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Abstract

We examine continuum percolative problems on the Delaunay hypergraph structure. In
particular, we investigate the existence of a percolation transition for a class of Gibbsian
particle systems with random hyperedges between groups of particles. Each such system
will take the form of a random cluster representation of a corresponding continuum Potts
model with geometric interactions on hyperedges of the Delaunay hypergraph structure.
Any percolation results in the random cluster representation will lead to the existence of
a phase transition for the continuum Potts model: that is, the existence of more than one
Gibbs measure.

The original components of this research are as follows. After extending the ran-
dom cluster representation of [GH96] to hypergraph structures, we achieve a phase transi-
tion for Delaunay continuum Potts models with infinite range type interactions – extending
the work of [BBD03] in the process. Our main result is the existence of a phase transi-
tion for Delaunay continuum Potts models with no background interaction and just a soft
type interaction. This is an extension of the phase transition results for the hardcore (resp.
softcore) Widom–Rowlinson model of [R71] and later [CCK94], (resp. [LL72]). Our fi-
nal piece of originality comes in the guise of an overview of the obstacles faced when
investigating further percolative problems in the Delaunay hypergraph structure such as the
Russo–Seymour–Welsh Theorem.
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Chapter 1

Introduction

The Ising model, where each vertex of a finite graph is assigned a spin of−1 or +1, was first

introduced in 1925 and has been essential in producing elegant mathematics that describes

the underlying physics of a ferromagnet. The spins −1 and +1 correspond to the magnetic

moments and the particle interaction is defined so that neighbouring particles with the same

spin are favoured over ones with opposite spin. The interaction is stronger at lower temper-

atures and in particular, for temperatures below a critical value, is strong enough to result

in the particles of one type dominating over the whole graph. In 1936, Peierls showed the

existence of such a phase transition for the Ising model in two dimensions [Pe36], whereas

an exact solution was given by Ontager in 1944, [On44]. The Potts model is a generalisa-

tion of the Ising model where vertices take spins (which we now call marks) from the finite

set 1, . . . , q instead of using −1 and +1. The Potts models behave in the same way to the

Ising model: at low enough temperature, one mark will dominate.

Percolation for a disordered medium was first introduced in 1957 by Broadbent and

Hammersley [BH57] using the example of a porous stone submerged in a volume of water.

In the bond percolation model in particular, each edge of a graph is assigned, independently

of the others, to be open, with probability p, or closed with probability 1 − p. The perco-

lation problem is to investigate the existence of an infinite connected component of open

edges for different values of p. In the porous stone in water analogy, this corresponds to

the question of whether or not water reached the centre of the stone. For any given p, the

probability that an infinite connected component exists is either zero or one, and since this

probability is increasing in p, there must exist 0 ≤ pc ≤ 1, such that for p < pc the prob-

ability is zero, and for p > pc it is one. Fast forward to today, and percolation is now a

mature, wide reaching, well studied area of probability theory.
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Although the random cluster model, invented around 1970 by Fortuin and Kaste-

leyn [FK69], [FK72], first had the purpose of unifying percolation with the Ising and Potts

models, it quickly became a beautiful area of study in its own right. So too, it seems, is

the case for the continuum random cluster representation of the continuum Potts models,

first defined by [GH96], which continues to be the source of interesting problems. Whereas

the (non-continuum) random cluster model, which we will call the discrete random cluster

model throughout this thesis, has played a key role in many proofs and studies, includ-

ing for example, the Wulff construction, the discontinuity of the phase transition for large

cluster-factor, the Widom-Rowlinson two type lattice gas and the Edwards-Anderson spin-

glass model, the situation in the continuum setting is quite different as results are far fewer.

In [GH96], a phase transition is shown for a class of multi-type particle systems with a

finite range repulsion between pairs of particles with different type. Later, [BBD03] used

a similar proof to show the existence of a phase transition for Delaunay Potts models with

hardcore repulsion between all pairs of particles and finite range type dependent interac-

tions on the edges of the Delaunay graph.

In this study, we too will focus on Delaunay Potts models in R2, and indeed Delau-

nay random cluster models where interactions between particles occur on edges or triangles

of the Delaunay graph. The Delaunay graph, in our two-dimensional setting, is the unique

triangulation of the plane given a set of points. It satisfies the criteria that the circumcir-

cles of all triangles have an empty intersection with the point set. The Delaunay graph

corresponds to the dual graph of the Voronoi tessellation. It is straightforward to construct

the Delaunay graph from the Voronoi tessellation: just join, with an edge, any two points

whose Voronoi cells share a 1-dimensional face. Since the Voronoi cell of a point is the

subset of the plane that is closer to this point than any other, the Delaunay graph is a nearest

neighbour structure for a given set of points. This nearest neighbour graph gives rise to a

prominent class of Gibbs measures with interactions that depend on the local geometry of

point sets in R2, see [Der08] and [DDG10]. Systems like this are often studied in biology

to model cell interactions [FRA07], where interactions depend on the area of the cells and

the distance between them.

A thermodynamic system is said to have a phase transition if the system has more

than one Gibbs measure/equilibrium state. Phase transitions are an important area of re-

search in probability theory and statistical mechanics and aside from those described above,

notable results in the continuum include the hardcore (resp. softcore) Widom-Rowlinson

model of [R71] and later [CCK94], (resp.[LL72]). In this study we look at a phase transi-

tion from a probabilistic perspective through the use of Gibbs measures and point processes.
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A realisation of such a point process is called a configuration. A configuration comprises

of a number of particles (or points in R2), each with a mark assigned to it from a finite

mark space. We consider two types of interaction between the particles: one which is mark

dependent called the type interaction and one which is mark independent called the back-

ground interaction. All interactions occur between pairs of particles that share an edge in

the Delaunay graph or triples of particles that comprise a triangle in the Delaunay graph.

These pairs and triples are both called hyperedges of the Delaunay hypergraph structure.

Interactions such as these are called geometric because they depend on the geometrical

structure of the Delaunay triangulation. A Delaunay Potts model and its corresponding

Delaunay random cluster representation are determined by the background and type inter-

actions, together with a reference measure.

We draw your attention to some differences between geometric models on the De-

launay hypergraph structure and that of classical models such as the Widom-Rowlinson

model and softcore variant of Lebowitz and Lieb [LL72]. The first is that edges and trian-

gles in the Delaunay hypergraph are each proportional in number to the number of particles

in the configuration. However, in the case of the complete hypergraph – on which interac-

tions occur in the classical (non-geometric) models – the number of edges is proportional to

the number of particles squared and the number of triangles is proportional to the number of

particles cubed. Secondly, in the complete graph of the classical models, the neighbourhood

of a given point depends only on the distance between points and so the number of neigh-

bours increases with the activity parameter z of the underlying point process. This means

that the system will become strongly connected for high values of z. This is not the case for

the Delaunay hypergraphs which exhibit a self-similar property. Essentially, as the activity

parameter z increases, the expected number of neighbours to a given point in the Delaunay

hypergraph remains the same, see [Mø94]. Therefore, in order to keep a strong connectivity

in our geometric models on Delaunay hypergraphs, we use a type interaction between parti-

cles of a hyperedge with a non-constant mark. Finally, and perhaps most importantly, is the

question of additivity. Namely, suppose we have an existing particle configuration ω and

we want to add a new particle x to it. In the case of classical many-body interactions, this

addition will introduce new interactions that occur between x and the existing configura-

tion ω. However, the interactions between particles of ω remain unaffected, and so classical

many-body interactions are additive. On the other hand, in the Delaunay framework, the

introduction of a new particle to an existing configuration not only creates new edges and

triangles, but destroys some too. The Delaunay interactions are therefore not additive, and

for this reason, attractive and repulsive interactions are indistinct. In the case of a hard

exclusion interaction, we arrive at the possibility that a configuration ω is excluded, but for
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some x, ω ∪ x is not. This is called the non-hereditary property, [DG09], which seems to

rule out using techniques such as stochastic comparisons of point processes [GK97].

Although we show the existence of a Gibbs measure for each of our models, the

primary focus of this thesis is that of continuum percolation. In showing the existence of

percolation (for large activity and low temperature) of Delaunay random cluster represen-

tations, we also happen to show the non-uniqueness of Gibbs measures, and essentially,

a phase transition for the Delaunay Potts models. In fact, one last piece of information

is needed to show a phase transition. That is, for small activity and high temperature, the

Gibbs measure is unique. By interpreting percolation in our Delaunay random cluster repre-

sentation via a site percolation model, we prove our main results thanks to a discretization

to the integer lattice, on which we show either site percolation, or mixed site-bond per-

colation, depending on the model. The main technical issue is to control the Papangelou

conditional intensities of the marginal point distribution of the Delaunay random cluster

measure with respect to the Gibbs process with background interaction. Heuristically, this

is the conditional probability of there being a point of the process inside an infinitesimal

neighbourhood of the location x, given the complete point configuration at all other loca-

tions ω. With a hardcore background interaction present, which we show to be equivalent to

a classical hardcore short range repulsion between all pairs of particles, only a lower bound

of the Papangelou conditional intensity is required. However, when we consider models

with only a type interaction, an upper bound for the Papengelou conditional intensity will

be needed as well.

To conclude the introduction, we remark on the makeup of the rest of the thesis. In

Chapter 2, after introducing necessary notations and definitions that will see us through the

rest of the thesis, we will put down an extension of the Fortuin–Kasteleyn (FK) represen-

tation of [GH96] to a hypergraph structure, show that percolation in the Delaunay random

cluster models will imply the non-uniquness of Gibbs measures for the continuum Potts

models and finally give some insight into our techniques to show percolation for certain pa-

rameter regimes. Although all models considered hereafter will be those on the Delaunay

triangulations, all work in Chapter 2 will be done for more general hypergraph structures.

Chapter 3 introduces our first class of Delaunay Potts models. These will exhibit infinite

range type interactions on either triangles or edges of the Delaunay graph and will also have

a hardcore background interaction. Percolation is first shown to occur for models displaying

both the coarse-grain ready and bounded Papangelou properties – to be defined in Sections

3.5.1 and 3.5.2 respectively. We then look at three examples. Our proofs in Chapter 3 draw

inspiration from [GH96] and [BBD03], although we do not benefit from the finite range
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property of the type interaction as in [BBD03], nor from the luxuries, described above, of

classical multi-body interactions as in [GH96].

Chapter 4 introduces our second class of Delaunay Potts models. These will take

the form of Widom-Rowlinson like models, i.e. without a background potential, and will

be seen as an extension to the work of [CCK94] and [LL72]. The key difference is that

the interspecies interaction will only exist on the Delaunay hyperedges. The proofs are

much more complex compared to Chapter 3. This is because, without the crutch that is the

hardcore background interaction, it becomes necessary to perform a much more in depth

analysis of the underlying geometrical properties of the Delaunay triangulations in order to

exhibit some control of the configurations. Chapter 5 sees an end to our investigations into

phase transitions as we steer towards other percolative problems on the Delaunay hyper-

graph structure. These include the so-called Russo-Seymour-Welsh (RSW) Theorem which

relates the probability of an open horizontal crossing of a square to that of an open horizon-

tal crossing (the long way) of a rectangle with short side equal to the length of the square,

see [Ru78] and [SW78]. There are only very few continuum RSW results in the literature,

see [Al96], [Ro90], which is unfortunate, because they would give a greater insight into the

percolative properties of a model and it is thought that an RSW theorem would provide an

important step in a journey towards conformal invariance, similar to [Sm01], see [BS98].

Although a weak version is shown in [BR06a], the RSW theorem has yet to be proved for

Voronoi percolation. We inform the reader of the major obstacles faced when trying to

prove RSW for Voronoi percolation and variants. The final chapter (Chapter 6) consists of

a discussion of the results given in the previous chapters and also gives an outlook, ideas

and conjectures for the field of continuum percolation in the Delaunay setting.
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Chapter 2

Continuum FK representation on
hypergraph structures

In Section 2.1, we define the state spaces of marked and unmarked configurations of par-

ticles as well as other important notation before introducing hypergraph structures, both in

the marked and unmarked cases, in Section 2.2. In Section 2.3 we deal with a deterministic

particle configuration – we fix ω ∈ Ω – and introduce the Potts model and the random clus-

ter model in this discrete setting, similar to [G94]. Although, in this thesis, we are generally

concerned with random structures, i.e. we do not fix ω ∈ Ω, but rather sample ω ∈ Ω using

a suitable Gibbs measure as described in Section 2.4, it is important to fully understand the

discrete case as many of the results turn out to be useful to us later on. It is only then that

we can define what has come to be known, from [GH96], as the continuum Potts model

and continuum random cluster model – we do this in Sections 2.5 and 2.6. In Section 2.7

we discuss percolation in the continuum random cluster model and how this shows the ex-

istence of several distinct Gibbs measures for the corresponding continuum Potts model.

Finally, in Section 2.8, we step away from considering general hypergraph structures, and

formalise the Delaunay hypergraph structure that we will use throughout the remainder of

the thesis.

2.1 Preliminaries

This introduction will be from the view point of continuum systems of particles that lie in

the plane (we only work in two dimensions) and that interact with each other geometri-

cally. That is, pairs, or groups of particles interact according to some underlying geometric

hypergraph structure – quite unlike the classical approach of pair potentials. Each particle

has a spatial location, but as we shall see, a spatial location does not always well define a
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particle. For instance, particles may be marked, and in this case, each particle will have a

spatial location and a mark from some marked space.

Let us introduce the configuration spaces that we will use. We start off with the

space of locally finite subsets of R2:

Ω :=
{
ω ⊂ R2 : |ω ∩ Λ| < +∞ for all Λ ∈ B(R2)

}
,

where B(R2) is the space of all bounded Borel sets of R2. LetF be the σ-algebra generated

by the sets {ω ∈ Ω, NΛ(ω) = n}, where n ∈ N, Λ ∈ B(R2) and NΛ(ω) denotes the

number of points of ω in Λ. More formally, NΛ : Ω→ N is defined as

NΛ(ω) = |ω ∩ Λ|, (2.1)

and are often called the counting variables. As is usual, we take a Poisson point process

with intensity z > 0 as the reference measure on (Ω,F).

Definition 2.1. Let z be a positive real number. A Poisson point process with intensity z

satisfies the following conditions:

1. For Λ ∈ B(R2), NΛ is Poisson distributed with mean z|Λ|, where |Λ| is the standard

Lebesgue measure of Λ.

2. For any n disjoint sets Λ1, ...,Λn ∈ B(R2), the random variables NΛ1 , ..., NΛn are

independent.

We will denote a Poisson point process on Ω with intensity z by Πz .

We also define the mark space. In our study, we restrict ourselves to the case of

a finite mark space, as it will be used to attribute marks or spins to the particles. Let

Σ := {1, . . . , q}, for a positive integer q > 0 denote the mark space. Denote λ as the

reference probability measure on Σ, and set λ(s) = 1/q for s = 1, . . . , q. We denote a

marked point of the plane by x = (x, s), x ∈ R2, s ∈ Σ. Let Ω be the space of marked

configurations, i.e. the set of all pairs ω = (ω, σω) where ω ∈ Ω is the spatial configuration

and σω is the mark vector in Σω:

Ω :=
{
ω : ω = (ω, σω), ω ∈ Ω, σω ∈ Σω

}
.

We may write σω := (σω(x) : x ∈ ω) where σω(x) is the unique mark of x ∈ ω. Let

ρ : Ω → Ω be the projection of the marked point configurations to the positional point

7



configurations defined by (ω, σω) → ω. Let F be the σ-algebra generated by the sets

{ω ∈ Ω, N i
Λ(ω) = n}, where n ∈ N, i ∈ Σ, Λ ∈ B(R2) and N i

Λ(ω) denotes the number

of points of ω in Λ × i. Instead of the reference Poisson point process Πz , we take the

Poisson point process Π
z on Ω with intensity measure zν ⊗ λ. Here, ν is the Lebesgue

measure on R2. The probability space of marked configurations is the following triple:

(Ω,F ,Πz
).

Let Ωf := {ω : |ω| < ∞} ⊂ Ω denote the set of all finite configurations ω. Also let

Ff be the trace sigma-algebra of F on Ωf . For a bounded region Λ ∈ B(R2), we write

ωΛ := ω ∩Λ and ΩΛ := {ω ∈ Ω : ω ⊂ Λ}, with prΛ : Ω→ ΩΛ, ω 7→ ωΛ the projection of

configurations onto Λ. The trace σ-algebra F ′Λ := F|ΩΛ
is the restriction of F to ΩΛ and

FΛ := pr−1
Λ F ′Λ ⊂ F is the σ-algebra of all events that happen in Λ only.

In the case of marked configurations, Ωf andFf are defined analogously. However,

Λ ∈ B(R2) will only refer to the positional part of a marked configuration. In particular, we

set ωΛ := ω∩(Λ×Σ), ΩΛ := {ω ∈ Ω : ρ(ω) ⊂ Λ},F ′Λ := F|ΩΛ
andFΛ := pr−1

Λ F
′
Λ ⊂ F

where prΛ : Ω → ΩΛ satisfying ω 7→ ωΛ is the projection of marked configurations onto

Λ× Σ. Let Θ = (ϑx)x∈R2 be the group of translations, where ϑx : Ω→ Ω is a translation

by the vector −x ∈ R2 that only act on the positions of particles. They have no affect on

their marks.

2.2 Hypergraph structures

In what follows, we are interested in geometrical interactions that act on hyperedges be-

tween points. Suppose H ⊂ Ωf × Ω is measurable. We call H a hyperedge structure if

η ⊂ ω for all (η, ω) ∈ H. If (η, ω) ∈ H, we call η a hyperedge of ω. We will write

η ∈ H(ω), thereby definingH(ω).

2.2.1 Marked hypergraph structures

The definition of a hypergraph structure is easily extended to the space of marked configu-

rations. Suppose H ⊂ Ωf × Ω is measurable. We call H a marked hypergraph structure if

η ⊂ ω for all (η, ω) ∈ H. Similar to the non-marked case, if (η, ω) ∈ H, we call η a hyper-

edge of ω and write η ∈ H(ω). Note that the geometrical properties of a marked hyperedge

η are still defined in terms of the underlying η. Given a marked hypergraph structure, H,
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and an unmarked configuration ω ∈ Ω, define

H(ω) =
⋃

(η,ση)∈H(ω)

{η} (2.2)

as the set of the images, under ρ, of the hyperedges of an arbitrary marked configuration ω

satisfying ρ(ω) = ω. This is particularly useful as when working with marked hypergraph

structures we can easily distinguish between H(ω) and H(ω). In fact, H(ω) is the set of

hyperedges of ω in the corresponding unmarked hypergraph structure G ⊂ Ωf ×Ω, defined

by

G :=
⋃

((η,ση),(ω,σω))∈H

{(η, ω)}.

2.3 Potts model and FK representation on an arbitrary graph

In this section we deal with a deterministic particle configuration – we fix ω ∈ Ω – and

introduce the Potts model and the random cluster model in this discrete setting. It is iden-

tical to that in [G94], except that we consider hyperedges rather than simply edges. Let

H ⊂ Ωf × Ω be a hypergraph structure, but fix ω ∈ Ω. Denote by G = (ωΛ,H(ωΛ))

the finite hypergraph in Λ ∈ B(R2) where ωΛ is the vertex set and H(ωΛ) is the set of

hyperedges of ωΛ. Let p be a constant satisfying 0 ≤ p ≤ 1. A Potts measure, ν(q)
p , is a

measure on the sample space ΣωΛ := {1, . . . , q}ωΛ where each vertex in ωΛ is assigned a

mark from the set {1, . . . q}, with q ≥ 2. Given a mark vector, or configuration σωΛ ∈ ΣωΛ ,

we define

ν(q)
p (σωΛ) =

1

Z1

∏
η∈H(ωΛ)

exp
[
−J

(
1− δσωΛ

(η)
)]
, (2.3)

where Z1 is the normalisation constant given by

Z1 :=
∑

σωΛ
∈ΣωΛ

 ∏
η∈H(ωΛ)

exp
[
−J

(
1− δσωΛ

(η)
)] , (2.4)

the parameter J := ln(1− p)−1 satisfies 0 ≤ J ≤ ∞ and for a hyperedge η ∈ H(ωΛ),

δσωΛ
(η) =

{
1 if σωΛ(x) = σωΛ(y), for all pairs {x, y} ∈ η,
0 otherwise.

(2.5)

The random cluster model, on the other hand, has realisations in the set E given by

E = {0, 1}H(ωΛ). Each such realisation v ∈ E is a vector of 0’s and 1’s called a hyperedge

9



configuration: each hyperedge η ∈ H(ωΛ) is either open or closed. For v ∈ E , let

Ev := {η ∈ H(ωΛ) : v(η) = 1}

represent the set of open hyperedges. To represent a realisation of a random cluster measure,

we only use Ev which, with ωΛ forms a hypersubgraph (ωΛ, Ev) of G. However, the open

hyperedge set Ev is uniquely determined by v ∈ E which is chosen randomly according to

the probability mass function µ(q)
p on E given by

µ(q)
p (v) =

1

Z2
p|Ev |(1− p)|H(ωΛ)\Ev |qK(Ev), (2.6)

where K(Ev) is the number of connected components of the hypergraph (ωΛ, Ev) and Z2

is the normalising constant given by

Z2 :=
∑
v∈E

(
p|Ev |(1− p)|H(ωΛ)\Ev |qK(Ev)

)
.

Notice that by setting q = 1 we arrive at the standard bond percolation model where each

hyperedge is open (resp. closed) with probability p (resp. 1 − p). Before we give some

important properties of the random cluster measure in this discrete hyperedge setting, we

generalise to the case of non-constant p. By this we mean that a hyperedge η ∈ H(ωΛ)

is open with probability p(η), which depends on the geometry of the hyperedge. A simple

example is when p(η) is a function of |x− y| where η = {x, y}. Thus, Equation 2.6 can be

rewritten as

µ(q)
p (v) =

1

Z3

 ∏
η∈H(ωΛ)

p(η)v(η)(1− p(η))1−v(η)

 qK(Ev), (2.7)

where the normalising constant Z3 is given by

Z3 :=
∑
v∈E

 ∏
η∈H(ωΛ)

p(η)v(η)(1− p(η))1−v(η)

 qK(Ev)

 .

The measure µ
(q)
p satisfies the Fortuin-Kasteleyn-Ginibre (FKG) inequality, see

[FKG71], if and only if q ≥ 1. Before we specify the FKG inequality, we give some prelim-

inary definitions. A function f : E → R is said to be increasing if f(E1) ≤ f(E2) when-

ever E1 ⊆ E2. Similarly, a function f : E → R is called decreasing if f(E1) ≥ f(E2)

whenever E1 ⊆ E2. An event A is called increasing if 1A is an increasing function.

10



Lemma 2.2. (FKG inequality – as a generalisation of [G94])

Fix q ≥ 1. Then if f and g are both increasing functions on E , then we have

E
µ

(q)
p

(fg) ≥ E
µ

(q)
p

(f)E
µ

(q)
p

(g). (2.8)

In particular, if A and B are both increasing events, then

µ(q)
p (A ∩B) ≥ µ(q)

p (A)µ(q)
p (B). (2.9)

We now give a generalisation of a well-known comparison inequality (see [G94])

for random-cluster measures in the discrete setting. We generalise to our hypergraph frame-

work and to the case of non-constant p. The result relies on the FKG inequality in Lemma

2.2. For any two probability measures µ1, µ2 on E , we say µ1 stochastically dominates µ2,

and write µ1 < µ2, if Eµ1(f) ≥ Eµ2(f) for all increasing functions f : E → R.

Proposition 2.3. (Comparison inequality)

Let q ≥ 1 and suppose p and p̃ are two probability measures onH(ωΛ) such that

p(η)

q|η|−1(1− p(η))
≥ p̃(η)

(1− p̃(η))
, (2.10)

for all η ∈ H(ωΛ). Then, µ(q)
p < µ

(1)
p̃ .

Proof. The proof in a slight adaptation of the proof in [G94] to the case of non-constant p

and to our hypergraph framework. By the assumption that q ≥ 1, the measure µ(q)
p satisfies

the FKG inequality. See that, for v ∈ E

µ
(1)
p̃ (v) =

g(v)

(∏
η∈H(ωΛ)(1− p̃(η))

(
p(η)

1−p(η)

)v(η)
)
qK(Ev)

∑
v′∈E g(v′)

(∏
η∈H(ωΛ)(1− p̃(η))

(
p(η)

1−p(η)

)v′(η)
)
qK(Ev′ )

(2.11)

where g satisfies

g(v) =
1

qK(Ev)+(|η|−1)|Ev |

∏
η∈Ev

(
p̃(η)

(1− p̃(η))

/
p(η)

q|η|−1(1− p(η))

)
.
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However, by multiplying Equation (2.11) by
∏
η∈H(ωΛ)(1−p(η))∏
η∈H(ωΛ)(1−p(η)) = 1, we are left with

µ
(1)
p̃ (v) =

g(v)µ
(q)
p (v)∑

v′∈E g(v′)µ
(q)
p (v′)

.

Since K(Ev) + (|η| − 1)|Ev| is an increasing function of Ev and

p(η)

q|η|−1(1− p(η))
≥ p̃(η)

(1− p̃(η))
,

it follows that g is a decreasing function of Ev. Therefore, if f is increasing, then, by the

FKG inequality,

E
µ

(1)
p̃

(f) =
E
µ

(q)
p

(fg)

E
µ

(q)
p

(g)
≤ E

µ
(q)
p

(f).

Note that we do not require p and p̃ to be constant: they can vary as long as equation

(2.10) is satisfied. This stochastic domination result is frequently used to prove the existence

of a phase transition for the infinite volume discrete random cluster models with varying

values of p. Indeed, whilst proving a phase transition in continuum random cluster models,

we also make use of this discrete result.

2.4 Gibbs measures

Instead of working with a fixed hypergraph as in Section 2.3, we will now look to sam-

ple point configurations from Ω. In order to do this, we introduce the concept of Gibbs

measures on a marked hypergraph structure H. In later Chapters we will look for phase

transitions of Delaunay Potts models using probabilistic techniques, however, before this

can be done, we must first show the existence of at least one Gibbs measure. We out-

line how this is done in the general hypergraph structure setting. Only once we can show

the existence of a Gibbs measure for a particular model, can we use similar strategies to

the Fortuin-Kasteleyn representation of the Potts model [FK72] to show non-uniqueness of

Gibbs measures. This non-uniqueness, as we shall see, is equivalent to the existence of a

phase transition which is a principle goal of this work.

Having established a definition for a hypergraph structure in Section 2.2, we look

to introduce geometric interactions between particles. Such interactions will give rise to

configurations ω ∈ Ω that have a much higher energy than others. A Gibbs measure will
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sample these high energy configurations less frequently, i.e. low energy configurations will

be favoured by the Gibbs measure. To measure the energy of a configuration, we introduce

hyperedge potentials.

Definition 2.4. A hyperedge potential is a measurable function, Φ : Ωf × Ω→ R ∪ {∞},
from a marked hypergraph structure,H ⊂ Ωf × Ω, to the extended reals.

Definition 2.5. A marked hypergraph structure H and a hyperedge potential Φ are called

translation invariant if for all (η, ω) ∈ H and for all x ∈ R2,

(ϑx(η), ϑx(ω)) ∈ H and Φ(ϑx(η), ϑx(ω)) = Φ(η, ω).

Hypergraph potentials allow us to control the random hypergraph by giving more or

less weight to certain configurations. Let Φ : Ωf × Ω→ R ∪ {∞} be one such hyperedge

potential attributing a real valued energy to each hyperedge in a hypergraph structure. By

summing over the whole configuration, we arrive at the Hamiltonian energy with respect to

Φ for a given configuration ω ∈ Ω:

HΦ(ω) :=
∑

η∈H(ω)

Φ(η, ω). (2.12)

This is the formal Hamiltonian: it is an infinite sum. In order to work with finite sums, we

restrict our Hamiltonian to a bounded region Λ ∈ B(R2). Consider the subset

HΛ(ζ) := {η ∈ H(ζ) : ηΛ 6= ∅} (2.13)

and take ξ ∈ ΩΛc , a fixed configuration outside of Λ, to be the prescribed boundary condi-

tion. The Hamiltonian in Λ with marked boundary condition ξ is given by the formula

HΦ
Λ|ξ(ω) =

∑
η∈HΛ(ω∪ξ)

Φ(η, ω ∪ ξ), for ω ∈ ΩΛ, (2.14)

provided the sum is well defined. The Hamiltonian describes the model, and in particular,

the energy excess of the marked configuration ω ∪ ξ over the boundary configuration, ξ.

