategy sapce also came into consideration

when forming this game displayed in Figure 1. As noted in Section 2 the game

represented in Figure 1 can be thought of as a truncation since it was assumed au-

tomatically that A would respond optimally to the offer of B. There is a literature

applying stochastic stability to extensive form games, see [10], [18], [21], [26], [35] and

generally they show that the presence of such suboptimal replies can make a difference

if agents are allowed to mutate toward such suboptimal replies. Once again I argue

for restricting the strategy space based on what strategies are sensible. It seems hard

to justify A wanting to turn down an offer from B in payoff terms, but also when we

consider the context of what the strategies “Commit” and “Bluff” mean. The whole

point of bluffing instead of committing is to then be able to accept w if B acts Hard.

So in light of this, it would seem very odd behaviour to then turn w down.

Imperfect disguise

Now I drop the asssumption that a bluff is never discovered, so that now there is

some incentive for A to commit rather than bluff against an opponent choosing a soft

strategy. If we suppose a bluff is discovered with probability λ ∈ (0, 1) then the game

is represented in Figure 2.3.1 on page 85.

Note that once again this could be viewed as a slightly truncated version of the

game. On top of the truncation described in Figure 2.2.1 on page 66, I have also

truncated the game slightly by assuming that after A bluffs and nature reveals the

bluff, B automatically chooses Hard and A accepts w, that is players follow the

backwards induction equilibrium in this subgame. I argue that it is fairly obvious

given the interpretation of the game that this is the only sensible play for both

players. The reason for truncating the game in this way is the same as before.
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In 
extensive 
form 

After observing 
a bluff, B holds 
firm, forcing A  
to back down 

Figure 2.3.1: Game under imperfect disguise assumption

There is a second interpretation of this game, which has the same game tree

structure as Figure 2.2.1 on page 66. Suppose that post-agreement, B might discover

A was bluffing and be able to use this to renegotiate. For example, returning to the

firm-union example, suppose the union bluffs and the firm concedes to the bluff, but

later discovers this was a bluff. Although the union gets its way with the current pay

deal, the firm may be able to use the knowledge of the bluff to its advantage during

future negotiations.

Notice that in this new payoff matrix given in Figure 2.3.1 on page 85, B no longer

weakly dominates C and so both (C, S) and (B,H) are now strict Nash equilibria.

This means that x(C,S) = ((1, 0) , (1, 0)) and x(B,H) = ((0, 1) , (0, 1)) are the only

absorbing states8, and for large populations, both states will require several mutations

to escape from and so we must apply the mutation counting methods discussed in

Section 2. We find α = w
c−r+w and β = r−w

1−c+r−w are the cutoffs determining the basins
8It is posible to have a mixed strategy Nash Equilibrium be an absorbing state if the equilibrium

mixtures are compatible with the integer problem from the population sizes. But generically this
will not be the case, and even when such an absorbing state does exist it will be very unstable to
mutations and not a candidate for being stochastically stable.
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of attraction and so applying Theorem 23, we obtain

Theorem 28. If r > max {c− w, 1− (c− w)} (ie λ < min
{

w
c−w ,

2c−w−1
c−w

}
) and both

populations have either an even or sufficiently large number of agents, then x(B,H) is

the LRE.

If r < min {c− w, 1− (c− w)} (ie λ > max
{

w
c−w ,

2c−w−1
c−w

}
) and both populations

have either an even or sufficiently large number of agents, then x(C,S) is the LRE.

Proof. Note that α > 1/2 ⇐⇒ r > c − w and β > 1/2 ⇐⇒ r > 1 − (c− w) and the

result follows from 25

If the population sizes are equal and arbitrarily large so that stochastic stability

coincides with risk dominance.

Theorem 29. Let N1 = N2 = N → ∞. If r > c−c2+w2

1−c+w (ie λ < w
1−c+w) then x(B,H)

is the LRE. If r < c−c2+w2

1−c+w (ie λ > w
1−c+w) then x

(C,S) is the LRE.

Proof. Some elementary algebra shows that min {α, β} > min {1− α, 1− β} ⇐⇒

r > c−c2+w2

1−c+w . Then the result follows from 25

This means that, as long as A is sufficiently adept at bluffing so that the prob-

ability λ of the bluff being discovered is reasonably small, the outcome (B,H) will

still prevail. On the other hand, if the probability of a bluff is likely to be discovered

as such then the commitment outcome of (C, S) prevails. This makes good intuitive

sense, as when λ = 1 we are in the perfect information case where B knows whether

A is bluffing or committed. In this case it is well established that A can commit.

Note that while, the ability to bluff well may at first sight seem a strength, it is in

fact a weakness since B then expect A to use this ability and thus chooses the Hard

strategy.

I provide an illustrative numerical example:
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B
S H

A C (0.8, 0.2) (0, 0)
B (0.75, 0.25) (0.5, 0.5)

Table 2.3.2: Imperfect disguise example with x(C,S) being the LRE

Example 30. Let payoffs be given by Table 2.3.2 on page 87.

The only candidates for stochastically stable sets are the absorbing states of the

process without mutations, these x(C,S) and x(B,H). The process will naturally move

away from any other state very quickly, since doing so does not require any mutations.

So we are interested in the relative time spent in the x(C,S) state compared to that in

the x(B,H) state. This is determined by the number of transitions needed to transition

between the two.

To get from the x(C,S) state to the x(B,H) state requires either 4/9 of population A

mutating from C to B or 1/11 of population B mutating from S to H.

To get from the x(B,H)) state to the x(C,S) state requires either 5/9 of population

A mutating from B to C or 10/11 of population B mutating from H to S.

So as ε → 0, it becomes infinitely more likely to transition from x(C,S) to x(B,H)

state than vice-versa, and thus x(B,H) is the uniquely stochastically stable state.

2.4 The return of commitment

So far I have argued that for a commitment technology to be useful, the committed

player must be able to tell the other player that he is committed. In particular, it

is important that the message the committed player sends cannot be replicated by

a non-committed player who is simply bluffing. Section 3 showed that this result is

reasonably robust to the relaxation of the perfect disguise assumption. However in

this Section I show that if we combine imperfect disguise with either an observation

technology or an outside option, this can reverse the result and leave us with the
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commitment outcome.

With observation

Now I assume that B has a third strategy, this being to pay amount k > 0 to observe

whether A is actually committed. As an example of how this might work in practice,

consider the case of the firm and union again, which was mentioned at the end of

Section 2. Suppose the firm is able to make contact with an individual in the union

camp who would be prepared to act as a spy and they could bribe to inform the firm

about the union’s position. Would this be beneficial for the firm? In the short term

the answer may be yes. However in the long run, the answer is no. If the union

becomes aware that the firm is using this tactic, it can exploit this by committing

itself to higher demands, knowing that the firm will observe the commitment. Even

if the union is unaware such a tactic is being used, union negotiators may notice that

those who commit themselves to high demands do better than those who do not, and

so start using this tactic. Thus in the long run, we would expect the commitment

outcome (c, 1− c) to prevail. The model below will confirm this logic.

I introduce the following slight variation to the game previously discussed in Figure

3. Now B has the option to use an observation technology at cost k (the sum of the

bribe in the example above), which enables B to discover whether or not A is indeed

committed to demanding c. If B chooses not to use the observation technology, he

faces the same dilemma as in Figure 2.3.1 on page 85. The new game, with this

observation techonolgy is given in Figure 2.4.1 on page 89.

The game can thus be described as follows: after the decision of A whether or

not to commit, B decides whether or not to use the observation technology with cost

k. If B uses this observation technology then players play the backwward induction

equilibrium from this point. As well as making sense from a payoff perspective,

this is also the only sensible outcome given the meaning of the strategies in the
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to back down. 

Figure 2.4.1: Imperfect disguise and observation technology

game. The fact that B pays k in order to observe whether or not A is committed

suggests that he plans to use this information optimally. On the other hand, if B

does not use the observation technology, he faces the same game as in Figure 2.3.1 on

page 85. Although this generates an extensive form game, I justify the normal form

representation by arguing that if B chooses not to observe he knows he is heading into

the game of Figure 2.3.1 on page 85 and so should know what strategy he plans to

use in this game, when deciding whether or not to deploy the observation technology.

Therefore we can think of B making a choice between his three sensible strategies all at

once. These three sensible strategies being: to “not observe” and play Soft (denoted

S); “not observe” and play Hard (denoted H); to observe and respond optimally to

this observation (denoted O).

Here it was assumed that B must decide whether to use the observation technology

prior to discovering whether A was bluffing with probability λ through “Nature’s”

move. This allows the payoff matrix to be compatible with the other interpretation

of the payoffs in the imperfect disguise game (the Normal form representation in

Figure 2.3.1 on page 85), that B may discover a bluff post-agreement and be able
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to renegotiate the agreement. The alternative assumption of allowing Nature’s move

prior to the decision of B whether to use the observation technology would not change

the analysis greatly9.

In order for the observation technology to conceivably be useful, it must not be too

expensive. If k > (1−c)(r−w)
1+c+r−w then it can never be a best response to use it: Let pc be the

proportion of agents in population A choosing C, then agents in population B would

always do better choosing either S or H, depending on whether pc is relatively high

or low. For this reason I henceforth assume 0 < k < (1−c)(r−w)
1+c+r−w which means that for

“small” pc the best reply isH, for “medium” pc the best reply will be O and for “large”

pc the best reply will be S.10 Given k > 0, the only pure strategy Nash Equilibria

are (C, S) and (B,H) and so x(C,S) = ((1, 0) , (1, 0, 0)) and x(B,H) = ((0, 1) , (0, 1, 0))

are still the only two candidates for being stochastically stable11.

As k decreases the size of the middle interval, where O is the best reply, increases

at the expense of the other two. In particular this means that from the state x(B,H)

fewer population A mutations are required to make O the best reply. Once O is the

best reply, the proportion of population B playing O can then expand, followed by

the proportion of population A playing C expanding, followed by the proportion of

population B playing S expanding, all without the need for further mutations. Thus

the observation technology acts as a conduit to allow easier passage from x(B,H) to

x(C,S). If k is small enough so that the number of mutations required to reach x(C,S)

from x(B,H) is less than the number of mutations to move in the opposite direction

then x(C,S) replaces x(B,H) as the stochastically stable state.
9Strategy “O” would then mean to observe if unsure. The payoff matrix would be virtually

identical to Table 3, the only difference being that the payoff to strategies (B,O) increases by λk to
1−w − (1− λ) k. The impact of this change on the analysis is negligible and it has no effect on ny
of the conclusions.

10Small, medium and large are relative terms here. The parameters (c, r, w, k) determine the sizes
of these 3 intervals and hence what is meant by small, medium and large

11It is also possible to have a mixed strategy Nash Equilibrium with B mixing between O and H,
but due to populations being finite, generically there is no absorbing state corresponding to this,
and even if there is, this we would be just one mutation from the Weak Basins of the other two
absorbing states.
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The path decsribed above took us to x(C,S) from x(B,H) via the following four step

process:

1. k
(1−c) proportion of population A mutate from B to C.

2. Selection increases the proportion of O in population B.

3. Selection increases the proportion of C in population A.

4. Selection increases the proportion of S in population B.

An alternative way to make this journey from x(B,H) to x(C,S) is for w
c
proportion of

population B to mutate from H to O. This cuts out the first step of the above four

step process and replaces selection by mutation in the second step. Although, if we

assume r is relatively close to c then (c−r)
w+c−r <

w
c
and so population B mutations are

more likely to lead us from x(C,S) to x(B,H) than vice-versa. Hence the more likely

way the observation technology is going to make a difference is via the four step

process described above. One may even think it to be the salient case to consider k

small relative to 1− c, making the four stp process described above quite likely. For

instance, in the firm-union example, it is quite conceivable that it be a lot cheaper

for a firm to bribe a union official than to suffer the consequences of disagreement.

