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Abstract 

The principal aim of this project was to synthesise a range of functionalised 

heterocycles using novel transition metal promoted radical cyclisation reactions as an 

alternative to the well-established tin hydride method. On achieving this we hoped to 

successfully apply these methods towards the synthesis of natural product templates. 

In chapter two, a series of copper(l)-amine catalysts were employed to mediate the 5-

endo-trig radical cyclisation of trichloroacetamides, which led to the formation of a 

variety of highly functionalised bicyclic y-Iactams in good to excellent yield. A variety 

of cyclisation precursors were examined. This work was also extended towards the 

synthesis of analogues of the heterocyclic ring fragment of non-peptide bradykinin 

inhibitor, L-755,807. In chapter 3, the reaction of a series of tertiary bromoacetamides 

with catalytic copper(I) bromide/N,N,N',N',N",N" -hexamethyltriethylenetetramine 

(Me6-tren) at room 'temperature is described. This reaction furnished regioisomeric 

mixtures of unsaturated pyrrolidinones via a highly efficient 5-endo-trig radical 

cyclisation reaction. We also illustrated that a variety of less activated secondary 

bromoacetamides undergo efficient 5-endo-trig radical cyclisation reactions to give 

a,l3-unsaturated monoene lactams under atom transfer conditions mediated by copper(l) 

bromide and tripyridylamine (TP A) in refluxing toluene. Changing the solvent for this 

reaction to 1,2-dichloroethane caused a,l3-unsaturated diene lactams to be produced 

instead. This approach was used towards the synthesis of analogues of the 

sesquiterpenic alkaloid, eremophilene y-Iactam. Chapter 4 describes an alternative route 

to constrained bicyclic ring systems mediated by ceric ammonium nitrate (CAN). In 

addition, the first reported 5-endo-trig radical cyclisation of l3-amido esters to afford 

functionalised y-Iactams was developed. This methodology was exploited in the 

production of analogues of the heterocyclic ring fragments of a' number of biologically 

active natural products. 
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Chapter 1 Introduction 

1.1 General Introduction 

Chapter J 

Free radicals have been defined as species that contain one or more unpaired electrons 

which, in contrast to ionic species (anions and cations) can react easily with themselves. 

The formation of carbon-carbon bonds employing free radicals has ushered a new era in 

the field of synthetic organic chemistry.lo8 This development, which took place during 

the last decade, has clearly changed the old notion of free-radical reactions being 

"notoriously uncontrollable".2a Consequently, synthetic organic chemists are now more 

confident in dealing with these reactions on realisation that they can be carried out in 

more precise and controlled manner. The pioneering work of the groups of Julia, 1 

Beckwith,2 and Walling9 have convinced many others to venture into the area of 

synthesis employing free radicals, and these efforts have. culminated in adding a new 

dimension to the repertoire of synthetic methodology. 

The application of their exceptional work was first demonstrated by Hart5and Stork, 10 

and later by Curran8 and others. Giese's excellent physical organic work laid the 

foundation for applications in intermolecular carbon-carbon bond-forming processes.6 

Later advances in this area dealt with the aspect of stereochemistry largely due to the 

work of Rajanbabu,ll Curran12b and Houk23 which provide4 a clear insight into the 

stereochemical control during intramolecular free-radical cyclisations, and this 

development has encouraged hectic activity in the area of complex natural products 

synthesis. 12 

1.2 Carbon Radicals 

The principal focus in this area has centred on the creation of C-C bonds using carbon 

centred radicals. Carbon-centred radicals are highly reactive intermediates which often 
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show high chemoselectivities, regioselectivities and stereoselectivities upon addition to 

C-C mUltiple bonds.8 They also have the distinct advantage in that they can be prepared 

under essentially neutral conditions, and thus many of the undesired side reactions that 

are often associated with basic anionic reagents are generally avoided. Neutral carbon 

centred radicals also have the advantage that they are less sensitive to solvent effects, 

i.e. aggregation or ion pairing, which makes them particularly suited for conducting 

reactions at crowded bonds or carrying out transformations in highly hindered 

frameworks. 13 The tolerance of such functional groups as N-H and O-H to radicals also 

removes the need for successive protectionldeprotection steps, which has the effect of 

shortening particular synthetic routes. However, protecting groups may still be required 

for other steps in a synthetic sequence and almost all popular classes of protecting group 

are tolerated via radical reactions. 

1.2.1 Stability and Structure 

The relative stability of substituted carbon-centred radicals can be estimated by 

applying a simple rule, the lower the bond dissociation of the carbon-hydrogen bond the 

more stable the radical. 14 Table 1 shows the relative stability and bond dissociation 

energies of several carbon centred radicals. IS 

Table 1. C-H bond dissociation energies (kJ mort). 

.. ~- < < Et- < Me- < =-< ©-
Allyl Benzyl Tertiary Secondary Primary Me Vinyl Aryl 

360 368 401 402 418 438 439 464 

Carbon centred radicals can adopt either a planar or pyramidal structure. Conjugating 

substituents favour the planar structure while alkyl, electron withdrawing (e.g. F) and 

heteroatom substit~ents can cause pyrimidalisation (fig. 1 ).16 

2 
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-
Planar Pyrimidal and inverting 

Figure 1. Structure of alkyl radicals. 

The barrier to inversion in the pyramidal structure is very low and as a consequence 

stereochemical information at the prochiral centre is IOSt.I
7 Vinyl radicals are usually 

thought to be bent and also have a low barrier to inversion. IS However, inversion can be 

slowed with the introduction of electronegative substituents. I9
-
2o Vinyl radicals can 

either exist in the bent form or the linear form (fig. 2). The latter is preferred with 

conjugating substituents. I2
(b) 

R 

~ - ==d( 
R .... 

Bent and inverting Linear 

Figure 2. Structure of vinyl radicals. 

1.2.2 Reaction Types 

Aside from oxidation (yielding cations) and reduction (yielding anions), radicals 

normally react in one of two ways. The first is by abstracting an atom or group via a 

homolytic substitution reaction (SH2) and the second is by undergoing addition 

reactions to unsaturated moieties either inter- or intra-molecularly. The scope that is 

available from the reactions of radicals comes from the broad range of reactants that 

participate in these two primary classes. 

3 
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1.2.3 Abstraction/Atom Transfer Reactions 

This is a very broad class of reactions in which radicals can react with saturated organic 

compounds and halogenated compounds by abstracting a hydrogen or halogen atom. 

The reaction is very similar to a SN2 reaction and is often referred to as a SH2 reaction13 

(Scheme 1). 

R-X + A. - R. + XA -
Scheme 1. Abstraction reaction 

The selectivity of a free radical towards C-H and C-halogen bonds of different types is 

determined principally by two factors: bond dissociation energy and polar effects. The 

general rule being, lower bond dissociation energies facilitate H-abstraction, e.g. allylic 

and benzylic C-H bonds (322 KJ mor1
) are significantly weaker than those in saturated 

systems, as such they undergo H-abstraction more readily. The reason for this is 

because the unpaired electron in the resulting radical js delocalised (Scheme 2) . 

~. ~"' __ -----tl"'~ . ~ 
Scheme 2. Delocalisation of an allylic radical 

Compounds containing halogens also follow the above rule, e.g. bromotrichloromethane 

reacts by loss of the bromine atom and C-Br rather than C-CI cleavage occurs because 

the former bond is weaker. Secondly, polar factors are operative in many radical 

reactions. The polarisation of a bond by an electronegative element such as CI has the 

effect of decreasing the likelihood ofH-abstraction at the a-position; an example of this 

regioselectivity in abstraction can be seen in butyl chloride (fig. 3).21 

a 

~CI 

Figure 3. Inductive effects in butyl chloride 

4 
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These principles apply to electrophilic radicals and the contrary would apply for 

nucleophilic radicals such as alkyl radicals. 

1.2.4 Addition Reactions 

One of the most significant classes of radical reactions is considered to be the addition 

reaction, as it represents one of the mildest and most efficient ways to create carbon­

carbon bonds. Free radicals undergo addition reactions to common unsaturated 

groupings, i.e. double and triple bonds. The most important of these unsaturated groups 

is the C=C bond, addition to which can show considerable selectivities. The effects of 

substituents located on both the radical carbon and the multiple bond on the rate and 

regioselectivity of the reaction has been studied in great depth. l3
, 22 Giese found that the 

rate of addition of nucleophilic radicals to alkenes increases with the electron 

withdrawing ability of substituents on the alkene partner and with the number of alkyl 

groups attached to the initial radica1.6 

1.2.4.1 Intermolecular Addition 

Carbon centred radicals can undergo intermolecular addition to both carbon-carbon 

double and triple bonds. The formation of a new 0" C-C bond (368 kJ mor I
) is at the 

expense of a 1t C=C bond (226 kJ mor I
) and is a highly- energetically favourable 

eX,othermic process. I7 The rate of addition of the radical, and the rate of trapping of the 

final radical must be greater than that of termination caused by unwanted side reactions 

for intermolecular addition processes to be successful. Theoretical studies have shown 

that carbon radical addition to alkenes is along a preferred tetrahedral trajectory with a 

long forming bond (fig. 4).23 

5 
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~ 

--c'" 
e' 1090 

Ii;> < 
Figure 4. Radical attack on an alkene 

1.2.4.1.1 Electronic Nature of Carbon Radicals 

All radicals can be classified in accordance with their electronic nature. They fall into 

three categories: (a) nucleophilic, (b) electrophilic and (c) ambiphilic radicals. The 

nature of which depend on the substituents attached to the radical. The electronic 

character of the radical will determine the types of reactions that a particular radical will 

undergo. Due to the high exothermicity of most additions an early transition state can be 

postulated for radical addition to alkenes. This allows such reactions to be rationalized 

using frontier molecular orbital (FMO) theory.24 

(a) Nucleophilic Radicals 

Many radicals are nucleophilic (despite being electron deficient) because they have 

relatively high lying singly occupied molecular orbitals (SOMa) (e.g. heteroatom­

substituted, vinyl, aryl and acyl and most importantly alkyl radicals). The SOMa of the 

radical can theoretically react with either the lowest uno~cupied molecular orbital 

(L~O) or the highest occupied molecular orbital (HOMO) of the carbon-carbon 

multiple bond (fig. 5).25 Nucleophilic radicals, such as alkyl radicals, react preferentially 

with electron deficient alkenes which have a relatively low lying LUMO. 
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...--. , . .. + . , . , . , . , . , . , . 
,: \-- LUMO , , sOMoh,'/ \ . . . . · . I , · . 

SOMO-i-./ ./ . . 
· . 
\ \--4-HOMO , . . . \4-: . . . . . 
. , 

\4/ · " · , • 

Nucleophilic addition to an electron poor alkene Electrophilic addition to an electron rich alkene 

Figure 5. Electrophilic and nucleophilic radical orbital interactions 

Generally, intennolecular additions of nucleophilic radicals to unactivated alkenes are 

too slow as to render them synthetically useful. However, the rates of these reactions 

can be made more efficient by electronic modifications to the alkene partner or the 

radical itself. The addition of electron donating substituents on the radical centre serves 

to raise the energy of the SOMO and often gives rise to a small increase in rate, hence 

the order of reactivity is tertiary>secondary>primary.26 Conversely, intennolecular 

additions can be accelerated by as much as a factor of 104 by the introduction of an 

electron withdrawing substituent on the 13 position of the alkene (Scheme 3).13 Electron 

withdrawing substituents introduced in the a. position also serve to lower the LUMO but 

the rate of acceleration is not so marked. 

.C~Hll 
R 

+ 1 when R = Bu k,.el = 0.004 
R=CN ·k 1=24 re 

Scheme 3. Rate of addition of nucleophilic carbon radicals to 13-substituted alkenes 
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(b) Electrophilic and (c) Ambiphilic Radicals 

Until recently radicals that contained one conjugated electron withdrawing substituent 

were considered as electrophilic. The notion that ambiphilic radicals exist· as 

intermediates between both electrophilic and nucleophilic radicals is relatively new. The 

distinction between electrophilic and ambiphilic radicals is not at all clear. Generally 

radicals with two electron-withdrawing substituents are classed as electrophilic, while 

those with one electron withdrawing substituent will be classed as ambiphilic. 

Electrophilic radicals possess a relatively low-lying SOMO and react preferentially with 

electron rich alkenes that contain a high energy HOMO. FMO theory predicts that the 

introduction of electron withdrawing substituents to the radical centre and electron 

donating substituents on the alkene will have the effect of lowering the SOMO and 

raising the HOMO respe~tively, which will increase the rate of such an addition. The 
. 

introduction of electron donating groups on the alkene only gives rise to modest 

increases in the rate of addition (Scheme 4).27 

when Z = C02Et 
Z=OMe 

krel = 0.27 
.krel = 2.1 

Scheme 4. Rate of addition of electrophilic carbon radicals to substituted alkenes 

Ambiphilic radicals have SOMO energtes that are intermediate between that of 

nucleophilic and electrophilic radicals. The addition reactions of ambiphilic radicals 

would be accelerated by .. introduction of either electron withdrawing or electron 

donating alkene substituents. This has been confirmed by kinetic studies on such 

radicals.
27 

Both electrophilic and nucleophilic radicals react faster with alkenes than 

8 
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alkynes.25 This is in direct contrast to nucleophilic anions, as they attack triple bonds 

faster than double bonds. 

1.2.4.2 Intramolecular Addition (Cyclisation) 

Intramolecular addition reactions are of particular importance in the construction of ring 

systems, especially in complex natural products. Radical cyclisations are normally 

easier to carry out than intermolecular radical additions. This is because most 

cyclisations proceed at a much faster rate due to the radical donor and acceptor being 

held within defined molecular architectures. 25 

• 

0 kexo= 2.5 x 105s-1 kendo= 4 x 103s-1 • 

U 0 .... ... 
(2) (1) (3) 

98% 2% 

Scheme 5. Regioselective outcome of a simple hex-5-enyl radical cyclisation 

Cyclisation of the simple hex-5-enyl radical (1) at room temperature furnishes both the 

5-exo (2) and the 6-endo (3) products in a ratio of 98:2 (Scheme 5). 5-Exo cyclisations 

are generally favoured over their 6-endo counter parts primarily for stereoelectronic 

reasons (Scheme 5).28 In fact it has been calculated that the rate of 5-exo cyclisation is 

approximately fifty times faster than the alternative 6-endo mode of ring closure.2c 

Hence, the less thermodynamically stable primary cyclopentymethyl radical (2) is 

formed in preference to the secondary cyclohexenyl radical (3). The Beckwith-Houk . 

transition state model can be used to explain these experimental observations.28-3! 

9 
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Efficient orbital overlap in the transition state must be achieved between the SOMO of 

the radical and the HOMO of the alkene. The model states that this is attained by the 

adoption of a chair conformation by the hex-5-enyl radical (fig. 6). The strain in 

accommodating the most favourable arrangement of reactive centres has been calculated 

as being much greater for the 1,6-transition state than the 1,5-transition state. In 

addition, the rate of the 5-exo-ring closure could be further enhanced by the additional 

steric effects resulting from 1,3-diaxial interactions in the transition state as well as a 

more favourable entropy of activation. 

Figure 6. The chair-like 1,5 transition state 

The Beckwith-Houk transition state also serves as· the basis for the prediction and 

rationalisation of the diastereoselectivities observed in 5-exo hexenyl radical 

cyclisations.28
-
31 As the transition state of a 5-exo radical ring closure resembles the 

chair conformation of a cyclohexane ring, substituents at C-2, C-3 and C-4 would be 

expected to adopt a pseudo-equatorial position rather than a pseudo-axial position (fig. 

7). 

~
4 --•• - R 

2 3 R 
R 

Figure 7. Pseudo-equatorial position ofsubstituents 

A greater proportion of the equatorial conformer is obtained when 1,3-diaxial steric 

interactions become stronger due to larger substituents on the ring. It has been shown 

that substitution at C-l or C-3 of the hex-5-enyl radical gives preferentially cis-

10 
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disubstituted cyclopentyl products whereas C-2 or C-4 substitution gives preferentially 

trans-disubstituted cyclopentyl products (Scheme 6). 

5 C-2 0······ o--e 3 .... + (trans) . .. .. ," ~ 

( 36 64 ) 

-C C-3 .... 111,·o·,,\\e +'II .. o--e 
(cis) e 

( 71 29 ) 

<=-
- -- -- -. . 

C-4 .... o·,,\\e + o--e 
(trans) e 

(17 83 ) 

Scheme 6. The effects of substituents on the stereochemistry of cyclisation 

The effects of substituents on the regiochemistry of cyclisation of hex-5-enyl radicals 

(4) was investigated by Beckwith.4 Substituents either at the product radical (R4, RS
) or 

on the initial radical centre (R 1, R2) show small effects (Scheme 7). However, the 

introduction of substituents at the 2-position of the alkene (R3
) greatly retards the rate of 

the reaction. Furthermore, when a large substituent group (R3) is present at C-5, the rate 

of 1,5-cyclisation (5) is lowered to the point where 1,6-cyclisation (6) becomes the 

. preferred pathway. Six-membered rings can also be isolated if the cyclisation is 

reversible and under thermodynamic control. The initial radical generated must be 

11 
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stabilised in order to allow fragmentation of the cyclic 5-exo radical to be faster than 

other processes such as reduction. 

+ 

(4) (5) 

Scheme 7. The effects of substituents on the regiochemistry of cyclisation 

1.3 Synthesis of N-Heterocycles via Radical Cyclisation Methods 

The incorporation of a heteroatom (e.g. N atom) into the hex-5-enyl chain can further 

augment both the rate and regioselectivity of the 5-exo cyclisation. This may be 

attributed to two effects., Firstly, the C-N-C bond angle (107.8°) is less than the 

tetrahedral C-C-C angle (109.5°) and secondly the C-N bond length (1.469 A) is shorter 

relative to the C-C bond (1.524 A).32 Hence, the radical is closer to the internal carbon 

atom of the alkene in the transition state which reduces the activation energy of the 

cyclisation reaction. Consequently. the rate of the 5-exo cyclisation is observed to 

increase by at least an order of magnitude. For example. it has been calculated that the 

3-aza-hex-5-enyl radical (7) cyclises at a rate of 8.6 x 106 
S·1 which compares with a rate 

of2.5 x 105 
S·1 for the hex-5-enyl cyclisation of (1) (Scheme 8): 

.'r--, 
~ .. ) ~~.-------------­

X 
I X= C, R = H 
R 

(2) 

l) 
I 
R 

(7) 

.'r--, 
--------------~.~ ~ .. ) . X 

X = N, R = alkyl I 
R 

(8) 

Scheme 8. Comparison of rates of cyclisation 

It has been reported that the rate of cyclisation to form the pyrrolidinone system (12) is 
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relatively slower than for the analogous system which does not contain an amide bond 

(Scheme 9).33 It was suggested that the decrease in rate was due to rotation about the 

amide bond and that this effect was temperature dependant. The barrier to rotation34 

about an amide bond is typically between 67-92 kJ mort. This is significantly higher 

than the activation energy of a radical cyclisation reaction «42 kJ mort
)2(a) and the 

additional activation may be explained in terms of amide conformer effects. 

liB' (i) l)~o :~ Uo .... ... 
N 0 
I I I I 
Bn Bn Bn Bn 

(9) (10) (11) (12) 

Scheme 9. (i) BU3SnH, AIBN, benzene 

The C-N bond of the amide functional group contains sufficient double bond character 
. 

to allow the molecule to exist in either of two conformations. The anti conformation is 

when both the amide carbonyl and nitrogen R.group are on the same side (13a) and the 

syn arrangement is when the amide carbonyl and nitrogen R group are opposite to each 

other (13b) (Scheme 10). A detailed investigation into these amide conformer effects 

has been carried out by Stork, who investigated the 5-exo cyclisations of 

bromoethanamides.35 When the secondary bromoethanamide (13, R=H) was treated 

with tributyltin hydride/ AIBN in benzene at 80°C, only the reduced compound (17, 

R=H) was isolated (unreported yield). This result was attributed to the preference of the 

intermediate a.-carbamoylmethyl radical to exist in the syn conformation, in which the 

radical centre and alkene are too far apart for an intramolecular addition to occur. 

Hence, the initial radical generated is simply quenched by reaction with the reagent. In 

contrast, the incorporation of a bulky nitrogen protecting group, for example R = Ts, 

gave the desired lactam·(16) via (13a) in 85% yield and only 2% of the simple reduced 

13 
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compound (17) was isolated. 

... ... 

(14a) 

o~ 
Br0NAJ 

~ Syn ~ 
(13b) 

(17) 

Scheme 10. Amide conformer effects in 5-exo radical cyclisations 

It was therefore concluded that the syn:anti equilibrium (13a:13b), and hence the ratio 

of reduced:cyclised (17:16) products is influenced by the sterlc bulk of the group 

attached to nitrogen. In general, for amide precursors, elevated reaction temperatures 

together with a substituent on nitrogen are a prerequisite for efficient cyclisation to 

Occur. These factors are thought to alter the conformer populations and/or the barrier to 

rotation about the amide bond. 

1.4 Methods used to conduct carbon radical reactions 

As stated earlier most free radicals are highly reactive species and will undergo 

reactions with themselves by either combination or disproportionation at rates 

. approaching the diffusion control limit. This means that a low concentration of radicals 

is required over the course of the reaction. This is usually achieved using radicals 

14 
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formed in chain reactions. The concentration difference between the substrate and 

radical enables the reactions to be synthetically useful. Addition of the product radical is 

eliminated by the addition of trapping agents. Trapping may be achieved by hydrogen 

donors, heteroatom donors, electron donors or intramolecular bond cleavage.36 The rate 

of trapping must be faster than polymerisation, but slower than that for trapping the 

original radical or no addition reaction will take place. Other factors need to be 

considered for the chain reaction to be successful. To be useful in synthesis the chain 

reaction must be able to generate the radicals site selectively and the radicals must have 

a sufficient lifetime to be able to react. However, radicals with too long a lifetime may 

engage in destructive chain termination steps. The following sections will review the 

methods which are most commonly employed to conduct radical reactions, with a major 

emphasis being placed on copper based cyclisations and other metal promoted methods 

that are relevant to this thesis. 

1.4.1 Metal Hydride Methods 

The reduction of organic functional groups by organotin hydrides has continued to 

increase in importance since its discovery in the 1960's.37 Since its conception it has 

become the most commonly used method for facilitating radical chain reactions.38 

Tributyltin hydride and tris(trimethylsilyl) silane are the most popular among an 

increasing collection of reagents for conducting metal hydride radical reactions. The 

chain for BU3SnH38 mediated reactions is shown in scheme 11 and an analogous chain 

can be written for (TMS)3SiH. 39 Abstraction of an atom or group X from a precursor by 

the BU3Sn· radical generates the initial radical A· which then undergoes a 

transformation (inter- or intra-molecularly) to provide a new radical B·. Hydrogen atom 
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transfer then forms the final product B-H and regenerates the tributyltin radical to 

continue the chain. 