Notice that it depends only on the marked hypergraph structure H and the hyperedge po-

tential Φ. If Φ only depends on the single hyperedges, and not on their neighbourhood, then

for any two distinct boundary configurations ξ, ζ ∈ ΩΛc ,

HΦ
Λ|ξ(ω) = HΦ

Λ|ζ(ω) provided that HΛ(ω ∪ ξ) = HΛ(ω ∪ ζ).

This is the case for all of the hyperedge potentials that we will consider in this thesis – it is
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called the local horizon property. We use the Hamiltonian and a reference measure to define

a probability measure for the model. Recall our Poisson point process reference measure

Π
z on Ω with intensity measure zν ⊗ λ and define Π

z
Λ := Π

z ◦ pr−1
Λ to be the reference

measure on the local restricted configuration space ΩΛ. Together with the Hamiltonian, we

define the partition function

ZΛ|ξ :=

∫
ΩΛ

exp
[
−HΦ

Λ|ξ(ω)
]

ΠΛ(dω), (2.15)

and the negative part of HΦ
Λ|ξ:

H
Φ−
Λ|ξ (ω) :=

∑
η∈HΛ(ω∪ξ)

Φ−(η, ω ∪ ξ),

where Φ− is simply the negative part of Φ. Classically, there should be a factor A in the

exponent of (2.15) to represent the inverse temperature of the system. However, we will

assume this information is encompassed in Φ.

Definition 2.6. A marked configuration ξ ∈ ΩΛc is called admissible for a bounded region

Λ ∈ B(R2) and an activity z > 0, if

H
Φ−
Λ|ξ (ω) <∞

for Π
z
Λ− almost all ω ∈ ΩΛ and if 0 < ZΛ|ξ < ∞. Denote by Ω

∗
Λ,z the space of marked

configurations whose restrictions to Λc × Σ are admissible configurations for Λ and z.

For Λ ∈ B(R2), we define the Gibbs distribution for (H,Φ, z) in the region Λ with

admissible boundary condition ξ as follows:

QΛ|ξ(dω) =
1

ZΛ|ξ
exp

[
−HΦ

Λ|ξ(ω)
]

Π
z
Λ(dω). (2.16)

Definition 2.7. Given a marked hypergraph structure H, a hyperedge potential Φ and an

activity z > 0, a probability measure P on (Ω,F) is called a Gibbs measure for H, Φ and

z if P (Ω
∗
Λ,z) = 1 and∫
fdP =

∫
Ω
∗
Λ,z

Z−1
Λ|ξΛc

∫
ΩΛ

f(ω ∪ ξΛc) exp
[
−HΦ

Λ|ξΛc
(ω)
]

Π
z
Λ(dω)P (dξ), (2.17)

for all Λ ∈ B(R2) and every bounded measurable function f : Ω→ R.
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The equations of Definition 2.7 are known as the the DLR equations (after Do-

brushin, Lanford and Ruelle), see for example [Geo99].

LetA∗ be the universal completion of a σ-algebraA. Precisely,A∗ is the σ-algebra

of all sets that belong to the ν-completion of A for all probability measures ν on A. The

Hamiltonian in (2.14) and the partition function in (2.15) are not measurable with respect to

the σ-algebras introduced in Section 2.1, but only with respect to their universal completion.

More precisely,

1. The function (ω, ξ)→ HΦ
Λ|ξ(ω) is measurable with respect to (F ′Λ ⊗FΛc)

∗.

2. The function ξ → ZΛ|ξ is measurable with respect to F∗Λc .

3. The set Ω
∗
Λ,z belongs to F∗Λc .

4. QΛ|ξ(dω) is a probability kernel from (Ω
∗
Λ,z,F

∗
Λc |Ω∗Λ,z)→ (Ω,F).

According to the definition of the reference measure Π
z
Λ, the marks are chosen indepen-

dently of the spatial positions, henceforth, the above measurability statements can be ob-

tained from Claims A.2 and A.3 of [DDG10] via consideration of R2 ×Σ instead of R2 as

the state space of the point process.

2.4.1 Existence of Gibbs measures

The existence of a Gibbs measure P on (Ω,F) with activity z > 0, marked hypergraph

structureH and hyperedge potential Φ, relies on the following conditions.

Definition 2.8. We say the couple (Φ,H) satisfy the range condition (R) if there exists

`R,nR ∈ N, such that, for all (η, ω) ∈ H, there exist a bounded region ∆ ∈ B(R2) such

that; (η, ω′) ∈ H and Φ(η, ω′) = Φ(η, ω) whenever ω′∆ = ω∆; and for every x, y ∈ ∆,

there exist ` open balls B1, . . . , B` (with ` ≤ `R) such that ∪`i=1Bi is connected and

contains x and y, and NBi(ω) ≤ nR for each i. Here, Bi denotes the closure of the open

ball Bi ⊂ R2.

Let Λ ∈ B(R2), r > 0 and Λ⊕ r := ∪x∈ΛB(x, r), where B(x, r) denotes the open

ball of radius r centred at x. A configuration ξ ∈ Ω is said to confine the range of Φ from

Λ if there exists a boundary layer ∂Λ(ξ) = (Λ ⊕ r)\Λ for some r = rΛ,ξ, where rΛ,ξ is

chosen as small as possible, such that HΛ(ω ∪ ξΛc) = HΛ(ω ∪ ξ′Λc) whenever ξ
′

= ξ on

∂Λ(ξ). We define the set Ω
Λ
cr as follows:

Ω
Λ
cr :=

{
ξ ∈ Ω : ξ confines the range of Φ from Λ

}
.
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Remark 2.9. In order to show phase transition in Section 2.7, we will need an adaptation

of Proposition 3.1 in [DDG10] to the marked case. If a hyperedge potential Φ and a

hypergraph structure H satisfy the range (R) condition, then for each Λ ∈ B(R2), there

exists a set Ω̂Λ
cr ∈ FΛc such that Ω̂Λ

cr ⊂ Ω
Λ
cr and P (Ω̂Λ

cr) = 1 for all translation invariant

probability measures P on (Ω,F) with P ({∅}) = 0. The proof of this statement is an

adaptation of Proposition 5.4 in [DDG10] to the marked case. It is straightforward as the

mark distribution, with respect to our reference measure Π
z does not depend on the spatial

location of the particles and henceforth we omit it and just give the statement.

We now define stability which will ensure that the partition functions are finite.

Definition 2.10. We say the couple (Φ,H) satisfy the stability condition (S) if there exists

a constant cS ≥ 0 such that

HΛ|ξ(ω) ≥ −cS
(
NΛ(ω) +N∂Λ(ξ)(ξ)

)
for all bounded Λ ∈ R2, ω ∈ ΩΛ and ξ ∈ Ω

Λ
cr.

To avoid the meaningless case when Φ ≡ ∞, we need a final condition to control the

Hamiltonian from above. Let M ∈ R2×2 be an invertible 2 × 2 matrix, and define a

partition of R2 as ⋃
k∈Z2

∇(k)

where each

∇(k) := {Mx ∈ R2 : x− k ∈ [−1/2, 1/2]2}. (2.18)

is a rhombus. Furthermore, let Γs be the set of all configurations that consist of a single

point with mark s ∈ Σ whose position lies in some Borel set D ⊂ ∇(0) and define the set

of all configurations whose restriction to a cell ∇(k), when shifted back to ∇(0), belongs

to Γs as

Γ̂s = {ω ∈ Ω : ϑMk(ω∇(k)) ∈ Γs for all k ∈ Z2}. (2.19)

A marked configuration of ω ∈ Γ̂s is called pseudo-periodic. Note that when the mark of

the particles is obvious, we drop the superscript and write Γ̂ instead of Γ̂s. The required

partial upper bound for the Hamiltonians is then achieved via the following property.

Definition 2.11. Let Φ
+ be the positive part of Φ. We say the couple (Φ,H) and the

activity z > 0 satisfy the upper regularity condition (U) if M and D can be chosen so that

the following hold:
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1. Uniform confinement: Γ̂s ⊂ Ω
Λ
cr for all bounded Λ ⊂ R2, and

rΓs := sup
Λ

sup
ω∈Γ̂s

rΛ,ω <∞.

2. Uniform summability:

c+
D := sup

ω∈Γ̂s

∑
η∈H(ω):

ρ(η)∩∇(0)6=∅

Φ
+

(η, ω)

|η|
<∞. (2.20)

3. Strong non-rigidity:

z|D| > ecD

where cD is defined as in (2.20), but with Φ instead of Φ
+.

If the (R), (S) and (U) conditions are satisfied, the existence of a Gibbs measure is

given by the following theorem:

Theorem 2.12. For every translation invariant marked hypergraph structureH ⊂ Ωf ×Ω,

hyperedge potential Φ and activity z > 0 satisfying the (R), (S) and (U) conditions, there

exists at least one translation invariant Gibbs measure P on (Ω,F) with reference measure

Π
z .

The proof is an immediate adaptation of the proof of Theorem 3.2 and Corollary

3.4 in [DDG10] to the marked case following Remark 3.7 in [DDG10]. Further details of

that adaptation can be found in [No13], Theorem 2.1. The proof relies on an entropy bound

and a careful control of the interaction range. The entropy bound is used to obtain tightness

of certain Gibbs distributions with pseudo-periodic boundary conditions.

2.5 Geometric Continuum Potts Model

We now go on to define Potts models on random structures in the continuum. The exten-

sion to the continuum was first introduced as the Widom-Rowlinson model, a continuum

analogue of the Ising model, in [WR70]. Much later, [GH96] generalised this further and

defined continuum Potts models. We present these ideas here, but generalise further to

our hypergraph structure framework and to geometric interactions. To do this, we define

a subclass of hyperedge potentials. Let H be a marked hypergraph structure. Then for
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(η, ω) ∈ H with η = (η, ση) and ω = (ω, σω), set

Φ(η, ω) = ψ(η, ω) + ϕ(η, ω)(1− δση(η)) (2.21)

where

δση(η) =

{
1 if ση(x) = ση(y) for all pairs {x, y} ∈ η,
0 otherwise,

(2.22)

and ψ,ϕ : Ωf × Ω → R ∪ {∞}. The marks of the particles contribute to Φ(η, ω) only

through the δση term. We call ψ the background interaction and ϕ the mark or type inter-

action because (1− δση) is only non-zero when hyperedges contain particles with different

marks. Let q ≥ 2, then, given a finite box Λ ∈ B(R2), and an admissible boundary config-

uration ξ = (ξ, σξ) , the finite volume Gibbs distribution QΛ|ξ is given by

QΛ|ξ(dω) =
1

ZΛ|ξ
exp

[
−HΦ

Λ|ξ(ω)
]

Π
zq
Λ (dω) (2.23)

where for ω = (ω, σω) ∈ ΩΛ,

HΦ
Λ|ξ(ω) = Hψ

Λ|ξ(ω) +Hϕ

Λ|ξ(ω),

Hψ

Λ|ξ(ω) =
∑

η∈HΛ(ω∪ξ)

ψ(η, ω ∪ ξ),

and

Hϕ

Λ|ξ(ω) =
∑

η=(η,ση)

∈HΛ(ω∪ξ)

ϕ(η, ω ∪ ξ)(1− δση(η)).

From (2.23), for fixed ω ∈ ΩΛ, notice that the conditional distribution of σω under

the condition ρ(ω) = ω with respect to QΛ|ξ is just the discrete Potts model, given in (2.3),

on ω with parameter J a function of ϕ. This is the justification given by [GH96] to call their

model a continuum Potts model. As we are working in a hypergraph structure framework,

we call the model defined by (2.23) the geometric continuum Potts model. A Gibbs mea-

sure on (Ω,F), if one exists for this model, is called a geometric continuum Potts measure

with activity z and hyperedge potentials ψ and ϕ on a marked hypergraph structureH.

We will use Theorem 2.12 to show the existence of geometric continuum Potts

measures for a number of models with different geometric interactions. A phase transition

is said to occur if more than one geometric continuum Potts measure exists. We will show
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this non-uniqueness for a number of different models. Our main tool is the geometric

continuum random cluster model which is introduced in Section 2.6.

2.6 Geometric Continuum Random Cluster Model

Fix k ∈ N. For the remainder of this section, let H be a marked hypergraph structure with

|η| = k, for all η ∈ H(ω). Our aim is to introduce a hyperedge process on the random

marked hypergraph structure H via a joint construction with the related geometric contin-

uum Potts model with parameters H, ψ, ϕ and z as outlined in Section 2.5. This is akin

to the joint construction of the discrete Potts model and the Fortuin-Kasteleyn representa-

tion of [FK72]. Like in Section 2.3, the idea behind the random cluster representation is to

introduce the concept of open and closed hyperedges between the particle positions. This

will enable us to set up percolation problems. Our outline of the continuum random cluster

representation is adapted from [GH96]: we give the main results here for convenience and

to show they fit within our hypergraph structure framework. Let Λ ∈ B(R2) and ξ ∈ ΩΛc .

The construction consists of three main steps. First, we use a finite volume, Gibbs distri-

bution P zqΛ|ξ in Λ with boundary condition ξ, marked hypergraph structure H, hyperedge

potential ψ and activity zq > 0 to sample particles without marks. Recall, from (2.2),

the definition of H(ω) for a marked hypergraph structure and an unmarked configuration,

ω ∈ ΩΛ. Then,

P zqΛ|ξ(dω) =
1

ZΛ|ξ
exp

− ∑
η∈HΛ(ω∪ξ)

ψ(η, ω ∪ ξ)

Πzq
Λ (dω), (2.24)

where

ZΛ|ξ :=

∫
ΩΛ

exp

− ∑
η∈HΛ(ω∪ξ)

ψ(η, ω ∪ ξ)

Πzq
Λ (dω). (2.25)

This gives us the distribution of particle positions in a box Λ given a configuration of particle

positions ξ, outside Λ. Note that ξ ∈ ΩΛc must be chosen such that∑
η∈HΛ(ω∪ξ)

ψ−(η, ω ∪ ξ) <∞,

for Πzq
Λ – almost all ω ∈ ΩΛ, where ψ− is the negative part of ψ, and also, such that

0 < ZΛ|ξ < ∞. Such a boundary configuration is admissible in the sense of Definition

2.6, although, in the unmarked regime, and with ψ in place of Φ. We will view P zqΛ|ξ as a

probability measure on Ω supported on the set ΩΛ|ξ = {ω ∈ Ω : ω ∩ Λc = ξ}. Secondly,
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given a fixed set of positions, ω ∈ ΩΛ|ξ, we mark each particle in ω independently with a

mark in Σ = {1, . . . , q}. This gives us a marked configuration ω ∈ Ω. We denote by λω,Λ
the distribution of the random mark vector σω ∈ Σω, where

σω = (σω(x) : x ∈ ω).

The random variables (σω(x))x∈ωΛ are independent and uniformly distributed on Σ =

{1, . . . , q}, whereas σω(x) = 1 for x ∈ ωΛc = ξ.

Finally, we introduce the hyperedge process by declaring each η ∈ H(ω) open or closed.

Let E be the space of locally finite hyperedge configurations. More precisely, denote the

space of all hyperedge configurations in the plane:

ER2 :=
{
η = {x1, . . . xk} ⊂ R2 : x1 6= . . . 6= xk

}
and let

E := {E ⊂ ER2 : E is locally finite} . (2.26)

Then, given ω ∈ ΩΛ|ξ, let µω,Λ denote the distribution of the random hyperedge configura-

tion

{η ∈ H(ω) : v(η) = 1} ∈ E (2.27)

where (v(η))η∈H(ω) are independent Bernoulli random variables with probability

Prob(v(η) = 1) = pΛ(η) :=

{
1− e−ϕ(η,ω) if η ∈ HΛ(ω),

1 otherwise .
(2.28)

Note that µω,Λ is nothing more than a point process on the space of all hyperedge configu-

rations in the plane, and can be seen as a pΛ thinning of the complete hyperedge set H(ω).

We call a hyperedge η open if v(η) = 1 and closed if v(η) = 0. Ensuring all hyperedges

outside of Λ are open with probability one, as in (2.28), is called the wired boundary con-

dition. The hyperedge probability (2.28) is the only place that ϕ enters the construction of

the geometric continuum random cluster measure.
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Combining the above, we have the probability measure Pzq
Λ|ξ on Ω× E which is given by

Pzq
Λ|ξ :=

∫
P zqΛ|ξ(dω)λω,Λ ⊗ µω,Λ. (2.29)

We address measurability in the following Lemma, and show that ω → λω,Λ and ω → µω,Λ

are probability kernels.

Lemma 2.13. The maps ω → λω,Λ and ω → µω,Λ from Ω to Ω, respectively E , are

probability kernels.

Proof. Due to the fundamental properties of randomisation of point processes – see Lemma

2.4(a) of [GH96] – λω,Λ depends measurably on ω, and hence, the first result follows. For

µω,Λ, let Lω,Λ denote the Laplace transform of µω,Λ. That is, for f : ER2 → [0,∞[

measurable, we have

Lω,Λ(f) =

∫
exp

[
−
∑
η∈E

f(η)
]
µω,Λ(dE)

=
∏

η∈H(ω)

[
pΛ(η)e−f(η) + 1− pΛ(η)

]
= exp

[
−

∑
η∈H(ω)

f̃(η)
]
,

where

f̃(η) = log
[
e−f(η) + 1{η∈HΛ(ω)}e

−ϕ(η,ω)(1− e−f(η))
]
.

Therefore, since f̃ is measurable, the function ω → Lω,Λ(f) is also measurable. This

implies that ω → µω,Λ depends measurably on ω.

Let A ⊂ Ω × E be the event that no two vertices with different types belong to the

same open hyperedge. Formally, we have

A :=

(ω,E) ∈ Ω× E :
∑
η∈E

(1− δσω(η)) = 0

 . (2.30)

Let σ1
ξ denote the event that all points of ξ are assigned a mark of 1. Then, from (2.29), we

see that

Pzq
Λ|ξ(A) ≥ P zqΛ|ξ({ξ})λω,Λ(σ1

ξ )µω,Λ(H(ξ)) = P zqΛ|ξ({ξ}) = Z−1
Λ|ξe

−zq|Λ| > 0,

hence, we can define the following conditional measure, which we call the random-cluster
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representation measure:

PA = Pzq
Λ|ξ( · |A).

If we ignore the open hyperedges of the random-cluster representation, i.e. we

only consider ω which gives us the particle positions and their types, then we obtain the

continuum Potts model with geometric interactions.

Proposition 2.14. Let pr denote the projection from Ω×E onto Ω. Then PA ◦pr−1 = QΛ|ξ

Proof. For ω ∈ ΩΛ|ξ, let Aω be the ω−section of A in (2.30). That is

Aω := {E ∈ E : (ω,E) ∈ A}.

Then, by equations (2.23) and (2.30), it follows that for ω = ρ(ω),

µω,Λ(Aω) =
∏

η∈H(ω)

(
1− pΛ(η)

(
1− δσω(η)

))
= exp

[
−Hϕ

Λ|ξ(ω)
]

Hence, for any bounded measurable function f on Ω, we have∫
f ◦ pr dPA = c1

∫
A
f ◦ pr dPzq

Λ|ξ

= c1

∫
P zqΛ|ξ(dω)

∫
λω,Λ(dσω)f(ω)µω,Λ(Aω)

= c2

∫
Πzq

Λ (dω)

∫
λω,Λ(dσω)f(ω ∪ ξ) exp

[
−Hψ

Λ|ξ(ω)−Hϕ
Λ|ξ(ω)

]
= c2

∫
Π
zq
Λ (dω)f(ω ∪ ξ) exp

[
−Hψ

Λ|ξ(ω)−Hϕ
Λ|ξ(ω)

]
(2.31)

= c3

∫
fdQΛ|ξ,

where c1, c2, c3 are relevant constants. Equation (2.31) is down to the fact that
∫

Πz
Λ(dω)λω,Λ

is precisely the Poisson point process Π
z on Ω with intensity measure zν ⊗ λω,Λ. Realis-

ing that PA and QΛ|ξ are both probability measures, we have c3 = 1. The Proposition

follows.

On the other hand, if we ignore the type or mark of the particles, and only consider

the particle positions together with the configuration of open hyperedges, then we will

show in Proposition 2.15 that we are left with the continuum random cluster distribution
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with geometric interactions, which is defined by

CΛ|ξ(dω, dE) :=
1

Z2,Λ|ξ
qK(ω,E)P zΛ|ξ(dω)µω,Λ(dE) (2.32)

whereK(ω,E), withE ⊂ H(ω), is the number of connected components of the hypergraph

(ω,E), including the single connected component that intersects Λc, if ξ 6= ∅. Note that

P zΛ|ξ is the same as in (2.24) but with activity z rather than zq. The normalisation constant

Z2,Λ|ξ is given by

Z2,Λ|ξ :=

∫
ΩΛ

∫
E
qK(ω,E)µω,Λ(dE)P zΛ|ξ(dω), (2.33)

where the subscript 2 is just to differentiate from the normalisation constant in (2.25). No-

tice that the continuum random cluster distribution is completely mark independent and is

defined by using the wired boundary condition.

Proposition 2.15. Let ρ : Ω× E → Ω× E be defined by ρ(ω,E) = (ω,E). Then

PA ◦ ρ−1 = CΛ|ξ.

Proof. For (ω,E) ∈ Ω× E with ω ∈ ΩΛ|ξ and H(ω)\HΛ(ω) ⊆ E ⊆ H(ω), let A(ω,E) be

the set of mark vectors σω ∈ Σω such that marks are constant across connected components

of (ω,E), i.e.

A(ω,E) := {σω ∈ Σω : (ω,E) ∈ A for ω = (ω, σω)}. (2.34)

Under λω,Λ there are exactly q|ω∩Λ| distinct mark vectors σω ∈ Σω, each of which

have equal probability. For σω ∈ A(ω,E), we require σω(x) = σω(y) for all x and y in

the same connected component of (ω,E). In particular, σω(x) = 1 for x in the unique

connected component intersecting with Λc. This gives qKΛ(ω,E) distinct possible markings.

Therefore,

λω,Λ(A(ω,E)) =
qKΛ(ω,E)

q|ω∩Λ| , (2.35)

where KΛ(ω,E) is the number of connected components of the hypergraph (ω,E) that lie

wholly inside Λ. Let EΛ := {E ∈ E : η∩Λ 6= ∅ for all η ∈ E}. Then, for every measurable
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function f on ΩΛ × EΛ,∫
f ◦ ρ−1dPA = c1

∫
A
f ◦ ρ−1Pz

Λ|ξ

= c1

∫
P zqΛ|ξ(dω)

∫
µω,Λ(dE)f(ω,E)λω,Λ(A(ω,E))

= c2

∫
P zΛ|ξ(dω)

∫
µω,Λ(dE)f(ω,E)qKΛ(ω,E) (2.36)

with suitable constants c1, c2 > 0. Equation (2.36) is due to the fact that P zqΛ|ξ is absolutely

continuous with respect to P zΛ|ξ, with density proportional to ω → q|ω∩Λ|. In the case

when ξ = ∅, the result follows because K(ω,E) = KΛ(ω,E). In the case when ξ 6= ∅,
K(ω,E)−KΛ(ω,E) = 1, so the result follows by letting c3 = c2q

−1.

For any boxes ∆,Λ ∈ B(R2), with ∆ ⊂ Λ and any marked particle configuration

ω = (ω, σω) ∈ Ω, let

N∆,s(ω) := |{x ∈ ω∆ : σω(x) = s}|, for s = 1, . . . , q,

be the random variable for the number of particles in ∆× Σ with mark s. Also, let

N∆↔Λc(ω,E) :=|{x ∈ ω∆ : x belongs to a connected component of

(ω,E) that intersects Λc}|.

Lemma 2.16. For all ∆,Λ ∈ B(R2), with ∆ ⊂ Λ, the functions KΛ : Ω × E → N and

N∆↔Λc : Ω× E → N are measurable.

Proof. Let

B := {(x, y, ω,E) ∈ R2 ×R2 × Ω× E : x, y ∈ ω, x 6= y and x↔y}

where x↔y denotes that x and y are connected in the graph (ω,E ∩H(ω)). Also, let

B1 := {(x, y, ω,E) ∈ R2 ×R2 × Ω× E :

x, y ∈ ω and ∃η ∈ E : {x, y} ⊆ η}

and, for n ≥ 1

Bn+1 := {(x, y, ω,E) ∈ R2 ×R2 × Ω× E :
∑
v∈ω

1B1(x, v, ω,E)1Bn(v, y, ω,E) > 0}.
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Therefore,

B =
⋃
n≥1

Bn.

Since Bn is measurable for any n, so is B. Now, for k ≥ 1, KΛ(ω,E) ≥ k if and only

if there exists k distinct points x1 6= · · · 6= xk in ωΛ such that, for each pair xi, xj , with

1 ≤ i < j ≤ k, (xi, xj , ω, E) ∈ Bc. More precisely, KΛ(ω,E) ≥ k if and only if∑
x1,...,xk∈ωΛ

∏
1≤i<j≤k

1{xi 6=xj}1Bc(xi, xj , ω, E) > 0,

which gives us the measurability of KΛ. By noticing that

N∆↔Λc(ω,E) =
∑
x∈ω∆

g(x, ω,E)

with g(x, ω,E) = 1 if
∑

y∈ωΛc
1B(x, y, ω,E) > 0 and g(x, ω,E) = 0 if not, we also see

that N∆↔Λc is measurable.

The final proposition of this section states a relationship between N∆,1(ω) in the

geometric continuum Potts model and the percolation property of the geometric continuum

random cluster model. It is this proposition that forms an integral part of the proof of phase

transitions in continuum Potts models with various geometric interactions. Notice that our

choice of wired boundary condition with all particles with mark 1 was arbitrary. The same

applies to each of the marks s ∈ Σ and each random variable N∆,s.

Proposition 2.17. For all ∆,Λ ∈ B(R2), with ∆ ⊂ Λ,∫
(qN∆,1 −N∆)dQΛ|ξ = (q − 1)

∫
N∆↔ΛcdCΛ|ξ. (2.37)

Proof. By Proposition 2.14 and (2.34), the left hand side of (2.37) is equal to

Pzq
Λ|ξ(A)−1

∫
P zqΛ|ξ(dω)

∫
µω,Λ(dE)

∑
x∈ω∆

∫
A(ω,E)

λω,Λ(dσω)(q1{σω(x)=1} − 1).

Now suppose that x is connected to Λc in the hypergraph (ω,E), and hence σω(x) = 1 for

all σω ∈ A(ω,E). It follows that∫
A(ω,E)

λω,Λ(dσω)(q1{σω(x)=1} − 1) = (q − 1)λω,Λ(A(ω,E)). (2.38)

On the other hand, if x is not connected to Λc in the hypergraph (ω,E), then the mark

σω(x) is independent of A(ω,E), under the measure λω,Λ, and takes values in {1, . . . , q}
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with equal probability. This implies that∫
A(ω,E)

λω,Λ(dσω)(q1{σω(x)=1} − 1) = 0. (2.39)

Therefore, by (2.38), (2.39) and Proposition 2.15, the result follows.

2.7 Percolation in the Geometric Continuum Random Cluster
Model

In the next chapters, we investigate several different geometric hyperedge potentials for

background and type interactions. For each of these models, we will establish the existence

of percolation in the geometric continuum random cluster model CΛ|ξ when q ≥ 1 is an

arbitrary parameter, z is sufficiently large and for other appropriately chosen parameters,

for the pseudo-periodic boundary condition ξ ∈ Γ̂Λc where Γ̂ was defined in (2.19) and M

and Γ are chosen such that (U) is satisfied. More precisely, let

Λn :=
⋃

k∈{−n,...,n}2
∇(k).

for large n ∈ N, where ∇(k) is given in (2.18). We show that for any ∆ ∈ B(R2), there

exists c > 0, such that for all Λn ⊃ ∆, and for all ξ = (ξ, σξ) ∈ Γ̂Λc∫
CΛn|ξ(dω, dE)N∆↔Λcn(ω,E) ≥ c. (2.40)

This is the main result upon which the proof of the phase transition in all our different mod-

els is based on, and is analogous to the statement of Proposition 3.1 in [GH96], but adapted

to the hypergraph structure. The proof of (2.40) is deferred until later, but supposing it is

satisfied, we can relate it to the notion of a phase transition in the geometric continuum

Potts model. We give an outline of the main arguments here.

Assuming that the couple (Φ,H) satisfy (R), (S) and (U), a Gibbs measure is con-

structed as a limit of Gibbs distributions in boxes Λn. Let ξ = (ξ, σξ) ∈ Γ̂Λcn such that

σξ(x) = 1 for all x ∈ ξ be a pseudo-periodic boundary condition with mark 1. The up-

per regularity (U) and stability (S) conditions then show that ξ is admissible for Λn and z.