Theorem 31. Let NA = NB = N →∞ and r > c−c2+w2

1−c+w (so that x(B,H) is the LRE

without an observation technology).

If min
{

k
(1−c) ,

w
c

}
< min

{
(c−r)
w+c−r ,

(1−c)
1−c+r−w

}
, then x(C,S)is the LRE.

If min
{

k
(1−c) ,

w
c

}
> min

{
(c−r)
w+c−r ,

(1−c)
1−c+r−w

}
, then x(B,H) is the LRE.

Proof. From x(B,H) to escape its Strong Basin, SB
(
x(B,H)

)
, we need one of the fol-

lowing three things to happen: (i)
⌈
Nk

(1−c)

⌉
of population A mutate from B to C and

we follow the four step process described above; (ii)
⌈
Nw
c

⌉
of population A mutate

from B to C and followed by steps 3 and 4 of the process described above; (iii)⌈
N(r−w)

1−c+r−w

⌉
of population A mutate from B to C, so that S becomes the best response
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for population B. Also, x(B,H) is the furthest state away from the Weak Basin of

x(C,S), thus

CR
(
x(C,S)

)
= R

(
x(B,H)

)
= min

{⌈
Nk

(1− c)

⌉
,
⌈
Nw

c

⌉
,

⌈
N (r − w)

1− c+ r − w

⌉}

The addition of the observation technology makes no difference to the shortest

path from x(C,S) to x(B,H). Thus it is still the case that

CR
(
x(B,H)

)
= R

(
x(C,S)

)
= min

{⌈
N (c− r)
c− r + w

⌉
,

⌈
N (1− c)

1− c+ r − w

⌉}

Note that it is not necessary to consider the
⌈
N(r−w)

1−c+r−w

⌉
because of the assump-

tion that r > c−c2+w2

1−c+w . Then we can see that for N large enough min
{

k
(1−c) ,

w
c

}
<

min
{

(c−r)
w+c−r ,

(1−c)
1−c+r−w

}
implies that R

(
x(C,S)

)
> CR

(
x(C,S)

)
and thus using Elli-

son’s Radius-Coradius Theorem x(C,S)is the LRE. Similarly for N large enough,

min
{

k
(1−c) ,

w
c

}
> min

{
(c−r)
w+c−r ,

(1−c)
1−c+r−w

}
implies R

(
x(B,H)

)
> CR

(
x(B,H)

)
and thus

the LRE is x(B,H).

This shows that the combination of a relaxation of the perfect disguise assumption

and a cheap observation technology is enough to cause the commitment outcome x(C,S)

to prevail. At first it may seem surprising that the addition of an observation option

which doesn’t get used in the long run should harm B like this. The intuition is the

following: when population A is split between committing and bluffing, using the

observation technology is a good idea and increases the instantaneous payoff for the

player using it. However, the fact that O increases in popularity will increase the

fitness of C for population A agents and so this proportion rises. So while playing

O may be good at the time for the individual population B agent, the fact that he

and others act in this way has negative long term consequences for the agents in

population B as a whole.

I present an easier to follow numerical example:

92



Example 32. Appending Table 2.3.2 on page 87 with an observation column, where

k = 0.01 gives the following payoffs:
S H O

C (0.8, 0.2) (0, 0) (0.8, 0.19)

B (0.75, 0.25) (0.5, 0.5) (0.5, 0.49)
Just as in the previous Table 2.3.2 on page 87, where it was found that x(B,H) is

the LRE, it takes either 4/9 of population A or 1/11 of population B mutating to travel

from x(C,S) to x(B,H). However, now the introduction of the observation option makes

it much quicker to travel from the x(B,H) to x(C,S). If 1/20 of population A mutating

from B to C then O becomes a best response for agents in population B. So the

proportion of population B playing O expands without any further mutations. Once

this proportion reaches 3/8, C becomes a best response for agents in population A and

so without any further mutations, the proportion playing C expands until it reaches

one. This in turn makes S a best response instead of O for population B agents and

so we end up with all of population B playing S and so we reach the x(C,S) state. So

by going via states in which some agents to observe, we have found a way to travel

from x(B,H) to x(C,S) which only requires 1/20 of population A to mutate. Thus when

the two populations are similar sizes and large enough so that
⌈
N1
20

⌉
<
⌈
N2
11

⌉
, we find

that x(C,S) is the LRE.

With outside options

Now we return to the imperfect disguise game of Figure 2.3.1 on page 85 and instead

of giving B an observation technology, give A an outside option (action T ) which he

can decide to take instead of heading into the bargaining game. This is represented

in Figure 2.4.2 on page 94.

When A takes the outside option, we may think it natural to set B’s payoff t2 = 0,

if for example, the outside option is doing a deal with an outside party. However the
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Figure 2.4.2: Imperfect disguise with outside option

results will not depend on t2.

As an example, consider the house buyer scenario and suppose A has the option

of purchasing a different house for a set price. In this instance it is important that the

house buyer must make a choice between which of the two houses to pursue, which is

true if for example the decision on whether to buy this other house has to be made

before he will hear back from B, the seller. If the converse was true, A could commit

in his dealings with B, and if B does not give in, use the outside option as a backup.

In the firm-union example, the outside option might be for the union to bring in an

independent adjudicator who will decide on what a “fair” rate of pay would be. In

this instance, a deal is struck between the two parties and so t2 > 0.

I assume that t1 ∈ (w, c) so that the problem is not trivial. If the outside option

was any less attractive, it would make no difference, as it would not be used; any more

attractive and it would always be used. Now the Nash Equilibrium set changes: (C, S)

is still a Nash Equilibrium and there is a connected componenet of Nash Equilibria

where A plays T and B plays S with probability of no more than p̄ = min
{
t−w
r−w ,

t
c

}
.

Once again, the absorbing states of the population game correspond to these Nash
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Equilibria, however only x(C,S) is stochastically stable.

Theorem 33. For sufficiently large population sizes x(C,S) = ((1, 0, 0) , (1, 0)) is the

LRE.

Proof. (C, S) is a strict Nash Equilibrium, so for sufficiently large population sizes, it

is clear that it requires more than two mutations to exit the Strong Basin of Attraction

of x(C,S). Hence R
(
x(C,S)

)
> 2. I now argue that CR

(
x(C,S)

)
≤ 2 (in fact, generically

is just 1) and hence the result follows from the Radius-Coradius Theorem.

If we are at a state in which the current best reply for population A is C then

no mutations are needed to reach x(C,S), since the proportion playing C increases by

selection, and once this is high enough, the proportion of S in population B increases

by selection. If the current best reply in population A is T then the proportion

playing T expands until all of population A are playing it. From here, suppose that

one member of population A mutates to C. Then the agents in population B will find

S the best reply and so the proportion playing S expands via selection until it reaches

the entire population, from which point C also becomes a best reply for population A

and we reach x(C,S) without any further mutations. If we are at a state where agents

in population A find B is the best reply then the proportion playing B increases,

thus making H the best reply for population B. Once the proportion of population

B playing H is large enough, T then becomes the best reply for population A and we

are in the same case as before.

So if there is a unique best reply in population A then it only takes one mutation

to reach x(C,S). If12 we happen to be in a state where there are two best replies for

population A, then we introduce a mutation in population B so that there is a unique

Best Reply and use the result above. This shows that CR
(
x(C,S)

)
≤ 2.

This result holds for any t ∈ (w, c). The intuition is a forward induction type
12This is very unlikely. Indeed given the finite population assumption requires a specific mix of

population size and payoff parameters to make this possible.
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argument: The decsion of A to turn down the outside option means that he expects

to do better in the imperfect disguise game than he would by taking the outside

option. This means that (C, S) instead of (B,H) should be expected to prevail in

this game. It is well known, for example [35] that stochastic stability has forward

inducton properties.

2.5 Continuous signalling space

This Section briefly explores the impact of introducing a far richer signalling space.

I now dispense with the population game setup and introduce a model which shares

some similarities with Young’s adaptive dynamic [45], in the sense that the role of

the state space is to give a signal to the players of how the game has been played

in the past, and how they expect the game to be played in the future. Whereas in

the population game model, the state represents how players are actually playing the

game.

The imperfect disguise assumption used in the previous two sections only allowed

for two possible signals; one revealing the action of A to be B and the other leaving

both possibilities open. Now I replace this with a continuous signal space so that

after A plays i ∈ {C,B}, B receives a signal σ ∈ [0, 1] with cumulative distribution

function Fi (σ) and probability distribution function fi (σ). I interpret σ as agent’s

instinctive probability that A has played C. B uses this instinctive probability and

knowledge about past history to form a belief about how likely it is A played C, and

then best responds given this belief. This Section represents quite a large deviation

from the literature on stochastic stability discussed above.

Formally the model is as follows: There are N agents in population B and an

infinite stream of agents who appear in the A role, one after the other, play against a

randomly selected population B agent. The state space is X = {0, 1, 2, . . . N} where
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state x ∈ X means that x of these N agents played S the last time they played. In

each period, given the state x ∈ X, the A-role player plays C with probability g(x)

and B with probability 1−g(x). Player B is aware of this, and so taking into account

both the state x and signal σ, forms the following posterior belief that θ (x, σ) is the

probability of C having been played.

θ (x, σ) = g (x) fC (σ)
g (x) fC (σ) + (1− g (x)) fB (σ)

Player B then best responds given this belief θ (x, σ)13. This updates the state and

the process moves to the following period where it repeats. If we assume g (x) ∈ (0, 1)

for all x ∈ X and conditions F1-F3 (below) on the signal functions to ensure that

the signal has the power to be sufficiently informative, we get an irreducible Markov

chain on X. In fact, we get a birth-death chain, since each period, the state will

either increase by one, decrease by one or remain the same. To ensure the signal is

sufficiently informative, I assume

F1: fi (σ) > 0 for all σ ∈ (0, 1) and i ∈ {C,B}.

F2: limσ→0
fC(σ)
fB(σ) = 0

F3: limσ→1
fC(σ)
fB(σ) =∞

The frist condition says that all signals are possible, in particular there is a chance

of B receiving a signal close to 0 when A is committed and receiving a signal close

to 1 when A is bluffing. The second (third) condition ensures that such events are

sufficiently unlikely that when a high (low) enough signal is received B will believe

that it is almost certain that A is committed (bluffing) regardless of the state x ∈ X,

and thus play Soft (Hard).
13To simplify notation I will say that if indifferent between H and S, he plays S. Although the

results are not dependent on any assumption here, since fi (σ) for i ∈ {C,B} will be chosen so that
getting the exact signal σ to leave agent 2 indifferent is a zero-probability event.
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While the payoffs agents receive at different outcomes has not changed, and is

still represented by Table 1, one should note that this is now a very different game to

that of Sections 3 and 4. Now one must take into account how the action of A will

influence the beliefs and hence the action of B. The expected utilities to A of playing

C and B are given by:

U1 (C | x) = Pr (S | C, x) c

U1 (B | x) = Pr (S | B, x) c+ Pr (H | B, x)w

From Table 1, it is clear that the tipping point in terms of the beliefs of B,

determining his strategy is β = c−w
1−w chance of C. A posterior belief θ (x, σ) which

puts a higher weight on C makes S the best reply, while a belief below β makes H the

best reply. Therefore Pr (S | i, x) is the probability that given strategy i ∈ {C,B},

agent 2 receives a signal high enough to cause θ (x, σ) ≥ β. Now I introduce the

following four assumptions on g (x).

G1: g (0) = ε

G2: g (N) = 1− ε

G3: g (x) = 1− g (N − x) for all x ∈ X

G4: g (x) is an increasing funtion of x

Consider the state x = 0, in which all of the agents in population 2 played H last.