A-X + BU3Sn- .... A- + BU3SnX 

A- .... B -

B - + BU3SnH .... B-H + BU3Sn-

Competing reaction 

A- + BU3SnH .. A-H + BU3Sn-

Scheme 11. Chain reaction using tributyltin hydride 

The standard problem in' both tin and silicon hydride reactions is the premature 

reduction of A· by the reagent itself. If the rate of conversion of A· to B· is slow, then 

it is common to use low concentrations of the hydride reagent to reduce the rate of the 

competing reaction (scheme 11). Syringe pump techniques are often used to maintain a 

steady, low concentration of this reagent. Other techniques used include polymer bound 

tin hydrides,40-42 and the generation of trialkyltin hydrides in situ by reaction of a 

catalytic amount of tin halide with a standard reducing agent (NaB~ or NaCNBH3).43-

45 The use of (TMS)3SiH instead of Bu3SnH is advantageous as (TMS)3SiH is a poorer 

hydrogen donor, therefore lower rates of hydrogen transfer are achieved often leading to 

less premature reduction of A •. 39 

. Many radical precursors can be used in both the (TMS)3SiH and the tin hydride method. 

Beckwith and Pigou devised a scale of reactivity of various substrates towards reduction 

by trialkyltin hydride.46 They found that the order of reactivity towar~s SH2 attack by 

the tributyltin radical is I>Br>PhSe>secondary and tertiary xanthate esters>tertiary 
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nitro>CI>p-CNCJi.S>PhS>p-MeCJi.S>MeS. For the least reactive alkyl chlorides 

and alkyl phenyl sulfides the rate of abstraction may not be sufficient to propagate a 

chain even with a rapid intermediate cyclisation. The degree of stabilisation of the initial 

radical is also an important factor. hence XCH2C02Et > RCH20CH2X > RC02CH2X > 

RCH2X.46 

Mercuric hydrides are another example of metal hydride based radical generation. 12b 

These reactions have several advantages over their tin counterparts as they are easy to 

conduct at ambient temperatures, are rapid. clean and easy to purify. However their 

reduction is fast due to the superior hydrogen transfer from mercuric reagents. This 

methodology is typically used for the rapid addition of nucleophilic radicals to electron 

poor alkenes as summarised in scheme 12.47-48 

A-HgX + NaBH4 ... A-HgH 

A. + ~E ... A • ~E 

A~E + A-HgH ----1 ... ~ A~E + A· + Hg(O) 

Scheme 12. Chain reaction for mercuric chloride 

1.4.2 The Thiohydroxamate MethodlBarton Method 

Barton developed a new methodology towards the generation of radicals via a radical 

chain reaction based on the chemistry of thiohydroxamic acid esters.49 The Barton 

method has· one distinct advantage over hydrogen atom donor reagents is that the radical 

chain is terminated bi reduction. Trapping with a heteroatom aiso enables the 
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introduction of further functionality. This method involves the homolysis of 

thiohydroxamate esters either photochemically or thermally, to form nucleophilic 

radicals. (Scheme 13) 

o QI _h_e_at_o_r_li_gh_t-ll"'~ 
R)lo .... N 

-C02 

-:::?,y 
R • ~y 

S 

Scheme 13. Overview of the Barton method 

To maximise the formation of the addition product an excess of alkene is normally 

required. Good yields are normally obtained for activated alkenes, alkynes and doubly 

activated internal alkenes. 

1.4.3 The Fragmentation Method 

One of the major disadvantages with the R3SnH method when generating radicals is that 

the chain transfer reagent R3Sn· is generated by H-abstraction. This problem can be 

overcome by generating the chain transfer agent by fragmentation rather than by 

hydrogen atom abstraction. Instead of obtaining reduced products, substitution products 

are formed as an alkene is regenerated in the fragmentation step. This method involves 

the fragmentation of relatively weak bonds such as C-Br, C-Sn or C-SR when they are 

located J3-to a radical (Scheme 14). Allyl stannanes have become the most popular 

reagents for this method. The accepted chain mechanism for allylation with 

allyltributylstannane is shown in scheme 14. Abstraction of X (normally a halogen) by 

- the tributyltin radical is followed by the addition of the generated radical A· to 

allyltributylstannane. Rapid J3-fragmentation then provides the allylated product and the 

regenerated tributyl tin radical. 12b Vinylations can also be accomplished by this 

approach. 50 
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A-X + A- + 

A- + 

+ 

Scheme 14. Chain reaction for allyltributylstanne mediated allylation 

This approach has many of the advantages of the tin hydride method without the 

associated liability of premature trapping of A· by the metal hydride. Since the addition 

of most radicals to allyltributylstannane is not a particularly fast reaction, it is often 

possible to conduct one or more reactions in between radical generation and allylation.51 

The power of the method lies in the fact that the ~-fragmenta~ion process is rapid and 

unimolecular. Reactions with allylstannanes are easy to conduct,52 and a number of 

related reagents have also been used. 53-54 

1.4.4 The Atom-Transfer Method 

The addition of a reagent X-Y across a carbon-carbon double or triple bond is one of the 

most fundamental reactions of organic free radicals. 55-56 The basic transformation, 

sometimes called a Kharasch addition,57 is outlined below in scheme 15. 

V-X + ~R 

x = H or Halogen 
Y = C or Hetroatom 

Initiator 

Scheme 15. Dlustrative example of a Kbarasch addition 
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A wide variety of heteroatom and carbon groups Y can be added. When Y is a 

heteroatom, a wide variety of atoms or groups X may be incorporated, due to the weak 

nature of most interhetroatom bonds. 58 When Y is a carbon, X is usually restricted to a 

univalent ion atom (H, CI, Br, I). 

A generalised mechanism for this class of reaction is shown in scheme 16. The atom or 

group X in A-X acts as both the radical precursor and the radical trap.12b 

Step 1 A-X + In- ... In-X + A-

2 A- + ~R ... A -~R 
X 

3 A~ + A-X ... A0
R + A-R 

Scheme 16. Atom transfer reaction mechanism 

The limiting factor is the rate of atom transfer in step 3. If this is too slow then 

polymerisation can occur. Generally, the more exothermic the atom transfer step the less 

chance of any telomerisation. This is usually achieved by using reactive iodides as 

radical precursors. 12b Julia has studied hydrogen atom transfer cyclisations, but while 

hydrogen atom transfer reactions are well known they have limited synthetic 

usefuln.ess.18 Halogen atom transfer reactions however have much more scope for 

synthetic development and this will be discussed in more detail in the . following 

sections. 
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1.5 Transition Metal Promoted Radical Cyclisations 

1.5.1 Introduction 

As previously discussed, carbon-centred radicals can be produced by cleaving a C-

halogen, C-S or C-OR bond with tributyltin radical generated in situ from tributyltin 

hydride or hexabutylditin. However, among the disadvantages of organotin hydrides 

are: (a) their toxicity, (b) their cost, (c) the reductive nature of their reactions, and (d) 

final product purification problems born from the difficulties involved in removing 

stannanes from the product mixture. These are the primary factors that dissuade 

pharmaceutical companies from employing them. 

The last decade has seen the emergence of transition metal-promoted radical reactions 

as a useful alternative to the stannane-based radical chemistry largely due to the 

pioneering efforts of Kharash,57 Kochi,59 and Minisci,60 who sh~wed that carbon-centred 

radicals may be generated using organometallic reagents. The advantage of transition 

metal-promoted radical reactions over those employing metal hydrides is that reactions 

are usually terminated with the introduction of functionality in the product. Transition 

metal-promoted radical reactions have found widespread use in organic synthesis, and 

one of the most well-known examples of this application is the conjugate addition 

reaction of organocopper reagents to enones.61 The exciting development in this area is 

beginning to show its potential, as evidenced from the application of this methodology 

in strategy-level bond formation during the synthesis of complex molecules. The 

advantage associated with transition metal promoted reactions have led' to hectic 

_ research activity, and as a result, titanium, manganese, iron, cobalt, copper, and 

ruthenium-mediated free-radical reactions have emerged as important synthetic methods 

. 62 
for new carbon-carbon bond formation. 

Transition metal promoted reaction of carbon-centred radicals may be divided into the 
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following two categories: reactions of radicals generated by an oxidative process and 

reactions of radicals generated by a reductive process. 

(a) Oxidative Process 

The metal acts as an oxidant in this process, which involves the generation of radicals 

by an electron transfer from radical precursor to the metal complex. The reactions . 

proceeds via an organometallic reagent, which may lead to a carbon-centred radical on 

homolytic cleavage of carbon metal bond (Scheme 17) . 

•• 
LM" + >=<H ) 

LM" + 
/ -c··Z 
\ 

/ -c. 
\ 

+ 

Example: 
.+ 

x = Hetroatom 
Z = Main group metal 
L = Ligand 
M = Transition Metal 

~OSiMe3 _.......:'_-tl ... ~'--../OSiMe3 __ -II....... ~O + SiMe3 + 

~OMe ') /~""""'OMe ~OMe 

Ti3+ 

Scheme 17. Dlustrative example of an oxidative process 

(b) Reductive Process 

The metal acts as a reductant in this process with the carbon centred radical being 

generated by an atom transfer or electron transfer from metal complex to the radical 

- precursor. The reaction may proceed via an organometallic reagent that eventually leads 

to a free radical homolytic cleavage of the metal-carbon bond (Scheme 18). 
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/ 
----il ... ~ -C e + LMn+1X 

\ 

I e-

') ... -C-X 
I 

LMn+1 

.. 

x = Leaving Group 
L = Ligand 
M = Transition Metal 

-/ 
-Ce + X-

\ 

CI CI CI CI 

(S:Et ... ~Et ~~Et FeCI2[P(OEthh + ) ... 
FeCI3[P(OEthh 

Scheme 18. Illustrative example of a reductive process 

1.5.2 Copper Mediated Radical Cyclisation Reactions 

Copper catalysed intermolecular addition of polyhalocarbon derived molecules to 

alkenes has been known for some time, (Scheme 19).63 The intramolecular version of 

this reaction, atom transfer radical cyclisation (ATRC) can provide a convenient method 

for the construction of various ring systems. 

CuCl, EtOH 
+ 

reflux, 32% 

Scheme 19. Intermolecular copper catalysed reaction 

- In particular A TRC reactions of 2,2,2-trichlorinated carbonyl compounds have been 

reported with a range of metal catalysts, e.g. RuCh(PPh3)3, and FeCh(P(OEt)3k62 

However, by far the most successful catalysts have been those derived from copper(l)-

based halogen compounds.62 These reductive atom transfer cyclisations involve redox 
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reactions between copper(I) and copper(II) complexes. Nagashima has shown that the 

reaction of an activated trichloroacetate (18) with CuCI in MeCN at 140°C in a pressure 

bottle for 1 hour generates the initial radical (19) and CuCh (Scheme 20).64 After 

cyclisation the newly formed (more reactive) primary radical (20) reacts with CuCh to 

regenerate the CuCI catalyst and furnish the cyclised product (21). 

Clt
CI C~I __ 3_0m~O:::;oIO_YO-=:C~U_C_1 ~CIj:CI f ., MeCN 140°C .-? , ... 

o (1~) T \ 0 (~) 

o o 
(21) 

CuCI 

o 0 
(20) 

Scheme 20. Oxidative copper(1) mediated atom transfer radical cyclisation 

The use of copper complexes in mediating radical cyclisations thus has a number of 

advantages over alternative reductive methods including; (a) the low cost of copper 

halides, (b) the ease of work-up of the reactions, and (c) the catalytic nature of the 

processes. 

The use of ATRC mediated by catalytic amounts of CuCI has been utilised to prepare 

not only y-Iactones but also y_Iactams.65-66 Nagahisma has shown that heating both the 

trichloracetamide derivatives (22a-b) with CuCI in MeCN at 140°C furnished the 

desired 5-exo atom transfer products (23a-b) in 57% and 87% yield respectively, 

(Scheme 21).65 No products arising from 6-endo cyclisation were detected. Using this 
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protocol it was possible to cyclise both secondary (22a) and tertiary (22b) amides, 

although the cyclisation of the tertiary amide (22b) was the more efficient of the two. 

CI 30mol% CuCI CI 
CI:tC~1 ______ -I-~CI1)CI MeCN, 140°C _ 

o N 1-20 hrs 0 N 
I I 
R R 

(22a) R = H (23a) R = H, 57% 
(22b) R = allyl (23b) R = allyl, 87% 

Scheme 21. 

Using this approach, Nagashima was also able to produce bicyclic lactams providing 

access to pyrrolidine alkaloid skeletons (Scheme 22). Cyclisation of (24) at 110 °C 

furnished one diastereoisomer (25) containing the cis fused ring junction in 91 % yield.66 

CI*CI 

O-AN"o 
I 
Bn 

(24) 

CI CI 

__ 3_0_m_o_I~_O_C_U_C_I--II_ ..... CltxS MeCN, 110°C __ 

1 hr, 91% 0 N 

Scheme 22. 

I 
Bn 

(25) 

Nagashima also showed by screening other copper salts that a .range of compounds were 

effective in mediating the cyclisation of trichloroacetate (18) at elevated temperatures 

includi~g CU20, Cu(N03hH20, and Cu(CCPh).67 The concentration of the, reactions 

was also found to be crucial with relative high concentrations leading to telomerisation 

of the substrate. While a range of solvents were investigated only acetonitrile and 

alcohols were found to be effective in mediating the cyclisation to lactone (21).67 

However, the addition of an equimolar amount of 2,2'-bipyridine (bipy) to CuCI was 

found to accelerate the rate of the reaction fourfold (Scheme 23).67 
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C1:tCI C~~ __ 5 _m_OI-:-%_C_U-:-C:-:,"_bi_PY-.. CI :t)CI :;-'" MeCN,140oC... CI 

o 0 1h~83% 0 0 
(18) (21) 

Scheme 23. Ligand accelerated ATRC . 

In general, the addition of either amine or pyridine ligands to atom transfer reactions has 

been found to cause rapid rate accelerations for a variety of cyclisation and 

intermolecular addition reactions. 

(26a) R = Bn 
(26b) R = Ts 
(26c) R = Boc 

Scheme 24. 

(27a) R = Bn 
(27b) R = Ts 
(27c) ~ = Boc 

Ligands may act in two· ways to accelerate atom transfer processes by either, a) 

increasing the solubility the CuCI, or b) by altering the redox potential of the catalyst 

system, (or both). Screening the precursors (26a-c) with various ligand systems 

indicated that the use of 30 mol% of a 1: 1 mixture of CuCI:bipy in CH2Ch catalysed the 

cyclisation more rapidly than CuCI in MeCN.68 Other solvents such· as 1,2-

dichloroethane and TIIF were also compatible with the use of CuCI:bipy as a mediator. 

Thus, with this more activated catalyst system it was possible to cyclise a variety of 

substrates at room temperature or below. The nature of the N-protecting group was 

- found to affect the rate of the cyclisation, for example, electron-withdrawing groups, 

such as R = Ts (26b), or R = Boc (26c), facilitated the cyclisation by increasing the rate 

of homolysis of the carbon-chlorine bond as well as by decreasing the barrier to amide 

rotation. 68 
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In general the cyclisation of a-N-allyl-carbamoyl radicals, derived from (26), is a 

difficult process requiring high temperatures, primarily due to the high barrier to 

rotation that characterises the amide bond. Only one conformer can cyclise (anti) and 

the nature of the N-protecting group alters the conformer population, thus bulky or 

electron withdrawing substituents (26b-c) favour cyclisation by shifting the equilibrium 

towards the anti conformer (scheme 25).69 

CI ,clfci CI:tC~ - o N,R o N 
I V R 

anti syn 

t 
CI 61 

~ 
Clf) , OJ:N,R ... 
o N 

I V R 

cyclisation no cyclisation 

Scheme 25. Conformer equilibria 

This phenomenon has been used to good effect in the formal total synthesis of both 

mesembrane (28) and crinane (29).69 Cyclisation of substrates (30a-b) with 30 mol% 

CuCI:~ipy furnished the products (3Ia-b) in 78% and 78% yield respectively (Scheme 

26). Manipulation of these intermediates to the dl-natural products, mesembrane (28) 

and crinane (29), was then accomplished using standard chemistry.69 Attempts to 

mediate the cyclisation of substrates (30) which contained the desired N-Me group only 

produced low yields (20%) of the desired products due to unfavourable conformer 

1 . . ) 69 popu atlOns (e.g. Scheme 25 . 
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N 
\ 

Me 
(28) dl-mesembrane (29) dl-crinane 

R 
CCI3 ¥'l 

CI 
30 mol% CI CI R:-
CuCI:bipy '+---h 

O~NA/ 
I 
C02Me 

---R-T-, 1-hr---II ........ O~N~ 
I 

(30a) R = 3,4-dimethoxyphenyl 
(30b) R = 3,4-methylenedioxyphenyl 

Scheme 26. 

C02Me 

(31a) 78% 
(31b) 78% 

The highly activated nature of the CuCI:bipy catalyst system (lllows the cyc1isation of 

mono-halo substrates at elevated temperatures (80·C). Hence, Speckamp has applied 

this protocol to the synthesis of cyclic amino acids.7o Best results were obtained when 

the reactions were performed at 80 ·C for 18 hours, (Scheme 27). 

30 mol% 
CuCI:bipy 

1,2-DCE 
reflux 
75% 

Scheme 27. A novel route to cyclic (1- amino-acids 

A variety of solvents were found to be compatible with the cyc1isation of the glycine 

- derived radicals, however the use of good hydrogen atom donors like THF, 

dimethoxyethane and acetone led to substantial amounts of reduced cyclisation 

products. The regioselectivity and stereo selectivity of the cyc1isations were found to 

parallel those obtained from BU3SnH mediated cyclisations. In analogous chemistry the 
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cyclisation of radicals derived from 2-(3-alken-l-oxy)-2-chloroacetates was possible, 

(Scheme 28)?1 

6,6-bipy CI J 
!III( I 

2,2-bipy J ... 

! ~oodo 
CI 

~co,Me 
(34) 

CuCI Me02C~O 
(32) 

Scheme 28. Reaction regioselectivity 

(33) 

Interestingly the regiosel~ctivity of the reactions was dependant upon the copper 

complex used. Hence, cyclisation of (32) with CuCI:2,2-bipyridine proceeded as 

expected to give the 5-exo product (33) while the use of 6,6' -bipyridines led exclusively 

to the 6-endo product (34).71 This was rationalised due to the different ligands 

promoting either a radical or cationic cyclisation pathway respectively. The use of 

CuCI:bipy in the cyclisation ofa range of2-(3-alkene-l-oxy)-2-chloroacetates furnished 

3-(I-chloroalkyl)-substituted tetrahydrofurans in good yields. Hence, cyclisation of (35) 

furnished (36) in 95% yield as an 82: 18 mixtures of alP isomers respectively (Scheme 

29). The chlorine substituent incorporated in the products could be used to good effect 

in further chemistry (e.g. lactonisation reactions). The utilisation of -this atom 

transfer/lactonisation protocol allowed for the efficient total synthesis of the natural 

products avenaciolide and isovenaciolide.71 
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30 mol% 
CuCI:bipy 

1,2-DCE 
reflux 
95% 

Scheme 29. 

1.5.3 Second Generation Copper Catalysts 

):Go 
CI C02Me 
(36) a./P = 82: 18 

The discovery that different ligands can alter the reactivity, yield and selectivity of atom 

transfer reactions has prompted various groups (including our own) to investigate the 

use of alternative ligand systems in cyclisation reactions. The ability to modify both the 

solubility and redox potential of the catalysts by varying the ligand has enabled a range 

of highly activated catalyst systems to be prepared. In addition. the choice of ligand used 

can often modify the product distribution significantly (see Table 2). By far the most 

useful of the new generation of atom transfer catalysts are those based upon a) N-alkyl-

2-pyridylmethanimines (NPMI) (37),72-77 b) N,N,N',N'-tetramethylethylenediamine 

(TMEDA) (38),78-81 and c) N,N,N',N',N",N"-hexamethyltriethylenetetramine (Me6-

tren) (39).72,76,77,82 Each of these ligand systems will now be covered in more detail as 

their utilisation forms an integral part of this thesis. 

.~ J \-R r\ 
Me2N NMe2 

(37) NMPI (38) TMEDA 

?Me2 

Me2N~N~NMe2 
(39) Mes-tren 

Figure 8. Second generation copper ligands 
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1.5.3.1 N-Alkyl-2-pyridylmethanimines (NPMI's) 

In systems where copper halides are used in conjunction with bipy, the bipy is thought 

to primarily serve to solubilise the copper halide as [Cu(I)(bipY)2]X. In addition, the 

low-lying LUMO x· orbital, present in the conjugated x-system of bipy, is able to 

accept electron density from the metal and hence serve to stabilise the Cu(I) oxidation 

state. Clark and co-workers reported that the structurally similar NP:MI ligands 

solubilise Cu(I) halides and also have low lying 1t* orbitals.7~ However, the relative ease 

of preparation of these ligands (easily prepared by reaction of commercially available 

amines with pyridine carboxaldehydes in the presence of MgS04) has allowed a whole 

range of catalysts with different solublities, steric and electronic properties to be 

prepared.74 Structure activity relationships have indicated that the nature of the imine 

substituent is crucial in controlling the rate and selectivity of the cyclisation reaction. 

Hence, cyclisation of precursor (40) with the range of ligands shown indicate that bulky 

substituents retarded the rate of cyclisation significantly, (table 2).74 In addition the 

diastereoselectivity of the process was also affected by the nature of the N-alkyl group. 