Therefore,

Qn := QΛn|ξ ◦ pr−1
Λn

is a Gibbs distribution in Λn with boundary condition ξ and activity zq, projected to Λn. Re-
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call the matrixM ∈ R2×2 from (2.18) and let Pn be the probability measure on (Ω,F) such

that the marked configurations in the disjoint boxes Λn+(2n+1)Mk, k ∈ Z2, are indepen-

dent with respect to Pn and have distribution Qn. Rather than obtaining a full asymptotic

translation invariance now, we first confine ourselves to the skewed lattice translations, in

recognition of our cell structure. So we define the spatial average of Pn,

P̂n =
1

|Λn|
∑
i∈L(n)

Pn ◦ ϑ−1
i ,

where L(n) = Λn ∩MZ2. To obtain a limit for the sequence (P̂n)n≥1, a suitable topology

must be specified. A measurable function f : Ω→ R is called local and tame if

f(ω) = f(ωΛ) and |f(ω)| ≤ aNΛ(ω) + b

for all ω = (ω, σω) ∈ Ω, some Λ ∈ B(R2) and suitable constants a, b ≥ 0, whereNΛ(ω) is

the counting variable defined in (2.1). The set of all local and tame functions is denoted by

T . The T –topology, on the set of all translation invariant probability measures on (Ω,F),

is defined as the smallest topology for which the mappings P 7→
∫
fdP are continuous,

where f ∈ T . It can be shown that there exists a subsequence of (P̂n)n≥1 which converges

in the T –topology. The limit of this subsequence P̂ , once found, cannot be shown to be

concentrated on admissible configurations, see [DDG10], and so it is not known to be Gibbs.

However, since P̂ is non-degenerate, it follows by the Range condition (R) and Remark 2.9

that

P := P̂ (·|{∅}c)

is a Gibbs measure and hence, a Delaunay continuum Potts measure for H,Φ and z, and

invariant under the skewed lattice translations. To obtain full translation invariance under

(ϑx)x∈R2 , the spatial average of P ,

P (1) :=
1

|∇(0)|

∫
∇(0)

P ◦ ϑ−1
x dx,

is taken. The superscript identifies the choice for the marks of the particles in the boundary

when constructing P̂n. An application of (2.40) and Proposition 2.37 shows that∫
(qN∆,1 −N∆)dP̂n = (q − 1)

∫
N∆↔ΛcdCΛn|ξ (2.41)

≥ (q − 1)c. (2.42)

Since N∆,1 and N∆ are in T , the same inequality holds after replacing P̂n by P (1). Since
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P (1) is symmetric under changes to the marks 2, . . . , q, this means that∫
(qN∆,1 −N∆)dP (1) >

∫
(qN∆,2 −N∆)dP (1) = · · · =

∫
(qN∆,q −N∆)dP (1).

For t ∈ {2, . . . , q}, let P (t) be the translation invariant, Delaunay continuum Potts measure

which is obtained from P (1) by switching the marks 1 and t. It is then evident, that there ex-

ists q distinct translation invariant, Delaunay continuum Potts measures – a phase transition.

The only missing step so far, is the proof of (2.40), i.e. the existence of percolation

in the Delaunay continuum random cluster models. This depends heavily on the specific

model in question, and is the dedicated work of this thesis – it forms the bulk of Chapters

3 and 4. Although we use different techniques for different classes of model, we present

here a theme that runs through each: a relationship involving the existence of percolation

for geometric continuum random cluster distributions CΛ|ξ and the existence of percolation

in certain site percolation models. Let MΛ|ξ be the distribution of particle positions given

by the marginal distribution CΛ|ξ(·, E). We can then write CΛ|ξ as follows:

CΛ|ξ(dω, dE) = MΛ|ξ(dω)µ
(q)
ω,Λ(dE), (2.43)

with

µ
(q)
ω,Λ(dE) =

qK(ω,E)µω,Λ(dE)∫
qK(ω,E)µω,Λ(dE)

. (2.44)

Let µ̃ω be an alternative distribution of open hyperedge configurations where each hyper-

edge η ∈ H(ω) is declared open with probability

pΛ(η) = p1H∗(ω)(η), (2.45)

and closed otherwise, where H∗(ω) is some subset of H(ω) and p ∈ [0, 1]. Instead of

declaring hyperedges as open or closed, we may wish, instead, to declare the mark of each

particle. This leads us to the definition of a continuum site percolation model, C̃site
Λ|ξ, with the

same distribution of particle positions as our geometric continuum random cluster model.

We write

C̃site
Λ|ξ(dω) = MΛ|ξ(dω)λ̃ω(dω), (2.46)

where λ̃ω denotes the distribution of the random vector σω = (σω(x) : x ∈ ω) with
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elements in Σ, where (σω(x))x∈ω are independent random variables with probability

Prob(σω(x) = 1) = p1ω∗(x). (2.47)

Using the same arguments as in Lemma 2.13, we see that the map ω → λ̃ω is a

probability kernel from Ω to Ω. Note that the value of p is the same as in (2.45) and ω∗ ⊂ ω
is the set of points of ω that build the hyperedges in H∗(ω). Finally, define the event that

there is a path that intersects both ∆ and Λc and is made up of points of mark 1 connected

by edges in the reduced hypergraphH∗(ω). That is:

{∆↔ Λc} :=
{
ω ∈ Ω× {1} : ∃x1, . . . , xn ∈ ω with x1 ∈ ∆, xn ∈ Λc

and for i = 1, . . . , n− 1, ∃η ∈ H∗(ω) : {xi, xi+1} ⊆ η
}
. (2.48)

Proposition 2.18. Let µ̃ω and λ̃ω be as in (2.45) and (2.47). Then, if µ(q)
ω,Λ < µ̃ω, we have

for all ∆,Λ ∈ B(R2), with ∆ ⊂ Λ∫
N∆↔ΛcdCΛ|ξ ≥ C̃site

Λ|ξ({∆↔ Λc}).

Proof.∫
CΛ|ξ(dω, dE)N∆↔Λc(ω,E) =

∫
MΛ|ξ(dω)

∫
µ

(q)
ω,Λ(dE)N∆↔Λc(ω,E)

≥
∫
MΛ|ξ(dω)

∫
µ̃ω(dE)N∆↔Λc(ω,E)

≥
∫
MΛ|ξ(dω)

∫
µ̃ω(dE)1{N∆↔Λc≥1}(ω,E)

≥
∫
MΛ|ξ(dω)

∫
λ̃ω(dσω)1{∆↔Λc}(ω, σω)

= C̃site
Λ|ξ({∆↔ Λc}),

where the first inequality is a direct application of the assumption in the statement of the

Proposition (since N∆↔Λc is an increasing event), and the third inequality is due to the fact

that site percolation implies hyperedge percolation.

We have shown that to prove the existence of percolation in a geometric continuum

random cluster model, it is sufficient to show percolation in a suitable continuum site model.

This is essentially the work of the next two chapters as we investigate several different

geometric hyperedge potentials for background and type interactions.
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2.8 Voronoi tessellations and Delaunay triangulations

Having outlined general hypergraph structures and marked hypergraph structures in Sec-

tion 2.2, and continued in this generic way up until now, we turn towards our main object of

study: the Delaunay hypergraph structures. It is these so called ‘nearest neighbour’ hyper-

graph structures that underlie the models we present in Chapters 3 and 4, so we introduce

them now. One way to define a nearest neighbour hypergraph structure is to look at Voronoi

tessellations. A Voronoi tessellation is a decomposition of a metric space (in our case R2),

into a discrete set of objects which we attribute the label Voronoi cells. Given ω ∈ Ω, each

point x ∈ ω lies inside its own Voronoi cell Vorω(x): the set of all points in R2 that are

closer to x than any other point y ∈ ω. That is

Vorω(x) :=
{
z ∈ R2 : |x− z| ≤ |x′ − z| for all x′ ∈ ω

}
. (2.49)

Often easier to work with than Voronoi tessellations, are Delaunay triangulations.

The Delaunay triangulation of a given spatial configuration ω ∈ Ω corresponds to the dual

graph of the Voronoi tessellation. It is straightforward to construct the Delaunay triangu-

lation from the Voronoi tessellation – just join, with an edge, any two points of ω whose

Voronoi cells share a 1-dimensional face. The set Del of Delaunay hyperedges is given by

Del :=
{

(η, ω) ∈ Ωf × Ω : η ⊂ ω and ∃ an open ball B(η, ω) ⊂ R2 with

ω ∩ (∂B(η, ω)× Σ) = η and ω ∩ (B(η, ω)× Σ) = ∅
}
. (2.50)

Clearly Del is a marked hypergraph structure, indeed, Del(ω) is the set of hyper-

edges on ω. These include all singletons, edges and triangles of the Delaunay triangulation.

Other, less general marked Delaunay hypergraph structures include the subsets

Delk = {(η, ω) : η ∈ Del(ω), |ρ(η)| = k}, for k ∈ {1, 2, 3},

which we call the singletons, edges and triangles of Del respectively. For ω = (ω, σω) ∈ Ω,

the set of marked hyperedges of ω is

Delk(ω) = {η : (η, ω) ∈ Delk}.

We will also make use of Del(ω) and Delk(ω): the sets of unmarked hyperedges of ω, as

defined in (2.2). It is possible that for some η ∈ Del(ω), |η| > 3 i.e. η is neither a singleton,

edge, nor triangle. This happens when η consists of four or more points whose positions

lie on a circle in R2 with no points of ρ(ω) inside. In fact, for this not to happen, we must
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consider configurations in general position as in [Mø94]. More precisely, this means that no

four points lie on the boundary of a circle and every half-plane contains at least one point.

Fortunately, this occurs with probability one for our Poisson reference measures Πz and Π
z .

In Chapters 3 and 4, we will make use of the following two classes of Delaunay

hyperedge potentials. The first consists of pair interactions of the form

ϕ(η, ω) = φ(|x− y|) for η = {x, y} ∈ Del2(ω),

which take the ‘length’ of an edge as argument. The second class consists of triplet interac-

tions of the form

ϕ(τ, ω) = φ(β(τ)) for τ ∈ Del3(ω),

where β(τ) denotes the smallest interior angle of a triangle τ .
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Chapter 3

Delaunay Potts models with infinite
range

3.1 Introduction

In [BBD03], the authors prove the existence of a phase transition for the nearest-neighbour

continuum Potts model with finite range type interaction on the Delaunay graph. We extend

to the case of infinite range, giving a presentation of different results, also seen in [AE15],

by the same author of the thesis. We work in the hypergraph structure framework presented

in Chapter 2.

3.2 Hardcore background interaction

The models that we consider in this Chapter are those with a hardcore background inter-

action ψ between pairs of particles, or edges, in Del2 or triples of particles, or triangles,

in Del3 . For fixed δ0 > 0, we give an infinite energy to hyperedges that contain particles

of distance less than δ0 to each other. This guarantees, with probability one, that particles

cannot get too close. We show, in Lemma 3.1, that these interactions are equivalent to the

classical case of a hardcore repulsion between all pairs of particles that form a hyperedge

in the complete hypergraph CG. In particular, let the background interaction satisfy

ψ(η, ω) ≡


ψ(|x1 − x2|) for η = {x1, x2} ∈ CG2(ω),

ψ(|x1 − x2|) for η = {x1, x2} ∈ Del2(ω),

ψ (min1≤i<j≤3 |xi − xj |) for η = {x1, x2, x3} ∈ Del3(ω),

(3.1)
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where CG2(ω) is the set of all pairs of particles in ω and ψ : R→ R ∪ {∞} is defined as

ψ(r) :=

{
+∞ if r < δ0,

0 otherwise.
(3.2)

Lemma 3.1. Let ω ∈ Ω. Then,

exp

− ∑
η∈CG2(ω)

ψ(η, ω)

 = exp

− ∑
η∈Del2(ω)

ψ(η, ω)

 = exp

− ∑
τ∈Del3(ω)

ψ(τ, ω)

 .
(3.3)

Proof. The second equality in (3.3) comes directly from (3.2) upon realising that every

triangle τ ∈ Del3 is made up of three edges η ∈ Del2, but equally, each edge η ∈ Del2 is

the subset of a triangle τ ∈ Del3. The first equality needs some more work. We begin by

defining the sets of hyperedges in Del2(ω) and CG2(ω) that contribute an infinite energy to

the sums in (3.3). Let

HC : = {η ∈ Del2(ω) : ψ(η, ω) =∞}

= {η = {x1, x2} ∈ Del2(ω) : |x1 − x2| < δ0},

and

HC∗ : = {η ∈ CG2(ω) : ψ(η, ω) =∞}

= {{x1, x2} ∈ ω : x1 6= x2 and |x1 − x2| < δ0}.

If we can show that HC∗ = ∅ ⇔ HC = ∅, the Lemma will follow. It is trivial to see that

HC ⊂ HC∗ because each hyperedge η ∈ Del2(ω) comprises exactly two disjoint particles

x1, x2 ∈ ω. Therefore, HC∗ = ∅ ⇒ HC = ∅. The other direction is a little more tricky.

We make use of the set Vorω(x) ⊂ R2 defined in (2.49), and also its boundary, denoted by

∂Vorω(x). Suppose {x1, x2} ∈ HC∗ and let x1x2 ⊂ R2 be the line segment between x1

and x2 given by

x1x2 := {z ∈ R2 : z = x1 + (x2 − x1)t for some t ∈ [0, 1]}. (3.4)

Take y to be the midpoint of x1x2 so that |x1 − y| = |x2 − y| < δ0/2. Obviously,

if {x1, x2} ∈ Del2(ω), we are done, so assume {x1, x2} /∈ Del2(ω). This implies that

y /∈ Vorω(x1) and y /∈ Vorω(x2). Let y′ be the furthest point away from x1 on x1x2 such
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that y′ ∈ Vorω(x1):

y′ = x1 + (x2 − x1)tmax

where

tmax = sup
t∈[0,1]

{t : x1 + (x2 − x1)t ∈ Vorω(x1)}.

By the convexity of Vorω(x1), we have |x1 − y′| < |x1 − y| < δ0/2 and y′ ∈ ∂Vorω(x1).

Therefore, there exists some x3 ∈ ω\x1 such that y′ ∈ ∂Vorω(x3) also. In particular,

Vorω(x1) and Vorω(x3) share a 1-dimensional face, {x1, x3} ∈ Del2(ω) and

|x1 − x3| ≤ |x1 − y′|+ |x3 − y′| < δ0/2 + δ0/2 = δ0.

Hence, η = {x1, x3} ∈ HC and therefore HC = ∅ ⇒ HC∗ = ∅.

3.3 Type interaction

We also use a type interactionϕ on hyperedges of Delm(ω), form ∈ {2, 3} that do not share

a common mark between particles. This type interaction will depend on a parameter A > 1

which acts as the inverse temperature for type interactions. For large A the type interaction

is strong. All of the type interactions in this thesis will be positive and will satisfy the local

horizon property (2.13), i.e. the hyperedge potential will only depend on the hyperedge and

not of the neighbourhood of the hyperedge. For a marked configuration ω = (ω, σω) ∈ Ω,

the Hamiltonian in a box Λ ∈ B(R2), with boundary condition ξ = (ξ, σξ) ∈ ΩΛc , is given

by

HΦ
Λ|ξ(ω) =

∑
η∈Delm(ω∪ξ)

ηΛ 6=∅

ψ(η, ω ∪ ξ) +
∑

(η.ση)∈Delm(ω∪ξ)
ηΛ 6=∅

ϕ(η, ω ∪ ξ)(1− δση(η)) (3.5)

where δσω is the indicator defined in (2.22).

3.4 Existence

In order to show the existence of a Gibbs measure for the Delaunay Potts model with hard-

core background interaction and type interaction as described above, we use the results of

[DDG10] that we adapted in Section 2.4.1, and generalise to our new setting of twin hyper-

edge interactions ψ and ϕ. We will see that we do not need to explicitly define ϕ at this

point – for existence of Gibbs measure, we only require that it is positive and satisfies the
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local horizon property.

Proposition 3.2. For all z > 0, A > 0 and δ0 ≥ 0, there exists at least one Gibbs

measure for the Hamiltonian given in (3.5). Such a Gibbs measure is called a Delaunay

Potts measure.

Proof. For (η, ω) ∈ Delm with η = (η, ση) and ω = (ω, σω), we will apply Theorem 2.12

to

Φ(η, ω) := ψ(η, ω) + ϕ(η, ω)(1− δση(η)).

Therefore, if we can show that the couple (Φ,Delm) satisfies the (R), (S) and (U) con-

ditions, we are done. By the definition of Del given in (2.50), there exists an open ball

B(η, ω) ⊂ R2 with ω ∩ (∂B(η, ω) × Σ) = η and ω ∩ (B(η, ω) × Σ) = ∅. By setting

∆ = B(η, ω), the range condition (R) follows from our local horizon assumption (2.13).

Stability (S) follows because Φ ≥ 0. For the upper regularity condition (U), we start off by

defining the matrix M , from 2.18, so that∇(k) take the form of squares of side length L:

M =

(
L 0

0 L

)
,

with L to be determined later. Furthermore, for any∇ ∈ B(R2) and any real r > 0, let

∇	 r := {x ∈ ∇ : B(x, r) ⊂ ∇} (3.6)

and define Γs as the set of all configurations that consist of a single point of R2 × s, whose

projection under ρ lies in the Borel set D := ∇(0) 	 δ0, where ∇(0) is defined in (2.18).

In particular, let

Γs :=
{
ω ∈ Ω∇(0) : ω = {x} for some x ∈ D × s

}
. (3.7)

This gives our first constraint on L: it must be larger than 2δ0. The translations ϑx ∈ Θ do

not alter the marks of a marked configuration, therefore, we obtain a set of pseudo-periodic

marked configurations Γ̂s, defined in (2.19), with each ω ∈ Γ̂s consisting of only particles

of a single mark. The particle positions are also distance at least δ0 from their neighbours,

so using Lemma 3.1, we conclude that cD = c+
D = 0. Uniform confinement and uniform

summability both follow whilst strong non-rigidity is satisfied if

z|∇(0)	 δ0| > ecD ,

or equivalently, if

L > z−1/2 + δ0.
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Therefore, we choose L to satisfy

L > max
{

2δ0, δ0 + z−1/2
}
. (3.8)

Remark 3.3. Note that Proposition 3.2 holds for the particular case that δ0 = 0. This is

equivalent to there being no background interaction at all, or to ψ ≡ 0.

3.5 Non-uniqueness

In order to show a phase transition for such a system, we first show percolation with re-

spect to the continuum random cluster model associated to the Hamiltonian in (3.5) and

then use the theory from Section 2.7. Before embarking on a proof of percolation for this

conveniently named Delaunay random cluster distribution CΛ|ξ, we give a brief outline of

the techniques and main ideas that we use. We aim to show that percolation occurs in CΛ|ξ,

for constants z and A large enough, and for suitable pseudo periodic boundary condition

ξ. We show this by finding a stochastically smaller measure C̃Λ|ξ and a corresponding site

percolation model C̃site
Λ|ξ. We then show the existence of site percolation under C̃site

Λ|ξ using a

coarse graining technique and by bounding the expected change in K(ω,E) as a point x0

is added to a configuration ω ∈ Ω. Finally, we use Proposition 2.18 to show percolation in

CΛ|ξ. The phase transition result of Theorem 3.13 then follows.

3.5.1 Coarse graining

We use a coarse graining technique to compare the Delaunay random cluster model with

site percolation on Z2. We set up the coarse graining procedure in the following. Let

Λ ∈ B(R2) be a rectangle made up of a finite union of square boxes, ∆k,l, each of side

length 9L, for some L > 0. That is, for some I ⊂ Z2

Λ =
⋃

(k,l)∈I

∆k,l, (3.9)

We also split each of these smaller boxes into 81 tiny square boxes (or cells) of side length

L:

∆k,l =

8⋃
i,j=0

∆i,j
k,l. (3.10)
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Figure 3.1: The shaded areas show the central bandCBL
k:k+1,l of two boxes ∆k,l and ∆k+1,l

in an L-splitting of Λ. The set of hyperedges HL
k:k+1,l(ω) is also shown.

This is called the L-splitting of Λ. Given an L-splitting of Λ, we define the central band of

∆k,l ∪∆k+1,l to be

CBL
k:k+1,l :=

(
4⋃
i=0

∆4+i,4
k,l

)
∪

(
4⋃
i=0

∆i,4
k+1,l

)
. (3.11)

Given ω ∈ Ω, let HL
k:k+1,l(ω) be the subset of triangles of Del3(ω) whose circumscribing

circle has a non-empty intersection with CBL
k:k+1,l, see Figure 3.1. More precisely,

HL
k:k+1,l(ω) :=

{
τ ∈ Del3(ω) : B(τ, ω) ∩ CBL

k:k+1,l 6= ∅
}
. (3.12)

Indeed, for boxes ∆k,l and ∆k,l+1 we consider a possible vertical connection by defining

CBL
k,l:l+1 and HL

k,l:l+1(ω) analogously. In the following, we limit ourselves to the horizon-

tal case, however, due to rotational symmetry, all definitions and results hold for the vertical

case too. Define the event Fk,l that all small boxes ∆i,j
k,l ⊂ ∆k,l contain at least one point of

ω. Precisely:

Fk,l :=

8⋂
i,j=0

(|ω ∩∆i,j
k,l| ≥ 1). (3.13)

In order to use a coarse graining technique to compare to site percolation in Z2, we require

a method to ensure adjacent boxes are connected with high probability. The following def-

inition will allow for this. Recall that the role of the inverse temperature A is encapsulated
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inside the potential ϕ.

Definition 3.4. The Delaunay random cluster distribution CΛ|ξ with ψ and ϕ as above is

called coarse-grain ready (CGR) if there exists constants U1 > 0 and U2 ≥ 2δ0 such that

for all ω ∈ Fk,l ∩ Fk+1,l,

ϕ(η, ω) ≥ ϕ(U1) > 0

for all η ⊆ τ ∈ HL
k:k+1,l(ω) and L ∈ [2δ0, U2].

The condition of U2 ensures that we can choose a splitting of Λ with boxes of side

length at least 2δ0. This becomes important in Lemma 3.9. Different potentials ϕ will give

different values of U2 and hence, varying ranges of acceptable box length L.

3.5.2 Papangelou conditional intensity

Definition 3.5. Let ν on (Ω,F) be absolutely continuous with respect to the Poisson point

process Πz and denote by f : Ω→ [0,∞) the Radon-Nikodym derivative given by dν/dΠz .

The Papangelou conditional intensity for ν with respect to Πz is then defined by

f(ω ∪ {x})
f(ω)

,

for ω ∈ Ω and x ∈ R2\ω.

Roughly speaking, the Papangelou conditional intensity, see [DVJ08], can be seen

as the conditional intensity for finding a point at x, given the configuration ω. Let m ∈
{2, 3} and recall from (2.32) the continuum random-cluster distribution, which is colour

independent and given by

CΛ|ξ(dω, dE) :=
1

Z2,Λ|ξ
qK(ω,E)P zΛ|ξ(dω)µω,Λ(dE) (3.14)

where K(ω,E), with E ⊂ Delm(ω), is the number of connected components of the graph

(ω,E) and Z2,Λ|ξ is the normalising constant defined in (2.33). LetMΛ|ξ be the distribution

of particle positions given by the marginal distribution CΛ|ξ(·, E) and recall from (2.43) that

CΛ|ξ(dω, dE) = MΛ|ξ(dω)µ
(q)
ω,Λ(dE), (3.15)

with

µ
(q)
ω,Λ(dE) =

qK(ω,E)µω,Λ(dE)∫
qK(ω,E)µω,Λ(dE)

.
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We define hΛ to be the Radon-Nikodym derivative of MΛ|ξ with respect to P zΛ|ξ. That is:

hΛ(ω) = Z−1
2,Λ|ξ

∫
qK(ω,E)µω,Λ(dE). (3.16)

The Papangelou conditional intensity for MΛ|ξ with respect to P zΛ|ξ is then given by

hΛ(ω ∪ {x})
hΛ(ω)

, (3.17)

for ω ∈ Ω and x ∈ R2\ω. The second thing we need in order to use a coarse graining

technique to compare the Delaunay random cluster model with site percolation on Z2, is to

exhibit some control over the distribution of particle positions MΛ|ξ. For this control, we

require a lower bound on the Papangelou conditional intensity (3.17). In particular, we state

the following condition.

Definition 3.6. The Delaunay random cluster distribution CΛ|ξ, with ψ and ϕ as above,

has bounded Papangelou conditional intensity (BPI) if there exists α > 0 (depending on ϕ

and ψ) such that, for any finite box Λ ∈ B(R2), MΛ|ξ – almost all ω ∈ ΩΛ|ξ and a point

x0, with x0 ∈ Λ\ω,

hΛ(ω ∪ {x0})
hΛ(ω)

≥ q−α. (3.18)

3.5.3 Percolation

Proposition 3.7. Fix q ∈ [1,∞). Let ψ be a hardcore background interaction satisfying

(3.1) and (3.2) and let ϕ be a type interaction on hyperedges of Delm dependent on param-

eter A. Suppose the Delaunay random cluster distribution CΛ|ξ corresponding to ψ and ϕ

is coarse-grain ready (CGR), has a bounded Papangelou conditional intensity (BPI) and

that z and A large enough. Then, for all ∆ ∈ B(R2), there exists c > 0, such that for all

Λ ⊃ ∆, and for all ξ = (ξ, σξ) ∈ Γ̂Λc ,∫
CΛ|ξ(dω, dE)N∆↔Λc(ω,E) ≥ c. (3.19)

Remark 3.8. Note that, despite the need for q ∈ N in the Delaunay random cluster rep-

resentation of the Delaunay Potts model, Proposition 3.7 holds for all real q > 1, and

hence for many more random cluster models than those with corresponding Delaunay Potts

models.
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For the proof, we use the coarse graining framework described in Section 3.5.1 to

compare C̃site
Λ|ξ from (2.46) to site percolation on Z2. In particular, we show that the condi-

tional probability (with respect to C̃site
Λ|ξ) that a box ∆k,l is ‘nice’ – given the configuration

outside ∆k,l is admissible – is larger than psite
c (Z2): the critical probability for site perco-

lation on the integer lattice. Of course, this guarantees an infinite chain of ‘nice’ boxes.

If we define ‘nice’ boxes in such a way that an infinite chain of them implies an infinite

path of edges in the Delaunay graph passing only through points of mark 1, then we have

percolation for C̃site
Λ|ξ. This is made rigorous in Lemmas 3.9 and 3.10 below. Then, once

we have shown the stochastic domination of µ(q)
ω,Λ over µ̃ω in Lemma 3.11, Proposition 3.7

follows from Proposition 2.18.

An important component of the discretization method is to estimate the conditional

probability that at least one point of the configuration lies inside ∆k,l, given the configura-

tion outside of ∆k,l. To begin, let ∆ ⊂ Λ and write

MΛ|ξ(A,B) =

∫
B

∫
A
f(ω′, ω′′, ξ)Πz

∆(dω′)Πz
Λ\∆(dω′′)

for A ∈ F∆, B ∈ FΛ\∆ and ξ ∈ ΩΛc where f is given by

f(ω′, ω′′, ξ) = Z−1
Λ|ξhΛ(ω′ ∪ ω′′ ∪ ξ) exp[−Hψ

Λ|ξ(ω
′ ∪ ω′′)] (3.20)

and ZΛ|ξ is the normalising constant from (2.25), but with q = 1. The marginal distribution

of the point configuration inside Λ\∆ is then given by

M
Λ\∆
Λ|ξ (dω′′) = fΛ\∆(ω′′)Πz

Λ\∆(dω′′),

where the density fΛ\∆(ω′′) =
∫

Ω∆
f(ω′, ω′′, ξ)Πz

∆(dω′). Now, let

g(ω′|ω′′) :=

{
f(ω′, ω′′, ξ)/fΛ\∆(ω′′) for all ω′′ such that fΛ\∆(ω′′) 6= 0,

an arbitrary density f0(ω′) for all ω′′ such that fΛ\∆(ω′′) = 0

(3.21)

and define

MΛ|ξ(A|ωΛ\∆ = ω′′) =

∫
A
g(ω′|ω′′)Πz

∆(dω′) for all A ∈ F∆.

Call g(ω′|ω′′) the conditional density (relative to MΛ|ξ) of the configuration inside ∆ given

that the configuration in Λ\∆ is equal to ω′′. We check that MΛ|ξ(A|ωΛ\∆ = ω′′) is a
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regular conditional distribution. Indeed,∫
B

∫
A
g(ω′|ω′′)Πz

∆(dω′)M
Λ\∆
Λ|ξ (dω′′) =

∫
B

[∫
A
g(ω′|ω′′)Πz

∆(dω′)

]
fΛ\∆(ω′′)Πz

Λ\∆(dω′′)

=

∫
B∩S

[∫
A

f(ω′, ω′′, ξ)

fΛ\∆(ω′′)
Πz

∆(dω′)

]
fΛ\∆(ω′′)Πz

Λ\∆(dω′′)

=

∫
B∩S

∫
A
f(ω′, ω′′, ξ)Πz

∆(dω′)Πz
Λ\∆(dω′′)

= MΛ|ξ(A,B)

=

∫
B
MΛ|ξ(A|ωΛ\∆ = ω′′)M

Λ\∆
Λ|ξ (dω′′).