Assumption G1 says that A should then play B, barring a probability ε mistake or

mutation. This would seem wise assuming that playing C would not induce B to play

S enough of the time, which is indeed the case as ε → 0 Similarly at state x = N ,

where all of population B last played S, assumption G2 says that A should play

C, barring a probability ε mistake. Given this is the expectation of play it seems
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wise to continue this way, since as ε → 0, both Pr (H | C,N) and Pr (H | B,N) but
Pr(H|C,N)
Pr(H|B,N) → ∞. This logic is formalized below. Assumption G3 says is a symmetry

condition, which says that the probability of playing C when only x agents last

played S, is the same as the probability of playing B when only x agents last played

H. Assumption G4 says that, the greater the number of population 2 agents who

last played S, the more likely agent 1 is to play C. The logic for this is that the

two outcomes which are likely to predominate are (C, S) and (B,H) and the state is

taken as a signal is to which one is supported by precedent and so is more likely to

predominate in the future. I think the hardest of the four to justify is G3. Nevertheless

there are examples of sensible procedures satisfying all four assumptions. One such

procedure is for A to randomly sample one agent from population B, and best respond

to that agent’s last action with probability 1− ε.

From here on, I will work with the following signal distribution functions:

FC (σ) = σ2 fC (σ) = 2σ (2.5.1)

FB (σ) = 2σ − σ2 fB (σ) = 2 (1− σ) (2.5.2)

Note that these do satisfy F1-F3. Also note the implied symmetry in these func-

tions: B’s signal after C is distributed around 1 in the same way that the signal after

B is distributed around 0, and so there is no bias induced by these functions.

To get a feel for how the dynamics work here, suppose we are at a state with low

x and so the probability of A playing C is small. There are two things which could

happen to induce B to play S (and so move the state to x+ 1 if that agent previous

played H). Firstly, since g (x) > 0, agent 1 might play C, and if this happens there

is a decent chance that the signal B receives is high enough to induce him to play

S. Secondly, there is a chance that, as predicted A plays B but the signal B receives
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is sufficiently high as to convince him to play S. This is the case of B dramatically

mis-reading A. Likewise, for high x and g (x), there are two ways in which B could

be induced to play H: firstly since g (x) < 1, A might actually bluff and B recognise

the bluff through receiving a low signal, or secondly B may mis-read A and think he

is bluffing when he is in fact committed. As g (x)→ 0 the probability of both events

which could cause S to be played also diminish to zero; and similarly as g (x) → 1

the probability of both events which could cause H to be played diminish to zero.

Therefore we can expect the process, in the ε → 0 limit to spend most of its time

either at state x = 0 or state x = N , since these are the absorbing states.

The effect of the state space is on the players’ expectations of future play, and we

have a self-confirming equilibrium type argument. When x is low, so that action H

is most prevalent, there is an expectation that A should play B and that B should

again play H. A is discouraged from switching to C because agent 2 expects B to

be played, and the signal he receives is likely not to be powerful enough to overcome

his prior belief, meaning that H is likely to be played even if A chooses C. This is

the logic behind assumptions G1 and G2. To see this, suppose that we are in state

x = 0, so that the prior probability B attaches to C is ε. In order to induce agent 2

to play S, the signal agent 2 receives must induce a sufficiently high posterior belief

of C. That is, we need

θ (0, σ) = 2εσ
2εσ + 2 (1− ε) (1− σ) ≥ β

which requires

σ ≥ β (1− ε)
ε+ β − 2βε

Even if agent 1 chooses C, under our signal functions, a high enough signal to induce
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S only happens with probability

1−
(

β (1− ε)
ε+ β − 2βε

)2

which tends to 0 as ε→ 0, making action C a bad choice, and justifying assumption

G1 that, barring mistakes, A should choose B. Now suppose the state is x = N, so

that the prior probability B attaches to C is 1− ε. B plays S if

θ (N, σ) = (1− ε)σ
(1− ε)σ + ε (1− σ) ≥ β

which requires signal

σ ≥ σ̂ = βε

1− ε− β + 2βε

and therefore

Pr (H | C,N) = σ̂2, P r (H | B,N) = 2σ̂ − σ̂2

which implies

lim
ε→0

Pr (H | B,N)
Pr (H | C,N) =∞

Rearranging the formulae for expected utility, it can be shown that

U1 (C | N)− U1 (B | N) = Pr (H | B,N) (c− w)− Pr (H | C,N) c

which implies that as ε → 0, playing C gives a higher expected utility than playing

B, thus supporting assumption G2.

In general the invariant distribution of the process will depend on the population

sizeN , as well as the mutation rate ε, and will be denoted µε,N =
(
µε,N0 , µε,N1 , . . . , µε,NN

)
. Given population sizeN , define the limit invariant distribution as µ∗,N = limε→0 µ

ε,N

and apply the usual definition of stochastic stability and LRE. I now state the result:

Theorem 34. If β > 1/2, then as N →∞ the LRE is x = 0 and if β < 1/2 the LRE
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is x = N .

This result says that for a sufficiently large number of agents in population B, if

c is sufficiently high relative to w so that β = c−w
1−w >

1/2, we get (B,H) as the unique

outcome; whereas, if the commitment level c is relatively undemanding compared to

w so that β < 1/2, we get (C, S) as the unique outcome.

Proof. I show the following: If β > 1/2 then for any ξ > 0, there exists N̄ such that

for all N ≥ N̄ and εN > 0 with µεN ,N0 > 1 − ξ. An almost symmetric proof would

show that if β < 1/2, then for any ξ > 0, there exists N̄ such that for all N ≥ N̄ and

εN > 0 with µεN ,NN > 1− ξ.

Fix N and let ux be the probability of moving from x to x + 1, and dx be the

probability of moving from x to x− 1. The key lies in proving that

β > 1/2⇒ ∃k < 1 s.t. ux
dN−x

< k ∀x ∈ X (2.5.3)

Let the state be x ∈ X. Then ux is the probability of selecting a player who previ-

ously played Hard (Pr (Select Hard | x)), multiplied by the probability of the selected

player playing Soft (Pr (Play Soft | x)). The former is easy, Pr (Select Hard | x) =
N−x
N

, while the latter requires more calculation:

Pr (Play Soft | x) = Pr
(
θ (x, σ) = 2σg (x)

2σg (x) + 2 (1− σ) (1− g (x)) ≥ β

)

which requires

σ ≥ σ̄ = β (1− g (x))
g (x) + β − 2βg (x) (2.5.4)

Similarly, from state N − x ∈ X, the probability of moving down one S player,

dN−x, is the the probability of selecting a Soft player multiplied by the probabilty of

the selected player playing Hard. Once again, the former is easy, Pr (Select Soft | N − x) =
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N−x
N

, while the latter requires more calculation:

Pr (Play Hard | x) = Pr
(
θ (N − x, σN−x) = 2σg (N − x)

2σg (N − x) + 2 (1− σ) (1− g (N − x)) ≤ β

)

which requires

σ ≤ σ̂ = β (1− g (N − x))
g (N − x) + β − 2βg (N − x) (2.5.5)

Comparing ux and dN−x, we see that the N−x
N

terms cancel and so the comparison

is between the relative likelihoods of (2.5.4) and (2.5.5), that is Pr (σ ≥ σ̄ | x) and

Pr (σ ≤ σ̂ | N − x). If β = 1/2 then (2.5.4) simplifies to 1−g (x) and (2.5.5) simplifies

to 1 − g (N − x). Combining assumption G3 with the signal functions (2.5.4) and

(2.5.5), we then have Pr (σ ≥ σ̄ | x) = Pr (σ ≤ σ̂ | N − x). Now, observe that both σ̄

and σ̂ are increasing in β, hence Pr (σ ≥ σ̄ | x) is decreasing and Pr (σ ≤ σ̂ | N − x) is

increasing in β. This shows that for any β > 1/2, Pr (σ ≥ σ̄ | x) < Pr (σ ≤ σ̂ | N − x)

and hence dN−x > ux. Noting that, for each N , ux and dx are only defined at finitely

many points gives equation (2.5.3).

Since we have a birth death chain, the weight on state 0 in the invariant distribu-

tion is given by

µ0 =
(

1 + u0

d1
+ u0u1

d1d2
+ ...+ u0u1 · · ·uN−1

d1d2 · · · dN

)−1
(2.5.6)

After the “1” term, where the last term is by far the greatest. Since limε→0
uN−1
dN

=

∞ by G1, G3, G4, we can find εN such that u0u1···uN−1
d1d2···dN

is greater than the sum of the

preceding N − 1 terms and hence

µεN ,N0 >
(

1 + 2u0u1 · · ·uN−1

d1d2 · · · dN

)−1
(2.5.7)
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Note that
u0u1 · · ·uN−1

d1d2 · · · dN
= u0

dN

u1

dN−1

u2

dN−2
· · · uN−1

d1

This is the product of N terms all of which satisfy (2.5.3). So as N → ∞, this

product tends to 0 and hence for any ξ > 0, there exists N̄ such that for all N ≥ N̄

and εN > 0 such that µεN ,N0 > 1− ξ (using (2.5.7)).

2.6 Conclusion

This Chapter shows that, when looking at the effectiveness of commitment, an im-

portant consideration is the ability of a player to bluff at being committed. While on

the face of it, one might expect the ability to bluff well to be useful, this is not the

case since in the long run the other player will anticipate the bluff being used and

so ignore the commitment. The intuition is that if a player can bluff well, then the

opponent would expect the bluff to occur and act accordingly.

Increased sophistication can also be a disavantage for player B. Section 4 shows

that if B has the option of observing the commitmnet decision of A at relatively small

cost then this flips long run equilibrium back to the commitmnet outcome. The basic

intuition is that if A expects his decision to be observed by B then this gives him

incentive to commit. In actual fact things are slightly more complicated since B does

not actually use the observation technology in the long run equilibrium. However, its

presence is enough to make the alternative equilibrium of x(B,H) very unstable.

Similarly a return to the commitment outcome can occur when A is given an

outside option. Even if t1 < c so that it is not used in the long run equilibrium, its

presence still makes a difference by unsettling the x(B,H) equilibrium.
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Chapter 3

Toughness and goodwill in

bargaining: following the crowd

3.1 Introduction

In most bargaining situations, with only two agents, it seems logical to think that

each will negotiate as hard as they can to get as large a share of the surplus as

possible. However, when there are other agents who can come into the deal then

the situation becomes unclear. While a hardline bargaining position may give you

more of the surplus if you do manage to interact, it will decrease the probability of

others wanting to interact with you. Thus there is a tradeoff between taking a soft

position, thus increasing the probability of interacting, and taking a hardline position

to increase your share of the surplus when interacting. This chapter shows that often

there will be a tendency for players to want to follow the crowd, that is take a soft

position if and only if others do the same.

Why do some societies have a culture of really tough negotiating, while others

have a culture of far softer negotiating? Why in some families is there an argument

over every last pea on the dinner table while in other families such discussions are
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handled with politeness and goodwill? The answer I propose here is that it is in

each person’s interests to copy the behaviour of everyone else: if others are playing

tough, then so must you to get your fair share; while if others play nice, then a heavy

handed bargaining approach will see you effectively be shunned from the group as

others don’t want to interact with you.

In a business environment are you a tough or a gentle negotiator? In a joint project

with a work colleague do you willingly make a large contribution or look to free-ride

on your partner’s efforts? When meeting with a friend who prefers to go to the opera,

do you insist on going to watch the football or accommodate your friend’s preference

of opera? At the pub, how generous are you with buying drinks for friends? Business,

and life in general, is full of relationships in which there has to be give and take on

both sides. The question is: how much do you give and how much do you take? This

is not a trivial question. The temptation to be tough and insist on getting one’s

own way looks good when the other player gives in to your demands, but may hurt

your chances of interacting if the other is equally tough or finds finds another more

amenable partner. Thus there is an obvious tradeoff between being tough so as to

get as large a share from the interaction as possible, and being willing to compromise

and interact more regularly.