The optimum ratio of ligand to copper halide was found to be 2:1.73
-
74 

CI 30mol% CuCI 
CI"I', "-"""" c:cr Meic~ 30mol% (37a-d) . .' CI Me . CI 

.... Me:r=J 
0.12 M CH2CI2 o N ON. o N 

I RT, 48 hrs I I 
Ts Ts Ts 

(40) 

Ligand R-group Relative rate diast. ratio 

(37a) n-Bu 45 18:82 
(37b) i-Bu 28 28:72 
(37c) s-Bu 3 32:68 
(37d) t-Bu 1 51:49 

Relative rate with respect to the reaction of ligand (37a) 

Table 2. Effect of N-alkyl group on cyclisation 
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Clark also showed that solubility of the complexes could be altered by tailoring the 

length of the N-alkyl substituent, e.g. (37e) R = n-Pr -the catalyst was soluble in water at 

room temperature and insoluble in toluene at room temperature but soluble in toluene at 

110 °C. The active nature of the catalyst (37f). R = n-pentyl allowed for the cyclisation 

74 . 
of mono-halosubstrates such as (41) at room temperature (Table 3). Screening of a 

range of electronically modified ligands (42a-d) in the cyclisation of (41) indicated that 

the order of reactivity was 42b>42a>42c>42d. This suggests that inductive effects onto 

the pyridine nitrogen are the dominant features for this class of ligands in cyclisation 

reactions.75 The ligand (42b) which contained a mildly inductive electron donating 

group (which causes an increase in the energy of the ligand LUMO and thus a decrease 

in the relative stability of the Cu(I) oxidation state) showed a rate enhancement, whereas 

those with electron withdrawing inductive groups caused a decrease in the rate of 

reaction. Thus the rates of A TRC reactions may well parallel the basicity of the ligands 

themselves.75 This fits in with the observation that the more basic SP3 hybridised ligands 

TMEDA, and Me6-tren are more active catalysts in A TRC reactions.72, 78 

MefBY 30mol% CuBr Me 
30mol% (42a-d) MeDBr ... 

a N 0.12 M CH2CI2 a N 
I RT, 2 hrs I 
Ts Ts 

(41) (43) 

Ratio 41:43 Ligand R-group 

R-Q, (42a) H 41:69 
(42b) Me 34:66 N N-CsH10 
(42c) OMe 73:27 

(42a-d) NMPI (42d) N02 >98:2 

Table 3. Effect ofthe pyridyl group on the cyclisation of precursor (41) 
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1.5.3.2 N,N,N',N'-Tetramethylethylenediamine (TMEDA) 

One of the major disadvantages of the CuCI:bipy reagent system is that substantial 

amounts of catalyst (normally 30 mol%) of this relatively expensive reagent are 

required for efficient catalysis. The use of the more reactive CuCI:TMEDA reagent 

combination furnishes a catalyst system that gives better yields at lower catalyst loading 

in simple A TRC reactions. In addition, cyclisations can often be carried at out at lower 

temperatures than when compared to CuCl:bipy. An added advantage is the relative 

inexpense and commercial availability of the TMEDA additive. As in the case of the 

bidentate NMPI ligands, the optimum ratio of the bidentate TMEDA ligand to CuCI 

was found to be 2:1.78 Thus CuCI:(TMEDA)2 complex can mediate efficient 5-exo 

cyclisations of a range of trichloro- and dichloro-acetamide derivatives. Ghelfi and co-

workers reported that the, cyclisation of (44) with 10 mol% CuCI:(TMEDA)2 in 

acetonitrile for 20 hours at 60 °C furnished the product (45) as one diastereomer in 88% 

yield, (Scheme 30)?8 Interestingly, attempts to cyclise this substrate with CuCl:bipy 

failed, indicating the importance in utilising the correct choice of ligand for a given 

cyclisation. 

CI 10mol% CuCI 

PhJ:Cf' __ 1 0_m_O_IO_Yo_(3_8_) ---oJ ....... 

o ~ MeCN, 60°C, 
Sn 20 hrs, 88% 

(44) 

Scheme 30. 

Ph 

c:lJ""'CI. 
O. N 

I 
Sn 

(45) 

_ Both Parsons and Ghelfi have shown the influence of the N-benzylic protection in the 

CuCI:(TMEDA)2 catalysed 5-exo cyclisation of a range of chiral substrates.79-SO The 

steric nature of the N-substituent was not found to influence the stereoselectivity of the 

cyclisations to any sigllificant extent. 79 The synthetic utility of CuCl:(TMEDA)2 
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promoted cyclisation has been explored by application to the formal total synthesis of 

pilolactam (48/9 and in the synthesis of3-benzylimino-2-pyrrolidinones.81 

CI Ph 10mol% CuCI Elfej __ 10_m_O_I%_o_{3_8_) ---tI"'~ 
o ~ MeCN, SOoC, 

Bn 20 hrs 
(4S) 

o N 
I 
Bn 

CI 

Ph 

(47) 85:15 trans:cis 

Scheme 31. Application of ATRC in the total synthesis ofpilolactam 

. 
1.5.3.3 N,N,N',N',N",N"-Hexamethyltriethylenetetramine (Ml%-tren) 

The origin of the reported improvement in the activity of CuCl(TMEDA)2 relative to 

CuCI(bipy) has been speculated to arise due to the fact that simple copper(amine) 

complexes have lower redox potentials than copper(pyridine) complexes. Ghelfi and co-

workers reported that the optimum ratio for copper halide:TMEDA was 1:2 indicating 

that two equivalents of bidentate ligand are required to make the active catalyst. 78 As a 

consequence of this observation a range of other multidentate amine ligands have also 

been screened in A TRC reactions. Clark and co-workers reported that the most active 

polydentate amine ligand to date was found to be the tetradentate Me6-tren ligand 

(39).72.82 The use of a 1:1 ratio of copper halide:(39) in various solvents was found to 

produce a catalyst far more active than either bipyridine, NMPI or TMEDA. Thus 

cyclisation of precursor (49) proceeded only slowly at room temperature with NMPI 

(42a) (72hrs, 15% conversion) but rapidly (less than 2 hours, yield 90%) with Me6-tren 
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(39). The more activated nature of the catalyst allowed cyclisation to take place with 

lower catalyst loadings, thus cyclisation of precursor (40) was accomplished with only 5 

mol% catalyst at room temperature in 24 hours (Scheme 32).72.82 While it was possible 

to use even lower catalysts loadings at room temperature (e.g. 0.5 mol%) the reaction 

only proceeded to give a 33% conversion in the same 24 hour period. 

H1
C' C~~/ __ 3_0_m_O_10A_o _cu_C_I--II .... ~ 30mol% (39) .... 

o N 0.12MCH2C12 
+s RT, 2 hrs, 90% 

(49) 

Scheme 32. 

Cyclisation of a range of monohalosubstrates (50a-b) was possible at room temperature. 

Cyclisation of the primary. bromide (50c) was possible albeit at elevated temperature. 

The product was obtained in low yield due to competing amide cleavage (Scheme 33).72 

Hi
R 
srI __ 30_m_O_IO_Yo_C_u_s_r--J ..... ~ 30mol% (39) ..... 

o ~ 0.12M CH2CI2 
Ts RT, 2 hrs 

(50) 

(50a) R = Me 
(SOb) R =i-Pr 
(SOc) R = H 

Scheme 33. 

R 

~t)'Br 
o N 

I 
Ts 

yield 92% (de 76%) 
yield 95% (de 88%) 
yield 18% 

Using'ihis protocol it was not necessary to use vigorously dried glassware or solvents. 

In addition work-up of the reactions was facile, as the crude reaction mixture was 

- passed through a small silica plug and the solvent removed to furnish the atom transfer 

products directly. Attempts to mediate 8-endo macrocyclisations of N-tosylamide (51) 

using this ligand system ~ai1ed, with the main products being the rearranged compound 

(52) as well as unreacted starting material (53).72 The rearranged product (52) was 
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postulated to arise via a competing 5-exo ipso aromatic radical substitution to give (53) 

followed by re-aromatisation followed by C-S bond cleavage to give (54), loss of S02 

and reduction of the resulting amide radical (Scheme 34). 

CI 30mol% CuCI CI CltC!,: 30mol% (39) C~ 
o N )3 

.... 
N )3 O.12m CH2CI2 I H T8 

(51) (52)\ 

! -802 H· 

0 
0 0 N ... R 

CI~ R N ... R 5-exo I 
N'" 802 • I ipso I • 

~S02 802 ... 
1.0 (53) 

Scheme 34. Postulated rearrangement mechanism under ATRC conditions 

Clark and co-workers have recently published the use of the CuBr:(39) system in the 5-

exo ATRC of I-halo-N-propargylacetamides.76 Cyclisation of the mono-bromo 

precursor (55) gave both the expected atom transfer product (56) plus the reduced 

product (57) arising from the abstraction of a hydrogen atom-by the intermediate vinyl 

radica1..(Scheme 35). The ratio of these compounds was dependent on both the solvent 

and ligand employed. 

The copper catalysts born from the ligands discussed above have also been exploited in 

the area of atom transfer radical polymerisation ATRP83 and the solid phase polymer 

. 84 
chemistry of methyl methacrylate. 
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MelMeBr)~/ __ 30_m_O_IO_Yo_C_U_C_1 -II" Mer,) :;.r 30mol% (39) Me -?' Br ... 
o N 0.12 M C6H6 0 N 

I I 
Ts RT, 48 hrs Ts 

(55) (56) 

M~ 
Me,~~.) 
a N 

I 
Ts 

(57) 

Yield 94%, (56):(57) = 81:1, (56) E:Z = 1:4 

Scheme 35. 

1.5.4 Contemporary transition metal mediated radical cyclisation reactions 

The use of ruthenium complexes to mediate the formation of carbon-carbon bonds in 

free-radical reactions is well knoW.62 Matsumoto and co-workers have reported that 

RuCh(PPh3)3 catalysed the addition of a-chloroesters to alkenes.85 Itoh then developed 

this complex in the preparation of y-Iactams as an alternative to the conventional 

method of cyclisation via acyl-nitrogen bond formation. Itoh showed that secondary 

amides (58) underwent 5-exo cyclisation in modest yields (Scheme 36).65 

c~f:t 
H 1 

CI 

RuCI2(PPh3h. CI~CI 
o N R1 

H 

(58) (59) 

where R1 and R2 = H, Me 

Scheme 36. 

RuCh~PPh3)3 was used to cyclise N-allyl-trichloroacetamides with cyclohexenyl or 

cyclopentenyl (60) groups that were appropriately substituted to form the corresponding 

cis fused trichlorinated y-Iactams (Scheme 37).66 Furthermore, reductive dechlorination 

by BU3SnH followed by reduction with LiAl~ gave pyrrolidine alkaloid mesembrine 

(62) in a yield of over 70% in both steps.66 
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MeO OMe OMe 

MeO 

RuC~(PPh3h a) BU3SnH (72%). 
.. 0 .. 

b) LiAIH..i (76%). 

Scheme 37. 

Bergbreiter developed an excellent bi-phasic polymer-bound ruthenium (II) catalyst and 

showed its application to intramolecular addition of trichloroalkenes.86 Comparison 

with the unsupported catalyst proved favourable. 

Iron (II) complexes act as good catalysts in promoting the Kharasch reaction with 

various halocarbons and alkenes.87
-
90 Iron (ll) complexes generate radicals via reductive 

processes which are terminated by halogen atom transfer. Weinreb has utilized iron (II) 

in the form of FeCh[P(PPh3)3] in the intramolecular addition of unsaturated a,a-

dichloroesters (63) (Scheme 38).91 

()<:CI 
~02Et 

H CI 

(64) 

~ - CJ:::..o,et 
H CI 

(65) 

• - ~~Et 
H CI 

(66) 

Scheme 38. Iron mediated intramolecular addition of a,a-dichloroesters 

The ratio of diastereoisomers (64/66) was found to be dependent upon catalyst 

- concentration and the reaction time. These variances were attributed to isomerisation via 

reversible a-chlorine abstraction and recombination via the planar radical (65). The 

scope of this methodology was extended to encompass less activated a-chloroesters 

with a high degree of success.92 Fe-FeCh has been shown to promote the cyclisation of 
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N-allyl-N-benzyl-2,2-dichloroacetamides although in poor yields.78 Very recently 

Verlhac has reported the utilisation Fe (II) tris-pyridine-2-ylmethyl-amine in the 

synthesis of various lactones.93 

Ban and co-workers have reported the A TRC of N-allyl iodoacetamides using the 

palladium complex Pd(PPh3)4 as the transition metal catalyst, albeit in low yields.94 

The most widely employed reagent for conducting oxidative free-radical cyclisations is 

manganese(ill) acetate, which can be prepared quite easily from potassium 

permanganate and manganese(II) acetate in acetic acid.95 The groups of Heiba and 

Dessau96 and also Bush and Finkbeiner97 have reported the oxidative addition of acetic 

acid to alkenes using the one-electron oxidant manganese(ill) acetate. This provided the 

basis for a general approach to oxidative free-radical cyclisation that has considerable 

synthetic potential. In addition to the ease of product purification the approach allows 

highly functionalised products to be prepared from simple precursors. The oxidative 

cyclisation of unsaturated J3-keto esters was subsequently reported by Corey and 

Snider. 98-99 

The mechanism of oxidation of monocarbonyl substrates with manganese(ill) acetate 

has been extensively studied. Fristad and Peterson showed that the rate of radical 

generation with manganese(III) acetate, which is actually an oxo-centred triangle of 

Mn(III) with bridging acetates, correlates with the enolisability and C-H acidity of the 

precursors (67) (Scheme 39).100-102 The broad variety of suitable radical precursors 

include carboxylic acids, ketones, malonates, J3-keto esters, 1,3-diketones and J3-nitro 

esters. 103 In the initial step ofthe reaction, the manganese(ill) enolate (68) is believed to 

be formed and this undergoes fast electron transfer to afford radical (69). Due to the 

electron-withdrawing substituents, such radicals exhibit electrophilic character and add 
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readily to electron-rich alkyl- and aryl-substituted alkenes. 

o 
X~Z 

(67) 

Mn(OAch .. 
-HOAc ~ 

... Mn(OACh 0 
e - transfer II 

~ z .... ~Z + 
X X • 

Mn(OAch 

(68) (69) 

R2 (70) 

X Z 

R1 R 
AcO 3 

R2 <r2) 

R1 
;=( 

R3 R2 

X = alkyl, aryl, OH, OR 
Z = H, COR, C02R, N02 

R1,2,3 = H, alkyl, aryl, C02R, OR 

Scheme 39. Radical generation using Mn(OAc)3 

The product distribution of manganese(III)-mediated C-C bond formations depends 

strongly upon the substitution pattern of the adduct radical (70) and the reaction 

conditions. Low concentrations of manganese(lII) acetate favour hydrogen atom 

abstraction from the solvent or starting material to afford the saturated product (71). In 

competing reactions, an excess of oxidant results in the formation of acetates (72) and 

alkene (73), which becomes the predominant process especially for tertiary radicals. 

Finally, lactones (74) are obtained as the major products by Mn(III)-mediated additions 

of carboxylic acids (X = OH) to double bonds. Whether the first steps proceed within 

the ligand sphere of the metal or if free-radicals are involved is still a matter of debate. 

Acetic acid is most corrimonly employed as the reaction medium for manganese(III) 
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acetate reactions. Alternative solvents include DMSO, ethanol, methanol and 

acetonitrile although higher reaction temperatures are required and lower yields of 

products are sometimes obtained. Manganese(III) acetate is involved in the termination 

step and rapidly oxidises tertiary radicals to cations that lose a proton to give an alkene 

or react with acetic acid to give acetates. However, manganese(III) acetate oxidises 

primary or secondary radicals slowly so that hydrogen atom abstraction from solvent or 

the starting material becomes the predominant process. 104 Heiba and Dessau found that 

copper(II) acetate oxidises secondary radicals 350 times faster than manganese(III) 

105 acetate does and that the two reagents can be used together. 

Manganese(III) mediated cyclisations are mainly based on the pioneering and extensive 

studies of Snider which were recently reviewed. 105 The potential of this methodology 

for the construction of fiv:e- and six-membered ring is exemplified by the sequence 

shown in Scheme 40.106 The reaction of J3-keto ester (75) with manganese(llI) acetate 

and copper(ll) acetate affords the cyclohexanone (76), regio- and stereoselectively in 

75% yield. Thus, the radical is generated at the more acidic position and 6-exo 

cyclisation is favoured over the 7-endo mode. 

Scheme 40. (a) 2 eq. Mn(OAC)3, 1 eq. CU(OAC)2, AcOH, 60°C, 75% 

Furthermore, Snider has reported the synthesis of avenaciolide (82) from the a-chloro 

- diester (77) (Scheme 41).107 The initial 5-exo cyclisation gives rise to the secondary 

radical (79) which can be oxidised by an equivalent of copper(II) acetate to produce an 

organocopper(llI) interm~diate (80). This can undergo an oxidative elimination to form 

the less substituted alkene (81). The stereochemistry at C-4 is controlled by the octyl 
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substituent at C-5 and steric interactions ensure that these groups are trans to each other. 

Further radical generation was prevented by the a-chloro substituent in (81). 

Elaboration to avenaciolide (82) involved displacement of the chlorine substituent to 

form the second lactone ring. 

o 0 

oVOMe(a) 

CaH17~CI .-

Me (77) 

o 0 

O~OMe A.-)C' 
CaH17 ~1 

Me (78) 

o 0 

_ O~OMe 
~ AI'CI~~.-__ o 

(82) 
CaH17 : 

"" (81) 

... 

o 0 

O~OMe 
AI"CI 

CaH17 : 

• ....... Me (79) 

Scheme 41. (a) 2 eq. Mn(OAC)3, 1 eq. CU(OAC)2, AcOH, 82% 

Manganese(Ill) acetate also represents a powerful and versatile reagent for mediating 

tandem radical cyclisations. Recent advances in this area have been made by Parsons 

and co-workers who have utilised manganese(llI) acetate in boiling methanol to prepare 

functionalised pyrolidinones via 5-endo radical cyclisations,108 this will be covered in 

more detail in the following chapters. Although not particularly expensive or difficult to 

handle on a laboratory scale, the use of more than one equivalent of Mn(OAC)3 reagent 

is usually required therefore its use on an industrial scale could be problematic. 

Cerium(IV) compounds represent the most notable oxidants among lanthanide 

reagents. 109 In particular, cerium(IV) ammonium nitrate (CAN) has been utilised 

extensively· for a variety of oxidative transformations. A number of studies have 

recently been conducted to compare the reactivity of manganese(Ill) acetate with CAN 
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and these indicate that the cerium(IV) reagent is superior to manganese(III) acetate in 

the oxidative addition of 1,3-dicarbonyl compounds to unactivated alkenes. llO
-
1l1 

Unfortunately, there has been little investigation into the employment of CAN in 

intramolecular reactions. One example, shown in Scheme 41, shows the formation of 

(84) in either 62% or 24% yield using CAN or manganese(ill) acetate, respectively 

(Scheme 42).112 

(a) or (b) ... 

Scheme 42. (a) 4 eq. CAN, MeOH, lOoC, 62%; (b) 4 eq. Mn(OAC)3, AcOH, 50°C, 24% 

D' Annibale and co-workers have reported that CAN in meth~ol promotes the 4-exo­

trig cyc1isation of enamides to give highly functionalised trans ~-lactams in moderate 

yields (Scheme 43).113 The radical (86) generated by CAN oxidation of enamide (85), 

cyclises in a 4-exo-trig mode affording radicals (87) (path a) and (88) (path b), with 

trans and cis stereochemistry respectively, these are further oxidised by another 

equivalent of CAN to final products (89) and (90). 

Ph Ph Ph 

Meo,C}-rRl CAN Meo,CJ-r R paths Me02Ct~Rl ... 1 ... 
N, MeOH N, "" N, 

,,0 (85) R2 o (86) R2 o (87) R2 

I~pathb CAN. f 
MeOH OJ{: Ph H H Ph Ph 

. R1 CAN Meoc:B: Meo,Ctr~~e ... 2 . - R1 

N, MeOH N, N, 
o (90) R2 o (88) R2 o (89) R2 

Scheme 43. Ceric(IV) ammonium nitrate (CAN) promoted radical cyclisation 
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Zard and co-workers have described a nickel powder and acetic acid promoted radical 

cyclisation of N-alkenyl trichloroacetamides.114-115 This reductive non-atom transfer 

approach has been applied to 4-exo-trig cyclisations leading to the formation of (3-

lactams and even in some cases disfavoured 5-endo ring closures, more of which will be . 

discussed in the following chapters. Recently, this methodology has been extended 

towards the asymmetric synthesis of (-)-y-Iycorane (96) using a key 5-endo radical 

cyclisation (Scheme 44).116 

CI CI CI 
NH2 ('rl \ t (ad (i), (il) ~N a 

a :1) Br f~ (92) o-UBr 

o 
\, 

(96) (95) 

QIQ ~ ,... anN 0 
< ~ I (93) 
o Br 

~) 

o (94) o 
(i) cyclohexanone, toluene, reflux; (ii) CI3CC(O)CI, Et3N, toluene, 73%, (iii) Ni, AcOH, 
AeONa, 2-propanol, reflux, 60%; (iv) BU3SnH, AIBN, toluene, reflux; (v) Na(CN)BH3, AcOH, 
65% from (93); LiAIH4' THF, reflux. 88% 

Scheme 44. 

The trichloroacetamide (92) was treated with 30 equivalents of nickel powder, acetic 

acid and sodium acetate in refluxing 2-propanol to afford the tetrahydroindol~ne (93) in 

60% yield. This was subsequently reacted with tributyltin hydride and (94) was 

furnished via a 6-endo radical cyclisation. Subsequent reductions using Na(CN)BH3 and 

then LiAI~ afforded (-)-y-Iycorane (96) to give an overall yield of 25% from starting 

material 6-bromopiperonylamine (91). 
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Chapter 2: 5-Endo Radical Cyclisations of Trichloroacetamides 

Mediated by Copper(I) Amine Complexes 

2.1 Introduction 

In the previous chapter we described the recent fervent interest in transition metal atom 

transfer processes.62 We also mentioned that one of the driving forces behind this 

development is the design of new efficient methods for conducting radical reactions, which 

replace the use of BU3SnH as a mediator.1l7 This reagent, which is relatively expensive, 

significantly toxic and often difficult to remove from crude product mixtures also leads to 

reductive cyclisations. To, circumvent some of these problems atom transfer radical 

cyclisation reactions (ATRC) of 2,2,2-trichlorinated carbonyl compounds have been 

reported for a range of metal catalysts.62 By far the most popular methods to mediate atom 

transfer cyclisations have been those utilising RuCh(PPh3)3 (see Section 1.5.4), CuCI(bipy) 

(Section 1.5.2) or CuCI(TMEDA)2 (Section 1.5.3.2). As illustrated in sections 1.5.2-4 in the 

previous chapter, the majority of published atom transfer radical cyclisation reactions have 

primarily involved the 5-exo-trig cyclisation of trichloro- or dichloro-acetamides and 

acetates at elevated temperatures. While there are a number of reported BU3SnH mediated 

5 -endo cyclisations in the literature I I 8 there are very few reports of cyclisations under atom 

transfer conditions proceeding in the 5-endo-trig mode. Zard has recently reported that by 

using Ni powder in refiuxing AcOH and iPrOH (typical atom transfer conditions) 

trichloroacetamides (97) can undergo an unexpected 5-endo-trig cyclisation followed by 

double elimination of HCI, (Scheme 45). This approach was used to synthesise the 
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Erythrina and Armary/lidaceae alkaloid skeletons with the later culminating in an 

extremely efficient synthesis of (-)-y-lycorane (96).116 However among the disadvantages 

of these approaches were the large quantity ofNi powder required, (up to 30 equivalents), 

and elevated reaction temperatures in AcOH I 2-propanol. Very recently, the use of 

CU(OAC)2 as a co-oxidant additive in this procedure has been shown to lead to different 

product outcomes with increased efficiency under milder conditions.119 

CI 

C':tC'0 
o N~ 

I 
Bn 

(97) 

(i) R~ 
·O~~ 

I 
Bn 

(98a) R = CI, 18% 
(98b) R = H, 18% 

<x:D I 
Bn 

(99a) R = CI, 18% 
(99b) R = H, 22% 

(i) 30 eq.' Ni powder, AcOH, 2-propanol, N2, ~eflux 

+C'XC' 0 
o N~ 

I 
Bn 

(100) 9% 

Scheme 45. Ni/AcOH promoted 5-endo radical cyclisations 

The use of Mn(OAC)3 has also been described to mediate oxidative 5-endo cyclisations, 

however the yields were often poor and required up to 4 equivalents of Mn(OAC)3 for 

reaction. 120 We have recently reported that copper catalysts (42a) and (39) will mediate a 

range of 5-exo-trig atom transfer processes of monohaloacetamides at room temperature 

often proceeding with greater selectivity than for related cataly~ts (see Section 1.5.3).72-77 

As a cgnsequence of this work, the main aim of this study was to investigate the efficiency 

of a range of copper complexes (used within our group) in mediating 5-endo~trig radical 

cyclisations. In particular, we hoped that this approach would allow rapid and efficient 

access to a range of alkaloid skeletons allowing for the synthesis of derivatives of a number 

of important biologically active natural products, such as those derived from the Erythrina 
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and Amary/lidaceae family.121 

2.2 Synthesis of Trichloroacetamide Precursors 

We initially decided to investigate the copper mediated 5-endo-trig cyclisation of the 

known trichloroacetamide (97)114 and its derivatives, in order to compare the efficiency of 

cyclisation with those reported for Zard's Ni mediatedl14-116 and Ikeda's BU3SnH mediated 

processes.11S Disconnection of compounds of type (101) reveal that they can be easily 

synthesised from commercially available cyclic ketones, primary amines and acyl halides 

(Scheme 45). 