Thus,
∫
A g(ω′|ω′′)Πz

∆(dω′) = MΛ|ξ(A|ωΛ\∆ = ω′′) almost surely with respect to MΛ\∆
Λ|ξ

and so works as a version. We note that∫
A
g(ω′|ω′′)Πz

∆(dω′) = 1S(ω′′)

(∫
A f(ω′, ω′′, ξ)Πz

∆(dω′)

fΛ\∆(ω′′)

)
+ 1Sc(ω

′′)

∫
A
f0(ω′)Πz

∆(dω′)

(3.22)

is measurable on (ΩΛ\∆,FΛ\∆) for any fixed A ∈ F∆, and acts as a probability distri-

bution for any fixed ω′′ ∈ ΩΛ\∆. Thus,
∫
A g(ω′|ω′′)Πz

∆(dω′) defines completely a reg-

ular conditional probability distribution. For brevity, we will write MΛ,∆|ξ′(·) instead of

MΛ|ξ(·|ωΛ\∆ = ω′′) where ξ′ = ω′′ ∪ ξ ∈ Ω∆c . It follows, together with (3.20) and (3.22),

that for any admissible boundary configuration ξ′ ∈ Ω∆c ,

MΛ,∆|ξ′(A) = Z−1
Λ,∆|ξ′

∫
A
hΛ(ω′ ∪ ξ′) exp[−Hψ

Λ|ξ(ω
′ ∪ ω′′)]Πz

∆(dω′)

= Z−1
Λ,∆|ξ′

∫
A
hΛ(ω′ ∪ ξ′) exp[−Hψ

∆|ξ′(ω
′)]Πz

∆(dω′), (3.23)

where the second equality is due to the fact that ξ′ is admissible and ψ is a hard core

potential. The normalisation constant is given by

ZΛ,∆|ξ′ = ZΛ|ξ′fΛ\∆(ω′′).

Fix ε = 1−psite
c (Z2)
2 and L ∈ [2δ0, U2] where U2 is as in Definition 3.4. Then, we

have the following lower bound on the probability that a small box, ∆i,j
k,l in the L-splitting

of Λ, contains at least one point of ω.

Lemma 3.9. Let z > z0 := 81qα

εU2
2

. Then, for any finite union Λ of boxes ∆ ∈ B(R2), and
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for any pseudo-periodic boundary condition ξ ∈ Γ̂Λc ,

MΛ,∇|ξ′(|ω ∩∇| ≥ 1) > 1− ε

81

for all cells ∇ = ∆i,j
k,l of the L-splitting of Λ and for any admissible boundary condition

ξ′ ∈ Ω∇c , with ξ′\Λ = ξ.

Proof. We make use of the fact that∫
f(ω)Πz

∇(dω) = e−z|∇|
∞∑
n=0

zn

n!

∫
∇n

f({x1, . . . xn})dx1 . . . dxn, (3.24)

for any bounded measurable function f : Ω∇ → [0,∞). It follows from (3.23), that

MΛ,∇|ξ′(|ω ∩∇| = 1)

MΛ,∇|ξ′(|ω ∩∇| = 0)
=
e−z|∇|z

∫
∇ exp

[
−Hψ

∇|ξ′({x})
]
hΛ(ω ∪ {x})dx

e−z|∇|hΛ(ω)

= z

∫
∇

exp
[
−Hψ

∇|ξ′({x})
] hΛ(ω ∪ {x})

hΛ(ω)
dx

≥ q−αz
∫
∇

exp
[
−Hψ

∇|ξ′({x})
]
dx

using the (BPI) condition. Let ∇0 ⊂ ∇ be such that ∇	 δ0 = ∇0. Then, by splitting the

integral, we obtain

MΛ,∇|ξ′(|ω ∩∇| = 1)

MΛ,∇|ξ′(|ω ∩∇| = 0)
≥ q−αz

(∫
∇0

exp
[
−Hψ

∇|ξ′({x})
]
dx

+

∫
∇\∇0

exp
[
−Hψ

∇|ξ′({x})
]
dx︸ ︷︷ ︸

≥0

)
(3.25)

≥ q−αz
∫
∇0

exp
[
−

∑
{x,y}∈Del2(ξ′∪{x})

ψ(|x− y|)
]
dx ≥ q−αz|∇0|,

where the integrand in the penultimate term is equal to 1 since |x−y| > δ0 for all y ∈ ξ′. It

is apparent that |∇0| > 0 because of our assumption that δ0 <
L
2 and that∇ has side length

L. Thus,

MΛ,∇|ξ′(|ω ∩∇| = 0) ≤ qα

z|∇0|
<

ε

81

for z > z0.

We now introduce site percolation which we will use in our comparison argument.
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Recall the hyperedge drawing mechanism µω,Λ described in (2.28). Given ω ∈ Ω, let µ̃ω
denote an alternative distribution of the random hyperedge configurations

{η ∈ H(ω) : v(η) = 1}

where (v(η))η∈H(ω) are independent Bernoulli random variables with probability

Prob(v(η) = 1) = p̃(η) :=
1− exp (−ϕ(U1))

1 + (q|η|−1 − 1) exp (−ϕ(U1))︸ ︷︷ ︸
=:p̃

1Del∗m(ω)(η), (3.26)

where, for m ∈ {2, 3},

Del∗m(ω) :=
{
η ∈ Delm(ω) : ϕ(η, ω) ≥ ϕ(U1)

}
, (3.27)

and U1 is as in Definition 3.4. Note that unlike pΛ of (2.28), p̃ has no dependence on the

box Λ. Note also that p̃ is increasing in A, although to reduce excessive notation, we don’t

explicitly write this. Recall the definition of the continuum site percolation model from

(2.46):

C̃site
Λ|ξ(dω) = MΛ|ξ(dω)λ̃ω(dω),

where λ̃ω denotes the distribution of the random vector σω = (σω(x) : x ∈ ω) with

elements in Σ, where (σω(x))x∈ω are independent Bernoulli random variables satisfying

Prob(σω(x) = 1) = p̃1Del∗1(ω)(x) (3.28)

and

Prob(σω(x) 6= 1) = 1− p̃1Del∗1(ω)(x)

where p̃ is given in (3.26) and Del∗1(ω) is the set of points that build the hyperedges of

Del∗m(ω).

Lemma 3.10. Let z > z0 and A > A0 where z0 is given in Lemma 3.9 and

A0 := U−1
1

log

1 + (q|η|−1 − 1)(1− ε)π(
δ0

9U2+2δ0
)2

1− (1− ε)π(
δ0

9U2+2δ0
)2

 .

Then, there exists c > 0 such that

C̃site
Λ|ξ({∆↔ Λc} ≥ c > 0

for any box ∆ ∈ B(R2), any finite union Λ of boxes, and for any pseudo-periodic boundary
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condition ξ ∈ Γ̂Λc .

Proof. Let ∇ = ∆i,j
k,l. By Lemma 3.9, we take z large enough such that, for all configura-

tions ξ′ ∈ Ω∇c , with ξ′\Λ = ξ,

MΛ,∇|ξ′(|ω ∩∇| = 0) ≤ ε

81
. (3.29)

This implies that, for all configurations ξ′′ ∈ Ω∆c with ξ′′\Λ = ξ,

MΛ,∆|ξ′′(|ω ∩∇| = 0) =

∫
Ω∆\∇

MΛ,∇|ξ′′∪ζ(|ω ∩∇| = 0)M
∆\∇
Λ,∆|ξ′′(dζ)

≤ ε/81

∫
Ω∆\∇

M
∆\∇
Λ,∆|ξ′′(dζ)

= ε/81, (3.30)

where the inequality is due to the fact that ξ′′ ∪ ζ ∈ Ω∇c , and hence satisfies the conditions

for (3.29). Recall from (3.13) the event Fk,l that all small boxes ∆i,j
k,l ⊂ ∆k,l contain at

least one point of ω and notice that

MΛ,∆|ξ′′(Fk,l) ≥ 1−
8∑

i,j=0

MΛ,∆|ξ′′(|ω ∩∆i,j
k,l| = 0) > 1− ε.

Let Ck,l ∈ F be an event such that each small box ∆i,j
k,l ⊂ ∆k,l contains at least one point

and all points in ∆k,l ∩ Del∗1(ω) are of mark 1:

Ck,l = {ω = (ω, σω) ∈ Ω : ω ∈ Fk,l and σω(x) = 1 for all x ∈ ∆k,l ∩ Del∗1(ω)}.

Recall from (3.28), that under C̃site
∆k,l|ξ′′ , a point x ∈ ω, where ρ(x) ∈ ∆k,l ∩ Del∗1(ω),

has mark 1 with probability p̃. Also note that the maximum number of particles in ∆k,l ∩
Del∗1(ω) is no larger than the maximum number of particles in ω∆k,l

. Hence, by the hardcore

background interaction,

|ω∆k,l
∩ Del∗m(ω)| ≤ (9L+ 2δ0)2

πδ2
0

=: M.

Therefore

C̃site
∆k,l|ξ′′(Ck,l) ≥

∫
MΛ,∆k,l|ξ′′(dω)1{Fk,l}(ω)p̃M

≥ (1− ε)p̃M . (3.31)
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However, by taking A > A0, and since L ≤ U2, we obtain that

p̃ =
1− exp[−ϕ(U1)]

1 + (q|η|−1 − 1) exp[−ϕ(U1)]
≥ (1− ε)

πδ20
(9L+2δ0)2 = (1− ε)1/M ,

and hence p̃M ≥ (1− ε). Combining this with (3.31), it follows that for all A > A0,

C̃site
∆k,l|ξ′′(Ck,l) ≥ (1− ε)2 > 1− 2ε = psite

c (Z2). (3.32)

Then, by standard percolation results, there exists, with positive probability independent of

Λ, a chain of boxes ∆i,j from ∆k,l ⊂ Λ to Λc such that Ci,j occurs for each. It remains to

check this implies {∆↔ Λc}. Recall the definitions for the central band CBL
k:k+1,l and the

subset of hyperedges HL
k:k+1,l(ω) given by (3.11) and (3.12) respectively and let

Hm(ω) = {η ∈ Delm(ω) : ∃τ ∈ HL
k:k+1,l(ω) : η ⊆ τ}

be the subset of hyperedges of Delm(ω) that build the triangles of HL
k:k+1,l(ω). Suppose

ω = (ω, σω) ∈ Ck,l ∩ Ck+1,l. Then, since CΛ|ξ satisfies (CGR), it follows that ϕ(η, ω) ≥
ϕ(U1) > 0 for all η ∈ Hm(ω). Therefore Hm(ω) ⊂ Del∗m(ω) and hence, σω(x) = 1

for all x ∈ Hm(ω). Therefore, we can connect ∆4,4
k,l to ∆4,4

k+1,l in the graph Del∗m inside

∆k,l∪∆k+1,l, through points of mark 1. Hence, using (3.32), we have C̃site
Λ|ξ({∆↔ Λc}) ≥

c > 0.

Finally, we show that µ̃ω is stochastically smaller than µ(q)
ω,Λ using the following

Lemma. This completes the proof of Proposition 3.7.

Lemma 3.11. For all q ≥ 1 and ω ∈ Ω, we have µ(q)
ω,Λ < µ̃ω.

Proof. Fix η ∈ Delm(ω). Then, considering (3.27), it follows that

p(η)

q|η|−1(1− p(η))
=

1− exp[−ϕ(η, ω)]

q|η|−1 exp[−ϕ(η, ω)]

≥
1− exp[−U1(A)1Del∗m(ω)(η)]

q|η|−1 exp[−U1(A)1Del∗m(ω)(η)]

=
1− exp[−U1(A)1Del∗m(ω)(η)]

1 + (q|η|−1 − 1) exp[−U1(A)1Del∗m(ω)(η)]

/
q|η|−1 exp[−U1(A)1Del∗m(ω)(η)]

1 + (q|η|−1 − 1) exp[−U1(A)1Del∗m(ω)(η)]

=
p̃(η)

1− p̃(η)
.

The result then follows from Proposition 2.3.
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3.6 Model 1 – Delaunay Potts model with restricted triangles

The first model to consider is one with a hardcore background interaction ψ between triplets

of particles, or triangles, in Del3 as described in (3.1) and (3.2). We also use a type inter-

action ϕ between triplets of particles, or triangles, in Del3 that gives a positive energy to

triangles without a common mark between its particles. This interaction will depend of the

smallest angle inside a triangle. In particular, fix β0 ∈ (0, π/3] and let the type interaction

satisfy

ϕ(τ, ω) ≡ ϕ(β(τ)) for τ ∈ Del3(ω),

where β(τ) denotes the smallest interior angle of a triangle τ and ϕ : [0, π/3]→ R∪ {∞}
is defined as

ϕ(θ) :=

{
0 if θ < β0,

A otherwise,
(3.33)

where A assumes the role of inverse temperature and controls the level of the type inter-

action. This is an infinite range type interaction as it can act between triplets of particles

far away from one another, providing they form a hyperedge in Del3 and do not share a

common mark. For a marked configuration ω = (ω, σω) ∈ ΩΛ and an admissible boundary

configuration ξ = (ξ, σξ), the Hamiltonian is given by

HΦ
Λ|ξ(ω) =

∑
τ∈Del3(ω∪ξ)

τΛ 6=∅

ψ(τ, ω ∪ ξ) +
∑

(τ,στ )∈Del3(ω∪ξ)
τΛ 6=∅

ϕ(τ, ω ∪ ξ)(1− δστ (τ)) (3.34)

where δστ is the indicator defined in (2.22). Since ψ is a hardcore background interaction

and ϕ is non-negative and satisfies the local horizon property, the existence of at least one

Delaunay Potts measure for the Hamiltonian (3.34) follows from Proposition 3.2.

Remark 3.12. In this model, we have specified ϕ to be a step function. In later models, we

look at other functions for ϕ, including those that depend more smoothly on θ ∈ [0, π/3].

Theorem 3.13. For all δ0 > 0 and β0 ∈ (0, 1
4
√

2
], there exists z0 = z0(β0, δ0) and A0 =

A0(β0, δ0) such that for z > z0 andA > A0, there exists at least q different Delaunay Potts

measures for the Hamiltonian 3.34.

To prove Theorem 3.13, we show that the Delaunay random cluster distribution

CΛ|ξ corresponding to ψ and ϕ is coarse-grain ready (CGR) and has a bounded Papangelou

conditional intensity (BPI). Then we apply Proposition 3.7.
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x0

(a) (b)

(c)

(e) (f)

(d)

x1

Figure 3.2: Inserting a point x0 into a configuration ω.

In order to show (BPI), we must first investigate the geometry of the Delaunay tri-

angulation Del(ω), and in particular, what happens to it when we augment ω with a new

point x0 /∈ ω. Some hyperedges may be destroyed, some are created, and some remain.

This process is well described in [Li94], but we give an account here for completeness.

Figure 3.2 illustrates the differences in the structure of the Delaunay triangulations Del(ω)

and Del(ω ∪ {x0}). We first locate the triangle of Del(ω) in which x0 is positioned (a).

We then create three new edges that join x0 to each of the three vertices of the triangle (b).
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This creates three new triangles, and destroys one. At this point, we need to verify that

the new triangles each satisfy the Delaunay condition (2.50). That is, their circumscribing

balls contain no points of ω. If the condition is satisfied, the triangle remains (c). If, on

the other hand, the condition is not satisfied, and there exists some point x1 of ω inside

the circumscribing ball (d), we remove the edge not connected to x0, and replace it by an

edge connecting x0 and x1 (e). This results in the creation of two new triangles. Each of

these new triangles must be checked as above and the process continues. Once all triangles

satisfy the Delaunay condition, we arrive at the Delaunay triangulation Del(ω ∪ {x0}) (f).

Before we can show (BPI), we must introduce some notation for our particular

case: the hypergraph structure Del3. Whilst most hyperedges τ ∈ Del3(ω) remain intact in

Del3(ω ∪ {x0}), some hyperedges are created, and some are destroyed. Let

Eext
x0|ω := Del3(ω) ∩ Del3(ω ∪ {x0}), (3.35)

E+
x0|ω := Del3(ω ∪ {x0})\Del3(ω) = Del3(ω ∪ {x0})\Eext

x0|ω, (3.36)

E−x0|ω := Del3(ω)\Del3(ω ∪ {x0}) = Del3(ω)\Eext
x0|ω, (3.37)

be the exterior, created, and destroyed hyperedge sets respectively, see Figure 3.3. Note that

any created hyperedges must contain x0, and hence,

E+
x0|ω = {τ ∈ Del3(ω ∪ {x0}) : τ ∩ x0 = x0}.

We also define µ−x0|ω, µ+
x0|ω and µext

x0|ω to be the edge drawing mechanisms on E−x0|ω, E+
x0|ω

and Eext
x0|ω respectively, which are derived from the edge drawing mechanism µω,Λ, as de-

fined in (2.28). In fact

µ+
x0|ω ⊗ µ

ext
x0|ω = µω∪{x0},Λ, (3.38)

µ−x0|ω ⊗ µ
ext
x0|ω = µω,Λ. (3.39)

Let E ∈ E be the resulting subset after a pΛ thinning of the hyperedge set Del3(ω)

for a finite box Λ ∈ B(R2). Throughout this thesis, we are interested in the number of con-

nected components K(ω,E) of the hypergraph (ω,E). More precisely, we are interested

in the change toK when we add or remove points or hyperedges from (ω,E). The addition

of a single point x0 ∈ Λ to ω without also the introduction of hyperedges to E will always
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(a) (b) (c)

Figure 3.3: The hyperedge sets Eext
x0|ω (a), E−x0|ω (b) and E+

x0|ω (c).

increase the number of connected components by one. On the other hand, the augmentation

of a single hyperedge τ ∈ Del3(ω) to E can result in the connection of a maximum of

three different connected components, leaving one. Therefore, for ω ∈ Ω, E ⊂ Del3(ω),

x0 ∈ Λ\ω and τ ∈ Del3(ω)\E, we conclude that

K(ω ∪ {x0}, E)−K(ω,E) = 1 (3.40)

and

−2 ≤ K(ω,E ∪ τ)−K(ω,E) ≤ 0. (3.41)

We are now in a position to prove that the Delaunay random cluster distribution for (3.34)

has a bounded Papangelou conditonal intensity.

Lemma 3.14. (BPI – Model 1). For every finite box Λ ⊂ R2, MΛ|ξ – almost all ω ∈ ΩΛ|ξ

and a point x0, with x0 ∈ Λ\ω,

hΛ(ω ∪ {x0})
hΛ(ω)

≥ q−
4π
β0 .

Proof. By adding the point x0 to ω we change the structure of the Delaunay triangulation,

as described above. Some hyperedges are destroyed, some are created, and some are not

changed. Recall the space of locally finite hyperedge sets E defined in Equation (2.26) and

let

E∗ := {E ⊂ E : β0 ≤ β(τ) ≤ π/3 for all τ ∈ E with τ ∩ Λ 6= ∅} ,

be the set of ‘nice’ hyperedge configurations where each hyperedge τ ∈ E that intersects Λ
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has smallest interior angle at least β0. We then have

hΛ(ω ∪ {x0})
hΛ(ω)

=

∫
qK(ω∪{x0},E)µω∪{x0},Λ(dE)∫

qK(ω,E)µω,Λ(dE)

=

∫
E∗ q

K(ω∪{x0},E)µω∪{x0},Λ(dE) +
∫
E\E∗ q

K(ω∪{x0},E)µω∪{x0},Λ(dE)∫
E∗ q

K(ω,E)µω,Λ(dE) +
∫
E\E∗ q

K(ω,E)µω,Λ(dE)
.

The second term on both the numerator and denominator vanish because of ϕ. In particular,

pΛ(τ) = 1−e−ϕ(τ,ω) for triangles having a non-empty intersection with Λ and if β(τ) < β0,

then pΛ(τ) = 0. It follows that,

hΛ(ω ∪ {x0})
hΛ(ω)

=

∫
E∗ q

K(ω∪{x0},E)µω∪{x0},Λ(dE)∫
E∗ q

K(ω,E)µω,Λ(dE)

=

∫
E∗∩Eext

x0|ω

∫
E∗∩E+

x0|ω
qK(ω∪{x0},E1∪E2)µ+

x0|ω(dE2)µext
x0|ω(dE1)∫

E∗∩Eext
x0|ω

∫
E∗∩E−

x0|ω
qK(ω,E3∪E4)µ−x0|ω(dE4)µext

x0|ω(dE3)

=

∫
E∗∩Eext

x0|ω

∫
E∗∩E+

x0|ω
qK(ω∪{x0},E1∪E2)−K(ω,E1)µ+

x0|ω(dE2)qK(ω,E1)µext
x0|ω(dE1)∫

E∗∩Eext
x0|ω

∫
E∗∩E−

x0|ω
qK(ω,E3∪E4)−K(ω,E3)µ−x0|ω(dE4)qK(ω,E3)µext

x0|ω(dE3)
.

(3.42)

However, since E1 ∪ E2 ∈ E∗, either β(τ) ≥ β0 for all τ ∈ E2 or E2 = ∅. It follows,

since E2 ⊂ E+
x0|ω, that the maximum number of hyperedges in E2 is 2π

β0
. Therefore, by

Equations (3.40) and (3.41), we conclude that

K(ω ∪ {x}, E1 ∪ E2)−K(ω,E1) ≥ −4π

β0
,

and

K(ω,E3 ∪ E4)−K(ω,E3) ≤ 0.

Combining with Equation (3.42), we obtain

hΛ(ω ∪ {x})
hΛ(ω)

≥ q−
4π
β0 .
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Lemma 3.15. (CGR – Model 1)
There exists a constant U1 > 0 such that for all ω ∈ Fk,l ∩ Fk+1,l and for all τ ∈
HL
k:k+1,l(ω)

ϕ(τ, ω) ≥ ϕ(U1),

where L satisfies

0 < δ0 <
L

2
and L <

δ0√
8β0

=: U2. (3.43)

Proof. Suppose L ∈ [2δ0, U2] (the interval is non-empty due to our restriction on β0,

namely β0 ∈ (0, 1
4
√

2
] ). Then, given ω ∈ Fk,l ∩ Fk+1,l, recall the central band of

∆k,l ∪∆k+1,l,

CBL
k:k+1,l =

(
4⋃
i=0

∆4+i,4
k,l

)
∪

(
4⋃
i=0

∆i,4
k+1,l

)
.

and the subset of hyperedges of Del3(ω) that have non-empty intersection with CBL
k:k+1,l

HL
k:k+1,l(ω) =

{
τ ∈ Del3(ω) : τ ∩ CBL

k:k+1,l 6= ∅
}
.

Since all of the little squares ∆i,j
k,l, i, j = 0, . . . , 8 contain at least one point, we have that

every open ball of radius at least
√

2L and centre y ∈ CBk:k+1,l has a non-empty intersec-

tion with ω. Therefore, for each τ ∈ HL
k:k+1,l(ω), the circumscribing ball B(τ) has radius

less than
√

2L.

Let τ = {a, b, c} be such a triangle. Without loss of generality, let β(τ) be the angle

âcb and let ` be the arc length of the arc on ∂B(τ) between a and b. Let x be the centre

of B(τ). It follows that âxb = 2β(τ) and ` = 2rβ(τ) where r is the radius of B(τ). By

the hardcore condition ` > |a − b| ≥ δ0. Combining these statements with the fact that

r <
√

2L gives

β(τ) >
δ0√
8L
.

Therefore, because ϕ is an increasing function of θ, we obtain that, for all τ ∈ HL
k:k+1,l(ω),

ϕ(τ, ω) = ϕ(β(τ)) ≥ ϕ
(

δ0√
8L

)
≥ ϕ(β0).

By setting, U1 = β0, the result follows.

Remark 3.16. The upper bound constraint of β0 is due to our proof method: we are not

claiming that there is no phase transition for β0 ∈ ( 1
4
√

2
, π/3]. Indeed in the following
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model, such a harsh restriction does not apply.

3.7 Model 1b – Relaxing of the type interaction

Rather than having a hard type interaction as in (3.33), we now look at a smooth potential

on β(τ), the smallest angle in a triangle τ . We take an increasing function of β(τ) which

will make interactions stronger between triplets of points that do not share a common colour

if they form a triangle closer to an equilateral triangle. The interpretation in the Delaunay

random cluster model is that triangles with larger minimum angle are more likely to exist.

The hardcore background interaction stays the same.

Let ψ be as in (3.1), and let the type interaction satisfy

ϕ(τ, ω) ≡ ϕ(β(τ)) for τ ∈ Del3(ω),

where β(τ) denotes the smallest interior angle of the triangle τ , and ϕ : [0, π/3] → R ∪
{∞} is defined as

ϕ(θ) := log(1 +Aθ3) (3.44)

Again, A takes the role of the inverse temperature. Equation (3.44) is another infinite

range type interaction as it can act between triplets of particles far away from one another,

providing they form a hyperedge in Del3 and do not share a common mark. Note that we

chose the exponent of θ to be the lowest sufficient to satisfy a technical constraint of our

proof of Lemma 3.20. For a marked configuration ω = (ω, σω) ∈ Ω, the Hamiltonian is

given by

HΦ
Λ|ξ(ω) =

∑
τ∈Del3(ω∪ξ)

τΛ 6=∅

ψ(τ, ω ∪ ξ) +
∑

(τ,στ )∈Del3(ω∪ξ)
τΛ 6=∅

ϕ(τ, ω ∪ ξ)(1− δστ (τ)). (3.45)

Since ψ is a hardcore background interaction and ϕ is non-negative and satisfies the lo-

cal horizon property, the existence of at least one Delaunay Potts measure follows from

Proposition 3.2.

Theorem 3.17. For all δ0 > 0, there exists A0 = A0(δ0) and z0 = z0(δ0, A0) such that

for all A > A0 and z > z0, there exists at least q different Delaunay Potts measures for the

Hamiltonian (3.45).

Again it is sufficient to show that CΛ|ξ satisfies the (CGR) and (BPI) conditions. The first

is straightforward.
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Lemma 3.18. (CGR – Model 1b)
There exists a constant U1 > 0 such that for all ω ∈ Fk,l ∩ Fk+1,l and for all τ ∈
HL
k:k+1,l(ω),

ϕ(τ, ω) ≥ ϕ(U1),

where L ∈ [2δ0, U2] for some U2 > 2δ0.

Proof. Fix U2 = 4δ0. From the proof of Lemma 3.15, we have that β(τ) > δ0√
8L

for all

τ ∈ HL
k:k+1,l(ω), for ω ∈ Fk,l ∩ Fk+1,l. Since ϕ is an increasing function of θ, choose

U1 = δ0√
8U2

= 1
4
√

8
.

Remark 3.19. Note that the choice of U2 in the proof of Lemma 3.18 is arbitrary, so long

as it is strictly greater than 2δ0. This allows us to split Λ into very large boxes, which gives

a better estimate for z0 and a worse estimate for A0. To find a better estimate for A0 in

Theorem 3.17 we must choose a smaller box length L.

Showing the (BPI) condition is a little harder. Given a configuration ω ∈ Ω, we

want to investigate the effect of adding a point x0 ∈ R2 to ω on the number of connected

components in the the continuum random cluster model. In particular, we would like to

bound below the following:

K(ω ∪ {x0}, E1 ∪ E)−K(ω,E1),

where E1 ⊂ Eext
x0|ω and E ⊂ E+

x0|ω. Given E ⊂ E+
x0|ω, let |E| denote its cardinality. A

single application of Equation (3.40) and repeated applications of Equation (3.41) show us

that

K(ω ∪ {x0}, E1 ∪ E)−K(ω,E1) ≥ −2|E|. (3.46)

In the case of the Delaunay random cluster representation from Model 1, |E| was easy to

bound above because we had a strict interaction prohibiting open hyperedges τ ∈ Del3(ω)

with an interior angle less that β0. However, in the current model, we have no hard restric-

tion on the smallest interior angles. Open hyperedges τ ∈ Del3(ω) with very small interior

angles are permitted, if not likely, therefore, we cannot find an upper bound for |E|. Instead,

we look to bound the expected value.

Lemma 3.20. Let Λ ∈ B(R2). Then
∫
|E|µ+

x0|ω(dE) ≤ 2π
(

1 + Aπ
3

2
)

for all ω ∈ Ω and

x0 ∈ Λ\ω.