One obvious and quite simple way to investigate this tradeoff is with a Hawk-Dove

model [30]. “Hawk” would have the interpretation that the negotiator adopts a tough

negotiating position, being unwilling to compromise, and relying on concessions from

the other party to reach agreement, while “Doves” are willing to compromise in order

to reach agreement. Each player is either a Hawk or Dove and randomly matched

to interact with one another, under a veil of ignorance about each others type. The

significance of this veil of ignorance is that agents cannot adapt their play based

on their opponent, so if two Hawks meet they fail to reach agreement. This theory

predicts a mixture of Hawks and Doves.
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By contrast, the models in this Chapter drop the veil of ignorance assumption,

so that all agents knows each others’ type. If one agent is tougher than the other

then that agent will get a larger share of any interaction between the two. However,

unlike Hawk-Dove, tough agents are able to recognise one another, and it is assumed,

will be able to reach a compromise. The disadvantage of a tough negotiating position

comes from one’s negotiating partner preferring to seek other, less demanding, trading

partners.

When there are only two agents the situation is clear: each will try with all their

might to take as much as possible from each interaction and there is a great deal of

literature, including the two previous chapters on how agents might seek to do so.

However, often in real world situations there are more than two relevant parties. Take

for example a firm with a job vacancy to be filled. They might interview somebody for

the post who is well suited and who can fill the post very comfortably. If we suppose

that this firm would generate an extra £200,000 per year by employing this person,

then how much should this person get paid? If this person is the only one who has

the skills to do the job, then it would seem logical that he try to negotiate as much

as possible for himself, both in terms of the £200,000 surplus and work conditions

such as office size. However, if there are another hundred people waiting outside who

could do the job just as well, then he would be well advised to think twice before

demanding too much. If this worker was to ask for a lot, then the chances are the

firm will instead hire somebody less demanding. Indeed, even if there are only two

workers, who could both fill the role, then the literature on auction theory suggests

that the workers will compete against each other and the firm will walk away with

the bulk of the surplus.

However, in the example above there are many more potential complications. For

instance it may well be the case that each worker has several firms who he could work

for, thus preventing the firm from demanding too much of the surplus, for fear of a
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rival giving the worker a better offer. Additionally there may be some uncertainty as

to whether each interaction can happen, since some of the parties may not always be

available, or have the necessary skills or resources to interact. We incorporate this in

to a stochastic payoff function where a player’s payoff is the probability of interacting

multiplied by his average share when interacting. A tough negotiating approach will

sacrifice ground in the former to gain ground in the latter. This establishes the

tradeoff between maximising the probability of interacting and average share when

interacting.

Often in economics, it is assumed agents take as much as possible from each

interaction, but this would be to neglect the consideration that your gain comes at

the other person’s loss and so taking a tough position may lead to other agents being

less enthusiastic about interacting with you. Whereas, an agent who is more generous

could be expected to be involved in more interactions since other agents will be more

likely to want to trade with him. Thus there is a tradeoff between being tough in

order to get a greater share from each interaction, and being kind so that you will be

involved in more such possible interactions.

The approach taken in this chapter is to abstract away from many of the complex-

ities of how agents reach agreement and model agents as having two choices: the first

is to adopt what will be termed a Soft strategy, which is to be relatively undemanding

so that others will be more willing to interact with you, but this inevitably means

receiving less of the surplus when interacting. The second is to adopt what will be

termed a Hard strategy, which has the opposite meaning, that of a player making

relatively large demands. Interacting with such a player will be less desirable for

others, and so this player will be less likely to interact, but when interacting, gains

a greater share of the surplus. Payoffs are determined by assuming that each period

one interaction takes place between those players that are available to interact and

whose strategy is most conducive to agreement.
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I find that in the base model of Section 2, there are strong pressures incentivising

agents to act the same way as one another, which I term “herding” of behaviour. This

will be the case in both a one group model and a two group model. In the two group

model, we can think of the pressures from agents within one’s own group, intra-group

pressures, and from the other group, inter-group pressures. I find that both act to

encourage herding of behaviour. In Section 3 I show that it is possible to break this

intra-group pressure towards herding under different modeling assumptions. Section

4 concludes.

3.2 Base model: herding of behaviour

This Section shows the base model in which all players follow the actions of all others.

In Section 2.1 I give the simplest version of this model where there are many agents

in group A, each of whom looking to interact with one agent in group B, who will

henceforth be known as agent B. For example, consider a firm with a job vacancy as

the agent with an opportunity, who is looking to hire one of several job applicants.

In Section 2.2, I allow for several agents in group B so that we have competition in

both groups. Agreement then takes place between the most conducive agents in each

group.

3.2.1 One sided competition

Recall the example consider of a firm looking for an employee, which would generate

the firm an extra £200,000 profit from having that position filled, and a group of N

workers who might be hired in the role. It will be in the firm’s interests who picks the

employee who demands the lowest share of the £200,000 surplus out of those that are

available. Restricting workers to two types: those who drive a hard bargain (Hard)

and those who take a softer, less demanding approach (Soft), leads us naturally to
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the following model:

Consider a group A of N agents, each of whom can be one of two behavioural

types, {S,H}, standing for either Soft and Hard. Each of these agents could derive

profit by interacting with another agent, who I call agent B. The profits agents in A

get from such an interaction are scaled to be vS = s, vH = 1
2 for Soft and Hard agents

respectively, where s < 1
2 . Given these behavioural types, payoffs are determined as

follows: Each agent in A becomes available for interaction with probability p ∈ (0, 1).

In the above example, this could be caused by a range of factors such as agents

not being deemed competent by the firm, or being unable to work in the times or

locations the firm requires. Agent B picks amongst those agents available the one

with the lowest demand. That is, he picks a Soft agent, if there is one available,

randomizing amongst them if there is more than one available Soft agent. Or if there

are no Soft agents available, he picks a Hard, again randomizing amongst the set of

available Hard agents if there is more than one. The payoff to an agent in A from

strategy i ∈ {S,H} is then θivi where θi is the probability of interacting with this

strategy. For simplicity, I will assume agent B is always available to interact, although

this is not vital. If, like all agents in A, agent B is only available with probability p,

then all this does is scale down everybody’s payoff by the multiple p, a change which

has no bearing on any results.

An alternative and equivalent way of viewing this process would be for B to list

the agents in A in some randomly chosen order such that all Soft agents appear before

all Hard agents. Then starting withB seeks interaction with each of the agents in A,

starting at the top of the list and going down, until he finds an agent who is available

for interaction.

The following example shows the N = 2 case:

Example 35. N = 2 payoffs

If both are Soft then each interacts with probability θS = p (1− p) + p2

2 .
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Player 2
S H

Player 1 S
(
p (1− p) + p2

2

)
s,
(
p (1− p) + p2

2

)
s ps, p (1− p) 1

2

H p (1− p) 1
2 , ps

(
p (1− p) + p2

2

)
1
2 ,
(
p (1− p) + p2

2

)
1
2

Table 3.2.1: Payoff matrix for two player game

If both are Hard then each interacts with probability θH = p (1− p) + p2

2 .

If one is Soft while the other is Hard then θS = p and θH = p (1− p).

Thus the agents’ payoffs are given by 3.2.1

Solution Concept

We could think of players playing strategically as described above and apply the

standard Nash Equilibrium definition: A Nash Equilibrium is a state in which,

given the behaviours of all other agents, no Soft agent could get strictly higher payoff

by switching to Hard and no Hard agent could get strictly higher payoff by switching

to being Soft.

Instead we adopt an evolutionary game theory approach, which allows for more

discussion of the stability of the equilibria. Now it makes more sense to think of

Soft and Hard as being agents’ behavioural types rather than strategies. A pop-

ulation state measures the number of agents of each type. Since the number who

are Hard is simply N minus the number who are Soft, I characterise a state by

x ∈ {0, 1, 2, . . . , N} = X, the number who are Soft. It will also be useful to refer to

an agent’s perspective (of the state): pick an agent and let n ∈ {0, 1, 2, . . . , N − 1}

be the number of agents other than himself who are of the Soft type.1 Agents’ payoffs

are a function of their behavioural type and perspective of the state. Agents’ types

may change over time through an evolutionary dynamic which encourages players to

switch type if in their interests to do so. We are interested in the population state in
1It is useful to make this distinction between state and perspective since an important feature of

this model is that agents do not interact with themselves. Note the relationship between state and
perspective: x = n+ 1 if the agent is Soft and x = n if the agent is Hard.
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the long run.

Each period one agent is randomly selected to revise strategy. With probability

1 − ε, this agent revises his strategy via a selection dynamic; with probability ε the

revision happens via mutation. When ε = 0, this is a pure selection dynamic. In

line with the stochastic stability literature I consider the case of unlikely mutations

(ε → 0). Under mutation, an agent switches strategy with probability 1/2. The

interpretation is that the agent dies or leaves the market, or social environment and

is replaced by another agent who may be of either type with equal probability.

The interpretation of the selection dynamic is that an agent looks at the situation

he faces and considers whether he is best off under his current behavioural type, or

whether he would do better by changing his behaviour. If he believes the latter,

he switches his behaviour. The selection dynamic used will be the Best Response

dynamic: An agent switches strategy if by doing so he will get a strictly greater

payoff given his perspective, otherwise his behaviour remains unchanged. This is

a very common dynamic in the literature, eg [7]. The following definitions will be

useful.

Definition 36. An absorbing state is a state which, once entered, the evolutionary

process will never escape from without mutations. TheWeak basin of attraction of

an absorbing state x, denotedWBx ⊆ X, is the set of states from which the absorbing

state x can be reached without mutations. The Strong basin of attraction of

an absorbing state x, denoted SBx ⊆ X, is the set of states from which, without

mutations x will be reached with probability one.

Clearly under the Best Response dynamic, the set of absorbing states coincides

exactly with the Nash Equilibrium set.

When there are multiple absorbing states, we may also look to use stochastic

stability to select among them, generally picking the one with the greater basin of

attraction. When ε > 0 the above process defines an irreducible Markov Chain P ε on
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the state space, with P ε
xx′ denoting the probability of transitioning from state x to x′.

This ensures that it will have unique invariant distribution µε over X which solves

∑
x∈X

µεxP
ε
xx′ = µεx′ ∀x, x′ ∈ X

or more succinctly, µεP ε = µε. We then define states as stochastically stable if

they survive with positive probability in the limit as ε → 0 and as the Long Run

Equilibrium (LRE) if it is the only stochastically stable state.

Definition 37. A state x ∈ X is stochastically stable relative to the process P ε

if limε→0 µ
ε
x > 0 and the Long-run equilibrium (LRE) if limε→0 µ

ε
x = 1.

The pioneering papers in the stochastic stability field were KMR [24] and Young

[45], who brought the tree analysis of Freidlin and Wentzell [17] to the attention of

economists to give us a tool to analyse these models. Although many of the results

can be seen using the simpler radius-coradius Theorem of Ellison[14]. Intuitively, the

analysis here lies on the sizes of the basins of attraction, with stochastic stability

supporting those absorbing states with larger basins.

Result: Following the crowd (herding of behaviour)

It will be shown that either all agents inA act Hard or they all act Soft. For parameter

choices (s, p) where s and p are relatively low, Hard will be a dominant strategy and

so x = 0 will be the only absorbing state. When s and p are relatively high, Soft will

be dominant and so x = N will be the only absorbing state. For parameters (s, p) in

between, both will be absorbing states but nothing in between will be. To get some

intuition for this result, consider the N = 2 case once again:

Example 38. N = 2 analysis.