R 

yCI3'1fl) ==~> o~) 
O~N~n R~n 

I 
R1 (101) 

Scheme 46. 

Using the method reported by Zard for (97),114 cyclohexanone was treated with 

benzyl amine under typical "Dean-Stark" conditions to produce an intermediate imine, 

which was subsequently N-acylated with trichloroacetyl chloride and triethylamine (TEA) 

at O°C to produce the required product (97) in 59 % yield (Scheme 47). Formation of the 

amide bond was indicated by the characteristic carbonyl bond absorption of the amide at 

1677 cm- l in the infra-red spectrum. The alkene proton was unexpectedly ob'served as a 

_ broad singlet at 0 5.57 ppm in the 1H nmr spectrum. Normally a triplet would be expected 

from the coupling with the adjacent ring protons, however due to peak broadening, a broad 

singlet was observed. This was also true for the benzylic protons for which a pair of AB 
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doublets would nonnally be expected. Instead. in their place two very broad peaks at 0 5.05 

ppm and 0 4.20 ppm were observed. which coupled strongly in the COSY spectra. These 

broadening effects are most likely due to hindered rotation around the amide bond caused 

by the bulky acyl and benzyl groups. We also found using this procedure that a large 

amount of competitive C-acylated product (103) was being fonned. which was not 

• 114 ) 118 preVIously reported by Zard or others (Scheme 47 . 

0 
CI CI:tCID (b) 

ND (a) Clm 
CI

CI 
I + .. ~ (97) yield 59% 

o N HN 
I I I 
Bn Bn Bn 

(97) yield 81 % (102) (103) yield 20% 

(a) (i) CCI3COCI, toluene, 1 hr, OoC; (ii) TEA, 2 hrs; (iii) .sat. NaHC03, 3 hrs 

(b) CCI3COCI, DEA, toluene, 2hrs, OoC 

Scheme 47. N-acylation versus C-acylation 

This side reaction significantly lowered the yields of product (97). We observed that 

changing TEA to the less basic N,N-diethylaniline (DEA) led to this competitive reaction 

being eliminated completely, which had a marked improvement on reaction time and 

yields. It should be noted that these reactions may be carried in out "one-pot" rather than in 

two steps, although in most cases a small amount of the imine intennediate was isolated 

and purified. This was carried out due to the lack of recent IH and 13C nmr data available 

for imines in the literature. The precursors synthesised for this study are presented in table 

4. the influence that ring size (n=0,1,3). alkene substituents (R) and protecting groups (RI) 

have on thecyclisation reaction was also examined. 
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Compound n R R1 MethodNield 

(104) 0 H Bn (a) 51% 
(97) 1 H Bn (a) 59%, (b) 81 % 

(105) 3 H Bn (a) 52%, (b) 87% 
(106) 1 H PMB (b) 79% 
(107) 1 Me PMB (b) 74% 

(a) (i) CCI3COCI, toluene, 1 hr, OOC; (ii) TEA, 2 hrs; (iii) sat. NaHC03, 3 hrs 
(b) CCI3COCI, DEA, toluene, 2hrs, aOc 

Table 4. Trichloroacetamide precursors 

2.3 Copper(l) Mediated Cyclisation of Trichloroacetamides 

As stated earlier, we have recently shown that copper(I) halide complexes of Me6-tren 

ligand (39) were more reactive than bipyridine as catalysts in 5-exo cyclisations.72
-
77 

Therefore, we initially examined the reaction of enamide (97) with this catalyst system. 

Before this reaction was carried out, and based on the results achieved for previous 5-exo-

trig ATRCs, it was proposed that the unstable bicyclic lactam (108) would be formed 

(Figure 9). It was then likely that elimination of hydrogen chloride would result in the 

fonnation of one or both of the regioisomers (109) or (110). Furthermore, both .compounds 

would contain a relatively weak C-CI bond and would therefore be susceptible to further 

radical generation. 
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Typically, we found that the optimum conditions for our 5-exo-trig ATRCs involved 0.12 

M of substrate in dichloromethane catalysed with a catalytic amount (0.3 equivalents) of 

CuCl:Me6-tren(39).72,82 When we attempted the cyclisation of precursor (97) using these 

conditions, a highly complex mixture of products was formed (seconds after initiation of 

the reaction via the addition of copper(I) chloride). We concluded from this that the 

reaction may be proceeding so rapidly that further production of radicals after initial 

cyclisation maybe be causing the production of complex polymers or telomers, although we 

could not obtain any evidence of this by GCMS or flash chromatography. Carrying out this 

reaction at lower temperatures (-78 to O°C) had absolutely no effect on the complex 

mixture that was formed. However, reaction with 30 mol% of the less activated catalyst 

CuCI:(42a) at room temperature resulted in the formation of diene (98a) in 10% yield 

together with some unreacted starting material (65%). Subsequent optimisation of this 

promising reaction resulted in the use of 1 equivalent of catalyst at 40°C for 48 hrs to yield 

(98a) and (111) in 70% and 7% yield respectively (Scheme 48). The structure of die~e 

(98a) was conftrmed by nmr and mass spectroscopy, the evidence of which matched those 

. 1 bl· h d· th I· tur 114 120b preVIous y pu IS e In e Itera e. ' 
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CI 

CI::r~ C'm CI)y9 ()~ . 
(i) .. 

o N ~ )n o ~ ~ o N N N-C5H11 
I I (42a) Bn Bn Bn CI 

(104) n = 0 (112) n = 0, 61% (111) 7% 
(97) n = 1 (98a) n = 1, 70% 
(105) n = 3 (113) n = 3, 65% 

Scheme 48. (i) 1 eq. CuCl:(42a). DCM, 40°C, 48 hrs 

Subsequent cyclisation of 5-membered (104) and 8-membered (105) ring enamides using 

the same conditions furnished dienes (112) and (113) respectively. although no analogous 

compound to (111) was formed (Scheme 48). The effect of ring size had no obvious effect 

on the reaction. 

CI CI 

):~tO 
I 
Bn (114) 

CI~ 

OAN~ 
I 
Bn (117) 

CI CI 

~ ... ~ 
oAN.J.V 

I 
Bn (115) 

CI 
CU(I)CI~ 

... ,A~,V o N 
I 
Bn (110) 

.. CI~ ~-H+ CI'r=:.=-f'l 

OA~~ ... o~~ 
I I 
Bn (118) Bn (98a) 

CI 
Cu(lI) C1:to 

... + 
ON:;;; 

I 
~ Bn (116) 

/ -H' ~ -H' 

CI CI - ~ 01:=0 
an (109) 

Scheme 49. Proposed mechanism for radical-polar cross over ~eaction 
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The construction of these dienes can be rationalised by initial S-endo cyclisation of 

carbamoylmethyl radical (114) mediated by CuCl:(42a) followed by oxidation of the 3° 

radical (115) to the acyl iminium ion (116) by CuCh:(42a) produced in the cyclisation step. 

This was observed in related Mn(lll)120 and Ni114 cyclisation reactions which have 

indicated that these type of 3° radicals (115) are very susceptible to oxidation via electron 

transfer. Elimination of a proton would furnish both regioisomers (11 0) and HCl. 

Generation of a secondary radical from chlorine abstraction from (109) or (110) furnishes 

the allylic radical (117) which again undergoes a second oxidation and elimination to 

furnish the observed products (Scheme 49). This sequence requires only a catalytic amount 

of the copper(I) complex as the copper(II), formed on the generation of (114), is reduced 

back to copper(I) on reaction with 3° radical (115). It is not clear why more than 0.3 

equivalents of copper(I) complex is required although the formation of (98a) requires the 

double elimination of HCI and this may disrupt the redox cycle. This use of a large 

amounts of cyclisation catalyst has been observed with similar reactions in the literature. 122 

This mechanism is now widely accepted and is referred to as a radical-polar cross over 

reaction.77, 114, 122 

CI SPh 

C1::tCI ~ 
o N)lJ 

I 
Bn (119) 

(i)CI~ 
"OAN~ 

~n (120) 

CI CI . ----...- '+-0 
OANV 

I 
Bn (110) 

(i) BU3SnH. AIBN. toluene. 84% I . 
CI CI + 

oW·"--o):~D 
~n (98a) ~n (118) 

Scheme 50. 
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Interestingly, the diene (98a) has also been isolated from a related tin hydride mediated 

cyclisation by Ikeda and co-workers (Scheme 50).123 They also postulated a similar 

mechanism to the one described in scheme 49. The tertiary radical (120) is formed after the 

5-endo-trig cyclisation of the carbamoylmethyl radical of type (114). This step is then 

followed by elimination of a benzenethiyl radical to give the hexahydroindolone (110). The 

formation of the diene (98a) was then postulated to have occurred via the generation of 

acyliminium ion (118) and elimination ofHCI. 

During the course of this work a report detailing the 5-endo-trig cyclisation of comparable 

trichloroacetamide substrates was published. This work centred on their cyclisation at 

elevated temperatures (refluxing in toluene, -110°C) using 0.5 equivalents of CuCI:bipy.122 

The products obtained from these reactions were identical to the diene compounds formed 

in our reactions. The reaction times and yields of both of these catalytic systems compared 

favourably, the main differences being the use of higher temperatures (110°C) and lower 

catalyst loadings (0.5 eq.) for the CuCI:bipy system. Also, a requirement of the CuCI:bipy 

system was the use of dried toluene for a successful reaction, whereas using dry solvent 

with our catalyst system had no beneficial effects on the reaction time, yield or products. 

One of the benefits of both copper catalysts is the fact that cyclisation of trichloroacetamide 

precursor (97) affords a single diene product whereas cycliS"ation using the Ni/AcOH 

system gave a mixture of 4 different products in a combined yield of 71 % (Scheme 45), 

which limits its synthetic utility. Optimisation of this reaction has recently been published 

by Zard and co-workers, they found that the addition of CU(OAC)2 as a co-oxidant in the 

NilAcOH system allowed control over the oxidation level of the productS. 119 Using this 

revised procedure the 5-endo cyclisation of substrate (97) resulted in the production of the 
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analogous diene (98a) in 60% yield. Other than minor differences in yields and reaction 

times, the copper catalysed methods have a number of practical advantages over the 

NiiAcOH acid method. In order to carry out the latter reactions 30 equivalents ofNi and 22 

equvalents of AcOH acid are required, whereas only 0.5 to 1 equivalent of the copper 

catalysts suffices. Also, in the work-up copper residues are removed easily by passing the 

reaction mixture through a silica bung whereas the Ni method requires removal of excess 

Ni through celite followed by neutralisation with aqueous base and liquid-liquid extraction. 

However, regardless of these slight practical differences these metal promoted radical 

reactions represent important protocols for the facile production of y-Iactams, which are 

valuable synthetic intermediates to many natural products systems. 

(121) 

10mol% CUCI:(123),.. ?~ 

O.1m OCM, reflux o~ 

CI CI CI 

(122) d (123) 

Scheme 51. An example of 8-endo cyclisation using CuCI:TP A (123) 

Recently, Verhlac and co-workers published a report detailing the highly efficient 8- and 

10-endo ATRCs of trichloroacetates.
93

,124 The ligands used were highly activated 

multidentate pyridine ligands (Scheme 51). Of these ligands the tris(pyridyl)-amine (TPA) 

(123) interested us the most, indeed in a collaborative effort between Verlhac's group and 

ours, a range of crown-ethers and o-lactams were produced using these copper catalysts.72 
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Since we had already devised efficient reaction conditions using the TPA ligand (123) for 

the copper mediated 5-endo-trig radical cyclisations of deactivated monobromoacetamides 

(detailed in chapter 3),125 we decided to try and utilise these conditions for the cyclisation 

of our trichloroacetamide precursors. Reaction of (97) with a 30mol% CuCI:(123) at reflux 

in toluene gave the diene compound (98a) in 36% yield after 48 hrs. In an effort to improve 

this yield we tried this same reaction in both dichloromethane and 1,2-dichloroethane, in 

which the catalyst system is more soluble. The reactions were initially carried out at room 

temperature with no reaction, then at reflux, the result of which was an inseparable, 

unidentifiable, mixture of complex compounds. We thought that these solvents may be 

causing the production of polymers or telomers, hence with this in mind we returned to the 

use of toluene as the reaction solvent and increased the catalyst loading to 1 equivalent of 

CuCl:(123). After only two hours using this method the diene (98a) was produced in 

excellent yield (89%). It should be noted that when these reaction conditions were applied 

to the CuCI:(42a) catalyst the reaction did not proceed and the starting material was 

recovered quantitatively. This suggests that the type of solvent used accommodates the 

catalyst system in some way that is not yet fully understood. 
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CI CI CI CI * I ('I (a}or(b) .. ~ 
OAN)tJ)n OAN~)n ofN=O , , 

R R 
, 
PMB (125) 

Precursor n R Product Method (a) Method (b) 

(104) 0 Bn (112) 61% 83% 
(97) 1 Bn (98a) 70% 89% 
(105) 3 Bn (113) 65% 94% 
(106) 1 PMB (124) 73% 

Method (a) CuCI:(42a), dichloromethane, 40°C, 48 hrs 

Method (b) CuCI:(123), toluene, 110°C, 2 hrs 

Table S. Comparison of cyclisation results 

The p-methoxybenzyl protected compound (106) was cyclised under these conditions to 

afford dienes (124) and (125) in 73% and 14% yield respectively. It is suspected that diene 

(124) undergoes a further reduction, elimination of HCl to give the diene (125). On the 

basis of these results we applied these conditions to all the substrates in the table 4, the 

results of which are shown in table 5. On the basis of these results we can conclude that the 

CuCI:(123) catalyst system produces y-Iactams in greater yields and reduced reaction times 

when compared to the CuCl:( 42a) system. When using this protocol it is not necessary to 

use vigorously dried glassware or solvents. In addition the work-up is facile, as the crude 

mixture is passed through a small silica bung and in some cases no further chromatography 

is required. 
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Scheme 52. 

.... 

I 
PMB 

(126) 

(128) 

Based on these results, we decided to examine the effect a methyl substituent on the double 

bond would have on ring closure. Thus, the cyclisation of compound (107), prepared from 

2-methylcyclohexanone following the general procedure, afforded an inseparable mixture 

of bicyclic diastereomers (126) in a combined yield of 96% (Scheme 52). The mechanism 

for this reaction was thought to proceed in the same manner as (97), shown in scheme 49. 

From .1H nmr evidence it was possible to calculate that the ratio of the major and minor 

isomer was 6:1, although n.O.e evidence would be required in order to assign these ratios 

their exact stereochemistry. The n.O.e effect is useful in determining which protons in a 

molecule are in close proximity to each other. If two protons are within 3.5 Angstroms of 

each other then irradiation of one will result in the enhancement of the other. The increase 

in the intensity of the signal can be as much as 50% but is typically less than 5%. The effect 

is normally viewed by obtaining a n.O.e difference spectrum. A conventional IH spectrum 
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is recorded, followed by a spectrum in which a specific signal is irradiated. Subtraction of 

the conventional IH spectrum from the irradiated spectrum gives the n.O.e difference 

spectrum, which only exhibits the enhanced portions of the spectfum, i.e. the protons that 

are close in space. This type of experiment requires the chemical shifts of the protons to be 

well separated from other peaks (which in this case they were) or they cannot be effectively 

irradiated. Therefore the CHCI proton and the methyl protons were irradiated for each 

isomer. The results from this experiment show that the major compound (126a) is trans as 

the n.O.e effect is small between the CHCI proton and the methyl protons. The opposite is 

true for minor compound (126b), it shows a large n.O.e effect between the same protons, 

therefore we can assign this as the cis isomer (fig,lO). 

" 0.6% 

r\ 
CI~ 
o~NN 

I 
PMB 

4.2% 

Hf) 
C~1):) 

I 
PMB 

(126a) 
Major 

trans:cis (126b) 
6:1 Minor 

Figure 10. n.O.e evidence for isomers of (126) 

Introduction of a methyl group on the double bond should have reduced the rate of 5-endo 

cyclisation, but it seems under these conditions 5-endo attack is still preferred over 4-exo 

cyclisation. Moreover, even if 4-exo cyclisation occurs the radical produced (128) may not 

- be trapped easily and ring re-opening is the most probable outcome (Scheme 52). By 

contrast, 5-endo cyclised radical (127) is readily oxidised, as previously mentioned, giving 

58 



Chapter 2 

a cation that affords y-Iactam (126). Zard has observed similar results for his Ni/AcOH 

mediated systems.114 

2.4 Application of this Methodology Towards the Synthesis ofL-755,807 

In 1996 a new non-peptide bradykinin antagonist, L-755,807 (129) was isolated by Lam 

and co-workers126 from Microspaerropsis sp. MF6057. In biological tests using 3H_ 

bradykinin binding to a cloned human B2 receptor expressed in Chinese hamster ovary 

cells, L-755,807 only showed a ICso of 71 J.1M which is relatively weak when compared to 

the other known non-peptide bradykinin antagonist WIN 64338127 which has an ICso of 61 

nM. 

(129) 

Figure 11. L-755,807 

They elucidated the structure by detailed spectroscopic studies. However they were only 

able to determine that the relative stereochemistry .of the epoxide and hydroxyl group about 

the lactam ring was syn. The stereochemistry of the methyl groups (C23 and C24) was not 

determined. 

This natural product is of great interest to our group and we have recently published a 

report detailing the synthesis of both diastereomers of the C9-C25 side chain fragment 

(135b) which provided evidence for the relative configuration of these groups as being syn 
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(fig. 12).128 A number of strategies towards the synthesis of the heterocyclic ring fragment 

of L-755,807 were carried OUt.
12

8-129 One of these strategies proposed a convergent 

approach towards the synthesis of (129) (Scheme 53). The obvious place to disconnect 

(130) is between the ring moiety and the side chain carbonyl group as these disconnections 

bring the greatest degree of simplicity to the synthons. 

Disconnection A 

(131) " 

o 

(130) 

/~ 
o 

o 

Disconnection B 

Li 

~ ~ 

(132) 

o 

Scheme 53. A convergent approach towards the synthesis of L-755,807 

o 
N/ 
I 

OMe 

Disconnection A requires the use of a palladium mediated Stille type coupling reaction 

between acid chloride (131) and a ring system containing the vinyl stannane group (133). 

The ~ajor benefit of this approach is that such palladium coupling reactions usually 

proceed under mild reaction conditions. Disconnection B requires the use of anionic 

chemistry between a side chain fragment containing a Weinreb amide (132) and the vinyl 

lithium ring fragment (134). 
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Both of these approaches require common intermediates. The acid chloride (131) and 

Weinreb amide (132) side-chain units would be derived from the tetraene carboxylic acid 

(135a) while the vinyl stannane lactam (133) and the vinyl lithium lactam (134) would 

require the vinyl halide (136) (fig.l2). Another member of our group carried out most of 

this methodology including the synthesis of the tetraene ester (13 5b). 128-129 

~ 

(135a) R = OH 
(135b) R = OEt 

o 

R 

o 
x 

(136) 

Figure 12. Propsed synthons for the ring system and the side chain 

Based on these strategies, we were interested in applying oui 5-endo-trig methodology 

(detailed in Section 2.2) towards a racemic approach to ring fragment (136). With this in 

mind we can now place some synthetic equivalent atoms on synthon (136), i.e X = CI and 

PG = Bn. If we also remove the hydroxyl group from ring system (136) it forms a new 

double bond outside of the ring forming a new conjugated lactam (137). We can now 

disconnect this again to a potential cyclisation substrate (138) (Scheme 54). 

C'A ._"- / . CI*CI. 

O~~~ ====~> o~~l '" 
Bn B~ 'f' 

(137) (138) 

Scheme 54. 
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Trichloroacetamide (138) was prepared by condensation of 3-methyl-2-butanone with 

benzyl amine (with the azeotropic removal of H20) followed by N-acylation of the imine 

intermediate with trichloroacetyl chloride. The subsequent cyclisation using the CuCI:( 42a) 

catalyst system gave the required diene (137) in 22% yield (Scheme 55).77 Another group 

member carried out further manipulation of this compound towards the synthesis of ring 

fragment (136). One of the problems that they encountered was the suitability of the benzyl 

group towards deprotection. The low yield obtained from the use of the CuCI:(42a) catalyst 

system also proved problematic as a large amount of product (137) is required for further 

structural elucidation. Therefore, we decided to change the amide protecting group to one 

more activated towards removal, in this case the p-methoxybenzyl group was used. The 

substrate (139) was synthes~sed in the same manner as (138) usingp-methoxybenzylamine 

in place of benzylamine. Consequent cyclisation of (139) using both catalyst systems (a) 

and (b) (Scheme 55) gave the required y-Iactam (140) in 60% yield and 89% yield 

respectively. 

CI+CI 

O~~JY 
Method (a) or (b) 

CI 

(138), R = Bn, 54% 
(139), R = PMB, 81% 

... 

(137), R = Bn, (a) 22% 
(140), R = PMB, (a) 60%, (b) 89% 

Method (a) CuCI:(42a), dichloromethane, 40°C, 48 hrs 

Method (b) CuCI:(123), toluene, 110°C, 2 hrs 

Scheme 55. 
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The deprotection of (140) proved more difficult than we originally expected. Deprotection 

using 2,3-dichloro-5,6-dicyano-l,4-benzoquinone (DDQi30 in dichloromethane and water 

resulted in no reaction after 48 hours and returned (140) in quantitative yield. Treatment of 

(140) in trifluoroacetic acid (TFA)l3I at both room temperature and reflux gave an 

inseparable, unidentifiable mixture of compounds. However, oxidative removal of the PMB 

group with ceric ammonium nitrate (CAN)132 in aqueous acetonitrile gave deprotected 'Y-

lactam (141) in 22% yield after two hours (Scheme 56). It is not clear whether the 

hydrolysis of the double-bond in (141) occurred in the reaction media of the deprotection 

step or on the silica used for flash chromatography that followed. These cyclisation and 

deprotection methods are currently being investigated and developed within our group for 

the synthesis of ring systems such as (136), which can provide access to a wide range of 

natural product skeletons. 