Before we prove Lemma 3.20, we show how it can be used in order to satisfy the (BPI)
condition.
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Lemma 3.21. (BPI – Model 1b)
For all Λ ∈ B(R2), for all configurations ω ∈ Ω and for all points x0 ∈ Λ\ω,

hΛ(ω ∪ {x0})
hΛ(ω)

≥ q−4π(1+Aπ2

3
).

Proof. Recalling the definition of hΛ(ω) from (3.16), we write the integrals in terms of

µ−x0|ω, µ+
x0|ω and µext

x0|ω.

hΛ(ω ∪ {x0})
hΛ(ω)

=

∫
qK(ω∪{x0},E)µω∪{x0},Λ(dE)∫

qK(ω,E)µω,Λ(dE)

=

∫
qK(ω,E1)

(∫
qK(ω∪{x0},E1∪E2)−K(ω,E1)µ+

x0|ω(dE2)
)
µext
x0|ω(dE1)∫

qK(ω,E3)
(∫

qK(ω,E3∪E4)−K(ω,E3)µ−x0|ω(dE4)
)
µext
x0|ω(dE3)

.

(3.47)

However, ∫
qK(ω∪{x0},E1∪E2)−K(ω,E1)µ+

x0|ω(dE2) ≥
∫
q−2|E2|µ+

x0|ω(dE2)

≥ q−2
∫
|E2|µ+

x0|ω
(dE2)

≥ q−4π
(

1+Aπ
3

2
)
. (3.48)

The first inequality comes from Equation 3.46. The second inequality is due to Jensen’s

inequality and the third to Lemma 3.20. We also know, from (3.41), that

K(ω,E3 ∪ E4)−K(ω,E3) ≤ 0, (3.49)

because adding hyperedges can only reduce the number of clusters. Combining (3.47),

(3.48) and (3.49), we obtain

hΛ(ω ∪ {x0})
hΛ(ω)

≥

∫
qK(ω,E1)µext

x0|ω(dE1)q
−4π

(
1+Aπ

3

2
)

∫
qK(ω,E3)µext

x0|ω(dE3)q0

= q
−4π

(
1+Aπ

3

2
)
.

Proof of Lemma 3.20. The number of open hyperedges, |E|, that have a non-empty inter-

section with {x0} is obviously dominated by the total number of hyperedges of E+
x0|ω. We
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also know, by (2.28), that the probability that a hyperedge is open with respect to µ+
x0|ω is

pΛ. Therefore, the expectation of |E| with respect to µ+
x0|ω satisfies∫

|E|µ+
x0|ω(dE) =

∑
τ∈E+

x0|ω

pΛ(τ) =
∑

τ∈E+
x0|ω

[
1− e−ϕ(τ,ω)

]
. (3.50)

The problem we have is that the number of hyperedges inE+
x0|ω has no upper bound. There-

fore, we partition E+
x0|ω into a sequence of disjoint sets (Hi)i≥1 where

H1 :=
{
τ ∈ E+

x0|ω : β(τ) ≥ 1
}

and

Hi :=

{
τ ∈ E+

x0|ω :
1

i
≤ β(τ) <

1

i− 1

}
for i ≥ 2, i ∈ N. For i ∈ N, the cardinality of the set Hi is no larger than 2πi. Due to the

fact that ϕ is an increasing function of θ, it follows that pΛ(τ) ≤ 1− exp[−ϕ( 1
i−1)] for all

τ ∈ Hi providing i ≥ 2. Hence, by (3.50), we obtain∫
|E|µ+

x0|ω(dE) =

∞∑
i=1

∑
τ∈Hi

[
1− e−ϕ(τ,ω)

]
≤ 2π +

∞∑
i=2

2πi
[
1− e−ϕ( 1

i−1)
]

= 2π +
∞∑
i=2

2πi
A

(i− 1)3 + 1
≤ 2π

[
1 +A

∞∑
i=2

i

(i− 1)3

]
.

To bound the infinite sum, we use the fact that

∞∑
i=2

i

(i− 1)3
≤
∞∑
i=2

2

(i− 1)2
= 2

∞∑
i=1

1

i2
=
π

3

2
. (3.51)

Therefore, ∫
|E|µ+

x0|ω(dE) ≤ 2π

(
1 +

Aπ

3

2)
. (3.52)

3.8 Model 2 - Delaunay Potts model with infinite range

In [BBD03], the existence of a phase transition is shown for the nearest-neighbour con-

tinuum Potts model with finite range on the Delaunay graph. We are going to extend this

study to the case of infinite range type interactions. The hardcore background interaction ψ
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remains as in (3.1) and (3.2). However, we propose a type interaction ϕ with infinite range

between pairs of particles, or edges, in Del2 that gives a positive energy to edges with no

common mark between particles. This type interaction will depend on the length of the

hyperedge. In particular,

ϕ(η, ω) ≡ ϕ(|x− y|) for η = {x, y} ∈ Del2(ω),

where |x−y| is the Euclidean distance between x and y in R2, and ϕ : [0,∞]→ R∪{∞}
is defined as

ϕ(`) := log

(
1 +A

(
δ0

`

)3
)

whereA > 0 is an inverse temperature parameter for the type interaction. This is an infinite

range type interaction as it can act between pairs of particles far away from one another,

providing they form a hyperedge in Del2 and do not share a common mark. Define the

hyperedge Hamiltonian of a marked particle configuration ω = (ω, σω) ∈ ΩΛ, with an

admissible boundary configuration ξ = (ξ, σξ), by

HΦ
Λ|ξ(ω) =

∑
η∈Del2(ω∪ξ)
η∩Λ 6=∅

ψ(η, ω ∪ ξ) +
∑

(η,ση)∈Del2(ω∪ξ)
η∩Λ 6=∅

ϕ(η, ω ∪ ξ)(1− δση(η)) (3.53)

where δση is the indicator defined in (2.22). We now turn to the existence and uniqueness

questions. Again, since ψ is a hardcore background interaction and ϕ is non-negative and

satisfies the local horizon property, the existence of at least one Delaunay Potts measure for

the Hamiltonian (3.53) follows from Proposition 3.2.

Theorem 3.22. For all δ0 > 0, there exists A0 = A0(δ0) and z0 = z0(A, δ0) such that

for A > A0 and z > z0, there exists at least q different Delaunay Potts measures for the

Hamiltonian (3.53).

Lemma 3.23. (CGR – Model 2)
There exists a constant U1 > 0 such that for all ω ∈ Fk,l ∩ Fk+1,l and for all η ∈
HL
k:k+1,l(ω),

ϕ(η, ω) ≥ ϕ(U1),

where L ∈ [2δ0, U2] for some U2 > 2δ0.

Proof. Fix U2 > 2δ0 and suppose L ∈ [2δ0, U2]. Then, given ω ∈ Fk,l ∩ Fk+1,l, recall the
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central band of ∆k,l ∪∆k+1,l

CBL
k:k+1,l =

(
4⋃
i=0

∆4+i,4
k,l

)
∪

(
4⋃
i=0

∆i,4
k+1,l

)
.

and the subset of hyperedges of Del2(ω) that have non-empty intersection with CBL
k:k+1,l

HL
k:k+1,l(ω) =

{
η ∈ Del2(ω) : η ∩ CBL

k:k+1,l 6= ∅
}
.

Let η = {x1, x2} ∈ HL
k:k+1,l(ω). It follows that there exists x3 ∈ ω such that τ =

{x1, x2, x3} ∈ Del3(ω) and τ ∩ CBL
k:k+1,l 6= ∅. Since all of the little squares ∆i,j

k,l for

i, j = 0, . . . , 8 contain at least one point, we have that every open ball of radius at least√
2L that has a non-empty intersection with CBk:k+1,l, also has a non-empty intersection

with ω. Therefore, the circumscribing ball B(τ, ω) has radius less than
√

2L and hence,

|x1 − x2| < 2
√

2L. Since ϕ is a decreasing function of `, choose U1 = 2
√

2U2 and the

result follows.

As we are now working with the hypergraph structure Del2 as opposed to Del3 in

Models 1 and 1b, we switch our focus from triangles to edges and therefore need to realign

our notation before we can show (BPI). In particular, we define the sets of exterior, created

and destroyed hyperedges of Del2(ω) and Del2(ω ∪ {x0}). Let

Eext
x0|ω := Del2(ω) ∩ Del2(ω ∪ {x0}), (3.54)

E+
x0|ω := Del2(ω ∪ {x0})\Del2(ω) =

{
η ∈ Del2(ω ∪ {x0}) : η ∩ x0 = x0

}
, (3.55)

and

E−x0|ω := Del2(ω)\Del2(ω ∪ {x0}) = Del3(ω)\Eext
x0|ω, (3.56)

be the exterior, created, and destroyed hyperedges respectively, see Figure 3.4, and define

µ−x0|ω, µ+
x0|ω and µext

x0|ω to be the edge drawing mechanisms on E−x0|ω, E+
x0|ω and Eext

x0|ω re-

spectively.

We show (BPI) with a similar method as to the one used for Model 1b. Namely,

for a pΛ thinning of E+
x0|ω, E, we look for an upper bound for the cardinality of E. The

augmentation of a single hyperedge η ∈ Del2(ω) to E can result in the connection of a
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(a) (b) (c)

Figure 3.4: The hyperedge sets Eext
x0|ω (a), E−x0|ω (b) and E+

x0|ω (c).

maximum of two different connected components, leaving one. Therefore, for ω ∈ Ω,

E ⊂ Del2(ω) and η ∈ Del2(ω)\E,

−1 ≤ K(ω,E ∪ η)−K(ω,E) ≤ 0. (3.57)

A single application of Equation (3.40) and repeated applications of Equation (3.57) show

us that

K(ω ∪ {x0}, E1 ∪ E)−K(ω,E1) ≥ −|E|, (3.58)

where E1 ⊂ Eext
x0|ω and E ⊂ E+

x0|ω. The right hand side of (3.58) differs from that of (3.46)

by a factor 2 due to the fact that we are using edges and not triangles. For the finite range

nearest neighbour model of [BBD03], it is easy to obtain an upper bound for |E|. However,

in the current regime, we have neither a restriction on the number of neighbours, like in

Model 1 and 1b, nor a restriction on the range of the interaction, as in [BBD03], therefore,

there is no upper bound for |E|. Again, we look to bound its expected value with respect

to µ+
x0|ω. This is shown in Lemma 3.24 – the proof requires that particles not be too close

together – we conveniently make use of the hardcore background interaction.

Lemma 3.24. Let Λ ∈ B(R2). Then
∫
|E|µ+

x0|ω(dE) ≤ 4
[
9 + Aπ2

3

]
, for MΛ|ξ – almost

all ω ∈ Ω and x0 ∈ Λ\ω.

By taking α = 4
[
9 + Aπ2

3

]
and by using (3.58) instead of (3.46), it can then be

shown, by the proof of Lemma 3.21, that

hΛ(ω ∪ {x0})
hΛ(ω)

≥ q−4
[
9+Aπ2

6

]
, (3.59)

almost surely with respect to MΛ|ξ, and hence that CΛ|ξ satisfies the (BPI) condition.

Proof. Given ω ∪ {x0} ∈ Ω, such that x0 /∈ ω, let B(x0, r) ⊂ R2 be the ball of radius r

centred at x0. The background interaction ψ ensures that with probability one, under MΛ|ξ,
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no two particles of ω form a hyperedge of length less than δ0 in Del2(ω). Moreover, with

probability one, any two particles are at least distance δ0 apart – see Lemma 3.1. Therefore,

almost surely with respect to MΛ|ξ, we obtain the following upper bound for the number of

points y ∈ ω with |y − x0| < r:

|B(x0, r) ∩ ω| ≤
π(r + δ0)2

π(δ0/2)2
= 4

(
r + δ0

δ0

)2

. (3.60)

This is just the maximum number of balls of radius δ0 that you can pack together in R2,

whose centres lie within Euclidean distance r of x0. Therefore, using (3.60) for values

r = 2δ0, 4δ0 . . ., we see that

|B(x0, 2δ0) ∩ ω| ≤ 4

(
3δ0

δ0

)2

= 36 =: b1, (3.61)

|B(x0, 4δ0) ∩ ω| ≤ 4

(
5δ0

δ0

)2

= 100 =: b2, (3.62)

...

|B(x0, 2nδ0) ∩ ω| ≤ 4

(
(2n+ 1)δ0

δ0

)2

= 4(2n+ 1)2 =: bn. (3.63)

The number of hyperedges ofE+
x0|ω that have length less than r is obviously bounded above

by |B(x0, r) ∩ ω|, however, as r increases, this bound grows quadratically. On the other

hand, according to ϕ, hyperedges with large length are less likely to remain in a pΛ–thinning

of E+
x0|ω than their counterparts with small length. In the following, we try to play these

two facts against each other. We start by partitioning the plane into annuli of increasing

radius centred at x0 such that

R2 =

∞⋃
n=0

ANn,

where

AN0 := B(x0, δ0),

ANn := B(x0, 2nδ0)\ANn−1 for n ∈ N.

We then let E be a pΛ thinning of the hyperedge set E+
x0|ω for a finite box Λ ∈

B(R2). Let η = {x0, x} ∈ E+
x0|ω. Since x0 lies in Λ, we recall from (2.28) that the proba-

bility of η appearing in E is given by pΛ(η) = 1 − exp{−ϕ(|x0 − x|)}. For convenience

we let pΛ take a real valued argument and write

pΛ(`) := 1− exp{−ϕ(`)}.
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Then for n ∈ N, define

En := {η = {x0, x} ∈ E : |x0 − x| < 2nδ0},

the subset of hyperedges of E that have length less than 2nδ0. From (3.61), we see there

can be at most 36 particles of ω within distance 2δ0 of x0. Therefore,∫
E(ω,x0)

|E1|µ+
x0|ω(dE) ≤ 36.

Similarly, for n = 2, there are |B(x0, 4δ0) ∩ ω| particles to consider. As above,

at most 36 of these are of distance less than 2δ0 from x0 and have probability at most 1

of sharing a hyperedge with x0 in E. The remaining particles lie in the annulus AN2 and

due to the fact that pΛ is a decreasing function of distance, they have at most probability

pΛ(2δ0) of sharing a hyperedge with x0 in E. Therefore,∫
E(ω,x0)

|E2|µ+
x0|ω(dE) ≤ 36 + (b2 − b1)pΛ(2δ0),

and in general

∫
E(ω,x0)

|En|µ+
x0|ω(dE) ≤ 36 +

n−1∑
i=1

(bi+1 − bi)pΛ(2iδ0)

= 4

[
9 +

n−1∑
i=1

(
(2i+ 1)2 − (2i− 1)2

)
pΛ(2iδ0)

]

= 4

[
9 +

n−1∑
i=1

8ipΛ(2iδ0)

]
.

We have defined a non-negative sequence of random variables {|En|}n∈N such that |En| ↗
|E| as n→∞ for all E ∈ E(ω). By the monotone convergence theorem, we find∫

E(ω,x0)
|E|µ+

x0|ω(dE) =

∫
E(ω,x0)

lim
n→∞

(|En|)µ+
x0|ω(dE)

= lim
n→∞

(∫
E(ω,x0)

|En|µ+
x0|ω(dE)

)

≤ 4

[
9 + lim

n→∞

n−1∑
i=1

8ipΛ(2iδ0)

]
. (3.64)
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Recall that

ϕ(`) := log

(
1 +A

(
δ0

`

)3
)
,

and therefore,

pΛ(`δ0) = 1− e−ϕ(`δ0) = 1− elog(1− A
`3+A

)
=

A

`3 +A
. (3.65)

Then by combining (3.65) with (3.64), we obtain

∫
|E|µ+

x0|ω(dE) ≤ 4

[
9 +

∞∑
n=1

8nA

(2n)3 +A

]
≤ 4

[
9 +

∞∑
n=1

8nA

(2n)3

]

= 4

[
9 +A

∞∑
n=1

1

n2

]
= 4

[
9 +

Aπ2

6

]
.

which gives the statement of the Lemma.

Having shown that the Delaunay random cluster distribution CΛ|ξ satisfies both the

(CGR) and (BPI) conditions, Theorem 3.22 follows from Proposition 3.7.

3.9 Lower bounds for activity and temperature parameters in
the phase transition regime

Table 3.9 presents our estimates for z0 and A0 for each of the models in this Chapter. As

discussed in Remark 3.19, the choice of box length L in the splitting of Λ can be used to

optimise either z0 or A0. However, L must be chosen in the interval [2δ0, U2]. We choose

L = 4δ0 in each model.

z0 A0

Model 1 81q
4π
β0

εδ2
0

(
1√
2β0
−1
)2 log

[
1+(q2−1)a

1−a

]

Model 1b 81q4π(1+Aπ2/3)

4εδ2
0

323/2
(
1 + q2a

1−a

)
Model 2 81q

4

(
9+Aπ2

6

)
4εδ2

0
32
√
2δ2

0

(
1 + qa

1−a

)
Table 3.1: Activity and inverse temperature estimates. For brevity, we denote by a the
constant (1− ε)

π
1444 .
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Chapter 4

Soft Widom-Rowlinson Model on
Delaunay Graph

4.1 Introduction

Chapters 2 and 3 concerned the extension of [BBD03] to the case of type interactions with

hyperedge potentials with infinite range. Our arguments relied on the hardcore background

interactions. We now look at a class of models that do not have any background interac-

tion at all. The motivation comes from the Widom-Rowlinson model [WR70] – a marked

point process with particles of two types: the mark space takes the form Σ = {−1,+1}.
There is no background interaction, only a hardcore exclusion between particles of different

type. We present the model here in the hypergraph structure framework of our Chapter 2.

Although we present it in two dimensions to fall in line with the work of this thesis, the

Widom-Rowlinson model is actually well defined on Rd for all d ≥ 2. The underlying

hypergraph structure is simply the complete hypergraph CG. Given a marked configuration

ω ∈ Ω, recall that CG2(ω) is the set of hyperedges built from a pair of particles in ω. That

is

CG2(ω) := {η ⊂ ω : |η| = 2} .

In the particular case of the Widom-Rowlinson model, for ω = (ω, σω) ∈ Ω, interactions

correspond to the Hamiltonian

Hϕ(ω) =
∑

(η,ση)∈CG2(ω)

ϕ(η, ω)(1− δση(η)), (4.1)
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where δση is the indicator defined in (2.22), and ϕ, for some fixed r > 0 and η = {x, y},
takes the form

ϕ(η, ω ∪ ξ) =

{
∞ if |x− y| ≤ r,
0 otherwise.

There exists constants 0 < z0 ≤ z′0 < ∞, such that for activity z < z0 the Widom-

Rowlinson model has a unique Gibbs measure, whereas, for activity z > z′0, there are

multiple Gibbs measures. This shows the existence of a phase transition. The problem of

non-uniqueness of Gibbs measures for large activity z was first solved by Ruelle using a

Peierls-type argument. It was later also shown using a continuum random-cluster represen-

tation where the Widom-Rowlinson model is obtained by independently assigning to each

connected component in the continuum random-cluster representation a mark of either −1

or +1 with probability 1/2 for each. This more modern stochastic geometric method was

due to [CCK94]. There are a variety of different generalisations of the Widom-Rowlinson

model including the case when particles of different type are just discouraged to get too

close, rather than forbidden. Specifically, the type interaction takes the form ϕ

ϕ(η, ω ∪ ξ) =

{
A if |x− y| ≤ r,
0 otherwise.

for some constant A > 0 representing the inverse temperature. Otherwise, the Hamiltonian

is the same as in (4.1). For this generalisation, the problem of non-uniqueness of Gibbs

measures, for a required high activity or low temperature, was solved by [LL72]. The re-

sult was later repeated using a continuum random cluster representation in [GH96]. These

Widom-Rowlinson models each admit an analogue with q ≥ 3 types of particle. These

analogues each exhibit a phase transition which can be shown using a suitable continuum

random cluster representation.

We propose an extension of [CCK94] and [LL72] by only considering interactions

on the Delaunay hypergraph structure Del rather than the complete hypergraph structure

CG. We use a soft exclusion between pairs of particles of different type that form a hy-

peredge together in Del2. This geometric flavour is the key difference between our model

and the Widom-Rowlinson model on the complete hypergraph structure, where geometric

interactions are absent. However, just as in the Widom-Rowlinson model, there is no back-

ground interaction in our model, so two particles of the same type can suffuse: they can get

infinitesimally close without penalty. We show non-uniqueness of this proposed model for

large activity and low temperature. In this sense, it is an extension of the study in Chapters

2 and 3, and in particular a substantial generalisation of the model analysed in [BBD03].

The proof techniques and methods in [BBD03] and Chapter 3 of this thesis use the back-
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ground hardcore interaction to ensure an upper bound on the number of particles in a box

Λ ∈ B(R2). Here, we develop a novel approach without using any background potential.

Our methods require a smooth soft type interaction on edges of the Delaunay graph. The

potential will decay with an increase in edge length and disappear for lengths greater than

R > 0, i.e. the interaction has a finite range. On the other hand, as distance tends to 0,

the potential tends to infinity – smoothly. The main task is to uniformly bound, from above

and below, the quotient of densities defined as a Papangelou conditional intensity in (3.17).

Once this is achieved, we use coarse-graining techniques to compare our model to a mixed

site-bond percolation model on the integer lattice.

Define the background potential as ψ ≡ 0. Let the type interaction ϕ between pairs

of particles, or edges, in Del2 depend of the length of the hyperedge, and satisfy

ϕ(η, ω) ≡ ϕ(|x− y|) for η = {x, y} ∈ Del2(ω),

where |x − y| is the Euclidean distance between x and y in R2, and ϕ : (0,∞] → R is

defined as

ϕ(`) = log

(
`4 +A

`4

)
1{` ≤ R}. (4.2)

The parameter R > 0 is the finite range of the interaction and A assumes the role of

inverse temperature and controls the level of the type interaction. Define the hyperedge

Hamiltonian of a marked particle configuration ω = (ω, σω) ∈ ΩΛ, with an admissible

boundary configuration ξ = (ξ, σξ), by

HΦ
Λ|ξ(ω) =

∑
(η,ση)∈Del2(ω∪ξ)

η∩Λ 6=∅

ϕ(η, ω ∪ ξ)(1− δση(η)), (4.3)

where δση is the indicator defined in (2.22). It follows from Proposition 3.2 and in particular

Remark 3.3 that at least one such Gibbs measure exists.

Theorem 4.1. There exists z0(R, q) > 0 and A0(z,R, q) > 0, such that, for all z >

z0(R, q) and A > A0(z,R, q), there exists at least q different Delaunay Potts measures for

the Hamiltonian (4.3).

The proof structure has similarities with those in Chapter 3, but the techniques are

vastly different. For instance, we again find a suitable edge drawing mechanism µ̃ω, show

percolation for C̃site
Λ|ξ and relate it the non-uniqueness of Delaunay Potts measures through

the application of Proposition 2.18. We also again use a discretization argument to show
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percolation in C̃site
Λ|ξ, however, instead of the coarse grain structure of Section 3.5.1, we use

an alternative regime and compare to mixed site-bond percolation on the square lattice,

rather than standard site percolation as before.

4.2 Mixed site-bond percolation

Given a graph G = (V,E), let Pp be the probability measure on configurations of open

and closed sites of G. Each site of G is open with probability p and closed with probability

1 − p. Similarly, let P̃p be the probability measure on configurations of open and closed

edges of G. Each edge of G is open with probability p and closed with probability 1 − p.

For x0 ∈ V and a subset of vertices X ⊂ V , let

σ(p, x0, X,G) := Pp(∃ a path v0, e1, . . . , en, vn with v0 = x0, vn ∈ X

and all its vertices open |x0 is open ),

and

β(p, x0, X,G) := P̃p(∃ a path v0, e1, . . . , en, vn with v0 = x0, vn ∈ X

and all its edges open ).

Then the following inequality holds for 0 ≤ p ≤ 1, and is often used to show that

site percolation implies bond percolation – see [Ke82].

σ(p, x0, X,G) ≤ β(p, x0, X,G). (4.4)

In mixed percolation, both edges and vertices may be open or closed, possibly with

different probabilities. Each edge or bond is open independently of anything else with

probability p′ and each site is open independently of anything else with probability p. The

edges and sites that are not open, along with the edges to or from these sites, are closed.

We now look for paths of open sites and open edges. For x0 ∈ V and a subset of vertices

X ⊂ V , let

γ(p, p′, x0, X,G) := Pp,p′(∃ a path v0, e1, . . . , en, vn with v0 = x0, vn ∈ X

and all its vertices open, and all its edges open ).

Let G′ be the reduced graph where each edge and site of G is removed indepen-

dently with probability 1− p′ and 1− p respectively. By taking expectations of inequality
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(4.4), on G′, with respect to Pδ and P̃δ, we arrive at the mixed percolation result of Ham-

mersley: a generalisation of the work of McDiarmid [Ha80]. That is, for 0 ≤ δ, p, p′ ≤ 1:

γ(δp, p′, x0, X,G) ≤ γ(p, δp′, x0, X,G). (4.5)

By setting δ = p and p′ = 1 in (4.5), and noticing that γ(p2, 1, x0, X,G) =

σ(p2, x0, X,G) we arrive at

σ(p2, x0, X,G) ≤ γ(p, p, x0, X,G), (4.6)

and hence

θmixed(p, p) ≥ θsite(p
2), (4.7)

where θmixed(p, p′) is the mixed percolation probability with parameters p and p′, and

θsite(p) is the site percolation probability with parameter p. Inequality (4.7) will be used

in a new coarse graining scheme for continuum random cluster models without a hardcore

background interaction.

4.3 Coarse graining

We endeavour to use a coarse graining technique to compare the site percolation model

C̃site
Λ|ξ with mixed site-bond percolation on Z2. Let Λ ∈ B(R2) be a box made up of a finite

union of smaller boxes, ∆k,l, each of side length 8L, for some L > 0:

Λ =

N⋃
k,l=0

∆k,l. (4.8)

We also split each of these smaller boxes into 64 tiny boxes of side length L:

∆k,l =

7⋃
i,j=0

∆i,j
k,l. (4.9)

This is called the L-splitting of Λ. Given an L-splitting of Λ, define

∆−k,l =

5⋃
i,j=2

∆i,j
k,l

to be the union of the 16 smaller boxes towards the centre of ∆k,l. These will act as the sites

in the mixed site-bond percolation model on Z2. Finally we define the link boxes between
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(a)

(b)

Figure 4.1: (a). Part of an L-splitting of Λ. The shaded boxes are the link boxes. (b) The
shaded area is the union of the Voronoi cells with centre x ∈ HL

k:k+1,l(ω).

∆−k,l and ∆−k+1,l as

∆k:k+1,l
link =

 3⋃
j=0

∆6,j+2
k,l

 ∪
 3⋃
j=0

∆7,j+2
k,l

 ∪
 3⋃
j=0

∆0,j+2
k+1,l

 ∪
 3⋃
j=0

∆1,j+2
k+1,l

 (4.10)

which act as the bonds in the mixed site-bond percolation model on Z2, see Figure 4.1 (a).

This completes the coarse grain procedure. When we establish percolation in the mixed

site-bond model on Z2, i.e. the existence of an infinite chain of open sites and bonds, we

would like to relate it to the existence of an infinite connected component of hyperedges in

Del2, built only from points of mark 1, in the continuum site percolation model C̃site
Λ|ξ. To do

this, we define CBL
k:k+1,l to be the straight line segment between the centres of the boxes
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∆k,l and ∆k+1,l and let

HL
k:k+1,l(ω) :=

{
x ∈ ω : Vorω(x) ∩ CBL

k:k+1,l 6= ∅
}
. (4.11)

be the subset of points of a configuration, whose Voronoi cells intersect the line segment

CBL
k:k+1,l. See Figure 4.1 (b).

4.4 Percolation

Without the hardcore background interaction to lean on, our previous strategies of dis-

cretization seem not to work at all. Instead, we look much deeper into the underlying

geometry and properties of the Delaunay tessellations. Throughout this chapter, we work

exclusively on Del2, therefore we often refer to hyperedges as just ‘edges’. For brevity,

given a configuration ω ∈ Ω, we write

ηxy := {x, y} for {x, y} ∈ Del2(ω). (4.12)

Recall what happens to a Delaunay graph when we add a point x0 to a configuration

ω ∈ Ω, and in particular, recall the sets of exterior, created and destroyed edges denoted by

Eext
x0|ω, E+

x0|ω and E−x0|ω respectively and defined in (3.54 – 3.56). To add to these, we also

define the neighbourhood of x0.

Definition 4.2. Given a graph G, a polygon P ⊂ G is a sequence of vertices starting and

ending at the same vertex, with each two consecutive vertices in the sequence adjacent to

each other in the graph. No repetitions of vertices are allowed, other than the starting and

ending vertex.