Let q1 = p be the probability that B interacts with his preferred choice and

q2 = p (1− p) be the probability that B interacts with his second choice agent. Now,
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Other’s strategy θS θH θS − θH
Hard q1

q1+q2
2

q1−q2
2

Soft q1+q2
2 q2

q1−q2
2

Table 3.2.2: Probabilities of interacting when N = 2

consider how the chance of interacting for a group A agent depends on that agent’s

action and the other agent’s action. This is shown in Table 3.2.2 on page 114

We see that the increase in interaction probability from adopting a Soft over a

Hard behaviour is the same. However, since q2 < q1, this increase is rising from a

lower base when the other agent is Soft, and so the proportional gain θS−θH
θH

is higher

when the other agent is Soft. Meanwhile the proportional increase in share of the

surplus when interacting from being Hard over Soft is vH−vS
vS

which is independent

of the other’s action. When θS−θH
θH

is higher (lower) than vH−vS
vS

the only absorbing

state is both acting Soft (Hard). If θS−θH
θH

is higher than vH−vS
vS

when the other agent

is Soft, but lower when the other agent is Hard, then both are absorbing states.

With more general N , it remains the case that the results remain: it is still the

case that θS−θH
θH

is increasing in the number of other players who are Soft. So there

is some threshold number of Soft agents above which θS−θH
θH

> vH−vS
vS

, meaning that

Soft is a best reply. This means that the only absorbing states are x = 0, x = N or

both.

The logic behind this runs as follows: for each k ∈ N, define qk = p (1− p)k−1 be

the probability of interaction between B and his kth choice, and define sk = q1+...+qk
k

as the probability of a given Soft agent interacting with B when there are k Soft

agents. Now, we can define ak = sk+1
sk

to be the proportional decrease in a Soft

agent’s interaction probability from the arrival of a kth Soft agent. Note that this is

the same as the proportional decrease to a Hard agent from kth Hard agent; while

for a Hard agent, additional Soft agents decrease the probability of interacting by

(1− k) and additional Hard agents have no impact on a Soft agent’s probability of
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interacting.

Let θi (n) the probability of interacting given behaviour i ∈ {S,H} and perspective

that n ∈ {0, 1, 2, . . . , N − 1} of the other agents are Soft (and so N −n−1 others are

Hard) and G (n) = θS(n)−θH(n)
θH(n) = θS(n)

θH(n) − 1 be the proportional increase in interaction

probability from being Soft instead of Hard. The aim is to show that G (n) is a

strictly increasing function of n. One route would be to note that

θS (n) =
∑n+1
j=1 qj

n+ 1 θH (n) =
∑N
j=n+1 qj

N − n

G (n) =

(
1− (1− p)n+1

)
(N − n)

(n+ 1)
(
(1− p)n − (1− p)N

) − 1

and analyse G (n) to confirm it is a strictly increasing function of n in the range

[0, N − 1].

Instead I give a more detailed explanation which helps to explain the intuition for

this result. With N players, a player with perspective n ∈ {0, 1, 2, . . . , N − 1} has

the following probabilities of interacting:

θS (n) = pa1 . . . an

θH (n) = p (1− p)n a1 . . . aN−n−1

The formula for θS (n) comes from the following: if there are no other agents,

the agent interacts if available, which happens with probability p. If we introduce

one other Soft agent, this decreases the probability by a1, the next Soft agent by a2

and the ith by the multiple ai. The N − n − 1 Hard agents have no impact. The

formula for θH (n) is derived in similar fashion: the initial probability p is discounted

by (1− p) for each of the n Soft agents while the effect of the N − n− 1 other Hard

agents is accounted for by a1 . . . aN−n−1.
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Clearly showing that G (n) is strictly increasing is equivalent to showing that
θS(n+1)
θH(n+1) >

θS(n)
θH(n) . To do this I show that

θS(n+1)
θH(n+1)
θS(n)
θH(n)

=
θS (n+ 1)
θS (n)

θH (n)
θH (n+ 1) > 1

Now, using the formulae already obtained, we see a lot of terms cancel to leave:

θS (n+ 1)
θS (n)

θH (n)
θH (n+ 1) = an+1aN−n−1

1− p

At this point it is instructive to return to the N = 2 case and we see that (plugging

n = 0 into the above)

θS (1)
θS (0)

θH (0)
θH (1) = a1a1

1− p

This leaves us to analyse the sequence a1. Introducing a competing agent playing

of the same type as the agent we are analysing has no effect when the competing agent

is unavailable, which happens with probability (1− p). While if the competing agent

is available then half the time our agent interacts and half the time the competing

agent interacts instead. Thus a1 = 1 − p
2 . The effect of further competing agents

can be thought of similarly: Suppose our agent is currently interacting and introduce

a second competing agent. Again with probability (1− p) the agent is unavailable

and so it makes no difference, while with probability p the agent is available and it

comes down to whether our agent is above or below the competing agent in the order

in which B ranks them. However unlike before, there is no longer an equal chance

of each. Conditional on our agent interacting with only one competing agent there

is a greater than half chance that our agent was ranked before the first competing

agent, which implies a greater than half chance that our agent is also ranked above
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the second competing agent. Thus the effect of the second competing agent is slightly

less than the effect of the first, and thus a2 > a1. Similarly the third competing agent

has less effect than the second and so a3 > a2, and more generally {ak}k∈N is a strictly

increasing sequence in the interval
[
1− p

2 , 1
]
.2

Returning to the N = 2 case, using a1 = 1− p
2 , we see that

θS (1)
θS (0)

θH (0)
θH (1) = a1a1

1− p =

(
1− p

2

)2

2 > 1

This verifies that G (1) > G (0). For the general N case the key is to note that

for any k ∈ N, ak > 1− p
2 . This implies that

θS (n+ 1)
θS (n)

θH (n)
θH (n+ 1) = an+1aN−n−1

1− p >

(
1− p

2

)2

2 > 1

This verifies that for any N , the function G (n) is strictly increasing as claimed.

Another, perhaps more intuitive way to think of this is the following: Our agent

is better off being Soft when

G (n) = θS (n)
θH (n) − 1 > vH − vS

vS
=

1/2− s
s

If our agent was the only agent then θS (n) = θH (n) = p, but each of the other

N − 1 agents has an impact of increasing the θS(n)
θH(n) ratio. If this ratio rises above the

threshold 1/2
s
then Soft becomes better. Introducing a Soft agent increases the ratio by

ai
1−p and introducing a Hard agent increases the ratio by 1

aj
for some ai, aj ∈

[
1− p

2 , 1
]
.

For any such ai, aj it is the case that ai
1−p >

1
aj

and so, for fixed N , the θS(n)
θH(n) ratio

is increasing in the number of Soft agents, and thus G (n) is strictly increasing, as

claimed. This argument also tells us that for larger groups, Soft is more likely to be
2This can also be verified by directly analysing the formula ak = sk+1

sk
with the aid of a computer

program.
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𝑖 + 1 𝑖 

ς = 𝑖 +
1

2
 

0 1 𝑖 𝑖 + 1 𝑖 + 2 𝑁 

All S All H 

Proportional increase 
in probability of 
trading when being 
Soft over Hard, as a 
function of perspective 

State Space 

1
2

− 𝑠

𝑠
 

At state 𝑥 = 𝑖 + 1, a Soft 
agent observes only 
𝑖 other Soft agents so 
switches to Hard 

At state x = 𝑖 + 1, a Hard 
agent sees 𝑖 + 1  other 
Soft agents and so 
switches to Soft 

Denotes absorbing state 

Figure 3.2.1: Base model: absorbing states

better, which is a statement I will return to in Section 2.2.

The fact that means that G (n) is strictly increasing means that there exists a

summary statistic statistic ς (N, p, s) ∈
{
−0.5, 0, 0.5, . . . , N − 1, N − 1

2

}
, defined such

that for all n ∈ {0, 1, ..., N − 1}:

n < ς ⇒ G (n) <
1/2− s
s

n = ς ⇒ G (n) =
1/2− s
s

n > ς ⇒ G (n) >
1/2− s
s

In other words ς (N, p, s) is a cutoff such that for perspectives above it Soft is

better; for perspectives beneath it Hard is better. The effect this has on the dynamics

can be displayed diagrammatically as below in Figure 3.2.1 on page 118:

Theorem 39. No mixed population profile can be an absorbing state. Furthermore,

there are three possible sets of absorbing states, corresponding to the following 3 pos-
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sibilities:

1. If ς (N, p, s) = N − 1
2 then the only absorbing state is x = 0.

2. If ς (N, p, s) = −0.5 then the only absorbing state is x = N .

3. If ς (N, p, s) is neither N − 1
2 or −0.5 then both x = 0 and x = N are absorbing

states.

Furthermore, if ς (N, p, s) < N−1
2 then the Long run equilibrium is x = N ; if

ς (N, p, s) > N−1
2 then the Long run equilibrium is x = 0; if ς (N, p, s) = N−1

2 then

both x = 0 and x = N are stochastically stable.

Proof. The best response dynamic can take us from state x 6= 0 to x − 1 if in state

x, a Soft agent wants to switch to Hard. A Soft agent has perspective x− 1, and so

will switch to Hard if and only if x− 1 < ς (N, p, s). Similarly, for the best response

dynamic to take us from state x 6= N to x + 1 requires a Hard agent to switch to

Soft. At this state a Hard agent has perspective x and so will switch to Soft if and

only if x > ς (N, p, s).

From this it is clear that no mixed population profile can be an absorbing state,

since for x ∈ {1, 2, . . . , N − 1} at least one of x − 1 < ς (N, p, s) and x > ς (N, p, s)

must hold. Considering specific values of ς (N, p, s) it is also clear that the absorbing

states are as stipulated.

Consider ς (N, p, s) = N−1
2 . Then if N is odd the strong basins of attraction

are SB0 =
{

0, 1, . . . , N−1
2

}
and SBN =

{
N+1

2 , . . . , N
}
. If N is even then SB0 ={

0, 1, . . . , N2 − 1
}
and SBN =

{
N
2 + 1, . . . , N

}
while state N

2 is in the weak basin of

both. In both cases the two absorbing states have the same size basins of attraction

and so are both stochastically stable. If we increase ς so that ς (N, p, s) > N−1
2 then

SB0 is bigger, so x = 0 becomes the LRE, and similarly if ς (N, p, s) < N−1
2 then

SBN is bigger, so x = N becomes the LRE.
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3.2.2 Two sided competition

For example, suppose the government announces some building project, which will

be given to the first partnership between a construction firm and supplier of building

materials which puts a plan together to build it for £10 million, If a construction firm

and supplier can come together to build it for £8 million, then there is a £2 million

surplus to be split between the two. The building material suppliers most likely to

be involved in the interaction are those who are more willing to give better prices to

the construction firms and so concede a larger share of the surplus, and likewise for

the construction firms. This situation is formally modeled as follows:

Model

There are NA agents in group A and NB agents in group B. Every agent can

adopt one of two behavioural types {S,H} and so the state space is {0, 1, . . . , NA}×

{0, 1, . . . , NB} = X with typical element x = (xA, xB) denoting that xA of group A

and xB of group B are Soft, while the remaining agents are Hard. The state can

change via an evolutionary dynamic which picks a random agent each period who re-

vises strategy via the best response dynamic with probability 1− ε, and by mutation

with probability ε.

The solution concepts used are the same as before as the notions of absorbing

states, basins of attraction and Long run equilibria still apply to the new two di-

mensional state space. Once again, the set of Nash Equilibria, where no agent can

increase payoff by switching strategy coincides with the set of absorbing states.

Payoffs

Given agents’ behavioural types, the expected payoffs to agents are determined as

follows: Each agent is available for interaction with probability p ∈ (0, 1) and, as

long as there is at least one agent in each group available, an interaction between
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two agents, one from each group will take place, benefiting both the agents involved.

If a Soft agent interacts with a Hard agent then their respective shares are (s, h)

where s ∈ (0, 1/2) and h = 1 − s. From each group the agent selected to take place

in the interaction is selected as follows: In group i ∈ {A,B} if there are mS
i > 0 Soft

agents available then each is selected with probability 1
mSi

. If there are no Soft agents

available then we move onto Hard agents: if there are mH
i > 0 Hard agents available

then each is interacts with probability 1
mHi

; while if there are no Soft or Hard agents

available there is no interaction.