CI 
CAN, aq. MeCN 

2 hrs, RT, 22% 

(140) (141) 

Scheme 56. CAN deprotection 

2.5 Conclusion 
.. 

Two highly efficient copper(l)-based cyclisation procedures have been examined, both of 

which lead to the formation of a variety of highly functionalised 'Y-Iactams. The use of one 

equivalent of CuCl:( 42a) in refluxing dichloromethane for 48 hrs was found to be the 

optimum conditions for this catalyst system. Under these conditions a variety of 
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functionalised dienes were furnished in good yields 60-70%. The second catalyst system 

involved the use of I equivalent of CuCI:(123) in refluxing toluene for 2hrs. A variety of 

analogous dienes were produced using this method in excellent yield 89-94%. The reaction 

conditions of this catalyst system (toluene, 110°C) were very different when compared to 

the CuCl:(42a) system (dichloromethane, 40°C) indicating that the solvent may have a 

crucial role to play in controlling the reactions presumably by affecting the solubility of the 

complex. Also, the use of CuCI:(123) system reduced reaction times and improved yields, 

which increased the overall efficacy these cyclisations when compared to the CuCI:(42a) 

system and other methods. In theory both of these reactions should only require catalytic 

amounts (0.3 equivalents) of reagent and the reason for the lower yields when this was 

employed are not straightforward. However, the formation of (98a) involves the overall 

loss of two equivalents of hydrogen chloride that may ~srupt the redox cycle (Scheme 49). 

A variety of cyclisation precursors were examined; the effect of ring size or protecting 

group was observed to have no obvious effect on the reaction times, yields or product 

ratios. The cyclisation of methyl substituted precursor (107) using the CuCl:(123) system 

afforded a 6:1 ratio of cis: trans isomers oflactam (126) in 96% yield. 

This methodology was also successfully applied towards the synthesis of a heterocyclic 

ring template (141) for the use in the total synthesis of non-pet ide bradykinin inhibitor, L-

755,807. Although the molecule produced lacked the full functionality required, a synthetic 

route to produce more complex analogues is currently being developed. 

To further build on this work, potential follow up studies may include the an investigation 

into formation of chlorinated products from dichloro- and mono-chloroacetamides and also 

the application of this methodology towards the synthesis of highly functionalised 
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asymmetric (3- and y-Iactams. In conclusion, the scope and variety of copper(I) reactions 

together with the high yield of products mean that this method could potentially replace the 

tin hydride method in many cyclisation reactions. Product purification is simple and the 

products retain functionality that has the potential to be exploited through a variety of 

synthetic manipulations. 
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Chapter 3: 5-Endo Radical Cyclisations of Monohaloacetamides 

Mediated by Copper(I) Amine Complexes 

3.1 Introduction 

In chapter 2 we reported that copper catalysts CuCI:(42a) and CuCI:(123) efficiently 

mediated the 5-endo-trig radical cyclisation of trichloroacetamides at elevated 

temperatures. While most atom transfer radical reactions utilising RuCh(PPh3)3,66 

CuCI(bipy),68 NiiAcOH,114 and Mn(OAC)362 also exploit these highly activated precursors, 

we have recently reported that tertiary, secondary and primary monohaloacetamides 

undergo efficient 5-exo-trig ATRC at room temperature catalysed by copper(I) amine 

complexes.74, 82, 133 As a consequence of this we decided to investigate if these catalysts 

would mediate the 5-endo-trig cyclisation of a series of diverse monohaloacetamide 

precursors. We also hoped that the development of this chemistry would give us access to 

some important 13- or y-Iactam templates that we could use for the synthesis of some related 

natural products. 

3.2 Cyclisation of 3° Monobromoacetamides 

3.2.1 Precursor Preparation 

The tertiary monobromoacetamide precursor (145) was produced in 69% overall yield 

using the procedure outlined in Chapter 2 (Scheme 57). Cyclohexanone was treated with 

- benzyl amine under typical "Dean and Stark" conditions in toluene to produce an 

intermediate imine that could be isolated or used directly for the next step. Subsequent, N­

acylation of the imine (102) with 2-bromoisobutyryl-bromide at O°C ~shed the required 
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enamide (145) (Scheme 57). No competitive C-acylation was observed. Formation of this 

compound was indicated by the characteristic carbonyl bond absorption for the amide 

carbonyl at 1627 cm-1 in the IR and also the appearance of the enamide double bond C-H at 

5 5.58 ppm in the IH nmr spectra, which was observed as a broad singlet rather than a 

triplet due broadening caused by hindered rotation around the amide bond. This broadening 

effect was observed in the IH spectra for all compounds of this class. 

r'I (i) D 
oA./~'" N~ 

I 
Bn 

__ (ii)-i"'~ J::D 
I 
Bn 

(102) (145) 81% 
Scheme 57. (i) BnNfh, Dean-Stark, toluene, reflux; (ii) BrCOCBrMe2, DBA, O°C 

The precursors synthesised for this study are presented in table 6, the influence that ring 

size (n=O,1,2 .. ) and protecting groups (R) have on the cyclisation reaction was also 

examined (PMB = 4-methoxybenzyl, Dmb = 2,4-dimethoxybenzyl). 

Compound n R Yield 

(146) 0 Bn 60% 
(145) 1 Bn 69% 
(147) 2 Bn 71% 
(148) 3 Bn 95% 
(149) 7 Bn 78% 
(150) 1 PMB 78% 
(151) 1 Dmb 84% 

Table 6. Tertiary monobromoacetamide precursors 
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3.2.2 Copper Catalysed 5-Endo Cyclisation 

We have previously reported that 5-exo-tr;g ATRC of tertiary monohaloacetamide (41) 

occurs rapidly at room temperature using a series of multi-dentate ligands (see section 

1.5.3.1).82 The most active ligand in this study was found to be the tetradentate amine 

ligand, Me6-tren (39), therefore based on these results we decided to utilise these 

established conditions on precursor (145). Hence, to precursor (145) in dichloromethane at 

room temperature was added 30 mol% of Cu(l)Br and 30 mol% of Me6-tren ligand (39). In 

contrast to its trichloroacetamide analogue (97), cyclisation of monobromoacetamide (145) 

proceeded rapidly and was complete after just 20 minutes at room temperature producing a 

1:1 mixture of alkene regioisomers (152a) and (152b) in 82% overall yield (Scheme 58).77 

i BD 30mol% CuBr:(39) W· 
I ----------------------~.~ I 

o CH2CI2, RT, 20 mins 0 N 
~ I 
Bn Bn 

+ t,:o 
I 
Bn 

(145) (152a) 39% (152b),43% 

Scheme 58. Regioisomeric alkene products 

Presumably initial radical formation and 5-endo cyclisation is f?lIowed by rapid oxidation 

of the heteroatom stabilised radical (153) to a cation by the Cu(II)Br2:(39) formed in the 

initiaf step.114 Elimination of It from the intermediate acyliminium ion (154) can then 

furnish the observed alkene products (Scheme 59). Interestingly the overall process 

represents a formal "Heck type" cyclisation albeit using substrates that would not normally 

undergo a palladium mediated Heck process. 
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CuBr2:(39) ;±;:o. 
.... + 
ON='" 

I 
Bn 

(153) 

~+ 
~ 
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I 
Bn 

(152a) 

(i) 30mol% CuBr:(39), CH2CI2, RT, 20 mins 

Scheme 59. Proposed mechanism for 5-endo cyclisation of monobromoacetamide (154) 

These isomers could be separated by flash chromatography on silica but underwent 

equilibration in CDCh to give a 1:1 mixture in 1-2 hours. Due to this effect all nmr spectra 

for related compounds were carried out in CJ)6. Confrrmation of the formation of these 

regioisomers was obtained by 13C nmr, with the disappearance of the CBrMe2 quaternary 

carbon at 3 58.3 ppm from (145) and appearance of the new CMe2 quaternary carbon at 3 

46.1 ppm and 3 42.9 ppm for isomers (152a) and (l52b) respectively. A Mass spectrum of 

the isomers also showed that there was no bromine present in these bicyclic products. 

The c),clisation of precursor (145) could also be mediated by 30 mol% of solid support 

ligand (142) (fig. 13) and CuBr, however the reaction took much longer and now required 

heating in 1,2-dichloroethane for 24 hours. The relative decrease in the activity of solid 

support catalyst CuBr:(142) is consistent with that observed for 5-exo-trig cyclisations.133 

. However, attempts to mediate this cyclisation with ligands (143) and (144) gave no 
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reaction at various temperatures (RT to reflux) and in a variety of solvents (MeCN, DCM, 

DCE, MeOH, toluene and acetone). 

(143) (144) 

Figure 13. 

We also found after similar experimentation that 30 mol% of CuBr:(42a) catalyses this 

reaction only in refluxing 1,2-dichlorethane after 48 hours. This was also true for the 

CuBr:TPA (123) catalyst, except in this case the reaction only proceeded after 48 hours in 

refluxing toluene. A similar solvent effect was also observed when these two catalysts were 

utilised for the cyclisation of cyclic trichloroacetamide precursors in chapter 2 indicating 

that the choice of solvent may play a crucial role in the activity and solubility of the 

complex. 
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j::Dln-(-i) -..... )::oln j:::oln 
~ (145 - 151) ~ (a) . ~ (b) 

Compound n R Ratio a:b* Yield (a+b) 

(155) 0 Bn - -
(152) 1 Bn 1:1 82% 
(156) 2 Bn 1:5 62% 
(157) 3 Bn 1:3 81% 
(158) 7 Bn 5:1 70% 
(159) 1 PMB 1:1 83% 
(160) 1 Dmb 1:2 90% 

(i) 30mol% CuBr:(39), CH2CI2, RT, 20 mins. 

*Calculated from 1H nmr of mixtures 

Table 7. CuBr:(39) catalysed 5-endo cyclisation of substrates (145-151) 

Cyclisation of the analogous precursors (145-151) proceeded smoothly under the same 

conditions as (145) to give similar mixtures of regioisomers in excellent yield (Table 7). 

However, 5-membered cyclic precursor (155) afforded a complex mixture of unidentifiable 

products that could not be purified or identified by GCMS. The results shown in table 7, 

suggest that the variations in ring and benzyl group have no obvious effects on the reaction. 

3.2.3 Trapping of N-Acyliminium Ions after Cyclisation 

Mechanistically we77 and otherslll
, 122 have proposed that the described cyclisation 

reactions involve an intermediate acyliminium ion (154) (i.e. they are radical-polar 

crossover reactions). If this is the case then it should be possible to expand the scope of the 

methodology by sequencing the initial cyclisation reaction by a second intermolecular or 

. intramolecUlar nucleophilic triggered reaction to give (161) (Scheme 60). 
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Nucleophile 

(161) 

Scheme 60. Generalised trapping reaction 

In order to test this hypothesis we initially examined the CuBr:(39) mediated cyclisation of 

(145) in the presence of 10 equivalents of allyltrimethylsilane at room temperature. 

Although the reaction took much longer than usual to go to completion under these 

conditions no inteImolecular trapping of the acyliminium ion was detected, instead only the 

products arising from elim~nation ofH+ were isolated (152a-b) (Scheme 61). 

O~NBDr _30_m_o_lo/c_o _C_UB_r_:(3_9_) -I ....... 

... ~ CH2CI2• RT 
(152a) + (152b) 

I 
Bn ~SiMe3 

(145) 

Scheme 61. 

Attempts to mediate an intramolecular trapping using a tethered alkene (162) also failed. 

Cyclisation of this compound only furnished a mixture of regioisomeric non-trapped 

products (163a) and (163b) (Scheme 62). 
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O~BND _30_m_O_I%_o _C_UB_r_:(3_9_) -I"'~ 
... ~ CH2CI2, RT, 20 mins 

(162) 
40% 

Scheme 62. 

(163a) 
21% 

(163b) 
55% 

However, when we cyclised (145) with a catalytic amount of CuBr:(39) in the presence of 

10 equivalents of methanol it was possible to isolate the methoxy compound (164) in 36% 

yield after 22 hours (Scheme 63). In addition to (164) the two alkene products (152a) and 

(152b) were isolated (yields 19% and 26%). This methoxy co~pound however proved to 

be unstable and slowly eliminate to furnish a 1: 1 mixture of (152a) and (152b) in CDCh at 

room temperature. A similar decomposition effect was observed after storage for 1 week at 

O~BND _30_m_O_lo/c_o_C_UB_r_:(3_9_) .......... 

... ~ CH2CI2, RT, 22 hrs 
I 10 eq. MeOH 
Bn 

(145) (164) 

Scheme 63. 

After the discovery of this trapping methodology we thought that it could provide a 

possible route to the introduction of the desired tertiary hydroxy group present in the ring 

system ofL-755, 807 (129) which we covered in section 2.3. Therefore, trichloroacetamide 
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(138) was reacted with 1 equivalent of CuCI:( 42a) and refluxed in dichloromethane in the 

presence of 10 equivalents of methanol (Scheme 64). The desired methoxy compound 

(165) was isolated in 10% yield along with 1% of a compound tentatively assigned as the 

diene (166).129 Interestingly the methoxy compound (165) appears to be relatively stable 

with no decomposition observed at -20°C after 6 months. 

10 eq. MeOH, L\ o~ 
Bn 

(165) 

Scheme 64. 

3.2.4 Construction of Tricyclic and Other Frameworks 

(166) 

Having established that simple enamides (145-151) underwent highly efficient 5-endo 

oxidative cyclisation using catalytic quantities of CuBr:(39) at room temperature to give 

bicyclic alkene regioisomers. we next wanted to investigate if the cyclisation of the 

precursors (167-169) would furnish tricyclic skeletons upon cyclisation. Hence. acylation 

of N~benzylimines derived from l-indanone and 1- and 2-tetralone gave the required 

cyclisation precursors (167-169). Reaction of (167-168) wi~ 30 mol% CuBr:(39) in 

dichloromethane at room temperature for 20 minutes furnished high yields of the expected 

tricydic conjugated alkenes (170-171) (Scheme 65). Unlike the reactions of (145-151) 

where elimination of W leads to two possible regioisomers, elimination from the 

intermediate N-acyliminium ion generated in the reactions of (167-168) can only occur in 

one direction leading to high yields of single products (170-171). These high yields are also 
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due to the fact that further purification by column chromatography is not required after the 

reaction mix is purged of copper residues by passing it through a silica bung. 

i Br 

I o N 
I 
Bn 

(167) n = 0,77% 
(168) n = 1, 58% 

i Br 

I o N 
I 
Bn 

(169) 85% 

30mol% CuBr:(39) 

30mol% CuBr:(39) 

Scheme 65. 

.... 

.... 

(170) n = 0,99% 
(171) n = 1, 99% 

Cyclisation of j3-tetralone derivative (169) under the usual conditions however proceeded 

in a 4-exo-trig fashion to give atom transfer product (172) as a 1: 1 mixture of diastereomers 

(Scheme 65). Recently Ikeda and co-workers reported that the regiochemistry of cyclisation 

(4-exo-trig versus 5-endo-trig) of 2-halo-N-(3,4-dihydro-2-napthyl)acetamides similar to 

(169) were temperature dependent, with lower temperatures «80°C) producing j3-lactams 

predCilIlinantly while higher temperature (>80°C) favoured 'Y-Iactams. Their hypothesis was 

based on the consideration of the reversibility of the 4-exo-trig cyclisation and ring opening 

between (173) and (174). Their results indicate that the 4-exo cyclisation is a kinetically 

favoured process in refluxing benzene, whereas at higher temperatures (in refluxing 

toluene), the ring opening of radicals (174) formed by 4-exo cyclisation rapidly occurs and 

75 



Chapter 3 

the resulting radicals cyclise in a 5-endo fashion to give thermodynamically stable radicals 

(175) (Scheme 66).1188 

4-exo 

5-endo 

(175) 

.... 

(177) 

Conditions and Reagents: 
BUaSnH, AIBN, benzene 

or toluene, reflux 

Scheme 66. 4-exo-trig cyclisation versus 5-endo-trig cyclisation 

Presumably. in our example, 4-exo cyclisation takes place at room temperature to give 

initially a stabilised benzylic radical, similar to (174), that is trapped under atom transfer 

conditions to give the observed brominated p-Iactam (172). Attempts to provide evidence 

for Ikeda's hypothesis by conducting the atom transfer cyclisation of(169) in refluxing 1,2-

dichloroethane (~80°C) and toluene (~1 IOOC) or -re-subjection of the initially formed (172) 

to these same reaction conditions met with failure and only complex mixtures of 

unidentified products were obtained in each case. 

Based on the above results we decided to investigate whether the introduction of a methyl 

group on the 4-position of the alkene would induce 4-exo cyclisation over 5-endo 

cyclisation at room temperature. 
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jp 
o Bn 

(182) 

Br 

~:B? 
(183) 

~ 

:£P o Bn 
(180) 

Conditions: 30mol% CuBr:(39), CH2CI2, RT, 18 hrs 

Scheme 67. 

The precursor (179) was synthesised in the nOllllal manner from 2-methylcyc1ohexanone to 

give an inseparable 1: 1 mixture of regioisomeric compounds (179a) and (179b) in 85% 

overall yield. Subsequent cyclisation of (179a-b) with 30 mol% CuBr:(39) at room 

temperature afforded a 1:1 mixture of 4-exo cyclised product (180) and 5-endo cyc1ised 

product (181) in 88% overall yield. Presumably, cyclisation ofregioisomer (179b) proceeds 

as nOllllal yielding the 5-endo product (181). However, the alkene substituted regioisomer 

(179a) fOllllS the kinetically favourable 4-exo product by initial cyclisation to from tertiary 

radical (182) followed by bromine atom transfer (183) with subsequent elimination to (180) 

(Scheme 67). Interestingly, when we carried out this procedure at higher" temperature 

(l10°C in toluene) using a catalytic amount of CuBr:(123) we found that regioisomer 

(179a) now fOlllled the thellllodynamic 5-endo product (184) whilst regioisomer (l79b) 

fOlllled the same 5-endo product (181) as the initial reaction (Scheme 68). These products 
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were isolated in 85% overall yield and in a 3:1 ratio of (184):(181) respectively, therefore 

the initial 1:1 ratio of starting regioisomers (179a):(179b) may have also been altered at 

high temperature. These results contribute adequate evidence towards Ikeda's hypothesis 

regarding 4-exo versus 5-endo cyclisations explained above, although more research into 

this area will need to be carried out in order to back up our initial findings. 

1:1 mix of (179a):(179b) 
(i) 

(i) 30mol% CuBr:(123), toluene, 8, 1 hr 

J=:b 
I 
Bn 

(184) 64% 

Scheme 68. 

We also recently reported that tripyridylamine (123) copper(I) halide complexes mediate 

the ATRC of monobromoacetamides to give ~-lactams exclusively with no formation of y-

lactam.134 Initial products (186) arose from 4-exo bromine atom transfer but elimination 

can be readily achieved by reaction with DBU to furnish alkenes (187) in high yields (92-

98%) (Scheme 69). Interestingly, it was found that even at 110°C in toluene, these 

compounds furnished the 4-exo products exclusively highlighting the efficient nature of the 

atom transfer catalyst used in trapping out the intermediate cyclised radical. Steric 

hindrance at the terminal carbon is thought to be responsible for the absence of 5-endo 

cyclisation observed. 
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Br~ 9 _3_o_m_OI_%_C_U_B_r:_(1_23_)-I ........ 

,~ CH2CI2• RT, 1 hr 
o N 

12 hrs 

I 
R 

(185) (186) (187) 

R = Bn, PMB, i-Bu, o-BrBn 

Scheme 69. f3-1actam synthesis via 4-exo ATRC 

Next we investigated the cyclisation of the dibromo precursor (188) in order to determine if 

the aryl bromide substituent would be tolerated under these conditions. Hence, reaction of 

(188) under the same reaction conditions as above furnished the two regioisomeric alkenes 

(189-190) as a 1:3 ratio in 83% combined yield (Scheme 70). Recently, Zard showed that 

structures related to (188) undergo 6-endo cyclisation using conventional organostannane 

radical chemistry leading to an efficient synthesis of lycorane analogues. 11 
6 Further 

research regarding non-tin hydride methods (e.g. palladium) of coupling (189) and (190) to 

give poly cyclic compounds akin to (191) and (192) is currently being carried out within 

our group through a series of analogous compounds to precursor (188). By achieving this 

we hope to apply this chemistry towards the synthesis of Amaryllidacae and erythirina 

alkaloid templates. 
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3Omol% CuBr.(39),;.. :f::D 
CH2CI2, RT, 20 minsc(o N 

~ (189) 19% 

1.0 
Br 

(191) 

Scheme 70. 

I 
I 
I 
I • 

~ 
~(190)64% 
llA~ Br 

(192) 

In addition Ikeda and co-workers recently reported the asymmetric synthesis of (_)_y_ 

lycorane (96) via 5-endo BU3SnH mediated cyclisation of chiral amide derivative (193a).135 

As a consequence we briefly examined the cyclisation of the related (193b) at room 

temperature under our atom transfer conditions.77 Cyclisation was slow relative to the 

previous reactions already described in this chapter (48 hours) and gave two regioisomeric 

products (194-195) as expected (Scheme 71). Although chiral induction from the remote 

chiral auxiliary to the ring junction proton Ha in (194) was modest (2:1) it was marginally 

better than that reported for BU3SnH cyclisation of (193a) at 11 O°C (3 :2).135 The relative 

decrease in the rate of cyc1isation of N-a.-methylbenzyl derivative (193b) compared to N-

benzyl derivative (145) is similar to that reported by Ghelfi and co-workers for 5-exo atom 

transfer cyclisation reactions of trichloroacetamides and is likely to be due to 

conformational effects.79 
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R 

RfBrD __ ~ 30mol% CuBr:(39), .. 
o N CH2CI2, RT, 48 hrs 

Phi-Me 
(193a) R = H 
(193b) R = Me 

Scheme 71. 

3.3 Cyclisation of 2° Monobromoacetamides 

3.3.1 Method Development and Solvent Effects 

j::D 
Ph~Me 

H 
(195) 

We have shown above that 3° bromoacetamides of type (145) undergo rapid radical polar 

crossover reactions to furnish unsaturated pyrrolidinones derivatives at room temperature 

with activated copper complex derived from CuBr and (39). As a consequence of this we 

decided to investigate whether this copper complex would mediate the cyclisation of a 2° 

bromo acetamide precursor, which is less activated as a radical precursor. Preliminary 

studies investigated the cyclisation of precursor (196), which was synthesised using the 

standard method discussed in section 3.2.1 using 2-bromopropionyl-bromide in place of 2-

bromoisobutyryl-bromide. All attempts to cyclise (196) using CuBr:(39) (as well as all the 

ligands shown in figure 13) failed at various temperatures, solvent and catalyst loading. In 

most. of these cases the starting material (196) was recovered in quantitative yield. 