Definition 4.3. Let ∂x0|ω := (Vx0|ω, E
nbd
x0|ω) where Vx0|ω is the set of points that share an

edge with x0 in Del2(ω ∪ {x0}) and Enbd
x0|ω is the set of edges in Del2(ω ∪ {x0}) that have

both endpoints in Vx0|ω. More precisely,

Vx0|ω :=
{
x ∈ ω : ηxx0 ∈ E+

x0|ω

}
and

Enbd
x0|ω :=

{
ηxy ∈ Eext

x0|ω : x, y ∈ Vx0|ω

}
.

The graph ∂x0|ω := (Vx0|ω, E
nbd
x0|ω) splits the plane into two regions. The region containing

x0 we call the neighbourhood of x0, and ∂x0|ω is called the boundary of the neighbourhood

of x0.
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Let B := B(x0, R) be the ball of radius R centred at x0 and let VB ⊂ Vx0|ω be the

restriction of Vx0|ω to B. Recall, from Equation 2.44, that

µ
(q)
ω,Λ(dE) =

qK(ω,E)µω,Λ(dE)∫
qK(ω,E)µω,Λ(dE)

,

where µω,Λ is the distribution of edge configurations, associated with the edge probability

pΛ(ηxy) = 1 − e−ϕ(|x−y|). Also recall that µ−ω , µ
+
ω and µext

ω are the edge drawing mecha-

nisms on E−x0|ω, E
+
x0|ω and Eext

x0|ω respectively and define

µ
(q)
ext,ω(dE) :=

qK(ω,E)µext
ω (dE)∫

qK(ω,E)µext
ω (dE)

. (4.13)

The main task in this section is to find an upper bound, independent of ω ∈ Ω,

for the expected number of connected components of (ω,E) that intersect VB , where E is

sampled from µ
(q)
ext,ω. This will enable us to bound the Papangelou conditional intensity of

MΛ|ξ (3.17), both from above and below, see Lemma 4.5 and Lemma 4.7 below. This in

turn allows us to exhibit control over the distribution of particle positions – a necessity for

our discretization approach, see Lemma 4.6 and Lemma 4.8.

Proposition 4.4. Given a graph (ω,E), let N cc
VB

(ω,E) denote the number of connected

components that intersect VB . There exists 0 < α <∞ such that∫
N cc
VB

(ω,E)µ
(q)
ext,ω(dE) ≤ α,

for all ω ∈ Ω.

Proposition 4.4 is the key step in proving percolation and hence the non-uniqueness

of Gibbs measures. The proof is substantial and constitutes a significant part of this thesis.

For this reason we defer it to Section 4.5.

Lemma 4.5. For every finite box Λ ⊂ R2, MΛ|ξ – almost all ω ∈ ΩΛ|ξ and a point x0, with

x0 ∈ Λ\ω,

hΛ(ω ∪ {x0})
hΛ(ω)

≥ q−α, (4.14)

where α is given in Proposition 4.4.
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Proof. It follows by similar arguments to the proof of Lemma 3.14, that

hΛ(ω ∪ {x0})
hΛ(ω)

≥
∫
qK(ω,E2)

∫
qK(ω∪{x0},E1∪E2)−K(ω,E2)µ+

ω (dE1)µext
ω (dE2)∫

qK(ω,E4)µext
ω (dE4)

.

Therefore, by using the measure in (4.13), we have that

hΛ(ω ∪ {x0})
hΛ(ω)

≥
∫∫

qK(ω∪{x0},E1∪E2)−K(ω,E2)µ+
ω (dE1)µ

(q)
ext,ω(dE2).

As the function f : R→ R defined by f(x) = qx is convex, we can apply Jensen’s

inequality to obtain

hΛ(ω ∪ {x0})
hΛ(ω)

≥ q
∫∫

K(ω∪{x0},E1∪E2)−K(ω,E2)µ+
ω (dE1)µ

(q)
ext,ω(dE2). (4.15)

Notice that new edges, made by the insertion of x0 to the configuration ω can only be open

with respect to µ+
ω if they have length less than R. Therefore,

K(ω ∪ {x0}, E1 ∪ E2)−K(ω,E2) ≥ −N cc
VB

(ω,E2) (4.16)

and by Proposition 4.4, ∫
N cc
VB

(ω,E2)µ
(q)
ext,ω(dE2) ≤ α <∞. (4.17)

Together, (4.15), (4.16) and (4.17) show that

hΛ(ω ∪ {x0})
hΛ(ω)

≥ q−α.

Having a uniform lower bound for hΛ(ω∪{x0})
hΛ(ω) allows us to exhibit some control

over the distribution MΛ,∇|ξ′(·) defined in (3.23). In particular, fix

ε =
1−

(
psitec (Z2)

)1/2
4

, (4.18)

and choose L to satisfy

z−1/2 < L ≤ R

4
√

2
, (4.19)

then, we obtain the following lower bound on the probability that a small box, ∆i,j
k,l in the
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L-splitting of Λ, contains at least one point of ω.

Lemma 4.6. Let ξ ∈ ΩΛc . Then for all cells ∇ = ∆i,j
k,l of an L-splitting of Λ and for any

ξ′ ∈ Ω∇c , such that ξ′\Λ = ξ, we have

MΛ,∇|ξ′(|ω ∩∇| ≥ 1) > 1− ε

64

for all z > z0 := 2048qα

εR2 .

Proof. We want to show that MΛ,∇|ξ′(|ω ∩ ∇| ≥ 1) > 1 − ε
64 holds for large enough z.

Since we have ψ ≡ 0, this is straightforward.

MΛ,∇|ξ′(|ω ∩∇| = 1)

MΛ,∇|ξ′(|ω ∩∇| = 0)
= z

∫
∇

hΛ(ω ∪ {x})
hΛ(ω)

dx ≥ q−αz|∇|,

where the inequality is a direct application of Lemma 4.5. It follows that

MΛ,∇|ξ′(|ω ∩∇| = 0) ≤ qα(z|∇|)−1,

and hence, for z > z0

MΛ,∇|ξ′(|ω ∩∇| ≥ 1) ≥ 1− qα(z|∇|)−1 > 1− qα
(
z0R

2

8

)−1

= 1− ε

64
.

We have a lower bound for the Papangelou conditional intensity in (4.14) which

allows us to bound from below the number of particles in a box∇ with high probability, for

large z. We shall show that the number of particles in a box also has an upper bound, depen-

dent on z, with high probability. Having such an upper bound is important as it allows us

to quantify the probability that all particles in a box have mark 1. In Chapter 3, and indeed

the work of [BBD03], an upper bound for the number of particles in a box followed im-

mediately as a consequence of the hardcore background potential. However, without such

a background potential, we turn to finding an upper bound for the Papangelou conditional

intensity of MΛ|ξ, uniform over suitable events.

Let ∆k,l be an element of an L-splitting of Λ and define F ext
k,l to be the event that

each of the smaller boxes ∆i,j
k,l ⊂ ∆k,l that are not contained in ∆−k,l, contain at least one
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point of ω. More precisely, it is a specific set of “well-behaved” configurations given by:

F ext
k,l :=

⋂
i,j∈{0,...,7}:
∆i,j
k,l⊂∆\∆−

{
ω ∈ Ω : |ω ∩∆i,j

k,l| ≥ 1
}
. (4.20)

Lemma 4.7. Given a finite box Λ ⊂ R2, an element of the L-splitting ∆k,l ⊂ Λ, a config-

uration ω ∈ F ext
k,l and a point x0 ∈ ∆−k,l\ω,

hΛ(ω ∪ {x0})
hΛ(ω)

≤ qα+1,

where α is given in Proposition 4.4.

Proof. Suppose ω ∈ F ext
k,l and x0 ∈ ∆−k,l\ω. Then, by similar techniques to that used in

Lemma 4.5, we see that

hΛ(ω ∪ {x0})
hΛ(ω)

=

∫
qK(ω,E2)

∫
qK(ω∪{x0},E1∪E2)−K(ω,E2)µ+

ω (dE1)µext
ω (dE2)∫

qK(ω,E4)
∫
qK(ω,E3∪E4)−K(ω,E4)µ−ω (dE3)µext

ω (dE4)

≤
q
∫
qK(ω,E2)µext

ω (dE2)∫
qK(ω,E4)

∫
qK(ω,E3∪E4)−K(ω,E4)µ−ω (dE3)µext

ω (dE4)
(4.21)

= q

(∫∫
qK(ω,E3∪E4)−K(ω,E4)µ−ω (dE3)µ

(q)
ext,ω(dE4)

)−1

where (4.21) uses the inequality

K(ω ∪ {x0}, E1 ∪ E2)−K(ω,E2) ≤ 1, (4.22)

which was established in (3.40) and (3.57). We can then apply Jensen’s inequality to the

integral in the denominator to obtain the upper bound

hΛ(ω ∪ {x0})
hΛ(ω)

≤ q
(
q
∫∫

K(ω,E3∪E4)−K(ω,E4)µ−ω (dE3)µ
(q)
ext,ω(dE4)

)−1

. (4.23)

Recall that Vx0|ω = {x ∈ ω : ηxx0 ∈ E+
x0|ω} and notice that for all ω ∈ F ext

k,l , x0 ∈
∆−k,l\ω, and x ∈ Vx0|ω, we have that |x − x0| < 4

√
2L. This basically ensures that the

neighbourhood of x0 is contained in the ball of radius 4
√

2L and centre x0:

Vx0|ω ⊂ B4
√

2L(x0) ⊂ B.

Therefore, since x, y ∈ Vx0|ω for all ηxy ∈ E−x0
(ω), it follows that adding edges in E−x0

(ω)

can only fuse together two connected components (reducing the number of connected com-
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ponents by one) if they each intersect B. Hence,

K(ω,E3 ∪ E4)−K(ω,E4) ≥ −N cc
VB

(ω,E4). (4.24)

Combining (4.23) and (4.24), together with Proposition 4.4, we conclude that

hΛ(ω ∪ {x0})
hΛ(ω)

≤ qα+1,

for all ω ∈ F ext
k,l and for all x0 ∈ ∆−k,l\ω.

In the following, we fix ∆k,l ⊂ Λ and drop the subscript k and l from our notation.

For example, F ext
k,l will be written as F ext and ∆−k,l will be written as ∆−. Having an upper

bound for hΛ(ω∪{x0})
hΛ(ω) allows us to exhibit some control over the conditional probability

measure MΛ,∆−|ξ′(·|F ext). In particular, we can find a lower bound for the conditional

probability, given ω ∈ F ext, that ∆− contains no more than m(z) ∈ N points of ω ∈ Ω.

Lemma 4.8. Fix z > 0. Let ∆ = ∆k,l be an element of the L-splitting of Λ. Then, for any

ξ′ ∈ Ω(∆−)c , admissible for ∆− and z, with ξ′\Λ = ξ, and ξ′ ∈ F ext, we have

MΛ,∆−|ξ′(|ω ∩∆−| ≤ m(z)) > 1− ε,

where m(z) := 2ε−1qα+1|∆−|z and ε is given in (4.18).

Proof. First of all, we define the random variable N to be the number of points of a config-

uration in ∆−, i.e. N = |ω ∩∆−|. Explicitly, we can write MΛ,∆−|ξ′(dω) as

MΛ,∆−|ξ′(dω) = Z−1
Λ,∆−|ξ′hΛ(ω ∪ ξ′)Πz

∆−(dω), (4.25)

as given in (3.23). We also use the fact that∫
f(ω)Πz

∆−(dω) = e−z|∆
−|
∞∑
n=0

zn

n!

∫
(∆−)n

f({x1, . . . xn})dx1 . . . dxn, (4.26)

Combining Equations (4.25) and (4.26), and setting Z ′ := e−z|∆
−|Z−1

Λ,∆−|ξ′ for brevity, we
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see that

MΛ,∆−|ξ′(N = n+ 1) =
zn+1

(n+ 1)!
Z ′
∫

(∆−)n+1

hΛ({x1, . . . , xn+1} ∪ ξ′)dx1 . . . dxn+1

=
zn

n!

(
z

n+ 1

)
Z ′
∫

(∆−)n

∫
∆−

hΛ(ω ∪ ξ′ ∪ {x})dxdω

=
zn

n!

(
z

n+ 1

)
Z ′
∫

(∆−)n
hΛ(ω ∪ ξ′)g∆−|ξ′(ω)dω,

where

g∆−|ξ′(ω) =

∫
∆−

hΛ(ω ∪ ξ′ ∪ {x})
hΛ(ω ∪ ξ′)

dx.

Again, using Equation (4.25), it follows that

MΛ,∆−|ξ′(N = n+ 1) =

(
z

n+ 1

)∫
Ω∆−

MΛ,∆−|ξ′(dω,1{N(ω)=n})g∆−|ξ′(ω)

=

(
z

n+ 1

)
MΛ,∆−|ξ′(N = n)

∫
Ω∆−

MΛ,∆−|ξ′(dω|1{N(ω)=n})g∆−|ξ′(ω). (4.27)

Notice that, since ω ∪ ξ′ ∈ F ext, we can use Lemma 4.7 to bound the function g∆−|ξ′(ω)

above by qα+1|∆−|. Therefore, following (4.27), we obtain

MΛ,∆−|ξ′(N = n+ 1)

MΛ,∆−|ξ′(N = n)
=

z

n+ 1

∫
Ω∆−

MΛ,∆−|ξ′(dω|N = n)g∆−|ξ′(ω)

≤ z

n+ 1
qα+1|∆−|

∫
Ω∆−

MΛ,∆−|ξ′(dω|N = n)︸ ︷︷ ︸
=1

=
qα+1|∆−|z
n+ 1

. (4.28)

This gives us a relationship between the probabilities, with respect toMΛ,∆−|ξ′(·), that there

are n and n + 1 particles in |ω ∩∆−| respectively. However, for all n > m(z) we would

like to extend this relationship to compare the probabilities, that there are n and bm(z)c
particles in |ω∩∆−| respectively, where bm(z)c denotes the highest integer not larger than
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m(z). To do this, we apply (4.28) multiple (n− bm(z)c) times.

MΛ,∆−|ξ′(N = n) ≤ qα+1|∆−|z
n

MΛ,∆−|ξ′(N = n− 1)

≤ qα+1|∆−|z
n

· q
α+1|∆−|z
n− 1

· · · · · · q
α+1|∆−|z
bm(z)c+ 1

MΛ,∆−|ξ′(N = bm(z)c)︸ ︷︷ ︸
≤1

≤
(
qα+1|∆−|z

)n−bm(z)c

n!
bm(z)c!.

Therefore, using a combinatorial argument, it follows that

MΛ,∆−|ξ′(N > m(z)) ≤
∞∑

n=bm(z)c+1

(
qα+1|∆−|z

)n−bm(z)c

n!
bm(z)c! (4.29)

≤
∞∑

n=bm(z)c+1

(
qα+1|∆−|z
bm(z)c

)n−bm(z)c
. (4.30)

By recalling that m(z) = 2ε−1qα+1|∆−|z, this gives us

MΛ,∆−|ξ′(N > m(z)) ≤
∞∑

n=bm(z)c+1

( ε
2

)n−bm(z)c
=
∞∑
n=1

( ε
2

)n
. (4.31)

Since ε < 1/2, the right hand side of (4.31) is less than ε. By taking complements, we have

established that

MΛ,∆−|ξ′(N ≤ m(z)) ≥ 1− ε.

Before we reintroduce the site percolation measure, we define an alternative edge

drawing mechanism to µω,Λ described in (2.28). Given ω ∈ Ω, let µ̃ω denote the distribution

of the random hyperedge configurations

{η ∈ H(ω) : v(η) = 1}

where (v(η))η∈H(ω) are independent Bernoulli random variables with probability

Prob(v(η) = 1) = p̃(η) :=
1

q
A64L4 + 1︸ ︷︷ ︸

=:p̃

1Del∗∗2 (ω)(η) (4.32)
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where

Del∗∗2 (ω) :=
{
η = {x, y} ∈ Del2(ω) : |x− y| <

√
8L
}
.

The probability p̃, is constant on the graph Del∗∗2 (ω) which allows us to use the fact that

site percolation implies bond percolation in Proposition 2.18. Hence, we define a site per-

colation measure, C̃site
Λ|ξΛc , and show that site percolation occurs for large enough A and z.

Recall the definition of the continuum site percolation model

C̃site
Λ|ξ(dω) = MΛ|ξ(dω)λ̃ω(dω),

where λ̃ω denotes the distribution of the random vector σω = (σω(x) : x ∈ ω) with

elements in Σ, where (σω(x))x∈ω are independent Bernoulli random variables satisfying

Prob(σω(x) = 1) = p̃1Del∗∗1 (ω)(x) (4.33)

and

Prob(σω(x) 6= 1) = 1− p̃1Del∗∗1 (ω)(x)

where p̃ is given in (4.32) and Del∗∗1 (ω) is the set of points that build the hyperedges of

Del∗∗2 (ω). Using analogous arguments to the proof of Lemma 3.11, it follows that

µ̃(q)
ω < µ̃ω. (4.34)

Therefore, by Proposition 2.18, the following Lemma completes the proof of Theorem 4.1.

Lemma 4.9. Let z > z0 and A > A0(z) where z0 is given in Lemma 4.6 and

A0(z) :=
qR4

(1− 2ε)−1/m(z) − 1

where m(z) is given in Lemma 4.8. Then, there exists c > 0 such that

C̃site
Λ|ξ({∆↔ Λc} ≥ c > 0

for any box ∆ ∈ B(R2), any finite union Λ of boxes, and for any pseudo-periodic boundary

condition ξ ∈ Γ̂Λc .

Proof. We start by bounding the probability, with respect to MΛ,∆|ξ′′ , that all small boxes

∇ = ∆i,j
k,l of ∆\∆− contain at least one particle – precisely the event F ext

k,l defined in (4.20).

Using the result of Lemma 4.6 and a similar argument to that in the proof of Lemma 3.10,

we can choose z large enough such that, for all configurations ξ′′ ∈ Ω∆c with ξ′′\Λ = ξ,
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MΛ,∆|ξ′′(F
ext
k,l ) ≥ 1−

∑
∆i,j
k,l⊂∆\∆−

MΛ,∆|ξ′′(|ω ∩∆i,j
k,l| = 0) > 1− 48ε

64
= 1− 3ε

4
. (4.35)

Next, we define the event Gk,l := {ω ∈ Ω : |ω ∩∆−| ≤ m(z)} that there are at most m(z)

points of ω in the subset ∆− ⊂ ∆ and also the event

F−k,l :=
⋂

i,j∈{0,...,7}:
∆i,j
k,l⊂∆−

{
ω ∈ Ω : |ω ∩∆i,j

k,l| ≥ 1
}
.

that all small boxes ∇ = ∆i,j
k,l of ∆− contain at least one particle. Then we have that, for

all configurations ξ′′ ∈ Ω∆c with ξ′′\Λ = ξ,

MΛ,∆|ξ′′(F
−
k,l, F

ext
k,l , Gk,l) =

∫
Ω∆

1F−k,l
(ω)1F ext

k,l
(ω)1Gk,l(ω)MΛ,∆|ξ′′(dω)

=

∫
Ω∆\∆−

1F ext
k,l

(ζ)

[∫
Ω∆−

1F−k,l
(ω)1Gk,l(ω)MΛ,∆|ξ′′(dω|ω\∆− = ζ\∆−)

]
MΛ,∆|ξ′′(dζ)

=

∫
Ω∆\∆−

1F ext
k,l

(ζ)MΛ,∆−|ξ′(F
−
k,l, Gk,l)MΛ,∆|ξ′′(dζ), (4.36)

where ξ′ := ζ\∆− and where we used Equation (3.23). However, by Lemma 4.8, and

through our choice of z in (4.35), it follows that

MΛ,∆−|ξ′(F
−
k,l, Gk,l) ≥ 1−MΛ,∆−|ξ′((F

−
k,l)

c)−MΛ,∆−|ξ′((Gk,l)
c)

> 1− 16ε

64
− ε

= 1− 5ε

4
(4.37)

and hence, combining with (4.35) and (4.36), we conclude that

MΛ,∆|ξ′′(F
−
k,l, F

ext
k,l , Gk,l) >

(
1− ε− 5ε

4

)∫
Ω∆\∆−

1F ext
k,l

(ζ)MΛ,∆|ξ′′(dζ)

>

(
1− 5ε

4

)(
1− 3ε

4

)
> 1− 2ε. (4.38)
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The next step is to condition the marks of the particles. Let Ck,l ∈ F be the event

that each small box ∆i,j
k,l ⊂ ∆ contains at least one point, ∆− = ∆−k,l contains no more

than m(z) points and all points in ∆− ∩ Del∗∗1 have mark 1:

Ck,l =
{
ω = (ω, σω) ∈ Ω : ω ∈ F−k,l ∩ F

ext
k,l ∩Gk,l and

σω(x) = 1 for all x ∈ ∆− ∩ Del∗∗1 (ω)
}
. (4.39)

Recall from (4.33), that a point x ∈ ω, where ρ(x) ∈ ∆− ∩ Del∗∗1 (ω), has mark 1

with probability

p̃ =
1

64qL4

A + 1
,

with respect to C̃site
∆k,l|ξ′′ . It follows that

C̃site
∆k,l|ξ′′(Ck,l) ≥

∫
MΛ,∆k,l|ξ′′(dω)1F−k,l

(ω)1F ext
k,l

(ω)1Gk,l(ω)p̃|Del∗∗1 (ω)∩∆−|

≥ p̃bm(z)cMΛ,∆k,l|ξ′′(F
−
k,l, F

ext
k,l , Gk,l) (4.40)

However, by taking A > A0, and since L ≤ R/
√

8, we obtain that

p̃ =
1

64qL4

A + 1
≥ (1− 2ε)1/bm(z)c,

and hence p̃bm(z)c ≥ (1− 2ε). Combining this with (4.38) and (4.40), we conclude, for all

A > A0(z), that

C̃site
∆k,l|ξ′′(Ck,l) ≥ (1− 2ε)2 > 1− 4ε >

(
psite
c (Z2)

)1/2
. (4.41)

If ω ∈ Ck,l, we say that ∆k,l is a ‘good’ cell. Two neighbouring cells ∆k,l and ∆k+1,l

are said to be ‘linked’ if the box ∆link := ∆k:k+1,l
link defined in (4.10) has an intersection

with Del∗∗1 (ω) that contains only points of mark 1. More precisely, the event that ∆k,l and

∆k+1,l are linked, is

Llk,k+1 :=
{
ω ∈ Ω : σω(x) = 1 for all x ∈ ∆k:k+1,l

link ∩ Del∗∗1 (ω)
}
.

Also define

Flink :=
(
F−k,l ∩ F

ext
k,l

)
∩
(
F−k+1,l ∩ F

ext
k+1,l

)
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and

Glink := {ω ∈ Ω : |ω ∩∆link| ≤ m(z)},

and let ξ′ ∈ Ω∆c
link

be a boundary configuration outside ∆link such that ξ′\Λ = ξ. The

conditional probability that ∆k,l and ∆k+1,l are linked, given they are both ‘good’ cells, is

then given by

C̃site
∆link|ξ′(L

l
k,k+1|Ck,l ∩ Ck+1,l) ≥

∫
MΛ,∆link|ξ′(dω|Flink)1{Glink}(ω)p̃bm(z)c

≥ (1− ε)(1− 2ε)

≥ 1− 4ε

≥
(
psite
c (Z2)

)1/2
, (4.42)

where the second inequality is another application of Lemma 4.8, but with ∆link in place of

∆−. Then, by (4.41), (4.42) and the results of McDiarmid and Hammersley, in particular,

(4.7), mixed site-bond percolation occurs. There exists a chain of good boxes joined by

links from ∆k,l ⊂ Λ to Λc.

It remains to check this implies {∆ ↔ Λc}. For this, we recall the set HL
k:k+1,l(ω)

from (4.11). Using the argument of the proof of Lemma 3.23, we know that all hyperedges

η = {x, y} ∈ Del2(ω) that have a non-empty intersection withHL
k:k+1,l(ω) satisfy |x−y| <√

8L. This implies that HL
k:k+1,l(ω) ⊂ Del∗∗1 (ω). Let x, y ∈ ω be such that Vorω(x) and

Vorω(y) contain the centres of the boxes ∆k,l and ∆k+1,l respectively. SinceHL
k:k+1,l(ω) ⊂

Del∗∗1 (ω), we can to connect x and y in the graph Del∗∗2 (ω) inside ∆−k,l ∪∆link∪∆−k+1,l.

Hence, by (4.41) and (4.42), we have

C̃site
Λ|ξΛc ({∆↔ Λc}) > c > 0.

Theorem 4.1 follows as a consequence of Proposition 2.18 and Proposition 2.17.

4.5 Proof of Proposition 4.4

4.5.1 Sketch

The proof of Proposition 4.4 is rather long, so we first outline the strategy. We want to bound

the number of connected components that intersect VB in the reduced graph of Eext
x0|ω under

µ
(q)
ext,ω. Note that if we had an upper bound on |VB|, this would be trivial. Unfortunately, we
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do not. However, we do know that for large |VB|, a large number of particles must be close

together and thus, are more likely to be connected to each other due to the soft exclusion

between particles of different type. The graph ∂B := (VB, EB), with edge set

EB :=
{
ηxy ∈ Eext

x0|VB : x, y ∈ VB
}

(4.43)

is connected, but does not necessarily contain a polygon, like ∂x0|ω. Here, Eext
x0|VB is simply

Eext
x0|ω evaluated for ω = VB . The case where x0 lies in the opposite half plane to all x ∈ VB

is one such example of ∂B not forming a loop. We call ∂B the contraction of the boundary

∂x0|ω to B, see Figure 4.3.

The crux of the proof is to find an upper bound for the number of edges in the edge

set EB that have length greater than some fixed real number. This will allow us to construct

a sequence of edge subsets of EB , defined by edge length, to balance the unbounded num-

ber of particles against the increased probability that they are connected. The smaller the

edge lengths, the greater the possible number of edges in the subset, but also the greater the

probability that they are open. It turns out that such an upper bound can be found in the

scenario where there are no defects in the geometry of VB . These defects which we give

the logical name ‘kinks’ are defined below in Definition 4.11. An upper bound cannot be

found if the geometry of VB contains kinks, so we devise a plan to discount them.

Notice that it is not necessary that EB ⊂ Eext
x0|ω. This creates a problem when

we consider an edge drawing mechanism on Eext
x0|ω. To overcome this, we introduce an

edge drawing mechanism on EB and build a structure that will allow us to compare events

between the two probability spaces. This technique relies heavily on some geometric prop-

erties of the Delaunay tessellation. Having outlined a sketch of the strategy, we begin to

define some important notation.

4.5.2 Notation

We begin by introducing a polar coordinate system in R2. Let x0 be the pole, and let L

be the polar axis. For z ∈ R2, denote ẑ to be the angular coordinate of z taken counter

clockwise from the polar axis L. Given two points x, y ∈ R2, ←→xy will denote the unique

straight line that intersects x and y in the plane, ←−xy will denote the half line that stops

at y and xy will denote the line segment between x and y only. Given two straight lines

`1, `2 ⊂ R2 that intersect at a point z ∈ R2, ∠(`1, `2) will denote the angle between them.

More precisely, it is the angle needed in order to rotate `1 onto `2 with z as the centre of

rotation. Notice that it is certainly not true that ∠(`1, `2) = ∠(`2, `1), however, it holds that
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∠(`1, `2) + ∠(`2, `1) = π. When we consider a triangle in the plane with vertices x, y, z,

for example, we sometimes refer to the interior angle at y as x̂yz. In this case, as we specify

the interior angle, x̂yz = ẑyx.

Definition 4.10. Given a set of points V = {xi ∈ R2 : 1 ≤ i ≤ n} with x̂1 < · · · < x̂n,

the graph

Γ =

(
V,

n−1⋃
i=1

ηxixi+1

)
is called a spoked chain if ηx0xi ∈ Del2(V ∪{x0}) for all 1 ≤ i ≤ n. The polygon P (Γ, x0),

created by adding the point x0 and edges ηx0x1 and ηxnx0 to Γ is called the induced polygon

of Γ – see Figure 4.2.

x0

x0

x0

Γ

P (Γ, x0)

Figure 4.2: From top to bottom we have: 1. A collection of points that neighbour x0 in
the Delaunay/Voronoi tessellation. 2. A spoked chain Γ, shown in bold. 3. The induced
polygon P (Γ, x0).

In order to quantify the number of connected components that intersect VB , we

analyse the shape of the contracted boundary, ∂B . First however, we split B into four
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quadrants, Qi ⊂ R2 for i = 1, 2, 3, 4, where

Qi :=
{
z ∈ B :

π

2
(i− 1) ≤ ẑ < π

2
i
}
.

Instead of bounding the number of connected components that intersect VB directly, the

plan is to bound the number of connected components that intersect VB ∩ Q1 and then

multiply this bound by 4. The reasons for doing this are twofold: it not only provides us a

framework to define kinks, but also ensures that any two points that we consider will differ

in angle by no more than π/2. This allows us to find a lower bound for the probability that

the two points belong to the same connected component.