Clearly this can be thought of as a zero sum game, since the sum of all agents’

expected payoffs is
(
1− (1− p)NA

) (
1− (1− p)NB

)
, the probability that an interac-

tion takes place. Agents in the two groups play very different roles. The agents in

your group are your competitors, and how they behave influences your probability of

interacting; while the agents in the other group are your trading partners, and how

they behave influences your expected share of the surplus when interacting. Thus

one would like agents in one’s own group to act Hard and agents in the other group

to act Soft. Figure 3.2.2 on page 122 shows the state space for NA = NB = 5 and

displays its key features:

When the best response dynamic allows for transition between two neighbouring

states this is represented by an arrow. For example, the arrow from state (4, 0) to

(5, 0) indicates that the Hard agent in group A would be better off becoming Soft

and so would make this change given the opportunity, resulting in the state (5, 0).

Any state has up to four neighbours, those states which are horizontally or vertically

adjacent, which are the states that can be reached by exactly one agent changing

behaviour. The relationship between any two neighbouring states is determined by

the best response of the agent who would be required to change behaviour between

the two. This is displayed in Figure 2 for the transition between (2, 4) and (3, 4).

Both states have four Soft and one Hard agent in group B, two Soft and two Hard
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𝑥𝐵 

𝑥𝐴 

0,0 1,0 2,0 5,0 4,0 3,0 

0,1 1,1 2,1 5,1 4,1 3,1 

0,2 1,2 2,2 5,2 4,2 3,2 

0,3 1,3 2,3 5,3 4,3 3,3 

0,4 1,4 2,4 5,4 4,4 3,4 

0,5 1,5 2,5 5,5 4,5 3,5 

Line of 
symmetry 

Arrow points right (up) if Soft does better than Hard 
when 2 of your population and 4 of the opposing 
population are Soft; left (down) if the converse is 

true; and no arrow if they do equally well 

Indicates 
that Hard 
agent in A 
would do 
better by 
switching 

to Soft 

Figure 3.2.2: State space NA = NB = 5

agents in group A. They only differ in the behaviour of the one remaining agent in

group A. So we consider this agents best response, having fixed the others’ actions.

If this agent does better by being Soft then we can transition from (2, 4) and (3, 4)

via the best response dynamic so add a right-pointing arrow between the two states.

Similarly, if Hard gives a higher payoff, we add a left-pointing arrow. If the agent is

indifferent between Soft and Hard then, by our earlier description of the best response

dynamic it is assumed that the agent sticks to its original strategy and so there is no

arrow between the two states.

When NA = NB, there is no asymmetry between the two groups A and B, and

so the relationship between states {(x1, x2) , (x1 + 1, x2)} mirrors the relationship be-

tween states {(x2, x1) , (x2, x1 + 1)}. In figure 2, this is explained between the pairs

of states {(2, 4) , (3, 4)} and {(4, 2) , (4, 3)}. For this reason, the presence of the arrow

(4, 0)→ (5, 0) implies there must also be an arrow (0, 4)→ (0, 5).
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Following the crowd result

Once again, we find that there is a tendency for homogeneous behaviour. For very

similar reasons to the one side competition case analysed in Section 2.1, all agents in

the same group will end up behaving the same way, implying that the only absorbing

states are in the corners. It is possible that all agents in one group are Soft, while all

agents in the other group are Hard. When one group is much larger than the other, it

is quite possible that all agents in the larger group will be Soft, while all agents in the

smaller group be Large, since there is added incentive to be of the more competitive,

Soft type when you have more competitors. When the two groups are the same size

we find that the most stable outcome is for everyone in both groups to behave the

same way.

The analysis proceeds much as before. An agent’s expected payoffs is now the

product of three factors instead of two: as in Section 2.1, the first two factors are the

probability of being selected from one’s own group (θn (i), i ∈ {S,H} is behaviour

and n ∈ {0, 1, 2, . . . , N − 1} is the number of other Soft agents in your group) and the

average share when interacting (vi, i ∈ {S,H}). The third factor is the probability of

someone from the opposite group being available to trade, (1−(1− p)N if N agents in

the opposing group). Since this third factor is independent of their actions of agents,

it can be ignored in the analysis. So just as in Section 2.1, the analysis depends on the

comparison of the proportional gain in probability of interacting from being Soft and

the proportional gain in average share from being Hard. The former is determined

by the behaviour of agents in your own group, who are your competitors; while the

latter is determined by agents in the other group who are your trading partners.

Theorem 40. All absorbing states x = (xA, xB) must have xA ∈ {0, NA} and xB ∈

{0, NB}. If NA = NB = N then either x = (0, 0) or x = (N,N) is an absorbing state

and stochastically stable. Furthermore, if NA = NB = N is odd then x = (0, 0) or

x = (N,N) are the only possible stochastically stable states.
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Proof. Consider an agent in group A and call this agent a. Let nA be the number of

other agents in that group who are Soft in group. As already established in Section

2.1, the proportional increase in the probability of interacting from choosing Soft over

Hard, G (nA) is

G (nA) =

(
1− (1− p)nA+1

)
(NA − nA)

(nA + 1)
(
(1− p)nA − (1− p)NA

) − 1

which is an increasing function of nA. The behaviour of the agents in the opposing

population solely influences the expected share of the surplus when interacting. Let

ua (xB) be the expected share of the surplus agent a gets when interacting, given

that he is Soft and xB of group B are Soft. Clearly ua (0) = s and ua (NB) = 1
2 ,

and furthermore ua : {0, 1, . . . , NB} →
[
s, 1

2

]
is a strictly increasing function of the

number of Soft agents in group B. For any xB, the proportional increase in expected

share when interacting is
1
2−s

ua(xB) which is independent of the behaviour of agents in

group i. Since G (nA) is strictly increasing in nA, while
1
2−s

ua(xB) is independent of nA

we have the following:

G (nA) ≥
1
2 − s
ua (xB) =⇒ G (n̂A) >

1
2 − s
ua (xB) ∀n̂A > nA (3.2.1)

G (nA) ≤
1
2 − s
ua (xB) =⇒ G (n̂A) <

1
2 − s
ua (xB) ∀n̂A < nA (3.2.2)

This implies that, for any given xB, if the best response selection dynamic can

make the transition (xA, xB) → (xA + 1, xB) then it can also make the transition

(xA + 1, xB) → (xA + 2, xB). Thus the only absorbing states have xA ∈ {0, NA}. A

symmetric argument shows xB ∈ {0, NB}.

The other key thing to note is the effect of agents in the other group. Again

consider our agent a from group A and recall that ua (xB) is a strictly increasing
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function of xB. This means that

G (nA) ≥
1
2 − s
ua (xB) =⇒ G (nA) >

1
2 − s
ua (x̂B) ∀x̂B > xB (3.2.3)

G (nA) ≤
1
2 − s
ua (xB) =⇒ G (nA) <

1
2 − s
ua (x̂B) ∀x̂B < xB (3.2.4)

(3.2.1)(3.2.2)(3.2.3)(3.2.4) tell us about horizontal arrows. Applying the same

logic to a group B agent and gives the same formulae, where “A” and “B” are swapped

over, which allows us to make the same conclusions about vertical arrows.

The main things to note are displayed on Figure 3.2.3 on page 126. The effect

of these equations on the dynamic is illustrated in diagram (a). If there is a right

pointing arrow between two states such as (1, 1)→ (2, 1) (or more precisely, as long as

there is no left-pointing arrow) then (3.2.1) and (3.2.3) imply that there must also be

right pointing arrow between two states to the northeast of them. The vertical arrow

analogues of these equations imply that the same conclusions hold for states to the

northeast of any vertical arrows. Similarly, (3.2.2) and (3.2.4) and their vertical arrow

analogues imply similar results for states to the southwest of any left or downward

pointing arrows. In diagram (a) the arrow (3, 2) → (3, 1) implies the existence of

another six downward arrows between states to the southeast.

From this diagram it is then clear that any absorbing states must be in the corners,

that is xA ∈ {0, NA} and xB ∈ {0, NB} (in fact (3.2.1) and (3.2.2) together with their

vertical arrow analogues suffice for this statement). To show that an absorbing state

exists, look at diagram (b). In order for (0, 0) not to be absorbing, at least one of

(0, 0) → (0, 1) or (0, 0) → (1, 0) must be possible under the best reply dynamic.

Suppose it is the latter, (0, 0)→ (1, 0) (the other case is very similar). Then, as seen

on diagram (b), this implies that we have right arrows everywhere. Now, (NA, 0) is

an absorbing state unless (NA, 0)→ (NA, 1) is possible, but as shown on the diagram,

this implies (NA, NB) is an absorbing state. Hence at least one of the four corners
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Figure 3.2.3: Possible dynamics
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must be an absorbing state.

Now suppose NA = NB = N . Since groups A and B are now completely symmet-

ric, (0, N) is absorbing if and only if (N, 0) is absorbing. If neither are absorbing then

at least one of the other two corners (0, 0) and (N,N) must be absorbing, and hence

at least one is stochastically stable since the set of stochastically stable states is a sub-

set of the set of absorbing states. If (0, N) and (N, 0) are absorbing, then, since there

(N, 0) → (N − 1, 0) is not a link, (3.2.3) implies the links (N − 1, i) → (N − 1, i)

for any i ∈ {1, . . . , N}. If we also apply (3.2.4), together with their vertical arrow

analogues, we get all the arrows in bold in diagram (c) and hence we can see that

(0, 0) and (N,N) must both be absorbing.

Bearing in mind the symmetry discussed in Figure 3.2.2 on page 122, it is clear

that the basin of attraction of (0, N) is the same size as that of (N, 0). Applying

our four equations and their vertical arrow analogues, we see that the biggest we

can make these basins of attraction of (0, N) and (N, 0) is by doing as in diagram

(c), where each of the four corners has the same size basins: just under a quarter of

states in their strong basins and just over a quarter in their weak basins. diagram (c)

represents the case where N = 4, but we can generalise this diagram to the general N

case very easily 3 By the symmetry it is obvious that all four corners are stochastically

stable here. While any changes which are compatible with our four equations and

their vertical arrow analogues, would see the basins of (0, N) and (N, 0) contract,

to the benefit of either (0, 0) or(N,N). This establishes that at least one of (0, 0)

or(N,N) must always be stochastically stable

Consider when N is odd, specifically N = 3 as in diagram (d). To give (0, 3)

and (3, 0) maximum chance of being stochastically stable, suppose we have arrows
3One can think of N/2 corresponding to 2. The relationship between any pair of neighbouring

states in the bottom left quarter, (marked out by (0, 0)− (0,N/2)− (N/2,N/2)− (N/2, 0)− (0, 0)) has
all arrows pointing down or to the left; the bottom right quarter has all arrows pointing down or to
the right, the top right quarter has all arrows pointing up or to the right; the top left quarter has
all arrows pointing up or to the left.
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heading towards (0, 3) and (3, 0). These are the bold arrows in diagram (d). Now,

it must be the case that at least one of (2, 1) → (1, 1) or (1, 2) → (2, 2) are links.

diagram (d) displays the case when (1, 2) → (2, 2) is a link. Using equation (2.3)

and the symmetry between the two groups, we get another three arrows as displayed.

These arrows ensure that moving from either (0, 3) or (3, 0) to (3, 3) requires one

mutation, while moving in the opposite direction requires two. Applying the Freidlin

and Wentzell tree analysis arguments (see [17, 24, 45]) it is clear that trees with root

(3, 3) must have a lower cost in terms of mutations needed than trees with root either

(0, 3) or (3, 0), and hence neither (0, 3) or (3, 0) can be stochastically stable

The same argument also holds for general odd N . It must be the case that at

least one of
(
N+1

2 , N−1
2

)
→

(
N−1

2 , N−1
2

)
or
(
N−1

2 , N+1
2

)
→

(
N+1

2 , N+1
2

)
are links. In

the former case a tree with root (0, 0) has a lower cost than any tree with root (0, N)

or (N, 0); In the latter case a tree with root (N,N) has a lower cost than any tree

with root (0, N) or (N, 0). Either way, neither (0, N) or (N, 0) can be stochastically

stable.