However, when we carried out this reaction using copper(I) bromide and the more activated 

TPA ligand (123) in refluxing toluene the bicyclic y-Iactam (197) was generated after 2 

hours in 72% yield (Scheme 72).125 
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Br 1 eq. CuBr:(123), :x r 0 toluene,110·C ~ 
o N~ --2-h-rs-,-72-%-o--t"'~ O~N~ 
anan 

(196) (197) 

Scheme 72. 

Mechanistically, it is likely that the observed products arise via a 5-endo cyclisation of the 

initially generated radical to give tertiary radical (198) which upon oxidation to cation 

(199) byeu(II) (generated in the initial step) gives initially the alkenes (200) and (201) 

which undergo isomerisation to the more stable a,[3-unsaturated ketone (197) under the 

reaction conditions (Scheme 73). 

;t:D 
I 
Bn )::D CUBr2:(12! ~ _-H_+--J"'~ 

ON· O~~~)::() 
(200) 

I I 
Bn Bn 

o N ~ 
(198) (199) I 

Bn 

. (201) 

Scheme 73. Postulated radical-polar crossover mechanism 

(197) 

We then probed the generality of the reaction by investigating the cyclisation of a variety of 

precursors (202-207) (Table 8). In all cases the corresponding a,[3-unsaturated products 

were obtained in good yields. Evidence for the intermediacy of alkenes such as (200) and 
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(201) was obtained by the isolation of 7% of the regioisomeric alkene (214) during the 

cyclisation of (205). 

R1

X
XD 1 eq. CuBr:(123), R1~. 

I toluene, 110°C -
o N )n 2 hrs ... 0 N )n 

Precursor 

(196) 
(202) 
(203) 
(204) 
(205) 
(206) 
(207) 

I I 
R R 

X 

Br 
Br 
CI 
Br 
Br 
CI 
Br 

R R1 n 

Bn Me 1 
Bn Me 3 
Bn Ph 1 

PMB Me 1 
PMB Me 3 
PMB Ph 1 
PNB Me 1 

* 7% of (214) was isolated -

~) (214) 
O~N~3 

I 
PMB 

Table 8. Cyclisation of halo-acetamides 

Product (%) 

(197) 72 
(208) 78 
(209) 59 
(210) 86 
(211) 82* 
(212) 87 
(213) 65 

Table 8 also shows that the cyclisation of chloro-acetamides (203) and (206) efficiently 

yield a,~-unsaturated lactams (209) and (212), by alternatively using CuCI:(123) rather 

than .. CuBr:(123) under the same reaction conditions as (196). Interestingly, when we 

attempted to make a diphenyl version of precursor (206) by acylation of the appropriate 

imine (215) with chloro-diphenyl-acetyl chloride, we acquired the C-acylated product (216) 

only, which promptly cyclised under the work-up conditions to yield bicyclic compound 

(217) in 80% yield (Scheme 74). 
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D CICOCCI(Phh PhW

O 

________ ~.~ Ph , 
CI 

N ~ DEA, OoC HN 

~MB (215) ~MB (216) 

---1 ..... Ph ~ 
P"tNJV 

I 
PMB . (217) 

Scheme 74. 

During the course of this work an interesting solvent effect was uncovered. If the 

cyclisation reactions were repeated using 1,2-dichloroethane as the solvent (at 80°C). then 

instead of the monoenes (196,202-207), the corresponding dienes (218-224) arising from 

further oxidation were isolated (Table 9). 

R1XXD 1 eq. CuBr:(123), R1~ 
,.. DCE 80°C -

o N )n 2 'hrs ... 0 N ~ )n 
I I 
R R 

Precursor X R R1 n Product (%) 

(196) Br Bn Me 1 (218) 42 
(202) Br Bn Me 3 (219) 57 
(203) CI Bn Ph 1 (220) 64 
(204) Br PMB Me 1 (221) 71 
(205) Br PMB Me 3 (222) 86 
(206) CI PMB Ph 1 (223) 74 
(207) Br PNB Me 1 (224) 64 

Table 9. Cyclisation of halo-acetamides in 1,2-dichloroethane 

Mechanistically, it is uncertain how this further oxidation takes place. Presumably under 

the reaction conditions further oxidation of the tertiary position to generate another 

acyliminium ion is facile thus leading to the observed dienes. Whether radicals derived 
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from decomposition of the chlorinated solvent under the reaction conditions are responsible 

for this oxidation or whether the solvent modifies the redox potential of the catalyst 

facilitating oxidation is unclear. However, a reaction using acetonitrile and methanol as 

solvents furnished the diene (albeit in low yield), suggest the latter may be important. 

However, re-submitting the pure monoene (212) to the reaction conditions of CuBr and 

ligand (123) in refluxing 1,2-dichloroethane for 2 hours furnished the diene (223) in 77% 

yield, indicating that the monoenes are precursors to the formation of the dienes under 

these conditions. 

Our next action was to distinguish whether the conditions above could be utilised for the 

cyclisation of the less activated 1° bromoacetamide precursor (225). However, after 

reaction of (225) with CuBr:(123) in 1,2-dichloroethane/toluene under the conditions 
. 

outlined above, no cyclisation was observed and the precursor was returned quantitatively. 

Successive reactions using CuBr and the ligands in figure 13, under similar reaction 

conditions yielded analogous results. We next attempted to force the cyclisation using the 

Cu(I)Br:(123) catalyst in toluene under sealed tube conditions at 120°C for 48 hours. This 

reaction was followed closely by TLC and seemed to be proceeding, but on final work up 

we found that these harsh reaction conditions afforded reduction product (226) in 17% 

yield and also re-isolation of precursor (225) (Scheme 74). 

BrlD 
o N 

I 
PMB 

CuBr:(123), 

toluene, 120°C ~ D ----.... .... 
sealed tube, 48 hrs 0 N . 

I 
PMB 

(225) 62% (226) 17% 

Scheme 74. 
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3.3.2 Tricyclic Systems and Other Frameworks 

Having developed the methodology required to cyclise simple 2° haloacetamides of type 

(196) using 1 equivalent of CuBr:(123) in either refluxing 1,2-dichloroethane or toluene, 

we thought we should now investigate whether this methodology could mediate the 

cyc1isation of precursors (227-230) to afford tricyclic systems similar to those revealed in 

section 3.2.4. We were also interested to see if precursor (230) would carry out a 4-exo 

cyclisation comparable to (169) under these conditions. Consequently, acylation of the 

appropriate N-benzyl imines derived from l-inadanone and 1- and 2-tetralone gave the 

desired cyclisation precursors (227-230). Reaction of (227-230) with 1 equivalent of 

CuBr:(123) in toluene at 1l0°C furnished the expected tricyclic a,j3-tmsaturated systems 

(231-234) in high yield (Scheme 75). 

1BI CuBr:(123), toluene .... 
o ~ 

R 

(227) n = 1, R = Bn, 60% 
(228) n = 1, R = PMB, 80% 
(229) n = 0, R = PMB, 56% 

(231) n = 1, R = Bn, 85% 
(232) n = 1, R = PMB, 91% 
(233) n = 0, R = PMB, 84% 

1BI I CuBr:(123), toluene 

o N 
I 
PMB 

(230) 69% (234) 96% 

Scheme 75. 
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However. using this method we found that the cyclisation of (230) proceeded by the 5~ 

endo-trig mode only. As we have mentioned in section 3.2.4. Ikeda postulated that 5-endo­

trig cyclisation of compound (230) is thermodynamically favoured at this temperature. he 

also proved by experiment that cyclisation of (230) by 4-exo-tr;g mode would only occur at 

the lower temperature of 80°C in refluxing benzene using BU3SnH.118a Based on these 

results we decided to see if we could provide similar evidence for (230) using our copper 

mediated method. therefore the reaction was carried out in refluxing benzene. 

disappointingly only a complex mixture of unidentifiable products was obtained. A similar 

result was achieved when the reaction was carried out in 1.2-dichloroethane (which has a 

similar boiling point. ~80°C) and since we found that this reaction would not progress in 

any other typical cyclisa~ion solvent our attempts to provide evidence for this hypothesis 

met with failure. 

For our next step we decided to investigate whether the introduction of a methyl group on 

the alkene would induce a 4-exo cyclisation analogous to that shown for (179) in section 

3.2.4. The appropriate precursor was synthesised according to the standard procedure to 

afford a 1:1 mixture of inseparable regioisomers (235a) and (235b) in 60% yield. This 

mixture of regioisomers was then treated with Cu(I)Br:(123) in toluene at 110°C to give a 

2:1 mix of diastereomers (236a) and (236b) in 88% overall yield (Scheme 76). 
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):B1) 
o N 

I 
Bn 

(235a) CuBr:(123), toluene 
-"" 

1:1 mixture 
110°C, 2 hrs 

2:1 mixture 

):B'!( 
o N 

I 
Bn 

m 
I .: 
Bn = 

(235b) (236b) 

Scheme 76. 

This unpredicted result might arise from initial isomerisation of the presumably more 

thermodynamically stable tetra-substituted alkene (235a) to give its corresponding 

regioisomer (235b) followed by 5-endo cyclisation. This is in fact the exact opposite to 

what we observed for (179) in section 3.2.4, scheme 68. However, Stork and co-workers 

have observed in unsymmetrical enamines (derived from 2-methylcyclohexanone), that the 

formation of the least substituted enamine is favoured over that of the tetrasubstituted 

one. 136 The explanation given for this unexpected selectivity is that there is a need for the 

enamine to have a high degree of a-x orbital overlap, between the nitrogen lone pair 

electrons and the double bond. For this to occur the system must be planar and this is 

difficult with enamines formed from a-substituted ketones, such as 2-

methylcyclohexanone. This hypothesis would certainly go some way to explain the results 
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shown in scheme 76, although why the exact opposite happens for (179) in scheme 68 is 

not obvious. 

The stereochemistry for diastereomers (236a) and (236b) were tentatively assigned from 

the IH nmr which clearly showed the vicinal coupling between Ha and & (Scheme 77). 

The vicinal coupling constant e.J) for (236a) was found to be 4.0 Hz, which indicates by 

the Karplus equation that there is a medium interaction between Ha and &.137 For this 

interaction to occur Hb would need to be equatorial, thus the methyl group would be axial 

(237) (Scheme 77). For diastereomer (236b) the vicinal coupling constant between Ha and 

Hb was 8.5 Hz. This indicates a large interaction according to Karplus, therefore for this to 

occur Hb would need to be axial (approximately 1800 from Ha), thus the methyl group 

would be equatorial (238). Unfortunately all attempts to reinforce this information by n.O.e 

spectra proved unsuccessful, due to ineffective irradiation of non-elucidated peaks. 

(236a) 

Me 

Ha 

3J = 4 Hz 

Medium interaction 

(236b) 

Ha 

3J = 8.5 Hz 

Large interaction 

Scheme 77. Illustrative example of the stereochemistry of (236) via Newman 

projections 
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In order to probe further the generality of this catalyst system, we decided to insert a 

heteroatom into the cyclic ring to see whether it would influence cyc1isation. Initially, 

protection of 4-piperidone was carried out using benzyl chloroformate to generate ketone 

(239) in 83% yield, followed by the standard imination and N-acylation to afford (240) in 

35%. Subsequent cyclisation of (240) proceeded normally in toluene with CuBr:(123) to 

produce monoene (241) in 42% yield (Scheme 78). However, when we carried out this 

reaction in 1,2-dichloroethane to produce the corresponding diene a complex mixture of 

inseparable products was produced. 

6 
I 
Cbz 

(239) 

... XBD~Cbz (il 

o N 
I 
PMB 

(240) 

... :e£J 
.... CbZ 

o N 
I 
PMB 

(241) 

(i) CuBr:(123), toluene, 110°C, 2 hrs 

Scheme 78. 

3.3.3 Deprotection of y-Lactams and Application Towards Natural Product 

Architectures 

Having established that a number of structurally diverse bicyclic and tricyclic y-Iactams can 

be s)'llthesised using our highly efficient copper(I) mediated radical cyc1isation reaction, we 

next decided to extend this methodology by evaluating whether these catalysts could be 

employed towards the synthesis of natural products templates. A sesquiterpenic alkaloid, 

eremophilene y-Iactam (242) was isolated from the rhizomes of Pestasites hybridus by 

Jizba and co-workers.138 The total synthesis of this compound (242) has to our knowledge 
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not been previously reported, although the total synthesis of its corresponding lactone (243) 

has been cited by a number of authors (Fig. 14).139 

~ 
I 
Bn (197) (242) (243) 

Figure 14. Comparison ofy-Iactam (197) with natural analogues (242) and (243) 

Compound (197) contains two of the three rings found in the skeleton of sesquiterpenic 

alkaloid (242), therefore we decided to attempt and integrate our cyclisation techniques into 

the manufacture of alkaJ.oid (242). However any strategy towards the synthesis of this 

alkaloid would need to address the removal of the N-benzyl protecting group to furnish the 

unsubstituted lactam. Our initial attempts to remove the N-benzyl protecting groups from 

(197) using a variety of standard protocols140 such as hydrogenation failed. 141 However, 

deprotection of the amide (197) was possible using lithium in liquid ammonia142 but the 

unsaturated alkene also underwent reduction to give one stereoisomer of the bicyclic lactam 

(244) in 95% yield (Scheme 79). The stereochemistry of this lactam was not rigorously 

assigned but its spectral details matched that for the known compound (244) reported in the 

literature. 143 

~ 
I 
Bn 

/ H 
_L_i,_N_H_3_' -_7_8°_C_ ........... o)j) 

H H 

(197) (244) 
Scheme 79. 
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In order to facilitate this key cyclisation/deprotection sequence we have already 

incorporated a series of diverse N-benzyl groups into the lactam architecture as the 

chemical methods employed for their removal are reported to be more tolerant of highly 

functionalised systems.140 

To our gratification deprotection of p-methoxy protected lactam (210) proceeded smoothly 

using ceric(lV) ammonium nitrate in aqueous acetonitrile after 2 hours.132 The required 

lactam (245) was isolated in excellent yield (96%). We also carried out a number of other 

deprotection techniques on (210), most of which failed. 14o We did however manage to 

deprotect (210) in refluxing trifluroacetic acid in 2 hours to give (245) in 83% yield 

(Scheme 80).131 

)=:D 
I 
PMB 

(210) 

CAN, aq. MeCN ~ 
-------o-r----~·~ o~~~ 

TFA, reflux H 

-(245) 

Scheme 80. 

Deprotection of bicyc1ic regioisomer (159b) using the ceric ammonium nitrate method to 

our surprise gave the unusual oxidation product (246), this suggest that the oxidation of the 

allylic methylene group is favoured over that of the benzylic position (Scheme 81). 

Oxidations of this type have been reported in the literature for cyclic olefms, but they have 

been found to he extremely solvent dependent.144 An identical oxidation w~s observed for 

benzyl derivative (152b). 
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CAN, aq. MeCN 

Scheme 81. 

(246), R = PMB, 74% 
(247), R = Bn, 68% 

Unfortunately, each of the literature methods140 employed to deprotect p-methoxybenzyl 

lactams of type (159a-b) and (221) (fig. 15) met with failure. Deprotection of diene (221) 

(Table 9) via eerie ammonium nitrate did not show any similar oxidation products 

analogous to those observed in scheme 81 and an unidentifiable complex mixture was 

obtained. Deprotection 'of p-nitrobenzyl monoene (213) and diene (224) via palladium 

catalysed hydrogenation were also unsuccessful and the starting material was re-isolated in 

quantitative yield in both cases. However, the ceric ammonium nitrate method proved to be 

versatile in the deprotection of a number of our bicyclic and tricyclic lactams with bicyclic 

compounds (211) and (212) and tricyclic compounds (232) and (234) all yielding their 

corresponding deprotected analogues (248-251) in excellent yield (fig. 15). 

):N~ 
I .. R 

(221) R = PMB 
(224) R = PNB 

(248) R = Me, n = 3, 86% 
(249) R = Ph, n = 1,84% 

Figure 15. 

93 

(250) 86% (251) 79% 



Chapter 3 

Having achieved this important deprotection step for y-Iactams of type (210), our next step 

was to incorporate these cyclisationldeprotection methodologies into a synthetic strategy 

for the total synthesis of sesquiterpenic alkaloid (242). The complex monobromoacetamide 

(252a) could be prepared in several steps, incorporating the imination and N-acylation steps 

detailed previously. Eremophilene (242) could then be obtained after treatment of enamide 

(252a) with copper(I) bromide:(123) followed by deprotection of the cyclised product with 

eerie ammonium nitrate (Scheme 82). 

>XBrt) X
Br 0& > 

o N o Br 
I 

(242) PMB (252a) PMB-NH2 
(253) 

Scheme 82. 

Before addressing the synthesis of cis-decal one (253) an important issue concerning the 

formation of enamide (252a) needed to be considered. The cis-decalone used to construct 

precursor (253) is now unsymmetrical in comparison to the cyclohexanone-type precursors 

we have studied previously, this brings in the question ofregioisomerism. We now have the 

possibility two different types ofregioisomers (252a) and (252b) (fig. 16). Since we know 

we require regioisomer (252a), we envisaged that some model systems should be 

synthesised before the application of this chemistry to alkaloid (242). 

XBr I 
o N 

I 
PMB (252a) 

XBr 
o N 

I 
PMB (252b) 

_ Figure 16. Regioisomers of enamide (252) 
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2-Decalone (254) was treated with p-methoxybenzylamine and 2-bromopropionyl-bromide 

to afford enamide (255) in good overall yield (76%). The l3C nmr spectrum confirmed that 

only one regioisomer was present, although it was not obvious from the complex 2D 

spectra which one was present. Therefore, we attempted to solve the structure from the 

cyclised product, treatment of the enamide (255) with 1 equivalent of CuBr:(123) in 

toluene resulted in the formation of the monoene (256) (Scheme 83). Again, the I3C nmr 

spectrum clearly showed that only one product was obtained, although due to the 

complexity of the IH and 2D nmr spectra the regiochemistry of the structure could not be 

fully assigned. The employment of n.O.e. on precursor (255) and cyclised product (256) 

was ineffective as irradiation of a clearly resolved peak proved impossible. In addition, the 

products (258a) and (258b) from the cyclisation of tertiary bromoenamide (257) using 30 

mol% of copper(I) bromide and Me6-tren (39) at room temperature, provided no further 

structural information. 

(i),(ii) .XBr (Yl 
o N~ 

(iii) ~ 
-----I ... ~ O~~ 

(254) I 
PMB (255) 76% ~MB (256) 75% 

1 (i),(iv) 

i Br (Yl_(V) --... ... 
o N~ 

~MB (257) 63% 
N 
I 
PMB (258a) 36% 

(i) PMBNH2, Dean-Stark, toluene, reflux; (ii) MeBrHCC(O)Br, DEA, OoC; (iii) CuBr:(123), 

toluene, reflux; (iv) Me2BrCC(O)Br, DEA, OOC; (v) CuBr:(39), DCM, RT 

Scheme 83. 
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Around the time that this work was being carried out, Parsons and co-workers published 

the use of a structurally similar dichloroacetamide (259), which was also based on 2-

decalone (254). This compound was being used to manufacture diene (260) via CuCI:bipy 

radical cyclisations (Scheme 84). 122b When we compared the IH and 13C nmr spectroscopic 

data for the ring structure of bromoenamide (255), we established that it was similar to the 

data published for Parson's chloroenamide (259), with the alkenic proton signal observed at 

35.36 ppm and its corresponding carbon signal at 3134.4 ppm. 

CI 
Me02C+CI ('Y"1_5_0_m_OI_%_C_U_B_r:_b_ip_Y ............ Me02C ~--t' 
O~N~ toluene, reflux 0 

I 
PMB 

(259) 

Scheme 84. 

(260) 

We decided that we needed further evidence to solve this regioisomer problem, therefore 

for our next study the preparation of precursors (261) and (262) was examined (fig. 17). 

The intention was that these precursors would be sufficiently crystalline to provide us with 

an X-ray structure, thus determining the correct position of the alkene by measurement of 

the appropriate bond lengths. Imination of a-cholesterone with the appropriately 

substituted benzylamines, followed by the standard N-acylation gave precursors (261) and 

(262) in 89% and 72% yield respectively. The crystals produced from p~methoxybenzyl 

derivative (261) were not of the quality required for X-ray crystallography, however the 

crystals grown from the p-nitrobenzyl derivative (262) produced the X-ray structure shown 

in figure 17 and detailed in the appendix. 
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Figure 17. Ball and stick representation of the crystal structure of (262) 

Typically, bond lengths for Sp3 carbon-carbon bonds are quoted in the literature as 1.54 A, 

while'those for Sp2 C=C bonds are 1.34 A.145 From the x-ray structure of precursor (262) 

we discovered that the bond length between C 1 and C2 was 1.50 A which indicates the 

presence of a Sp3 carbon-carbon bond. The bond length between Cl and C7 was 1.32 A 
. 

indicating the presence and position of the alkene double bond. We also found that the 

position of the alkene in the IH and l3C nmr spectra was comparable to that of precursors 

(255) and (259). Using the evidence obtained from the X-ray structure coupled with the IH 

and l3C nmr evidence we have unambiguously assigned the structure of (262) as the 

regioisomer of interest (Scheme 85). Cyclisation of p-methoxybenzyl (261) using 1 

equivalent of CuBr:(l23) in toluene gave the multi-cyclic monoene (263) in 69% yield, its 

respective diene (264) was also produced in 79% yield by changing the solvent system to 

1,2-dichloroethane.125 The p-nitrobenzyl derivative (262) however, unexpectedly produced 

the diene (265) in both toluene and 1,2-dichloroethane in 76% and 59% yield respectively 

(Scheme 85). The initial formation of the monoene was not observed under either of these 

conditions. Subsequent CAN deprotection of monoene compound (263) progressed 
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efficiently and in excellent yield (81%), however deprotection of dienes (264) and (265) 

failed using both CAN and TF A procedures. 

" -.. 

xsr 
I 

o ~ H 
R 

(261) R = PMB, 89% 
(262) R = PNB, 72% 

Conditions: 1 eq. CuBr:(123), 
solvent, reflux, 2 hrs 

toluene 

Scheme 85. 

N 
I 
R 

(263) R = PMB 

(264) R = PMB 
(265) R = PNB 

Next we prepared the methyl substituted cyclohexenone (266) from 2-

methylcyclohexanone and methyl vinyl ketone (MVK) via the acid catalysed Robinson 

annulation reported by McMurry.146 Hydrogenation of enone (267) to give bicyclic ketone 

(266)147 was followed by treatment with p-methoxy benzylamine and acylation with 2-

bromopropionyl-bromide to give the cyclisation precursor (269) in 84% yield (Scheme 86). 

MVK,H2S0~ ~ 
reflux o-NV 

(267) 

10%P~/C m ... 
H2, EtOH 0 

(266) 

PMB, toluene ... 
Nm MeBrHC(O)Br yBrm 

..... A I reflux 
~MB (268) 

DEA,OoC 0 N 

~MB (269) 

Scheme 86. 