Definition 4.11. Let Γ = (V,E) be a spoked chain. Suppose xi, xj , xk ∈ V such that

x̂i < x̂j < x̂k. We say that xi, xj and xk form a kink in Γ if:

1. x̂ixjxk < π/2

2. ̂xi′xj′xk′ ≥ π/2 for all xi′ , xj′ , xk′ ∈ V with x̂j ≤ x̂i′ < x̂j′ < x̂k′ < x̂k

3. ̂xi′xj′xk′ ≥ π/2 for all xi′ , xj′ , xk′ ∈ V with x̂j < x̂i′ < x̂j′ < x̂k′ ≤ x̂k.

Definition 4.12. Suppose xi, xj and xk form a kink in the spoked chain Γ = (V,E). The

kink is called intruding if the line segment xixk lies outside of the induced Polygon P (Γ, x0)

and protruding if it lies inside P (Γ, x0).

Lemma 4.13. Let Γ = (V,E) be a spoked chain where V = ∪ni=1{xi} and x̂1 < · · · < x̂n.

A kink in Γ = (V,E) is either intruding or protruding.

Proof. Suppose not. Then there exists 1 ≤ i < j < k ≤ n such that xi, xj and xk form a

kink in Γ and xixk lies neither inside nor outside of P (Γ, x0). LetU ⊂ R2 be the connected

component of R2\←−→xixk than does not contain xj . It follows that Γ crosses xixk between x̂i
and x̂k and hence, there exists xj′ ∈ V ∩U with x̂i < x̂j′ < x̂k. Without loss of generality,

let x̂j < x̂j′ < x̂k. Therefore, x̂ixjxj′ < π/2 which contradicts condition 2 of Definition

4.11 for the kink formed by xi, xj and xk.

Lemma 4.14. Let Γ = (V,E) be a spoked chain with V = ∪ni=1{xi} and x̂1 < · · · < x̂n.

If xi, xj and xk form an intruding kink in Γ, then ∠(←−−→xixi+1,
←−−−−→xk−1, xk) < π/2.

Proof. Suppose there exists a spoked chain Γ = (V,E) with V = ∪ni=1{xi} and x̂1 <

· · · < x̂n. Let xi, xj and xk form an intruding kink in Γ. Since the kink is intruding, we

know that xl lies in the interior of the triangle {x0, xi, xk}, for all i < l < k. Suppose the

statement of the Lemma is false, that is: ∠(←−−→xixi+1,
←−−−−→xk−1, xk) ≥ π/2. This forces either
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x0

x0

Γ2Γ1

x2

x1

x5

x3 x4

x6

x2x1

x5

x3
x4

x6

x0 x0
∂x0

∂B

B

Figure 4.3: From left to right, top to bottom we have: 1. The shaded area is the neigh-
bourhood of x0, whilst the bold edges form ∂x0|ω. 2. The contraction of ∂x0|ω to ∂B . 3.
The points x2, x3 and x4 form an intruding kink in Γ1. 4. The points x2, x3 and x5 form a
protruding kink in Γ2.

xi+1 or xk−1 to be in the interior of the triangle {xi, xj , xk}. Without loss of generality,

suppose, in fact, that xi+1 is in the interior of {xi, xj , xk}. Therefore, ̂xi+1xjxk < π/2

which by Definition 4.11, contradicts that xi, xj and xk form a kink in Γ.

4.5.3 Intermediary Lemmas

Kinks of intruding and protruding nature may occur in ∂B ∩ Q1, although the number of

them is bounded above – see Lemma 4.15 and Lemma 4.16. The aim is to separate ∂B ∩Q1

into a fixed number of kinkless pieces, each a spoked chain, which are easier to work with.

For each of these kinkless pieces, we will find an upper bound for the expected number,

with respect to µ(q)
ext,ω, of connected components in a thinning of Eext

x0|ω that intersect it.

Lemma 4.15. The number of intruding kinks in ∂B ∩Q1 is bounded above by 2.

Proof. We show that the angle between two intruding kinks in a spoked chain is greater

than π/4. Since ∂B ∩ Q1 lies in the quadrant Q1, and is a spoked chain by definition, the

result will follow. Let Γ = (V,E) be a spoked chain and order the elements of V , such that

x̂1 < · · · < x̂n. Suppose there is an intruding kink in Γ. Therefore, by Definition 4.12 and
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Lemma 4.14, there exists 1 ≤ i < n− 1 and i+ 1 < j ≤ n, such that

∠(←−−→xixi+1,
←−−−→xj−1xj) < π/2 (4.44)

and xixj lies outside of the induced polygon P (Γ, x0).

xi

xi+1xj−1

xj

L∗

z1

z2

z3

Figure 4.4: Lower bound for angle ̂x0xj−1xj

The straight lines ←−−→xixi+1 and ←−−−→xj−1xj split the plane into four regions. Since the

kink is intruding, x0 must lie in the opposite region to that of the line segment xixj . Let L∗

be the radial line of angle x̂i+1−x̂j−1

2 . Let z1 ∈ R2 be the point of intersection of←−−→xixi+1 and
←−−−→xj−1xj and let z2, z3 be the points of intersection ofL∗ with←−−→xixi+1 and←−−−→xj−1xj respectively

– see Figure 4.4. Then,

x̂iz1xj + x̂iz2x0 + x̂0z3xj = 2π, (4.45)

which implies, together with (4.44), that

max
{
x̂iz2x0, x̂0z3xj

}
≥ 2π − π/2

2
=

3π

4
. (4.46)

Without loss of generality, let x̂0z3xj ≥ 3π
4 . Because xj−1 lies on the line segment z3xj , it
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follows that

̂x0xj−1xj ≥ x̂0z3xj ≥
3π

4
. (4.47)

xk−1

xk

xk+1

x∗k+1

x0
xm−1

xm

tk+1

Figure 4.5: The intruding kink formed by xk, xl and xm.

Suppose there is another intruding kink in Γ, formed by xk, xl and xm for j < k < l <

m ≤ n. Then , by Lemma 4.14, we have that

∠(←−−−→xkxk+1,
←−−−−→xm−1xm) < π/2.

Let tk+1 be the tangent to B(τ(x0, xk, xk+1)) at xk+1. Then, by noting that

|V ∩B(τ(x0, xj−1, xj))| = 0,

which is a consequence of the properties of the Delaunay structure (2.50), it follows that

∠(tk+1,
←−−−→x0xk+1) ≤ ∠(←−−−→xkxk+1,

←−−−→x0xk+1) (4.48)

≤ ∠(←−−−→xkxk+1,
←−−−−→xm−1xm) (4.49)

< π/2. (4.50)

Here, (4.48) is direct from the definition of a tangent and (4.49) is a consequence of the fact

that x̂k+1 < x̂m−1 < x̂m. For 1 ≤ r < n, let x∗r+1 denote the centre of the circumscribing
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circle of τ(x0, xr, xr+1) ∈ Del3(V ∪ {x0}). Since the triple {x0, x
∗
k+1, xk+1} form an

isosceles triangle, see Figure 4.5, we can conclude that

x̂k+1 − x̂∗k+1 = π/2− ∠(tk+1,
←−−−→x0xk+1) > 0. (4.51)

x∗k+1

xj−1

xj

x∗j

tk+1

x0

y

xk+1

xk

Figure 4.6: Lower bound for angle between kinks of type 2

Let y be the antipodal point to x0 on the circumscribed ball of τ(x0, xj−1, xj) in

R2. Since, |x0 − y| is equal to the diameter of the circle, it follows that x̂0xjy = π/2, see

Figure 4.6. The points x0, xj−1, xj and y form a cyclic quadrilateral. Using, (4.47), and the

fact that opposite angles of a cyclic quadrilateral add up to π, we see that x̂0yxj ≤ π/4.

Hence, by (4.51)

x̂k+1 − x̂j > x̂∗k+1 − x̂j ≥ x̂∗j − x̂j = ŷx0xj = π − x̂0xjy︸ ︷︷ ︸
=π/2

− x̂0yxj︸ ︷︷ ︸
≤π/4

≥ π/4, (4.52)

where the second inequality is due to a further property of the Delaunay structure that we

show in the Appendix A.1. This tells us that the angle between intruding kinks must be

greater than π/4.

Lemma 4.16. There are no protruding kinks in ∂B ∩Q1.
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Proof. Again, order the elements of VB such that x̂1 < · · · < x̂n. Suppose we have a

protruding kink, then, by Definition 4.12, we have for some 1 ≤ i < j < k ≤ n

x̂ixjxk < π/2. (4.53)

The pair xixk does not form an edge of EB , therefore, by the properties of the Delau-

nay graph, xj lies inside B(τ(x0, xi, xk)). The line segment xixk is a chord which splits

B(τ(x0, xi, xk)) into two regions. Since we have a protruding kink, xixk lies inside the

induced polygon P (∂B ∩ Q1, x0) and so xj does not lie in the same region as x0. There-

fore, by (4.53), it follows that x̂ix0xk ≥ π/2, and hence, there are no protruding kinks in

∂B ∩Q1.

Before we can prove Proposition 4.4, we need two more results to allow us some

control over the edges of Eext
x0|ω. We first introduce an edge drawing mechanism, where

edges are drawn independently of each other, conditionally on a given particle configura-

tion. Let µ̃2,ω be the alternative edge drawing mechanism associated with the edge proba-

bility

p̃2(ηxy) :=
1{|x− y| ≤ R}
q
A (|x− y|)4 + 1

, (4.54)

and let µ̃ext
2,ω be the corresponding edge drawing mechanism on Eext

x0|ω only.

Lemma 4.17. For all q ≥ 1 and ω ∈ Ω, we have µ(q)
ω,Λ < µ̃2,ω.

Proof. Fix η = (x, y) ∈ Del2(ω). By Proposition 2.3, it is enough to show that

p(η)

q(1− p(η))
≥ p̃2(η)

(1− p̃2(η))
. (4.55)

Recall, from the construction of the continuum random cluster model, that

p(η) = 1− e−ϕ(|x−y|) =
1{|x− y| ≤ R}

1
A |x− y|4 + 1

.

If |x− y| > R, then p(η) = p̃2(η) = 0, and (4.55) is trivial. Suppose |x− y| < R, then, in

fact, we also have

p(η)

q(1− p(η))
=

p̃2(η)

(1− p̃2(η))
.

Therefore, (4.55) holds for all η = (x, y) ∈ Del(ω) and the result follows.
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Recall, that VB ⊂ Vx0|ω ⊂ ω. Also recall, from (4.43), that EB is not necessarily a

subset of Eext
x0|ω. In fact, they belong to different Delaunay tessellations:

EB ⊂ Del2(VB ∪ {x0}) and Eext
x0|ω ⊂ Del2(ω ∪ {x0}).

We introduce another edge drawing mechanism, but this time on EB . Let µ∗ denote the

distribution of the random hyperedge configurations

{η ∈ EB : v(η) = 1}

where (v(η))η∈EB are independent Bernoulli random variables with probability

Prob(v(η) = 1) = p∗(η) :=
1{|x− y| ≤ 2

π ∧R}1{|x̂− ŷ| ≤
π
2 }

q
A

(
π
2 |x− y|

)4
+ 1

, (4.56)

for η = {x, y} ∈ EB . We then compare the probability that two points are connected with

respect to µ̃2,ω and the probability that they are connected with respect to µ∗.

Lemma 4.18. Fix ω ∈ Ω. Let ηxy ∈ EB and let x↔ y denote that x and y lie in the same

connected component of (ω,E), where E is a p̃2–thinning of Eext
x0|ω. Then,

µ̃ext
2,ω(x↔ y) ≥ p∗(ηxy). (4.57)

Proof. By the definition of p∗, (4.57) follows trivially for x, y ∈ ∂B with |x− y| > 2
π ∧R

or with |x̂− ŷ| > π
2 . Therefore, we assume |x− y| ≤ 2

π ∧R and |x̂− ŷ| ≤ π
2 .

Case 1: If ηxy ∈ Eext
x0|ω, we have:

µ̃ext
2,ω(x↔ y) ≥ p̃2(ηxy) =

1
q
A (|x− y|)4 + 1

≥ 1
q
A

(
π
2 |x− y|

)4
+ 1
≥ p∗(ηxy).

Case 2: If ηxy /∈ Eext
x0|ω, the proof is much longer and goes as follows. Since ηxy /∈ Eext

x0|ω,

and x, y ∈ ∂B there exists z ∈ ω\∂B , such that ηzx0 ∈ Del2(ω ∪ {x0}). This implies that

z ∈ Vx0|ω\VB and x̂ < ẑ < ŷ. We now check whether ηxz, ηzy ∈ Eext
x0|ω. If they are not, we

find more points of Vx0|ω\VB in a similar way. Continue this process until there are no more

points z ∈ Vx0|ω\VB with x̂ < ẑ < ŷ. Therefore, there exists z1, z2, . . . zn ∈ Vx0|ω\VB
with x̂ < ẑ1 < · · · < ẑn < ŷ such that

ηxz1 , ηz1z2 , . . . , ηzny ∈ Eext
x0|ω.
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The event that each of these hyperedges is open implies the event that x and y

belong to the same connected component of open hyperedges, hence

µ̃ext
2,ω(x↔ y) ≥ p̃2(ηxz1)p̃2(ηz1z2) · · · p̃2(ηzny). (4.58)

For any two points, x1, x2 ∈ ω, with x̂1 < x̂2, define Cx0
x1x2

to be the arc on the

circleB(τ(x1, x2, x0)) between x1 and x2 and define Ux1x2 to be the subset of R2 bounded

by Cx0
x1x2

and x1x2, that is, the convex hull of Cx0
x1x2

. Let n = #{z ∈ ∂x0|ω : x̂ < ẑ < ŷ}.
We claim that

L(Cx0
xz1) + · · ·+ L(Cx0

zny) ≤ L(Cx0
xy) (4.59)

no matter the value of n ∈ N, where L(C) denotes the length of the arcC. Before we prove

the claim, we show how it implies the Lemma. By our assumption that |x − y| ≤ 2
π ∧ R

and |x̂− ŷ| ≤ π
2 , it follows that L(Cx0

xy) ≤ 1, and by (4.59): L(Cx0
xz1) + · · ·+L(Cx0

zny) ≤ 1.

Obviously, this shows that

|x− z1|+ |z1 − z2|+ · · ·+ |zn−1 − zn|+ |zn − y| ≤ 1. (4.60)

Consider the following algebraic manipulation. For a, b ∈ R with 0 ≤ a ≤ b ≤ 1, we have

1
q
Aa

4 + 1
· 1
q
Ab

4 + 1
=

1
q
A

( q
Aa

4b4 + a4 + b4
)

+ 1
≥ 1

q
A (a+ b)4 + 1

, (4.61)

where the inequality follows because q
A < 1 and because of the constraints on a and b.

Hence, using (4.60), we obtain

p̃2(ηxz1) · · · p̃2(ηzny) ≥
(

1
q
A |x− z1|4 + 1

)
· · ·
(

1
q
A |zn − y|4 + 1

)
≥ 1

q
A (|x− z1|+ |z1 − z2|+ · · ·+ |zn − y|)4 + 1

(4.62)

≥ 1
q
AL(Cx0

xy)4 + 1

≥ 1
q
A

(
π
2 |x− y|

)4
+ 1

= p∗(ηxy),

where (4.62) is the repeated use of (4.61) with a = |zi − zi+1| and b = |zj − zj+1|. This,

along with (4.58), shows the statement of the Lemma. We finish by verifying the claim

(4.59).
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Suppose there exists z ∈ ∂x0|ω\∂B such that ηxz, ηzy ∈ Eext
x0|ω. Since z /∈ B, it

must be true that z ∈ Uxy. Therefore, by a direct application of Theorem A.2, we have

L(Cx0
xz ) + L(Cx0

zy ) ≤ L(Cx0
xy).

and the claim holds for n = 1. Assume the claim holds for n = k − 1. Then, let n = k.

There exists z1, . . . zk ∈ ∂x0|ω\∂B such that x̂1 < · · · < x̂k and ηxz1 , . . . , ηzky ∈ Eext
x0|ω.

Let

i = argmax
1≤j≤k

|zj − xy|.

It follows that zi ∈ Uzi−1zi+1 where, for convenience, we write z0 := x and zk+1 := y. By

Theorem A.2 in the Appendices,

L(Cx0
zi−1zi) + L(Cx0

zizi+1
) ≤ L(Cx0

zi−1zi+1
). (4.63)

By making the following notation change:

z′j :=

zj , for 1 ≤ j < i

zj+1, for i ≤ j ≤ k − 1,

it follows, from (4.63), that

L(Cx0
xz1) + · · · · · ·+ L(Cx0

zky
) ≤ L(Cx0

xz′1
) + · · ·+ L(Cx0

z′k−1y
),

and hence, by the assumption for n = k − 1,

L(Cx0
xz1) + · · · · · ·+ L(Cx0

zky
) ≤ L(Cx0

xy).

The claim follows by mathematical induction.

Lemma 4.19. Let δ > 0 and Γ = (V,E) be a spoked chain with V ⊂ Q1. If Γ does not

contain a kink, then the number of edges inE with length greater than 2δ is at most 6
(
R
δ

)2
.

Proof. Order the elements of V = ∪ni=1{xi} such that x̂1 < . . . < x̂n. For 1 ≤ i < n, let

Di ⊂ R2 be the disc of radius |xi−xi+1|
2 centred at xi. Let Si ⊂ R2 be the sector of Di with
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interior angle π/2 and line of symmetry xixi+1. We claim that

Si ∩ Si = ∅, for i 6= j; and (4.64)
n−1⋃
i=1

Si ⊂ Q1 ⊕
R√
2
. (4.65)

x0

x1

xn

S1

S2

S3

Sn−1

Sn−2
Sn−3

Sn−4

Q1

Figure 4.7: The sectors Si of a spoked chain in Q1.

Assuming the claim is true, the sum of the areas of the sectors Si must not exceed

the area of Q1 ⊕ R√
2

which is less than 3
2πR

2. Each edge η ∈ E of length greater than 2δ

contributes a sector of area greater than π
4 δ

2, therefore, the maximum number of such edges

in Γ is simply
3
2πR

2

π
4 δ

2
= 6

(
R

δ

)2

,

which gives the result. All that is left to do, is to prove the claims. Consider xi ∈ V . Let

`1 be the image of the line←−−→xixi+1 under a rotation of angle π/2, centred at xi+1. There are

exactly two connected components of R2\`1. Let U denote the one that contains xi. Now
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suppose xk ∈ U for some i + 1 < k ≤ n. This implies that ̂xixi+1xk < π/2. Then, by

Definition 4.11, this contradicts the fact that Γ does not contain a kink. Therefore, xk ∈ U c

for all i+ 1 < k ≤ n.

xk′

xk′−1

xi

Ũ

xi+1

`1 `2

`3
x0

Si

U c U

Figure 4.8: The point x′k is the first time after xi+1 that the chain enters U .

Let `2 and `3 be the images of the half line←−−−−xixi+1 under rotations, centred at xi+1,

of angles π/4 and −π/4 respectively – see Figure 4.8. Again, there are two connected

components of R2\(`2 ∪ `3). Let Ũ denote the one that contains xi. Equation (4.64)

follows by noticing that Si ⊂ Ũ and Sk ⊂ Ũ c for all i + 1 < k ≤ n. Equation (4.65)

is easily verified when you consider that Si ⊂ Di for all 1 ≤ i < n and the maximal

radius for Di is half the maximal edge length, which, considering we are restricted to Q1,

is
√

2R.

We are now in a position to prove the main result of this section.
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4.5.4 Proof

Proof of Proposition 4.4: First of all, we split B = BR(x0) into four quadrants, Qi ⊂ R2

for i = 1, 2, 3, 4, where

Qi :=
{
z ∈ B :

π

2
(i− 1) ≤ ẑ < π

2
i
}
.

Consider ∂B ∩ Q1 which contains all vertices and edges of ∂B that lie wholly in Q1. By

construction, ∂B ∩Q1 is a spoked chain. It follows from Lemma 4.15 and Lemma 4.16 that

there are at most 2 intruding kinks of ∂B ∩Q1 and zero protruding kinks. For each intrud-

ing kink xi, xj , xk, we remove the edge ηxjxj+1 from ∂B ∩ Q1. Since removing an edge

anywhere except from the end of a spoked chain will result in leaving two spoked chains,

we are left with at most 3 spoked chains in Q1. Importantly, none of these will contain an

intruding or protruding kink.

Let Γ = (V Γ, EΓ) be one such kinkless spoked chain in Q1. Recall from the

statement of Proposition 4.4 that the number of clusters or connected components in a

graph (ω,E) that intersect VB is denoted by N cc
VB

(ω,E) and define N cc
Γ (ω,E) to be the

number of clusters of (ω,E) that intersect V Γ. We endeavour to bound the expectation

of N cc
Γ (ω,E) with respect to µ(q)

ext,ω,Λ, the edge drawing mechanism on Eext
x0

(ω) given in

(4.13). Then, to conclude the Proposition, we will use the following:∫
N cc
VB

(ω,E)µ
(q)
ext,ω,Λ(dE) ≤ 12

∫ ∫
N cc

Γ (ω,E)µ
(q)
ext,ω,Λ(dE)

where the factor 12 is considering at most three kinkless spoked chains in each of the four

quadrants. Order the elements of V Γ such that x̂1 < · · · < x̂n. Let {x ↔ y} denote the

event that x and y belong to the same cluster of (ω,E) and notice that

∫
N cc

Γ (ω,E)µ
(q)
ext,ω,Λ(dE) ≤ 1 +

n−1∑
j=1

[
1− µ(q)

ext,ω,Λ

(
{xj ↔ xj+1}

)]

≤ 1 +
n−1∑
j=1

[
1− µ̃2,ext,ω,Λ

(
{xj ↔ xj+1}

)]
(4.66)

≤ 1 +

n−1∑
j=1

[
1− p∗(ηxjxj+1)

]
(4.67)

= 1 +
∑
η∈EΓ

[1− p∗(η)], (4.68)

where (4.66) and (4.67) are due to Lemmas 4.17 and 4.18 respectively. We partition the
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edge set EΓ of the spoked chain Γ into subsets depending on edge lengths. Let

EΓ
1 :=

{
ηxy ∈ EΓ : |x− y| > 2

π
∧R

}
and

EΓ
i :=

{
ηxy ∈ EΓ :

2
π ∧R
i

< |x− y| ≤
2
π ∧R
i− 1

}
for i ≥ 2, i ∈ N. By recalling that

p∗(ηxy) =
1{|x− y| ≤ 2

π ∧R}1{|x̂− ŷ| ≤
π
2 }

q
A

(
π
2 |x− y|

)4
+ 1

.

from (4.56), we see that 1 − p∗(η) = 1 for all η ∈ EΓ
1 . However, since Γ is contained in

Q1, and hence |x̂− ŷ| < π
2 , we have

1− p∗(ηxy) =
1

A
q

(
π
2 |x− y|

)−4
+ 1

,

for all ηxy ∈ EΓ
i , for all i ≥ 2 and i ∈ N. Let r := 1 ∧ Rπ

2 . Then, considering |x − y| ≤
2r

π(i−1) for all ηxy ∈ EΓ
i , and noticing that ∪∞i=1E

Γ
i = EΓ and EΓ

i ∩ EΓ
j = ∅ for i 6= j. it

follows that

∑
η∈EΓ

(
1− p∗(η)

)
=
∞∑
i=1

∑
η∈EΓ

i

(
1− p∗(η)

)
≤
∑
η∈EΓ

1

1 +
∞∑
i=2

∑
η∈EΓ

i

 1
A
q

(
i−1
r

)4
+ 1


≤ 6R2π2r−2 +

∞∑
i=2

[
6R2π2i2r−2

]  1
A
q

(
i−1
r

)4
+ 1

 (4.69)

≤ 6R2π2r−2

[
1 +

q

A

∞∑
i=2

i2

(i− 1)4

]
(4.70)

where (4.69) comes from the application of Lemma 4.19 to each of the sets EΓ
i . To bound

the infinite sum, we use the fact that

∞∑
i=2

i2

(i− 1)4
≤
∞∑
i=2

4

(i− 1)2
= 4

∞∑
i=1

1

i2
=

2

3
π2. (4.71)
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Together, Equations (4.68), (4.70) and (4.71) combine to give∫
N cc

Γ (ω,E)µ
(q)
ext,ω,Λ(dE) ≤ 1 + 6R2π2r−2

[
1 +

2qπ2

3A

]
= 1 + 6(4 ∨R2π2)

[
1 +

2qπ2

3A

]
.

Therefore, setting α := 12
(

6(4 ∨R2π2)
[
1 + 2qπ2

3A

])
completes the proof.
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Chapter 5

Russo-Seymour-Welsh Theorem

5.1 Introduction

After studying continuum percolation, we now consider a question which serves as the next

logical step in a journey towards a complete understanding of the probabilistic properties

of continuum models. Briefly, an open crossing from one domain in R2 to another exists if

there is a connected component of open points and hyperedges that intersects each domain.

If a hyperedge is open with probability p, how would the crossing probability behave on

larger scales? In particular, what is the probability of crossing a rectangle? This leads to

the Russo–Seymour–Welsh Theorem (RSW) (see [BR06d] and references within) which

relates the probability of an open horizontal crossing of an L× L square to that of an open

horizontal crossing (the long way) of a 3/2L×L rectangle, see [BS98] and [SW78]. More

precisely, for some function f : (0, 1] → (0, 1] with f(q) → 1 as q → 1, if the probability

of an open horizontal crossing of the L× L square is bounded below by q, then the proba-

bility of an open horizontal crossing of a 3/2L×L rectangle, is at least f(q). The function

f does not depend on L. The RSW theorem was first proved for Bernoulli bond percolation

on the two dimensional square lattice. The model is as follows: each edge is open, inde-

pendent of each other, with probability p, and closed with probability 1− p. Kesten [Ke82]

later generalised the lattice RSW theorem in such a way that, given c < 1, one just needed

to know the probability of crossing a cL× L rectangle the short way in order to bound the

probability of crossing a larger rectangle the long way from below.

The RSW theorem is a fundamental tool that forms the foundation for a wide range

of results concerning discrete percolation in the plane. In particular, for the triangular lat-

tice, it was used in the famous proof of Cardy’s formula and conformal invariance [Sm01].

However, in the continuum, RSW theorems are too few. This does not mean they are of
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less importance, rather, more difficult to prove. Indeed, the establishment of results seem

promising in the continuum, once an RSW theorem can be found. A small glimpse of this

can be seen in [BR06a]: the authors manage to prove a much weaker version of RSW. It

turns out to be sufficient for them to show that the critical probability for Voronoi percola-

tion in the plane is 1/2 – this is a fairly recent and major result. In the Voronoi percolation

model alone, where points are distributed with a Poisson point process, and Voronoi cells

assigned to be open independently with probability p, a full RSW theorem would possi-

bly lead to such results as conformal invariance and Cardy’s formula, see [Ey11]. There

are also many open problems in Gibbsian models, where particles have both type depen-

dent and type independent interactions. Beffara and Duminil-Copin [BD11] showed a box

crossing estimate for the two dimensional random cluster model on the lattice, and, having

established the existence of a phase transition in the Delaunay Potts models discussed in

Chapters 3 and 4, it is the next logical step to look for an RSW estimate, which would, in

this area, be the very first such result.

For bond percolation on the square lattice and indeed site percolation on the trian-

gular lattice, the proof of RSW relies on planar duality. For other discrete models – those

without the planar duality property – other techniques are used, however, underlying them

all is the use of independence. In the continuum setting, this independence of events is usu-

ally lost, and so, a proof of RSW seems to be more difficult. Alexander [Al96] shows one

way around this problem with the continuum when he proves a version of the RSW theo-

rem for the Boolean model. The Boolean model, sometimes referred to as the Poisson blob

model, is driven by a Poisson point process, X . Each point of X has an independent iden-

tically distributed random radius attached to it. These radii give rise to closed balls around

the points of X . As well as being independent of each other, the radii are also independent

of X . Points in the plane are then said to be open if they lie in one of the closed balls, or

closed if not. We denote the open region by C and note that C and Cc are both made up

of connected components. We say there exists an open (respectively closed) path between

two points x and y in the plane, if x and y belong to the same connected component of

C (respectively Cc). There is an open crossing between two domains ∇1,∇2 ∈ B(R2) if

there exists x ∈ ∇1 and y ∈ ∇2 with an open path between x and y. Roy [Ro90] shows

an RSW theorem for the Boolean model where the radii are bounded, however, he did not

transfer the property that f(q) → 1 as q → 1 across from the discrete model. Alexander

proves the RSW theorem for the non random fixed radius case of the Boolean model. More

precisely, let X be a Poisson point process in R2 with intensity λ. For A ⊂ R2 and r ≥ 0

let A⊕ r := ∪x∈AB(x, r). Obviously, C = X ⊕ r is the open region.