Further Comments

In both the models of Sections 2.1 and 2.2, everybody in the same group will act

the same way. The intuition for this result lies in the analysis of Section 2.1, which

argued that a particular agent is better off being Soft if and only if

θS (n)− θH (n)
θH (n) >

1
2 − s
u
⇐⇒ θS (n)

θH (n) >
1
2 − s
u

+ 1 (3.2.5)

The left hand side of the inequality, the ratio θS(n)
θH(n) , depends on the state within that

agent’s own group, which are the agents it is competing against. The right-hand side,
1
2−s
u

+ 1, where u is the average share of a Soft agent when interacting depends on the

state in the other group, which are that agent’s potential partners. As the number
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of Soft agents in the other group increases, so does u, and hence this decreases the

right-hand side of the inequality. Thus we see a force pulling agents toward copying

the prevailing behaviour of their trading partners.

If the size of one’s own group (the number of your competitors) is fixed, the left

hand side of the inequality is increasing in the number of competitors who are Soft,

which implies the follow the crowd result within one’s own group. We can also use

this equation to discuss how the preponderance of Soft or Hard behaviour depends

on the models exogeneous parameters: group size and p, s. The addition of extra

competitors, whether they are Hard or Soft increases the ratio θS(n)
θH(n) and thus creates

a pressure toward Soft behaviour. Increasing the probability of being available, p, also

clearly increases θS(n)
θH(n) , and so creates a pressure toward Soft behaviour. Increasing s

reduces the incentive to act Hard, decreasing
1
2−s
u

+ 1 and thus also creates a pressure

toward Soft behaviour.

Intuitively if these parameters are all on the large side then the joint pressure

towards being Soft would overwhelm any herding pressure towards Hard and so the

only absorbing state would be everyone on the group being Soft. Conversely, if

these parameters are all relatively small, everyone will act Hard. In between the two

extremes, we get a range of parameter values for which both everyone acting Hard

or Soft is an absorbing state. Which of these two states is likely to prevail in the

short run depends on precedent, that is where we start from. While in the long run,

applying stochastic stability, it is the size of the basins of attraction which matter.

Theorem 6 said that if both groups are the same size then, in addition to intra-

group herding of behaviour, we should also expect inter-group herding of behaviour.

The intuition following equation (3.2.5) suggests that this result should still pertain

when the two groups are of similar size. However, when the two groups are of very

different sizes this will no longer be the case. As already explained, the greater the

number of competitors, the greater the pressure toward Soft behaviour, so if the group
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size difference is large enough, there are parameter choices for which everyone in the

small group acts Hard and everyone in the larger group acts Soft.

Example 41. Let NA = 6, NB = 2, p = 0.3, s = 0.3

Then the only absorbing state is x = (6, 0) where all of A are Soft and all of B

are Hard. At this equilibrium B-group agents are both three times more likely to be

involved in an interaction and take the lion’s share,0.7 from each interaction. This

dual effect means that the expected payoff of B-group agents is six times greater than

A-group agents, This example shows that having more competitors can cause agents

the dual loss of being both less likely to interact, and be subject to less favourable

terms of trade when interacting.

3.3 Adding distortions: the possibility of mixed

behaviour

In Section 2, all agents always interacted in the same way because of the nice, smooth

way in which their incentives worked: the probability of interacting was always higher

when Soft than when Hard, and decreasing in a very smooth way in the number of

competitors who are Soft. In this Section I add in distortions to alter the above

set up. In Section 3.1, all agents come from the same group and interaction may

occur between any two of them. This means that the previous separation between

competitors and trading partners no longer exists. Furthermore the probability of

interacting no longer decreases in the number of others who are Soft in the same

smooth way as before. The result is that it is now possible to have mixtures of

behaviour as opposed to the herding results of Section 2.

Sections 3.2 and 3.3 consider a model where one agent owns the opportunity to

interact and so are guaranteed to be involved in that interaction. The possibility of

being involved in the interaction regardless of your behaviour gives an incentive to
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act Hard. Section 3.2 considers the two group case, and Section 3.3 considers the

one group case. In Section 3.2, it is found that this distortion may be big enough to

overwhelm the pressures towards herding, while in Section 3.3, this is not the case

and the herding results still persist.

3.3.1 One group, two spaces to be filled.

In this section I modify the Section 2.2 model by assuming that all agents are from one

single group, any two of whom can interact to split the surplus of size one. Once again

the two agents who do interact are the softest available, with ties broken randomly.

Since there is one group of N agents, the state space is once again X = {0, 1, . . . , N}

where x ∈ X means x Soft agents and N − x Hard agents.

More formally, there is one group of N agents. Each agent is either Hard or Soft

and payoffs are determined as follows: Each agent becomes available with probability

p ∈ (0, 1). If two or more agents are available for interaction, then an interaction

takes place benefiting both agents involved, otherwise no interaction takes place and

so all agents get zero payoff. Assuming two or more agents are available, let mS be

the number of available Soft agents and mH the number of available Hard agents.

If mS ≥ 2, then each Soft agent is involved in the interaction with probability 2
mS

;

if mS = 1 then the available Soft agent is involved in the interaction, together with

one of the available Hard agents, each of which are selected with probability 1
mH

; if

mS = 0 then the interaction happens between two of the available Hard agents, each

of which are selected with probability 2
mH

. If two agents of the same type interact

they split the surplus (1/2, 1/2), while if two agents of different types interact the shares

to the Soft and Hard agents respectively are (s, 1− s) where s ∈ (0, 1/2).

Note that as in Section 2.2, this is a zero-sum game since the sum of all agents

expected utilities equals the probability of an interaction taking place, which is 1 −

(1− p)N . Although since all agents are both competitors and trading partners to all
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Figure 3.3.1: N = 4 example

other agents, it is no longer clear how one agent’s behaviour will affect the payoff of

another.

Result: Mixed population possibilities

In Section 2.2, every agent was either a trading partner or a competitor, and we found

that there was a force pressuring agents to follow the actions of both. Now each

agent is both a trading partners and competitor and so one might expect pressures

to follow other agents again, leading to a herding of behaviour result. This is not the

case. Unlike in Section 2, it is now possible to have a mixture of agent types in the

population long term. I give an example of this:

Example 42. N = 4. See Figure 3.3.1 on page 132

1. If p = 0.3, s = 0.4 then the absorbing states are {0, 2, 4}.

2. If p = 0.3, s = 0.45 then the absorbing states are {2, 4}.

The reason for this change is that the probability of interacting functions do not

behave in the same monotone, smooth manner as in Section 2. As in Section 2, if

there is only one Soft agent, then this agent interacts whenever available, that is with
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probability p. However, unlike in Section 2, when there are two Soft agents, both still

interact with probability p. In fact there is reason to think the state x = 2 as being

quite stable for a large range of parameters. At this state, both Soft agents are sure to

interact whenever available, and when interacting have a p chance of interacting with

the other soft agent. Figure 4 (c) shows that there is a decent range of parameters

(p, s) for which the state x = 2. Any parameter pair (p, s) ∈ (0, 1)2 between the two

curves has x = 2 as an absorbing state.

3.3.2 Owning opportunities: Two groups

In all three models so far it has been assumed that an opportunity for interaction is

just presented and any pair of agents can interact. By contrast, in this Section and

the next, I will assume that one randomly chosen agent discovers or is endowed with

the possibility to interact. In other words, this agent owns the interaction opportunity

and will search the set of his potential trading partners to find someone to interact

with, in the same way as agent B did in Section 2.1

In this section I assume two groups of agents. As in Section 2.2, all interactions

take place between agents from different groups. So if an agent in A (B) discovers an

interaction opportunity, he looks round group B (A) asking each in turn, starting with

the Soft agents, until he finds a partner who is available to interact. The assumption

made here is that agents in both groups can discover opportunities and all agents

have the same probability of being the one to discover an opportunity. If we made

the converse assumption that only agents in one group, say B ever discovers the

opportunities then this is equivalent to the model already analysed in Section 2.1,

since, trivially, all agents in group B have the incentive to behave Hard.
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Model

There are NA agents in group A and NB agents in group B. Every agent can

adopt one of two behavioural types {S,H} and so the state space is {0, 1, . . . , NA}×

{0, 1, . . . , NB} = X with typical element x = (xA, xB) denoting that xA of group A

and xB of group B are Soft, while the remaining agents are Hard. The state can

change via an evolutionary dynamic which picks a random agent each period who re-

vises strategy via the best response dynamic with probability 1− ε, and by mutation

with probability ε. All this is the same as in Section 2.2.

Payoffs

Given agents’ behavioural types, the expected payoffs to agents are determined as

follows: nature randomly selects an agent who becomes endowed with an opportunity,

enabling him to split a surplus of size 1 with a partner. This agent looks for a partner

amongst agents of the other group, asking each in turn, until he finds an agent with

whom he can interact. As before, he asks all Soft agents before all the Hard ones, with

the ordering between any two agents in the group of the same type being random. If

the agent with the opportunity finds a partner from the other group to interact with,

the two of them split the surplus according to their behaviours as before: equal split

if behaviours are the same, or (s, 1− s) where s ∈ (0, 1/2) in favour of the Hard agent

if their behaviours are different.

Clearly this can be thought of as a zero sum game, since the sum of all agents’

expected payoffs is NB
NA+NB

(
1− (1− p)NA

)
+ NA

NA+NB

(
1− (1− p)NB

)
, the probability

that an interaction takes place. As in Section 2.2, the agents in your own group are

your competitors, whom you wish would act Hard, while the agents in the opposing

are your trading partners who you wish would act Soft.
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Result: Mixed population possibilities

Agents have two chances to interact. The first comes from possibility of being the

one to discover the opportunity, which happens with probability 1
NA+NB . The second

comes from the possibility that a member of the opposing group discovers the oppor-

tunity and selects you to interact with. The payoffs agents get is the sum of these

two possibilities. The effects of the second have been discussed at length in Section

2, where it was found that there is pressure supporting both intra- and inter-group

herding. While the effect of the first possibility is simply to create a pressure towards

Hard behaviour, since given any behaviour mix in the opposing population, acting

Hard adds an extra 1
2 − s on to the average share.

Given this, one might logically expect the herding results of Section 2.2 to persist

here. However this is not the case. As the following example demonstrates, the

distortion from the first possibility has a large enough effect to move us away from

even intra-group herding.

Example 43. Let NA = 4, NB = 2, p = 0.9, s = 0.15.

There are two Nash equilibria and absorbing states here. These are x = (xA, xB) =

(2, 2) and (0, 0). In other words, it is possible that half of population A are Soft and

the other half are Hard. Figure 3.3.2 on page 136 illustrates the evolutionary dynamics

over the state space.

Looking at the basins of attraction, we could apply stochastic stability. The tran-

sition (0, 0) → (2, 2) requires two mutations, whereas (0, 0) ← (2, 2) only requires

one. This shows that (2, 2) is not stochastically stable, and (0, 0) is the LRE. Al-

though, in general it is possible for states without herding to be stochastically stable.

If s is increased to 0.2, making Soft more attractive, we have a reversal of four ar-

rows (in favour of more Soft agents, as one would expect). Under this new dynamic

the absorbing states would be {(0, 0) , (3, 1)}. Now, transitioning between the two in

either direction would only require one mutation and so both absorbing states are
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𝑥𝐴 

Denotes changes when 
increase s to 0.2 

Figure 3.3.2: Example: NA = 4, NB = 2, p = 0.9.

stochastically stable.

The reasons for this break from herding behaviour may not at first be entirely clear.