98 



Chapter 3 

Employing the usual CuBr:(123) catalyst in toluene, precursor (269) cyclised to afford 

monoene (270) in 66% yield, and when 1,2-dichloromethane was used as the solvent the 

diene (271) was formed in 70% yield (Scheme 87). Unfortunately, cyclisation of tertiary 

bromo acetamide derivative (272) and also the p-nitrobenzyl derivative (273) failed and in 

all cases the starting material was recovered quantitatively (Scheme 87). 

iBrrh 
o N~ 

I 
R 

(269), R = PMB, R1 = H 

(272), R = PMB, R1 = Me 

(273), R = PNB, R1 = H 

toluene 

Conditions: 1 eq. CuBr:(123), 
solvent, reflux, 2 hrs 

Scheme 87. 

(270) 86% 

N 
. PMB (271) 70% 

We have previously shown (Scheme 82) that the initial building block required for the 

construction of eremophilene y-Iactam (242) was cis-decalone (253). Duhamel and co-

workers have reported the diasteroselective synthesis of cis-decalone (253) in 4-steps from 

2-methylcyclohexenone (274) (Scheme 88).148 The enone (274) was produced from 2-

methylcyclohexanone via a dehydrohalogenation reaction using N-bromosuccinimide and 

lithium bromide.149 Regiocontrolled synthesis of tetrasubstituted silyl enol ether (275) was 

achieved through addition of dimethyl cuprate to 2-methylcyclohexenone (274), followed 

by trapping intermediate enolate using tert-butyldimetylsilyltriflate (TBDMSOTf). 

Stereocontrol of diketone formation (276) was achieved via Michael addition of the 

electrophile on the less hindered side of the double bond.148 Aldol condensation using 
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dilute sodium methoxide afforded bicyclic enone (277) and subsequent hydrogenationlSO 

gave the required cis-decalone in 78% yield overall (Scheme 88). 

o 0 OTBDMS a (1).(iI). ~ (iii).(iv) _ Cc (v)_ 

(vi) £1:)(274) (vii) D)(275) 

----~.~ . 
o ~ 0 

(277) (253) 

(Ix) _)CBr ~ (x) 

o N.JlAJ 
PMB (252a) (279) (242) 

(i) NBS, CCI4; (ii) LiC03, LiBr; (iii) Me2CuLi, HMPA; (iv) TBDMSOTf; (v) MVK, AcOH, 
BF3Et20; (vi) NaOMe; (vii) 10% Pd/C, H2, EtONa; (viii) PMB, toluene; (ix) MeBrHC(O)Br, 
DEA; (x) CuBr:(123), toluene; (xi) CAN, aq. MeCN 

Scheme 88. 

At this point all that was required was to synthesise the imine (278), then precursor (252a), 

followed by copper(l) mediated cyclisation to (279). However, when we carried out the 

standard condensation reaction between p-methoxybenzylamine and ketone (253) (with 

azeotropic removal of water on a Dean and Stark trap), we discovered no reaction had 

occurred and the starting material was recovered quantitatively. The removal of forming 

w~~er is necessary to complete this reversible reaction, therefore we attempted to use 

methods that facilitate this process from the literature. lSI These included the use of organic 

acids (e.g. tosic acid),l51a Lewis acids (e.g. TiC14)lSlb to aid condensation and also the use 

of different solvents that form azeotropes with water at both higher and lower temperature 

than toluene. ISle We also tried the technique of substituting p-methoxybenzylamine (PMB) 
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with trimethylsilyl (TMS) groups in order to aid the leaving group ability of the oxonium 

ion by the formation ofTMS ether.152 

Initially we thought that the steric bulk of the PMB group was hindering the Biirgi-Dunitz 

trajectory of 109° that the nucleophile requires in order to attack the carbonyl group, but 

when we carried out the same reaction using both benzyl amine and also the less bulky 

methylamine it resulted in no reaction. 153 It is not clear why the structurally similar 

compound (266) can form the required imine and cis-decalone (253) cannot, especially 

when the only clear difference between them is one methyl group (Figure 18). 

(253) 

Figure 18. 

Unknown conformational effects caused by the additional methyl group may be attributed 

to these results, but we could compile no evidence to support this assumption. 

Unfortunately, due to this problem we were unable to complete the synthesis of alkaloid 

(242) using this pathway. Next, we decided to attempt a different pathway to the alkaloid 

(242). Cyclisation of a haloacetate (280) using our copper(I)-amine complexes could give 

the bicyclic lactone (281). The idea behind this was that if this cyclisation proceeded it may 

give us access to the lactone derivative (243), which can be readily converted to the lactam 

using standard chemistry, for example liquid ammonia and methanol in a sealed tube at O°C 

has been reported for similar compounds.154 (Scheme 89). 
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)::D toluene, !l. ;t:D Cu(I)X: Ligand 

(280) (281) 

lid. NH3, MeOH, ... 
sealed tube, OOC 

(243) (243) 

Scheme 89. 

Cyclisation precursors (282-283) were synthesised by treatment of cyclohexanone with the 

appropriate haloacetic anhydride in the presence of dicyclohexylcarbodiimide (DCC) 

according to literature procedure. ISS The IH and l3C nmr data matched that quoted in the 

literature. Reaction of precursors (282-283) using 30-100 mol% of CuCI or CuBr:(123) 

respectively, in both refluxing toluene and 1,2-dichloroethane resulted in no cyclisation and 

quantitative recovery of starting material. We then repeated these reactions under sealed 

tube conditions, but unfortunately this led only to production of the reduced compounds 

(284-285) (Scheme 90). The nmr spectra for these compounds also matched those quoted in 

the literature.1S6 At this point we resigned to the fact that copper(I) mediated cyclisation of 

these haloacetates would not proceed using our catalyst systems or reaction conditions, 

therefore we were unable to use these methods to gain access to eremophilene alkaloid 

(242). 

Cu(I)X:(123), toluene R1XR2D 
------------~ ... ~ I 

sealed tube, 120°C 0 0 

(282) R1,2,3 = CI, 54% 

(283) R1 = Me, R2 = H, R3 = Br, 60% 
Scheme 90. 
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During the course of this investigation we have shown that the synthesis of a number of 

complex multi-cyclic alkaloid templates can be synthesised using our copper(D radical 

cyclisation chemistry and future work may involve the application of this chemistry 

towards the manufacture of other medicinally important natural product architectures. 

3.4 Copper(I) Mediated Radical Cyclisations in Ionic Liquids 

3.4.1 Introduction 

The applications of environmentally benign reaction media are becoming very important 

factors in today's environmentally conscious society. In connection with this, ionic liquids 

have attracted considerable interest. Ionic liquids are salts that are liquid at low temperature 

«100°C) and represent a new class of solvents with nonmoJecular, ionic character. Even 

though the first representative of this class has been known since 1914,157 ionic liquids 

have only been investigated as solvents for transition metal mediated reactions in the past 

ten years.IS7-IS9 Publications to date have shown that replacing an organic solvent by an 

ionic liquid can lead to remarkable improvements in yields and stereochemistry of well­

known processes. ISS Ionic liquids form biphasic systems with many organic product 

mixtures. This gives rise to the possibility of a multi-phase reaction procedure with easy 

isolation and recovery of homogenous catalysts. In addition ionic liquids have practically 

no ..vapour pressure which facilitates product separation by distillation.1ss There are also 

indications that switching from a normal solvent to an ionic liquid can lead to novel and 

unusual chemical reactivity.IS7 Room temperature ionic liquids have been used to great 

effect as solvents for a number of reactions, for example, Heck reactions,16O Friedel-Crafts 

reactions,161 isomerisations of fatty acid derivatives,162 dimerisation reactions of alkenes,163 
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Diels-Alder reactions,164 and hydrogenation reactions165 to name a few. Ionic liquids such 

as 1-butyl-3-methylimidazolium hexaflurophosphate157 ([bmim][pF6]) have a particularly 

useful set of properties, being virtually insoluble in water and alkanes but readily dissolving 

many transition metal catalysts. This ionic liquid and its analogues [bmim] [X] are shown in 

figure 19. 

bmim= 

Figure 19. 

3.4.2 Copper Mediated Radical Cyclisations in [bmim)[PF6) 

Our initial interest in this area was to investigate whether we could carry out a copper(I) 

mediated 5-endo radical cyclisation of a tertiary bromoacetamide (145) in the ionic liquid 

[bmim][PF6]. Since we have already established that the cyclisation of (145) takes place at 

room temperature using a catalytic amount of CuBr:(39) (section 3.2.2), all that was 

necessary was to replace the organic solvent (DCM) with [bmim][pF6]. The standard 

procedure for catalyst removal on completion of these DCM reactions was to pass the 

reaction mix through a silica bung. This rendered catalyst recycling impractical. However, 

if the final products can be removed from an ionic liquid by extraction using an immiscible 

organic solvent (such as toluene), the catalyst may be recycled and used again for another 

reaction. Cyc1isation of (145) in [bmim][PF6] using the standard conditions proceeded 

rapidly (20 minutes) (Table 10). Subsequent extraction of the dark green coloured ionic 

liquid/catalyst with toluene afforded a 3:1 mixture of regisomeric products (152a) and 

(152b) in 99% yield .. It should be noted that the yield for the reactions carried out in the 
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ionic liquids are markedly improved on those utilising organic solvents and the initial 

reaction times for both compare favourably. Leaching of CuBr:Me6-tren catalyst into the 

extracted products was not observed in the IH or 13C nmr of the products, nor was this 

observed in the mass spectrum. 

~BD 30mol% CuBr:(39) ~ 
O~N I --[-bm-i-m-][p-F-61-~"'~ O~NV 

I I 
Bn Bn 

+ J:=o 
I 
Bn 

(145) (152a) (152b) 

Reaction Time Yield Ratio a:b 

1 20 mins 99% 3:1 
2 1 hrs 99% 3:1 
3 2.5 hrs 74% 3:1 
4 6 hrs 20% 2:1 
5 12 hrs no rxn 
" 24 hrs no rxn* 
" 48 hrs no rxn 

* Addition of 1 equivalent of copper(O) 

Table 10. Catalyst recycling results for 5-endo cyclisations 

Next, we reused the same ionic liquid/catalyst system to carry out another cyclisation of 

(145), on this occasion the reaction took significantly longer to reach completion (I hour). 

This trend continued after recycling the catalyst system a number of times, the results of 

which are shown in table 10. After the 5th time of recycling no reaction occurred after 48 

hours. We thought that the catalyst system maybe exhausted (i.e. totally oxidised to Cu(II», 

therefore we added I equivalent of copper(O) after 24 hours, in an attempt to reactivate the 

catalyst via reduction to copper(J). This procedure was thought to have failed as no further 
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reaction was observed. We also carried out an analogous experiment on N-allyl-N­

benzylbromoacetamide (286i66 which we found undergoes an instantaneous 5-exo-trig 

atom transfer radical cyclisation in dichloromethane using CuBr:(39) to afford cyclic 

product (287). 

iBf 30mol% CuBr:(39) ±rBr .... 
[bmim][PFe] o N o N 

I I 
Bn Bn 

(286) (287) 

Reaction Time Yield 

1 50 mins 99% 
2 2 hrs 99% 
3 6 hrs 90% 
4 12 hrs no rxn 
" 24 hrs no rxn* 
" 48 hrs no rxn 

* Addition of 1 equivalent of copper(O) 

Table 11. Catalyst recycling results for 5-ao cyclisations 

This experiment showed a similar trend with the catalyst becoming inactive after the 4th 

time of recycling. Also, catalyst reactivation was not observed after the addition of 

copper(O) (Table 11). Although, the initial cyclisation of (286) in the ionic liquid took 

significantly longer to complete (50 minutes) compared to DCM «20 seconds), it should 

be noted that cyclisation only proceeded to give 9% of (287) in toluene, 14% in 1,2-

dichloroethane and resulted in no reaction in methanol, pentane and acetonitrile. 
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We have also successfully carried out a number of other 5-endo cyclisation reactions in 

[bmim][pF6], including the cyclisation of bicyclic precursors (167-169) to form tricyclic 

compounds (170-172) in excellent yield (99%) (fig.20). 

N, 
Bn 

(170) 99% (172) 99% (196) 

Figure 20. 

Cyclisation of less activated secondary bromoacetamide (196) unsurprisingly did not 

proceed at room temperature via the CuBr:(123) catalyst system. When we heated the 

reaction at 90°C in [bmim][pF6] it produced a complex mixture of unidentifiable products. 

Further work in this area may entail the use of ionic liquids with different cationic and 

anionic fragments (e.g. Figure 19), as others have reported that simply changing the counter 

ion has been reported to have enormous effects on reactivity and selectivity of 

processes. 157-158 

3.5 Conclusion 

In this chapter we have demonstrated a number of highly efficient radical cyclisations 

reactions mediated via copper(I) amine complexes. We have shown that the reaction of 

tertiary bromoacetamides (146-151) with catalytic CuBr:Me6-tren(39) at room temperature 

produces regioisomeric mixtures of 'Y-Iactams (152, 155-160) in a highly efficient manner 

via an initial 5-endo-trig cyclisation followed by oxidation and elimination offf'. We have 

also demonstrated that it was possible to trap the intermediate acyliminium ion (154) via 
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intermolecular nucleophilic addition of methanol, although the trapped product is unstable 

and eliminates slowly after a short time. This chemistry has also been applied to the 

cyclisation of tricyclic lactams. We discovered that a-substituted bromoacetamides (167-

168) furnished y-Iactams (170-171) via a 5-endo cyclisation pathway whereas the 

respective l3-substituted derivative (169) furnished the 13-lactam (172) via a 4-exo 

cyclisation pathway. Several potential tandem cyclisation reactions were examined, 

however, after initial cyclisation to give regioisomeric products, no tandem cyclisations 

occurred. 

A variety of less activated secondary haloacetamides (196, 202-207) were shown to 

undergo efficient 5-endo-trig radical cyclisations to give a,l3-unsaturated monoene lactams 

(197,208-213) mediated by CuBr:TPA (123) in refluxing toJuene. Changing the solvent to 

refluxing 1,2-dichloroethane furnished the corresponding a,l3-unsaturated diene lactams 

(218-219). These reactions also proceed by a radical-polar crossover mechanism of the type 

described above. Primary bromoacetamide (225) did not undergo cyclisation under any of 

the conditions applied to it, and instead when heated in a sealed tube its reduction product 

(226) was isolated. A series of multi-cyclic compounds were also produced using this 

method and their subsequent deprotection led towards the attempted synthesis of the 

sesquiterpenic alkaloid, eremophilene y-Iactam. We have also demonstrated that it is 

possible to effectively synthesise a series of y-Iactams via 5-endo radical cyclisation in the 

ionic liquid [bmim] [PF6] at room temperature. The 5-exo ATRC of N-allyl-N­

benzylbromoacetamide (286) to form (287) was also established. Using this method the 

catalyst system was shown to be easily recyclable for further reaction. Overall a wide 

variety· of cyclisation precursors were examined with most providing a high yield of 
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product. All successfully deprotected y-Iactams have been sent for biological testing for 

antibacterial activity in pseudomonads. 
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Chapter 4: 5-Endo Radical Cyclisation of Enamides Mediated 

by Ceric Ammonium Nitrate 

4.1 Introduction 

In chapter one it was shown that one of the most important methods for preparing 5-

membered nitrogen heterocycles is the radical cyclisation of unsaturated organohalides. 

Cyclisations proceeding by a 5-exo-trig pathway have been shown to provide a mild and 

flexible approach to a variety of pyrrolidinones (Chapter 1, section 1.5). It has been 

demonstrated, however, in the preceding chapters and also in the literature, that an 

alternative approach to pyrrolidinones which centres on the 5-endo-trig radical cyclisation 

of halo-enamides is also possible.77, 125, 118, 120 This cyclisation is unusual in that the initial 

carbamoylmethyl radical reacts to form a 5- rather than a 4-memQered (or p-Iactam) ring. 

The 4-exo-trig cyclisation, to form a p-Iactam, is generally observed when radical­

stabilising (aromatic) groups are introduced on the enamide C=C bond.167 These 5-endo 

cyclisations, which can be mediated by copper or tributyltin hydride. have been shown, for 

example, to provide efficient approaches to substituted pyroglutamates.168 However, the 

use of tributyltin hydride is far from ideal as tin-containing by-products are often difficult 

to remove and the cyclisation leads to the reduction of two functional groups (i.e. the C­

halogen and C=C bonds). With a view to developing a more straightforward and versatile 

approach to functionalised pyrrolidinones, this chapter describes the use of ceric 

ammonium nitrate (CAN) as an initiator for 5-endo-trig radical cyclisations. The results of 

which will be compared to the previously discussed copper(I)-amine reagents in the last 
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two chapters. Both methods have a number of advantages over the use of tributyltin 

hydride. Hence, the reagents are cheaper, the metal by-products are more easily removed 

and, importantly, a functional group (generally a double bond or halogen atom) is 

introduced into the product after cyclisation. 

Cerium (IV) compounds represent the most notable oxidants among lanthanide reagents. In 

particular, CAN has been utilised extensively for a variety of oxidative transformations.144 

As might be expected for very powerful one-electron oxidants, the chemistry of Ce(lV) 

oxidations of organic molecules is dominated by radical and radical cation chemistry, this 

area has been extensively reviewed by Molander.109 

4.2 Cerie Ammonium Nitrate Mediated Cyelisations 

Parsons has recently reported tllat the l3-amido ester (288) undergoes a 5-endo-tr;g radical 

cyclisation to form bicyc1ic diene (289) in 38% yield. This cyclisation reaction was 

mediated using 4 equivalents of manganese(III) acetate (Mn(OAC)3) in boiling methanol 

(Scheme 91).122 

Me02C~ D 
o N 

I 
Bn (288) 

Mn(OAch 
______ (_4_e_qU_iv_._) __ ~.~Me02C~ 

MeOH, heat oAN~ 
38% - I 

Bn (289) 

Scheme 91. 

Nair and co-workers have recently carried out a number of studies to compare the reactivity 

of Mn(OAC)3 with CAN, the results of which indicated that the cerium(IV) reagent is 

superior to the manganese(nn reagent in the oxidative addition of 1,3-dicarbonyl 
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compOlUlds to unactivated aJkenes (Chapter 1, Scheme 42).110-112 With this in mind, we 

decided to investigate whether CAN could be used to mediate a 5-endo-trig cyclisation of 

J3-amido ester (290), as to our knowledge this type of process had not been reported. In 

chapter one we also specified that CAN was used to promote the 4-exo-trig cyclisation of 

enamides to give highly functionalised J3-lactams in moderate yield (Scheme 43).113 The 

conditions used to carry out these reactions were the addition of 2 equivalents of CAN to a 

solution of the appropriate precursor in stirring methanol at room temperature. Therefore, 

we decided to use this procedure as the starting point of our study. 

The J3-amido ester precursor (290) was prepared by N-acylation of the imine derived from 

cyclohexanone and p-methoxybenzylamine, with methyl malonyl chloride (Scheme 92). 

The spectral data compiled for (290) compared favourabl:r to that reported for analogue 

(288) in the literature. I22 

(i) .. D 
N7 
I 
PMB 

(ii) ~ MeO"cl (1 
o NAJ 

I 
(290) PMB 

(i) PMBNH2, Dean-Stark, toluene, reflux; 
(ii) Me02CCH2COCI, toluene, OoC, 57% 

Scheme 92. 

Iriitial reactions of (290) with 2 equivalents of CAN in methanol at room temperature gave 

the bicyclic lactam (291) in 28% yield. However, the yield of this reaction was found to 

improve from 28% to 65% when 4 equivalents of CAN were employed, whereas addition 

of>4 equivalents was found to have a detrimental effect on the product yield. (Scheme 93). 
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CAN 
___ (_4_e_qU_iv_._) __ ~._Me02C~ 

MeOH, RT OANI~ OMe 
65% 

(291) PMB 

Scheme 93. 

Interestingly under these conditions no deprotection of the PMB group was observed. A 

review of the literature suggested that there is no conclusive reaction mechanism for CAN 

mediated processes, although the nature of the initiation and termination processes is 

thought to be similar to that of Mn(OAch.104
, 122 However, we propose a mechanism 

consistent with the experimental data obtained in scheme 94. 

It is suggested that the 'cerium enolate (292) is formed via loss of a proton from precursor 

(290) upon treatment with CAN. This could then cyclise in a 5-endo fashion to produce the 

bicyclic intermediate radical (293). We have already observed for our Cu(!) cyclisations 

that tertiary radicals such as (293) are particularly susceptible to oxidation and formation of 

cation (294) could occur using another equivalent of CAN. Following the loss of a proton, 

the alkene (295) could be obtained. However, the proton adjacent to the ester is still 

relatively acidic and a secondary cerium enolate (296) could be formed. The radical (297) 

derived from enolate (296) is likely to be oxidized to cation (299), which is in turn trapped 

via nucleophilic addition of methanol (291) (Scheme 94). It should be noted that the use of 

traditional radical traps, (e.g. diphenyl selenide and diphenyl sulphide), were ineffective in 

these processes and the methoxy trapped product was afforded in all cases. 
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Meo~D 
o ~ 

(290) PMB 

lcelv 
oj 

ee'V 
• MeO~,<0 

o N5Jl.../ 

lcelv 

Meo-l:o .. Ce'V 

o N 
I 

(296) PMB 

I 
(292) PMB 

o 

Me0-:CO 
o ~ 

(295) PMB 

o 

-Celli Meo~ ... 
ON· 

I 
(293) PMB 

r~:: 
~.~-_H+ __ MeO~ 

I 
(294) PMB 

o ! -Celli 

Meo~ ........ I--__ -11 ...... Meo~ C( J:IlMeO~ 
O~N~ O~-:-~ O~-:-U 

I I I 
(297) PMB (298) PMB (299) PMB 

~MeOH 
MeO,C

W o ~ OMe 
(291) PMB 

Scheme 94. Proposed mechanism for the cyclisation of (290) 

The fact that the best yield of (291) was obtained using 4 equivalents of CAN could 

therefore be explained by the two radical generation and oxidation sequences. This 

methoxy trapped compound proved to be very stable, unlike the copper(1) cyclised 

derivative (164) (section 3.2.3). However, we did discover that refluxing (291) in DCM or 

toluene with a catalytic amount of to sic acid (p-TSA) afforded the corresponding diene 
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(300) in quantitative yield (Scheme 95). We also discovered during the course of this work 

that cyclisation of (290) will not proceed in solvents such as dichloromethane, 1,2-

dichloroethane, benzene and toluene at room temperature or higher because of solubility 

problems with CAN. Precursor (290) was recovered quantitatively from these reactions, 

although we did find that reaction in water or acetonitrile facilitated the solvation of CAN, 

but unfortunately these reactions yielded unidentifiable complex mixtures. 

Me02C,W 
o ~ OMe 
(291) PMB 

p-TSA, reflux Me02C~ 

DCM or toluene .. oA-:-~ 
99% I 

(300) PMB 

Scheme 95. 