Theorem 5.1. [Al96] Let X be a Poisson point process in the plane. Let λ be the intensity
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Figure 5.1: Fixed radius continuum percolation model

of X . Suppose r > 0, then, for some constant K(λr) > 0, with K(·) nondecreasing,

P(H+([0, 3L/2−15r/2]× [0, L])) ≥ K(λr)P(H+([0, L−2r]2))4P(H+([0, L+5r]2))2

where H+([a, b] × [c, d]) is the event of a horizontal open crossing of a (b − a) × (d − c)
rectangle.

Alexander uses the fixed radius of the discs, r, to ascertain that events in regions of the

plane separated by a distance 4r are independent. This is the key aspect which enables

RSW despite the dependence in the model. His proof is then largely similar to that of RSW

on the lattice – he uses a ‘canonical low crossing’ to act in the same way as the ‘lowest

occupied crossing’ of [Ke82]. That is, given a lowest crossing, or path γ ⊂ R2 of a rect-

angle R ⊂ R2, the lowest canonical crossing is simply the shifted path ϑ(0,4r)(γ). Using

symmetry and independence, it can then be shown that, with non-negligible probability, this

canonical crossing can be combined with another open path, to form an open crossing ofR,

ableit, with a gap of width 4r. The technical difficulty is crossing this gap of width 4r and

connecting the two paths together.

5.2 Problems with Voronoi percolation

The Voronoi percolation model is most easily described as the union of two Poisson point

processes: one with intensity λp that gives open points and another with intensity λ(1− p)
that gives closed points. Voronoi cells of open points are themselves open and Voronoi

cells of closed points are closed. We assign Pp to be the associated probability measure.

For p ≥ 1/2, as shown in [BR06a], there exists an infinite cluster of open Voronoi cells

with probability one. We fix p = 1/2 in the following discussion and set P := P1/2.

Unfortunately, the techniques of [Al96] do not carry over to the Voronoi percolation case.

Alexander showed that events in well separated (by distance 4r) regions are independent in

the non random fixed radius boolean model. However, in the Voronoi tessellations, there
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is no upper bound on the diameter of individual Voronoi cells. Large cells are rare, but do

occur. Given Λ ∈ B(R2), let AΛ := {ω ∈ Ω : diam(Vor(x)) < R for every x ∈ ω ∩ Λ},
for some fixed R > 0, then

P(A)→ 0

as the size of Λ tends to infinity. In short, large Voronoi cells do exist. Recall from Section

2.1 the σ-algebra FΛ of all events that happen in Λ only. Then, no matter how separated

two regions Λ1,Λ2 ∈ B(R2), the events in FΛ1 are not independent of those in FΛ2 . This

is in contrast to the Boolean model with fixed or even bounded radii. We say the Boolean

model exhibits spatial independence in the sense of the following definition.

Definition 5.2. A point process X is said to be spatially independent if there exists r > 0

such that given Λ1, Λ2 ⊂ R2 with d(Λ1,Λ2) > r, any two events A and B are independent

if A ∈ FΛ1 and B ∈ FΛ2 .

Even though independence (and even spatial independence) fails in their case, Bef-

fara and Duminil-Copin [BD11] prove RSW for the discrete random cluster model that we

described in (2.6), but on the square lattice, Z2. They invoke self duality and use stochastic

domination of different boundary conditions.

R1 2 3
R R

Figure 5.2: Event A

The basics of their proof are as follows. Take two squares S1 and S2 say, so that they overlap

as in Figure 5.2. This results in three regions of equal width: R1 = S1\S2, R2 = S1 ∩ S2

and R3 = S2\S1. The probability of a horizontal open crossing of a square, in the discrete

random cluster model on the lattice, is known to be 1/2 for critical p. Let A be the event

that there is a horizontal open crossing of both S1 and S2, and that there is a vertical open

crossing of S2 that starts at the bottom edge of R2. Since open crossings are increasing

99



events, it follows, by the FKG inquality presented in Lemma 2.2, that µqp(A) ≥ 1/16.

Suppose now that event A holds. Therefore, we have a ‘highest’ horizontal open

crossing of S1 and a ‘right-most’ vertical open crossing of S2. Denote these by Γ1 and Γ2

respectively. The areas above Γ1 in S1 and to the right of Γ2 in S2 are known. Omitting

some technical details, and supposing our crossings do not combine to form a horizontal

open crossing of S1∪S2, we take the reflections of Γ1 and Γ2 in the shared vertical boundary

ofR2 andR3. Denote these reflections as Γ1 and Γ2. Γ1, Γ2, Γ1 and Γ2 enclose an unknown

area, which we call ∆, see Figure 5.3. Let B be the event that there is an open crossing

from Γ1 to Γ2 in ∆. Note that Γ1 and Γ2 are both open. Also note that ∆ is symmetrical.

The authors then see that µqp(B|A) ≥ µqp(B|A,C) where C is the event that Γ1 and Γ2 are

closed. But µqp(B|A,C) is shown to be 1/2 by a simple use of symmetry and duality.

2

1

'

Figure 5.3: The shaded areas have been discovered as we are conditioning on event A.

Lets try and construct a similar approach for Poisson Voronoi percolation and see

where it breaks down. Since the FKG inequality holds for Poisson Voronoi percolation,

and, again, the probability of a horizontal open crossing of a square is known to be 1/2 for

critical p, see [BR06b], the event A is bounded below by 1/16. Suppose again that A holds

and that γ1 and γ2 are our ‘highest’ horizontal crossing of S1 and a ‘right-most’ vertical

crossing of S2. Again, the areas above γ1 and to the right of γ2 are known in the sense that

we know whether each point belongs to an open Voronoi cell or a closed Voronoi cell. The

curve γ1 is an interface graph of S1 with open Voronoi cells ‘below’ and closed Voronoi

cells ‘above’. The positions of the Poisson points whose Voronoi cells are adjacent to and

below γ1 are known. These cells are called ’half-known’ as they are yet to be completed:

we do not know the positions of the Poisson points below. Therefore, given A, we know

part of the Voronoi tessellation, but do not know other parts. This is known as having a

partial Voronoi tessellation.
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1

Figure 5.4: Construction of Λ′, as shown by the shaded area.

1

2

1

2

'

'

'

Figure 5.5: Construction of ∆
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We want to discover the positions of particles in ∆. The only constraint is that the

structure of the tessellation that is already known, i.e. in the areas above γ1 and to the right

of γ2, must be preserved. Almost surely, each vertex of our partial Voronoi tessellation

has three equidistant closest Poisson points: each vertex has a triple of associated Poisson

points. Therefore, for each vertex v, there is a unique disc circumscribed by its associated

triple of Poisson points, and centred at v. Let the union of these discs be denoted Λ1 and de-

fine Λ′ := (S1 ∪ S2)\Λ1, see Figure 5.4. In summary, given the event A, we have a known

configuration ωΛ1 ∈ ΩΛ1 of Poisson points. By taking a second Poisson point process re-

stricted to Λ′ we can ‘complete’ the Voronoi tessellation. The structure of the tessellation

above γ1 and to the right of γ2 will be preserved.

1

Figure 5.6: This is where the proof fails. You can see a piece of an open crossing from Γ1 to
Γ2 inside ∆. However, it does not reach γ1. If we bound the probability of crossing the gap
between γ1 and Γ1, we would be done. However, this is a Poisson point process, and so the
width of the gap is not bounded above. There could be many very very thin Voronoi cells
between Γ1 and γ1. We say Poisson Voronoi percolation cannot ”cross a gap” of unknown
width.

The interface between Λ1 and Λ′ is denoted by Γ1 and Γ2 as shown in Figures 5.4

and 5.5. We take the reflection of Γ1 and Γ2 in the shared vertical boundary of R2 and R3.

Denote these reflections as Γ1 and Γ2. Γ1, Γ2, Γ1 and Γ2 enclose an area, which we call ∆.

The next step is to bound the probability of having an open crossing from Γ1 to Γ2 inside ∆

away from zero. This is slightly more technical than before, but using a suitable decreasing
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event at the boundary, C, it can be shown, using the FKG inequality, that

P(B|A) ≥ P(B|A,C) ≥ 1/2.

However, there is a problem. We still may not have a horizontal crossing of S1 ∪ S2. See

Figure 5.6 for an example.

Remark 5.3. Shortly after the submission of this thesis, an RSW result was shown for

Voronoi percolation in [Tas14]. The author uses the FKG inequality, rotational symmetry,

and quasi-independence (similar to Definition 5.2) properties, along with renormalisation

techniques in their proof.

5.3 Gibbsian models with geometric interactions

The existence of small and large Voronoi cells caused the problems in the Poisson Voronoi

percolation model. We now look at other continuum models with a Voronoi/Delaunay struc-

ture where such defects do not occur. One model that restricts Voronoi tessellations so that

cells are neither too large nor too small is the double hardcore model of [Der08]. Let the

mark space Σ contain only two marks: open and closed. We say that ω = (ω, σω) ∈ Ω

satisfies the double hardcore condition (DHC) if, for R > r > 0,

B(x, r) ⊂ Vorω(x) ⊂ B(x,R) for all x = (x, s) ∈ ω.

The hyperedge potential acts on all hyperedges x ∈ Del1(ω) but does not satisfy the local

horizon property (2.13). It is defined as

ψ(x, ω) ≡ ψ(Vorω(x)) :=

{
+∞ if (DHC) not satisifed

0 if (DHC) satisifed.
(5.1)

A Gibbs measure PDHC for such a hyperedge potential is shown to exist in [Der08],

but also by an adaptation of the proof of Proposition 3.2 in this thesis. In this model, the

Voronoi cells are open and closed independently of each other and, crucially, independent

of the particle positions.

Conjecture 5.4. Fix z = 1 and ρ > 1. Denote Rρ,L ⊂ R2 to be a ρL× L rectangle. Then

PDHC(H+(R1,L)) > ε > 0 =⇒ PDHC(H+(Rρ,L)) > g(ρ, ε) > 0

where H+(Rρ,L) is the event of a horizontal open crossing of Rρ,L and g(ρ, ε) does not
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depend on L.

By complementing the background interaction (5.1) with a type interaction, we

move into the familiar area of continuum random cluster models with a random Delau-

nay/Voronoi structure. In this case, whether or not a Voronoi cell is open depends heavily

on the particle positions. What is particularly interesting is that the problems outlined in

Section 5.2 concerning small and large cells, and their detrimental effect on our efforts

to prove RSW, are very similar to the problems faced in Chapters 3 and 4. In particular,

throughout the proofs of continuum percolation for the various Delaunay random cluster

models, the recurring elements were to bound below the probability that a small box ∇
contains at least one particle (no large Voronoi cells), and to bound below the probabil-

ity that a box ∆ contained no more than M > 0 particles (average size of Voronoi cells

in ∆ is not too small). We therefore conjecture that the RSW theorem holds for the soft

Widom-Rowlinson model on the Delaunay graph studied in Chapter 4.

Conjecture 5.5. Fix z > z0, A > A0 and ρ > 1. Denote Rρ,L ⊂ R2 to be a ρL × L
rectangle. Then

Pz,A,R(H+(R1,L)) > ε > 0 =⇒ Pz,A,R(H+(Rρ,L)) > g(ρ, ε) > 0

whereH+(Rρ,L) is the event of a horizontal open crossing ofRρ,L, g(ρ, ε) does not depend

on L and Pz,A,R is the Gibbs measure corresponding to the Hamiltonian (4.3).

In summary, there are many ways to prove the RSW theorem, but all depend on

the spatial independence property, defined in Definition 5.2, in a critical way. There is

one exception to this, however, as we saw in Section 5.2 where the authors of [BD11]

take advantage of planar duality and symmetry arguments. The case of Poisson Voronoi

percolation falls down in the same way in both scenarios – the size of the Voronoi cells is

unbounded. We conjecture that an RSW estimate can be shown in the case where geometric

interactions occur between the particles to discourage large (and small) Voronoi cells. This

by itself however, does not give us spatial independence, in fact, more dependence has been

built into the system. However, without large Voronoi cells, an adaptation of the proof

method of [BD11] seems more possible. The size of any gap, as shown in Figure 5.6, is

bounded above, and without small Voronoi cells, the number of Voronoi cells that can fill

said gap is also bounded above, enabling us to “cross the gap”. There are other things

to consider though. Do symmetry arguments still work in this setting? Non-hereditary

processes like the double sided hardcore one described above would cause this to fail for

instance. This brings us to the FKG inequality – a key ingredient for stochastic domination

arguments used in many of the proofs we have discussed. A point process analogue was
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given in [GK97], however, as we have seen, using geometric interactions erases the clear

distinction between attraction and repulsion. Will a weaker result be sufficient? Finally,

due to the existence of a Gibbs measure, and therefore a consistency relation, it is supposed

that dependence decays with distance. This decay of correlations, if shown to be strong

enough, could enable us to separate events and evaluate their intersection. These are all

interesting questions and ones which must be answered in order to find a proof of RSW in

the Delaunay/Voronoi continuum setting.
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Chapter 6

Conclusions and Outlook

In conclusion, in this thesis, we have shown the existence of percolation, for high activ-

ity and low temperature, in two classes of Delaunay random cluster models. Those with a

hardcore background interaction, and those without any background interaction at all. Fol-

lowing a joint construction of these Delaunay random cluster models with corresponding

Delaunay Potts models, we can interpret these percolation results with respect to the lat-

ter. They imply that multiple distinct Gibbs measures (Delaunay Potts measures) exist for

large enough activity and low enough temperature for each of our models, and providing

uniqueness of a Gibbs measures at the opposite end of the phase space, show the existence

of a phase transition. This extension of the continuum random cluster representation to

the Delaunay hypergraph structure is formulated in Chapter 2 for hyperedge potentials that

only depend on the hyperedge and not the neighbourhood of the hyperedge. Follow on

work might include constructing a similar continuum random cluster representation for the

case when hyperedge potentials do depend on the neighbourhood of a hyperedge, and then

finding a suitable model where percolation exists – it is thought that dependent percolation

may be needed. One example of such a model has a hyperedge potential that acts on sin-

gle particles, but is a function of the number of neighbours to that particle in the Delaunay

graph. Clearly this depends on the neighbourhood of the hyperedge (single particle) and

not just the hyperedge itself.

In Chapter 3, we study a class of Delaunay random cluster models with hardcore

background interactions: a generalisation and extension of the work of [BBD03] to the

case of infinite range type interactions both on triangles and edges of the Delaunay graph.

The first model we consider has a type interaction that discourages triangles with large

smallest interior angle if all three particles that build the triangle do not have the same

mark. We show non-uniqueness of Gibbs measures for large activity z and low temperature
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A−1. Our estimates for these activity and temperature thresholds are similar to those in

[BBD03], although the former depends on the angle threshold β0 between discouraged and

non-discouraged triangles in our case, rather than the finite range R of the interaction as

in [BBD03]. Our estimates show that if we decrease the angle threshold, we must increase

the activity to retain percolation. This is counter intuitive behaviour because, in the random

cluster representation, we are increasing the hyperedge drawing probability so one would

expect a more connected hypergraph. However, the positions of the particles also depend

on our type interaction. For this model, and indeed all those we consider in this thesis,

the required activity and inverse temperature are shown to increase with the cardinality of

the mark space. This on the other hand, is intuitive: a wider selection of marks will make

it more difficult for one of them to percolate. Our second model is just a relaxation of

the first, using a smooth type interaction that gives increasingly more penalty for triangles

with a larger smallest interior angle. Our proof of percolation only relies on the hardcore

background interaction to control the maximum number of particles in a box. A possible

extension of this model would be to lose the background hardcore interaction altogether.

This would result in the case of an infinite range type interaction with no background in-

teraction. To do this, we would simply need to find a bound for the expected number of

destroyed hyperedges when a particle is added to an existing configuration. We could then

follow the methods of Chapter 4 to control the maximum number of particles in a box. The

final model in Chapter 3 is a direct extension of [BBD03] to the case of infinite range type

interaction on the edges of the Delaunay graph. The novelty is to bound the expected num-

ber of created hyperedges without using a finite range assumption. Our estimates for the

activity and temperature thresholds are weaker, as expected. Comparing with [BBD03], the

temperature parameter threshold is identical, however, our activity parameter threshold, al-

though now independent of the range of interaction R, depends heavily on the temperature.

In fact, we require z to be proportional to q to the power 4Aπ/3. By taking advantage of

the self similarity property of the Delaunay triangulation, it is thought that this model can

be generalised to the case where ϕ ≡ A, although our ‘annulus’ proof technique would not

work.

In Chapter 4, in the case of Delaunay random cluster models without any back-

ground interaction at all, we present an extension of [LL72] and [CCK94] to the Delaunay

structure where we use a smooth decreasing type interaction that explodes in the neigh-

bourhood of the origin to ensure percolation. The problem of non-uniqueness of Gibbs

measures for large activity z was first solved for the Widom-Rowlinson model by Ruelle

using a Peierls-type argument [R71]. It was later also shown using a more modern stochastic

geometric method in [CCK94]: the authors used a continuum random-cluster representa-
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tion. The work of [LL72] provided a solution to the problem for the more general case of

the Widom-Rowlinson model when particles of different type are just discouraged to get too

close, rather than forbidden: non-uniqueness of Gibbs measures required high activity or

low temperature. Again, much later, a continuum random-cluster representation was used

to make the same result – this time by [GH96]. The Widom-Rowlinson and its generalisa-

tions discussed here do not incorporate a background interaction: only a repulsion between

particles of different type in the form of a pair interaction on the edges of the complete

graph. We consider a much more restricted version of these models, where the inter-type

interaction only occurs on edges (hyperedges) of the Delaunay graph. This is the key fea-

ture of the present study and is the first time non-uniqueness of a Gibbs measure has been

shown for a Delaunay Potts model without a background interaction. Our result, as usual,

is for large activity and low temperature, which each depend on R, the finite range of our

type interaction.

One might presume that an increase in the range of the type interaction would facil-

itate percolation. And whilst this is certainly true in the classical systems of non-geometric

interactions on the hyperedges of the complete graph, where it represents an increase to

the repulsion, it is not so clear cut in our hypergraph structure framework where the lines

between repulsion and attraction are blurred due to the non-additive nature of the geometric

interactions. In fact, although our estimates show that a larger activity is needed to maintain

a phase transition for type interactions with either a large range, or very small range, the

temperature does not need to be as low in the latter case. However, our proof relies on a

bound α for the change in the expected number of connected components when you aug-

ment a configuration with a new particle. The bound we found is quadratic in R, but this

is due to our particular proof methods. Due to the self-similarity property of the Delaunay

hypergraphs, it is believed that a bound independent ofR can be obtained. This would grant

significantly tighter estimates for the required activity and temperature for percolation. In

particular, in the case of a constant type interaction on edges of the Delaunay graph, perco-

lation would exist for all activity z > 0 and for temperature small enough – very interesting

yet intuitive behaviour. To see this, we follow our proof method. Choose any acticity z > 0.

To ensure, for this activity, that the small boxes in an L′-partition of Λ contain at least one

particle with high probability, we must choose L large enough. This choice of L, due to our

bound for α being independent of the length of hyperedges, is inversely proportional to the

square root of z. To ensure percolation, we must finally choose A small enough such that

all particles in an 8L × 8L box have mark 1 with large probability. This only depends on

the number of particles in the box and will therefore be constant due to our choices of z and

L.
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As a final remark, all of the estimates in this thesis depend on our choice of coarse

graining structure – in particular the square lattice. By using an alternative skewed lat-

tice of rhombi with interior angle π/3, we can improve our estimates by a constant factor.

However, a comparison with another continuum point process instead of a discretization ap-

proach is not thought possible. These thoughts are due to the non-additivity of the geometric

hyperedge interactions which do not allow for stochastic comparison of point processes in

the form of the analogue Holley–Preston inequality presented in [GK97].
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Appendix A

Geometrical Lemmas

Lemma A.1. Let G = (V,E) be a spoked chain where V = ∪ni=1xi and x̂1 < · · · < x̂n.

For 1 < k ≤ n, let x∗k and x∗k+1 be the centres of the circumscribing circles of the triples

{x0, xk−1, xk} and {x0, xk, xk+1} respectively. Then x̂∗k+1 ≥ x̂∗k.

Proof. The points x̂∗k+1 and x̂∗k both lie on the bisector of the line segment x0xk. Suppose

x̂∗k > x̂k, then the radius ofB({x0, xk, xk+1}) is greater than the radius ofB({x0, xk−1, xk})
and hence x̂∗k+1 ≥ x̂∗k. Now suppose x̂∗k ≤ x̂k. If x̂∗k+1 < x̂∗k, then xk+1 lies in the interior

of B({x0, xk−1, xk}) which contradicts the properties of a Delaunay tessellation. There-

fore, x̂∗k+1 ≥ x̂∗k.

xk−1

x∗k

x0

xk

Figure A.1: Linear bisector of the line segment x0xk

Let a ∈ R2 be the pole in a polar coordinate system where x̂ denotes the angular
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coordinate of a point x ∈ R2. For x, y ∈ R2 with x̂ < ŷ, let B({a, x, y}) be the unique

circle that intersects a, x and y. There are exactly two arcs of B({a, x, y}) with endpoints

x̂ and ŷ. Let Caxy be the one that does not contain a. Given an arc of a circle, C, let L(C)

denote its length. For two points x, y ∈ R2, recall that←→xy denotes the unique straight line

in R2 that passes through both x and y.

Theorem A.2. Suppose a ∈ R2 is the pole. Let b, c ∈ R2, with 0 < b̂ < ĉ < π. Let

D ⊂ R2 be the region bounded by B({a, b, c}). Let U be the convex hull of Cabc. Then, for

all z ∈ U ,

L(Cabz) + L(Cazc) ≤ L(Cabc). (A.1)

Proof. We start off with some notation. Let r > 0 be the radius of the circle B({a, b, c})
and let

M := |b− c| , h1 := |b− z| , h2 := |z − c|,

t := |z − a| , s1 := |b− a| , s2 := |c− a|,

and

θ1 := ẑ − b̂ , θ2 := ĉ− ẑ , θ := θ1 + θ2.

Then, L(Cabz) = 2θ1 × radius(B({a, b, z})), and radius(B({a, b, z})) = h1/2 sin(θ1).

Therefore, we have the following formulae for L(Cabz), L(Cazc) and L(Cabc):

L(Cabz) = h1
θ1

sin(θ1)
, L(Cazc) = h2

θ2

sin(θ2)
, L(Cabc) = M

θ

sin(θ)
.

The strategy of the proof is to first show that L(Cabz) + L(Cazc) = L(Cabc) for z ∈ Cabc and

L(Cabz) + L(Cazc) ≤ L(Cabc) for z ∈ bc. We then define L(Cabz) + L(Cazc) as a function of

θ1, s1, t and r, and show that it is convex with respect to t – see Figure A.2 for an illustration

of this convexity. Noting that z is uniquely determined by t and θ1, we conclude the result.

Let z ∈ Cabc. It follows thatB({a, b, c}) = B({a, b, z}) = B({a, z, c}). Therefore,

Cabz ∪ Cazc = Cabc. Hence,

L(Cabz) + L(Cazc) = L(Cabc). (A.2)
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Let z ∈ ∂U ∩ bc. Then, h1 + h2 = M and

L(Cabz) + L(Cazc) = h1
θ1

sin(θ1)
+ h2

θ2

sin(θ2)

= h1
θ1

sin(θ1)
+ (M − h1)

θ2

sin(θ2)

≤ h1
θ

sin(θ)
+ (M − h1)

θ

sin(θ)

= M
θ

sin(θ)

= L(Cabc), (A.3)

where the inequality holds because θ ≥ max{θ1, θ2} > 0 and g(x) := x
sin(x) is an increas-

ing function on the interval [0, π].

Let M and r be fixed constants. To write L(Cabz) + L(Cazc) as a function of θ1, s1

and t, note that by the cosine rule of triangles,

h2
1 = t2 − 2s1t cos(θ1) + s2

1 and h2
2 = t2 − 2s2t cos(θ2) + s2

2, (A.4)

hence,

L(Cabz) =
(
t2 − 2s1t cos(θ1) + s2

1

)1/2 θ1

sin(θ1)
=: f1(θ1, s1, t). (A.5)

Furthermore, s2 is a function of s1 and θ1, since

M2 = s2
1 + s2

2 − 2s1s2 cos

(
sin−1

(
M

2r

))
; (A.6)

and θ2 is a function of θ1:

θ2 = θ − θ1 = sin−1

(
M

2r

)
− θ1 (A.7)

Then, by (A.4), (A.6) and (A.7), we have

L(Cazc) =
(
t2 − 2s2(s1, θ1)t cos(θ2) + s2(s1, θ1)2

)1/2 θ2(θ1)

sin(θ2(θ1))
=: f2(θ1, s1, t).

(A.8)

We aim to show that f(θ1, s1, t) := f1(θ1, s1, t) + f2(θ1, s1, t) is convex with respect to t.
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To do this we start by taking the first and second derivative of f1 with respect to t:

d

dt
f1(θ1, s1, t) =

t− s1 cos(θ1)(
t2 − 2s1t cos(θ1) + s2

1

)1/2 · θ1

sin(θ1)
,

and

d2

dt2
f1(θ1, s1, t) =

[
1(

t2 − 2s1t cos(θ1) + s2
1

)1/2
− 2 (t− s1 cos(θ1))2

2
(
t2 − 2s1t cos(θ1) + s2

1

)3/2
]
· θ1

sin(θ1)

=
θ1

sin(θ1)︸ ︷︷ ︸
≥0

·


(
t2 − 2s1t cos(θ1) + s2

1

)3/2(
t2 − 2s1t cos(θ1) + s2

1

)2︸ ︷︷ ︸
≥0

−
(
t2 − 2s1t cos(θ1) + s2

1

)1/2
(t− s1 cos(θ1))2(

t2 − 2s1t cos(θ1) + s2
1

)2︸ ︷︷ ︸
≥0

 .

The denominator of the quotients in the square brackets is just h2
1 which is positive. The

function x
sin(x) is also positive for 0 ≤ x ≤ π. Therefore, to show that d2

dt2
f1(θ1, s1, t) ≥ 0,

we only need to check that the numerator of the quotient in the square brackets, denoted

F (θ1, s1, t), is positive. Indeed,

F (θ1, s1, t) =
(
t2 − 2s1t cos(θ1) + s2

1

)3/2 − (t2 − 2s1t cos(θ1) + s2
1

)1/2
(t− s1 cos(θ1))2

=
(
t2 − 2s1t cos(θ1) + s2

1

)1/2 (
t2 − 2s1t cos(θ1) + s2

1 − (t− s1 cos(θ1))2
)

=
(
t2 − 2s1t cos(θ1) + s2

1

)1/2︸ ︷︷ ︸
=h1≥0

· s2
1

(
1− cos2(θ1)

)︸ ︷︷ ︸
≥0

≥ 0.

Therefore, d2

dt2
f1(θ1, s1, t) ≥ 0. Similarly, d2

dt2
f2(θ1, s1, t) ≥ 0. Therefore, d2

dt2
f(θ1, s1, t) ≥

0, which implies convexity with respect to t. Fix 0 ≤ θ1 ≤ sin−1(M2r ). There exists

0 < tmin(θ1) < tmax(θ1) < 2r such that tmin(θ1) ≤ |z| ≤ tmax(θ1) for all z ∈ U with

ẑ − b̂ = θ1. We have shown, in Equations (A.2) and (A.3) that

f(θ1, s1, tmin(θ1)) ≤ L(Cabc) and f(θ1, s1, tmax(θ1)) = L(Cabc).
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Therefore, by the convexity of f , for all t ∈ [tmin(θ1), tmax(θ1)],

f(θ1, s1, t) ≤
t− tmin(θ1)

tmax(θ1)− tmin(θ1)
f(θ1, s1, tmin(θ1))

+
tmax(θ1)− t

tmax(θ1)− tmin(θ1)
f(θ1, s1, tmax(θ1))

≤ f(θ1, s1, tmax(θ1)) = L(Cabc).

Since, θ1 and s1 were arbitrary, this completes the proof.
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Figure A.2: The difference between L(Cbz) + L(Czc) and L(Cbc) for points z ∈ U . On
the plot, t takes values between tmin = 0, when z ∈ bc and tmax = 100, when z ∈ Cbc.
Similarly, the values of θ1 are a percentage of θ, which is the maximum value for θ1. The
following values were used: r = 10, M = 5

√
3 and s1 = 5

√
3

(2 sin(sin−1(5
√

3/(20))/2))
≈ 19.5.
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