Indeed much of the intuition from Section 2.2 carries over: The effect of agents in the

other group is unambiguous. Being Hard instead of Soft will always increase one’s

share when interacting by 1
2 − s. The relevance of the other group’s behaviour is in

determining the base from which this increase occurs. When the opposing population

is mainly Soft, this increase is from a higher base and so represents a lower propor-

tional change compared to when the opposing population is mainly Hard. Thus, just

as in Section 2.1, there is a pressure toward inter-group herding of behaviour

The effect of other agents’ behaviour in one’s own population is more complicated.

By the analysis of Section 2, taking into account only the expected utility from mem-

bers of the other group, we get pressures toward intra-group herding. However, we also

have to consider an agent’s expected utility from the chance of being the one to dis-

cover the opportunity. This adds an extra 1
NA+NB

(
1
2 − s

) (
1− (1− p)Ni

)
to the util-

ity of a Hard type to an agent in group j 6= i, i, j ∈ {A,B}. While this is a constant,

it still has an affect: The analysis of Section 2, shows that the ratio of the utilities
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Un (S) /Un (H) is increasing in n, the number of one’s own group who are Soft. How-

ever as n becomes large, both Un (S) and Un (H) are decreasing and so their difference,

Un (S)−Un (H) can fall. If Un (S)−Un (H) drops below 1
NA+NB

(
1
2 − s

) (
1− (1− p)Ni

)
then being Hard is preferable.

Intuitively, what is happening is the following: when enough other agents in one’s

group are Soft, the utility one gets from interacting when members of the other group

discover opportunities diminishes, whether that agent try to compete by acting soft

or not. So it becomes in the agent’s interests to put all his eggs into the basket of

maximising payoff from the times when he discovers the opportunity, which means

being Hard.

3.3.3 Owning opportunities: one group

Model

There is a single group of N agents, each of whom can adopt one of two behavioural

types {S,H}. Thus the state space is X = {0, 1, . . . , N} where x ∈ X means x Soft

agents and N − x Hard agents. The state can change via an evolutionary dynamic

which picks a random agent each period who revises strategy via the best response

dynamic with probability 1− ε, and by mutation with probability ε.

Payoffs

Given agents’ behavioural types, payoffs are determined as follows: nature randomly

selects an agent who becomes endowed with an opportunity, enabling him to split a

surplus of size 1 with a partner. This agent looks for a partner amongst the other

agents of the group, asking each in turn, until he finds an agent with whom he can

interact. As before, he asks all Soft agents before all the Hard ones, with the ordering

between any two agents in the group of the same type being random. If the agent with

137



the opportunity finds a partner from the other group to interact with, the two of them

split the surplus according to their behaviours as before: equal split if behaviours are

the same, or (s, 1− s) where s ∈ (0, 1/2) in favour of the Hard agent if their behaviours

are different.

Clearly this can be thought of as a zero sum game, since the sum of all agents’

expected payoffs is 1− (1− p)N−1, the probability that an interaction takes place. As

in Section 3.1, the other members of the group are both your trading partners and

competitors, so it is not immediately clear how the actions of one agent will change

the payoff of another.

Result: return to herding

Pick an agent with perspective n ∈ {0, 1, ..., N − 1}, meaning that n of the other

N − 1 agents are Soft. Then the agent’s expected payoff from the two behaviours are

Un (S) = 1
N

1
2

n∑
j=1

qj + s
N−1∑
j=n+1

qj

+ n

N

1
2

n∑
j=1

qj

+ N − n− 1
N

 s

n+ 1

n+1∑
j=1

qj



Un (H) = 1
N

(1− s)
n∑
j=1

qj + 1
2

N−1∑
j=n+1

qj

+ n

N

 1− s
N − n

N−1∑
j=n

qj

+N − n− 1
N

1
2

n+1∑
j=1

qj



where qj = p (1− p)j−1 is the probability that interaction takes place between

the agent who owns the opportunity and the jth agent he asks. Letting F (n) =

N (Un (S)− Un (H)), so that given perspective n ∈ {0, 1, ..., N − 1}, this agent’s op-

timal behaviour depends on the sign of F (n). After some algebra we obtain
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F (n) = Ns

n+ 1
(
1− (1− p)n+1

)
− n (1− s)

N − n
p (1− p)n−1 −

sp (1− p)n − N (1− s)
N − n

(
(1− p)n − (1− p)N−1

)

Unfortunately, this function is not that easy to deal with. Unlike the function

G (n) from Section 2, it is not a monotone increasing function. It is mostly increasing,

but for some parameters it will be decreasing for n close to 0 or N − 1. Nevertheless,

having, explored, this function for a very wide range of parameters using a computer

program, I believe the following assumption to be true:

(A1): For any choice of parameters (N, p, s), and any n ∈ {0, 1, ..., N − 2},

F (n) ≥ 0 =⇒ F (n+ 1) > 0

Assumption (A1) implies the existence of some cutoff, such that Hard is best when

the number of agents choosing Soft is below, and Soft is best when the number of

agents choosing Soft is above. This leads me to use the summary statistic τ (N, p, s) ∈{
−0.5, 0, 0.5, . . . , N − 1, N − 1

2

}
, defined such that for any n ∈ {0, 1, ..., N − 2}:

n < τ ⇐⇒ F (n) < 0

n = τ ⇐⇒ F (n) = 0

n > τ ⇐⇒ F (n) > 0

Note that τ (N, p, s) = N− 1
2 means that for parameters (N, p, s) Hard always does

better than Soft, irrespective of the other agents’ behaviour and so the only absorbing

state is x = 0 where everybody is Hard. Similarly, τ (N, p, s) = −0.5 implies that

Soft always does better than Hard and so the only absorbing state is x = N .
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N = 3 s
0.2 0.25 0.3 0.35 0.4 0.45

p

0.3 2.5 2.5 2.5 2.5 2.5 2.5
0.5 2.5 2.5 2.5 2.5 2 −0.5
0.7 2.5 2.5 2.5 1.5 −0.5 −0.5
0.8 2.5 2 1.5 0.5 −0.5 −0.5
0.9 1.5 1.5 0.5 0.5 −0.5 −0.5

N = 40 s
0.05 0.1 0.15 0.2 0.25

p

0.1 39.5 25.5 11.5 0.5 −0.5
0.2 8.5 1.5 −0.5 −0.5 −0.5
0.3 2.5 −0.5 −0.5 −0.5 −0.5
0.4 0.5 −0.5 −0.5 −0.5 −0.5
0.5 −0.5 −0.5 −0.5 −0.5 −0.5

N = 10 s
0.1 0.15 0.2 0.25 0.3 0.35 0.4

p

0.1 9.5 9.5 9.5 9.5 9.5 9.5 2.5
0.2 9.5 9.5 9.5 9.5 3.5 −0.5 −0.5
0.3 9.5 8.5 4.5 0.5 −0.5 −0.5 −0.5
0.4 5.5 2.5 0.5 −0.5 −0.5 −0.5 −0.5
0.5 2.5 0.5 −0.5 −0.5 −0.5 −0.5 −0.5
0.6 1.5 0.5 −0.5 −0.5 −0.5 −0.5 −0.5
0.7 0.5 −0.5 −0.5 −0.5 −0.5 −0.5 −0.5

Table 3.3.1: Some examples of τ (N, p, s) for different parameter values

Table 3.3.1 on page 140 gives a wide range of parameters for which assumption

(A1) holds and finds τ (N, p, s) in each case.

As one would expect, the larger N , p or s are, the lower is τ (N, p, s) and hence

the more attractive being Soft becomes.

Figure 3.3.3 on page 141 shows how the value of τ (N, p, s) determines the move-

ment between states under the best response dynamics. For n ∈ {0, 1, ..., N − 1}, the

sign of F (n) determines the relationship between states n and n+ 1: a left-pointing

arrow if F (n) < 0; no arrow if F (n) = 0; a right-pointing arrow if F (n) > 0.

With Figure 3.3.3 on page 141 in mind, the following results become obvious.

Theorem 44. Assuming assumption (A1) holds, so that τ (N, p, s) is well defined:

1. If τ (N, p, s) = N − 1
2 then the only absorbing state is x = 0.

2. If τ (N, p, s) = −0.5 then the only absorbing state is x = N .

3. If τ (N, p, s) is neither N− 1
2 or −0.5 then both x = 0 and x = N are absorbing

states.

Furthermore, if τ (N, p, s) < N−1
2 then the Long run equilibrium is x = N ; if
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Figure 3.3.3: Dynamics for one group, stochastic owning of opportunity

τ (N, p, s) > N−1
2 then the Long run equilibrium is x = 0; if τ (N, p, s) = N−1

2 then

both x = 0 and x = N are stochastically stable.

This is the same result as was found in Section 2.1. The proof of this theorem is

the same as the proof of Theorem 39 and hence is not repeated. This Theorem tells

us that the herding behaviour seen in Section 2.1 should pertain once again here.

Indeed, if one compares the model here to that of Section 2.1, there are great

similarities: for each agent in our current model, the agent takes the role of a group

A agent in Section 2.1 with probability N−1
N

and takes the role of B in Section 2.1

with probability 1
N
. This change means that all other agents in the group are trading

partners as well as competitors. But as Section 2.2 argues, this change in itself

should not remove the herding result since it is in one’s interests to adopt the same

strategy of both competitors and trading partners. The one remaining factor that

could cause a break with the herding behaviour is that seen in Section 3.2: the idea

that if most others are Soft, one’s chance of interacting is so small when someone

else gets the opportunity, that it is not worth competing, and that one would be

better off concentrating on maximising the share of the surplus when discovering the
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opportunity oneself. This turns out not to be the case.

One explanation for the difference in results between Section 3.2 and 3.3 lies

in the construction of Example 43. Here the two groups were of different sizes.

This dramatically reduced the incentive for group A agents to compete, since there

were only two group B agents who may discover opportunities, and four group A

agents competing to be picked. So for example, if over a period of time, every agent

is expected to discover one opportunity, an average A agent only expects half an

interaction from the source of being picked by group B agents. While in Section

3.3 there are N − 1 other agents who may discover opportunities, and the same

number competing, thus restoring the one-to-one balance. It remains an open question

whether a mixing of intra-group behaviour is possible when NA = NB.

3.4 Conclusion

This chapter investigated the tradeoff between adopting Hard and Soft strategies.

The trade-off is self evident: a Hard negotiating position has the advantage of tak-

ing a greater share of the surplus generated in each interaction, while having the

disadvantage of being less likely to interact.

One way of analysing this tradeoff would be via the Hawk-Dove game where

“Hawk” means to insist on a high portion of the surplus, while “Dove” means to be

willing to compromise to reach agreement. It is well known [30, 29] that this theory

predicts a mixture of behavioural types. If agents are matched together from a single

population then the monomorphic outcomes of all Hawk or all Dove are not stable.

The unique ESS predicts a certain mixture of Hawks and Doves. As this is ESS, it

is locally stable in the sense that if more Doves were to appear, the Hawks would be

getting a higher payoff than Doves and so would expand faster, returning us to our

specified Hawk-Dove mix. In fact, this is globally stable. If there are two populations
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of agents, where all interactions take place between agents in opposing groups, then

the predictions of the Hawk-dove model are one group of Hawks and another group

of Doves, where the number of agents in each population is irrelevant.

The approach here is to drop the veil of ignorance assumed in the Hawk-Dove

model by assuming that all agents know each others behavioural types and create

a model where the probability of interacting depends on the behaviour of others as

well as your own. This model generates almost polar opposite results to Hawk-Dove.

With one group of agents, we find the absorbing states of the evolutionary dynamic

being that everyone acts in the same way. This herding of behaviour is both apparent

in the one population models of Sections 2.1 and 3.3, as well as the two group model

of Section 2.2. There are both pressures toward intra-group herding, and in the two

group models, inter-group herding of behaviour, in stark contrast to the results under

Hawk-Dove.

Models of the kind studied here will not always deliver herding of behaviour. This

is shown in Sections 3.1 and 3.2 which consider very similar models to Section 2.

They show that a small change in the specifics of the model can cause distortions to

the smooth analysis of Section 2 and break the herding pressures.
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