Efforts were focused on modifying the structure of the precursor to examine the effect on 

the ring closure. The methyl-substituted precursor (301a) was produced on treatment of 2-

methylcyclohexanone with p-methoxybenzylamine and methyl malonyl chloride under the 

standard conditions. Interestingly, this reaction gave only one product (30Ia), its 

corresponding regioisomer (301b) was not observed by lR, l3C or 2D nmr spectroscopy 

(Scheme 96). 

(i), (ii) • Me02C.::l :.9 
o N 

I 
. (301a) PMB 

(i) PMBNH2, Dean-Stark, toluene, reflux; (ii) Me02CCH2COCI, toluene, OoC, 69% 

Scheme 96. 
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Methyl-substituted precursor (30Ia) was treated with 4-equivalents of CAN in methanol, 

the result of which gave the bicyclic methoxy derivative (302) in 78% yield as a single 

diastereomer (Scheme 97). 

Me02C 

Meo2c1 :9 4 eq. CAN, MeOH,.. 0 

OAN RT,20mins N 

PMB 78% PMa'MeO -

(301 a) (302) 

Scheme 97. 

The synthesis of some tricyclic systems was then investigated. The enamide precursors 

(303) and (304) were prepared from a-tetralone and f3-tetralone in 66% and 69% yield 

respectively, using the standard preparation (Figure 21). 

(303) 66% (304) 69% 

Figure 21. 

It should be noted that the 1 H nmr spectra observed for each of these compounds was quite 

different. In the IH spectra for a-substituted derivative (303) the alkenic proton was 

observed as a sharp triplet at 0 6.81 ppm and the benzylic protons were observed as a sharp 

set of AB doublets at 0 5.47 and 3.80 ppm, which suggests that they are in different 
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chemical environments. However, the alkenic and benzylic protons for J3-substituted 

derivative (304) were observed as broad singlets at 06.18 and 4.73 ppm respectively. The 

IH evidence suggested that a-substituted derivative (303) was a single rotamer held in 

position via restricted rotation around the amide bond. The broadness found in the IH 

spectra for J3-substituted derivative (304) and the fact that its alkenic and benzylic protons 

are observed as broad singlets suggest that there is less hindered or slow rotation around its 

amide bond. 

Cyclisation of a-substituted derivative (303) using 4 equivalents of CAN in methanol at 

room temperature gave the tricyclic compound (305) in 47% yield (Scheme 98). 

Me02C:l 

o N 

OMe 

I 
PMB 

(303) 

(305) 

o 

4 eq. CAN, MeOH, MeO 

RT,20mins 

(306) 

MeO 

(307) 

Scheme 98. 

The mechanism for this cyclisation was thought to proceed via a 5-endo-trig cyclisation 

similar to that shown in scheme 98, with four equivalents of CAN being used for two 
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radical generation sequences and two oxidation sequences to furnish cationic intermediate 

(306). Finally, production of the aromatic middle ring may involve elimination of a proton 

from cationic intermediate (307) to afford the indolone (305). . 

However, when we tried to cyclise the ~-substituted derivative (304) with CAN using the 

same procedure we found that no cyclisation took place and the tetralone ring portion of 

(304) fully oxidised to give the naphthalene based aromatic system (308) in 45% yield 

(Scheme 99). 

Me02C;t 

o N 
I 
PMB 

(304) 

4 eq. CAN, MeOH, Meo2c1 
----------------------------~~~ ~ 

o N RT,20mins 

Scheme 99. 

I 
PMB 

(308) 

These results suggest that the restricted rotation around the amide bond in a-substituted 

precursor (303) confine the radical donor and acceptor in a position that is beneficial 

tow~ds cyclisation, i.e. the initial carbomoyl radical can react faster with its alkene 

electron acceptor than aromatisation can occur. With the ~-.substituted precursor (304) 

however, the aromaisation occurs faster than cyclisation. It should be noted that no 4-exo or 

5-endo cyclisation products (analogous to those observed using copper) were isolated for 

the cyclisation of (304). In fact no such products were detected when the reaction was run 

. at lower (-IOCC - O°C) or higher temperatures (refluxing methanol) using varying 

concentrations of CAN (1-8 equivalents). We also discovered while probing the reaction 

conditions for the.cyclisation of (303) and (304), that using 4 equivalents of CAN in 

118 



Chapter 4 

acetonitrile (rather than methanol) gave the desired products (305) and (308) in higher yield 

(72% and 77% respectively), although the exact reason for this is not clear. 

4.3 Applications of Ceric Ammonium Nitrate Mediated Cyclisations 

Towards the Synthesis of Natural Product Templates 

4.3.1 Introduction 

In chapter one (section 2.3) we described the application of copper(I) mediated 5-endo-trig 

radical cyclisations towards the synthesis of the heterocyclic ring portion of non-peptide 

bradykinin inhibitor L-755,807 (129). We also described two convergent approaches 

towards the racemic synthesis of this ring portion (Sche~e 53) both of which resulted in 

the proposal of synthon (136) as a target molecule (Scheme 100). 

~ ~ 

(129) 

Scheme 100. 

A number of biologically active and structurally similar molecules to synthon (136) and L-

755,807 (129) have been reported in the literature, which we will now describe briefly. 

Although PI-09l (309), a platelet aggregation inhibitor isolated from Paecilomyces sp. F-

3430/69 contains no epoxide, it does contain the basic hydroxylactam ring system that is 
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present in both (129) and (136). In this case the compound exists as a 1: 1 diastereomeric 

mixture at the quaternary carbon atom (*) in the lactam ring (fig. 22). 

o 

Figure 22. 

To date two syntheses of PI-091 have been reported. One by Iwasawa and Maeyamal70 

which uses a carbene approach towards the ring system while the second synthesis reported 

by Tadano and co-workers was achieved via the lactone (310).154 Treatment of (310) with 

liquid ammonia (Scheme 101) furnished lactam (311) which was oxidised to complete the 

synthesis ofPI-091 (309). 

liq. NH3, MeOH .. 
sealed tube, aOe 

Scheme 101. 

Other natural products which have a similar heterocyclic ring structures include: Fusacarin 

C (312), a mutagenic produced by Fusarium moni/forme;l7l (+)-C~rulenin (313), an 

antibioticl72 and lipid synthesis inhibitorl73 which was isolated from Cephalosporium 

. caerulens;174 (+)-Epolactaene (314), a neuritogenic agent isolated from Penicillium sp. 
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BMI689_P;175 and also Quinolactacin C (315), a novel quinolone antibiotic which was 

isolated from the fermentation broth of Penicillium sp. EPF-6 (fig. 23).176 

~ 0 
.: OH 

(312) 

'J 
(313) 

HO 

0 
0 

HO (314) 

Figure 23. Natural products with a related heterocyclic ring structure 

Since we had already established that the cyclisation of (290) using 4-equivalents of ceric 

ammonium nitrate in methanol afforded the methoxylactam (291) (Scheme 93), we decided 

to investigate whether these conditions could be used effectively towards the synthesis of 

I 

the heterocycles of both synthon (136) and methoxylactam PI-091 (309) (fig. 24). 

o o 
x MeO,C

W 
(291) 0 ~ OMe 

PMB 

Figure 24. 

4.3.2 CAN Promoted Production of Methoxy and Hydroxy y-Lactams 

For our initial disconnection of PI-091 we removed the side chain to give familiar synthon 

(136). We can now place some synthetic equivalent atoms on synthon (136), i.e. X = 
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., 

COOCH3, PG = PMB, and disconnect again to give potential cyclisation precursor (316) 

(Scheme 102). 

NH > 
(309) 

~o)~!':y 
(316) PMB 

< 

Scheme 102. 

x 

(136) 

~ 
Me02~C 

- OM 

o N 
I 

(317) PMB 

Enamide (316) was prepared in "one-pot" via condensation of3-methyl-2-butanone withp-

methoxybenzylamine on a Dean-Stark water trap followed by N-acylation of the 
I 

intennediate imine with methyl malonyl chloride. Subsequent flash column 

chromatography revealed that two compounds were obtained, the fIrst being the required 

precursor (316) (33% yield) while the second compound was revealed to be the 1,3-oxazin-

4-one (318) (36% yield) (fIg. 25). There is very little reported about these class of 

compounds in the literature and their synthesis has only been reported in a few of cases. 177 

They are however, closely related to the medicinally important glyceryl trinitrates (319)178 

such as ITF 296 (320). Such compounds have shown preferential action on large coronary 

vessels along with good oral bioavailability (fIg. 25).179 
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(318) 

Figure 25. 

o 
o N) 
( 

(320) ON0
2 

The construction of 1,3-oxazin-4-one (318) can be rationalised by initial base deprotonation 

of precursor (316) followed by nucleophilic attack on another molecule of methyl malonyl 

chloride affording tautomers (321a-b), subsequent nucleophilic attack of the hydroxyl 

group on the acyliminium ion in (322) furnishes the 1,3-oxazin-4-one (318) (Scheme 103). 

Scheme 103. 

Treatment of precursor (316) with 4 equivalents of ceric ammonium nitrate in methanol at 

room temperature furnished the expected methoxylactam (317) in 67%. However, by 
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simply changing the solvent to acetonitrile the hydroxylactam (323) was produced in 

excellent yield (95%) (Scheme 104). 

Me0
2
J:=nC Me02C:l 

- OMe methanol ~ ........ If-----
o ~MB 0 ~MB 

Me02C 

aCetonitrile 2;x{H ... 

(317) 67% (316) 

Conditions: 4 equivalents of CAN, solvent, RT, 20 mins 

Scheme 104. 

The mechanism for these reactions are thought to proceed in the same manner as that for 

(290), shown in scheme 94, the main difference being the trapping of the hydroxylactam by 

water present in the solvent. However, when we carried out this reaction in various aqueous 

acetonitrile solutions '(i.e. added water) we found that co~petitive PMB deprotection took 

precedence over radical cyclisation and no cyclisation products were obtained. Isolation 

and purification of these deprotected systems proved difficult, therefore the only evidence 

we could obtain for their existence was the isolation of p-methoxybenzaldehyde, which is 

the known by-product when CAN is used t~ remove PMB groups from amides. l32 It should 

be noted that while the purification of methoxylactam (317) required careful column 

chromatography, the synthesis of hydroxylactam (323) was very clean and no further 

purification was necessary leading to higher yields. In the interest of comparison, we also 

.. attempted to mediate the cyclisation of (316) using 4 equivalents of Mn(OAC)3 in boiling 

methanol, as reported by Parsons,122 although after 48 hours no reaction took place and the 

starting material was recovered quantitatively. 

We also discovered that when the CAN mediated cyclisation and oxidation of precursor 

(316) was carried out in refluxing methanol that the Michael addition product (329) as well 

124 



I 

Epoxidati~ 
I 

studies, v~ 
! 

in equilib~ 

(129) coJ 
I 

similar w 

products 1 
j 

11 
I 

In order 1 

number 0 

(330) and 

ethyl mall 

Were isol 

products 

'. dimethox~ 

preceden( 

reaction i 

hopefully 

actiVated 

Isolation 

Chapter 4 

as the methoxylactam (317) were isolated in 23% and 29% yield respectively ( 

105). 

Me02C OMe Me02C~ 

·}=C~~7 ~-> 
--------~.~ O~~~ 0 N 

(329) PMB (317) PME 

Conditions: 4 equivalents of CAN, methanol, ~, 2 hrs 

Scheme 105. 

During studies to prove the configuration of the antibiotic flavipucine, Girotra and . 

carried out the synthesis of a structurally similar hydroxylactam (324).180 The synth 

accomplished via condensation between 4-methyl-2-oxopentanal (325) and 
, 

malonamidic ester (326) followed by conversion to the structurally similar hydro: 

(324) (Scheme 106). 

~o 
(325) 

+ <C02Me 

CONH2 

(326) 

I r=<CO 
--I·"~MA 

HO N C 
H , 

(324) 

o 0 CO 
YVr""co~e ::::;"iii======:::!-!:::: / p(- . 

o CONH2 ~NA( 
HO H 

(328) (327) 

Scheme 106. 
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compiled for this deprotection process was the isolation of 2,4-dimethoxybenzaldehyde 

(the main by-product of this CAN deprotections). 

Et~rY _ 
o ~'I 

R 

(332) R = PMB, 30% 
(333) R = Dmb, 37% 

Eto,C
l 

o ~JY 
R 

(330) R = PMB, 27% 
(331) R = Dmb, 34% 

(330), CAN 

MeOHlMeCN 

Scheme 107. 

... 
Et02l(yC . 

- OR1 

o N 
I 
R 

(334) R = PMB, R1 = Me, 58% 
(335) R = PMB, R1 = H, 97% 

We also attempted to mediate an intramolecular trapping of the postulated cationic 

intermediate produced in the cyclisation step via a tethered alkene (336). However, on 

reaction only (337) and (338) were isolated where the cation was preferably trapped 

intermolecularly by either methanol or water (Scheme 108). 

Me02C Me02C 

I '1 Jl./ acetonitrile... ·~-~O~ 
oAW I' o""~\ 

Me022(yC 
- OMe methanol ....... IIt-----

o N 

(337) 52% 
~ 

(336) 39% 
~ 

(338) 97% 

Conditions: 4 equivalents of CAN, solvent, RT, 20 mins 

Scheme 108. 

We next investigated the effect of the alkyl chain enamide substituent upon cyclisation. 

Thus, precursor (339), (which was prepared from 3-methylpentanone using the standard 

procedure) produced y-Iactams (340) as a mixture of diastereomers in 84% yield (Scheme 
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109). However, attempts to prepare the methoxylactam (341) via CAN cyclisation of (339) 

in methanol proved impossible. Reaction at both room temperature and reflux failed, with 

quantitative recovery of the starting material in both cases. . 

Me0
21?Y--C 

- OMe 

o N 
I 
PMB 

(341) 

... ~ Meo2c1 ~ Me02c~OH ____ 

7' O~N -M-e-C-N--I·~O~~\ -

MeOH ~MB ~MB 
(339) 41 % (340) 84% 

Conditions: 4 equivalents of CAN, solvent, RT, 20 mins 

Scheme 109. 

4.3.3 Deprotection of y-Lactams 

At this stage we had achieved our goal of producing protected methoxylactams (317) and 

hydroxylactams (323) and (340) that represent the heterocyclic ring portions of PI-091 

(309), L-755,807 (129) and quinolactacin C (315) respectively. For our next step we hoped 

to successfully remove the PMB protecting group from these y-Iactams using some of the 

methods employed in the previous chapters. Oxidative removal of the PMB group from 

methoxylactam (317) with a further 4 equivalents of CAN in aqueous acetonitrile furnished 

the deprotected elimination product (342) in excellent yield. Whether the elimination step 

occurred before or after deprotection was uncertain. Unfortunately, the unwanted 

elimination product (342) was again produced when the hydroxylactam (323) was 

deprotected in the same manner. Varying the temperature (-78°C toO°C) had no effect on 

the product outcome. Analogous results were also achieved when (317) and (323) were 

refluxed in trifluoroacetic acid (Scheme 110). 

128 



(317), R = Me, R1 = H 
(323), R = H, R 1 = H 
(340), R = H, R1 = Me 

Chapter 4 

CAN orTFA 

Scheme 110. 

... o 

(342), R1 = H, 86-95% 

(343), R 1 = Me, 93-97% 

Subsequent reaction of the quinolactacin C template (340) using both the CAN and TF A 

techniques also afforded the conjugate diene (343) in a 1:1 ratio of cis:trans isomers 

(Scheme 110). An interesting result was also obtained when we attempted to deprotect 

hydroxylactam (323) using standard hydrogenation conditions (Scheme Ill). While the 

removal of the PMB group failed, the starting mateiial was not re-isolated, instead the 

Michael addition product (344) was obtained in 97% yield. It is not clear whether the 

addition of the hydroxyl group to the 1,4-enone occurs inter- or intra-molecularly. 

Me022(9C 
- OH 

o N 
I 
PMB 

(323) 

MeO 
10% Pd(C, H2 ... 
EtOAc, 3 days 

(344),97% 

Scheme 111. 

As attempts to deprotect the hydroxy and methoxy lactams under neutral (hydrogenation) 

and acidic (TFA) conditions led to elimination of H20 and methanol respectively. we 

thought that it might be possible to deprotect these compounds under basic conditions. As a 
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consequence, we examined the p-nitrophenylethyl protecting group (fig. 27). It was hoped 

that treatment with a strong base (i.e. NaIl) would facilitate deprotonation at the benzylic 

position followed by rapid elimination to the amide anion. This protecting group has been 

reported before for the protection of pyrole and subsequent deprotection was carried out 

using DBU. ISI However, when we tried to cyclise these compounds with CAN under the 

normal conditions we found that no reaction took place and the starting material was 

recovered quantitatively. Re-examination of this reaction at reflux in both acetonitrile and 

methanol lead to production of unidentifiable polymeric compounds that were insoluble in 

common nmr solvents. The reason why the cyclisation procedure failed for this class of 

compounds is unclear. 

(345) R = H, 42% 
(346) R = CH3, 44% 

Figure 27. 

4.3.4 Introducing Diversity in the Side Chain 

As an approach towards the synthesis of PI-091 we decided that it may be possible to 

include the side chain in the initial cyclisation step (i.e. replace the ester with a ketonic side 

chain). (Scheme 112). Retrosynthetic analysis of PI-091 shows that we could disconnect 

back to the potential cyclisation precursor (347), further disconnections brings us back to 
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the recognisable imine (348). Disconnection of side chain (349) gives the a-

hydroxycarboxylic acid side chain fragment (350), the synthesis of which has been already 

been published by Kusumi and Yubuchi via treatment of 2-octanone with tribromomethane 

and potassium hydroxide in water.182 

~!aY > 
(347) 

II 
o 

~OH 
(350) OH 

o 0 PMB .... 
N 

CI (!a;y < 
(349) 

Scheme 112. 

Before setting out to synthesise side chain (349), followed by precursor (347) we thought it 

prudent to carry out the synthesis of a model precursor (351) in order to investigate whether 

a ketone of this type could firstly be prepared and secondly would undergo cyclisation 

under our standard conditions (Scheme. 113). 

o 
o 0 

> CI 

(351) (352) 

Scheme 113. 

The synthesis of side chain (352) was carried out by the use of standard chemistry. 

Acylation of Meldrum's acid (2,2-dimethyl-l,3-dioxane-4,6-dione) (353) with octanoyl 
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chloride (354) gave the corresponding acyl Meldrum's acid (355), which readily under 

goes alcoholysis in refluxing t-butanol to give the J3-keto ester (356).183 Subsequent, 

removal of the t-butyl group with TFA gave the corresponding carboxylic acid (357),184 

which promptly was chlorinated with oxalyl chloride185 and used directly for the next step. 

Unfortunately, acylation of 2,4-dimethoxybenzyl protected imine with (352) using our 

standard conditions exclusively afforded the 1,3-oxazin-4-one (358) in an overall yield of 

59% (Scheme 114). Due to this result of none of the desired cyclisation precursor (351) 

was detected and the problems we encountered trying to successfully repeat Kusumi and 

Yubuchi's synthesis of side chain fragment (350) (Scheme 112) we decided not investigate 

this proposed pathway any further. 

~x 
H 0 

pyridine ~:>(. t-BuOH 0 0 
+ RCOCI ... ... R~OtBu OCM A 

o (353) (354) a (355) 
(356) ! 

Dmb'N 
TFA 

R 

~ LO 0 0 (COClh 
0 0 II( 

R~CI 
II( 

R~OH ° N1Y OEA,OOC 

6mb (358) (352) (357) 

R = (CH2)6CH3 

Scheme 114. 

4.3.5 Alternative Approaches to Introducing a Side-Chain for PI-091 

Another approach towards the synthesis of the side chain of PI-09l was to investigate 

whether it was possible to insert the side chain functionality onto the ester portion of (323) 

via a nucleophilic substitution (Scheme 115). 
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Nucleophile 

Scheme 115. 

Therefore, as a model reaction we decided to carry out this procedure using methyl lithium 

as the nucleophile. Hence, hydroxylactam (323) was treated with an excess of methyl 

lithium at -78°C for 1 hour and allowed to warm to room temperature, and upon work-up 

the unusual dimer (359) was isolated as a single diastereomer in 37% yield (Scheme 116). 

The tentatively assigned stereochemistry (shown in Scheme 116) was based on the 

following argument, initial deprotonation of the hydroxylactam (323) by MeLi was 

followed by an intramolecular Michael addition on the opposite side to the iso-propyl 

group to give anion (360). This anion can in turn perform an intermolecular Michael 

addition onto the enone portion of another molecule of (323) (on the opposite side of the 

iso-propyl group) to give (359). This reaction was repeated and quenched at temperatures 

ranging from -78°C to room temperature with no change in the product outcome, hence we 

decided not to investigate this method any further. 

PMB 

(:~~ ~/N,---o 
Meo2C,?=(?/ /HO"';Z_ °(323) / HUH 
O~~~ ----I .... Me02~C _~ C02Me ---11 ...... Me~~c / .~/~02Me 

PMB .''1. .''1. 
o NON 

I I 
(323) PMB PMB 

(360) (359) 
Scheme 116. 
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4.3.6 Other Reactivity of Hydroxylactam (323) 

In order to further study the reactions of the hydroxylactam (323) we decided investigate 

whether its enone portion would act as a classic dienophile in a Diels-Alder reaction. 

Hence, reaction of (323) with 2 equivalents of cyclopentadiene in refluxing toluene for two 

hours gave the Diels-Alder exo (361a) and endo (361b) products in a 1:1 ratio (80% overall 

yield) (Scheme 117). 

Me0
2
C'f=\,PH ~ 0 
o~~~ ~ 

~MB toluene, ~, 2 hrs 

(323) 
exo 

Scheme 117. 

The structure of the isomers (361 a-b) were elucidated firstly by proton nmr and then using 

n.O.e evidence. The nmr for exo product (361a) showed no 3J coupling between the protons 

labeled I-r and Hb
, subsequent modeling of this structure showed that the angle between 

these adjacent protons approaches 90°, hence, according to the Karplus equation the 

coupling constant e J) approaches zero.137 However, by the same design, modeling of endo 

product (361 b) showed that the angle between the protons HX and IF' approaches 30°, 

which should have a significant 3 J coupling according to Karplus. The nmr evidence for 

(361 b) supported this hypothesis with a 3 J coupling constant of 3.5 Hz between the protons 

HX 
and HY. The n.O.e evidence compiled for these compounds also supports the above 

hypothesis, with large n.O.e between protons HX and HY and a small n.O.e between protons 

H
a 

and Hb. The percentage enhancements shown (fig. 28) are large enough to infer with a 
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reasonable degree of accuracy that (361a) and (361b) are the exo and endo products 

respectively. 

N 
I 
PMB 

(361a) 
exo 

0.4% 

N-';:: 
I 
PMB 

(361 b) 
endo 

Figure 28. n.O.e evidence for exo (361a) and endo (361b) products 

4.4 Conclusion 

In this chapter we have shown that P-amido esters undergo a highly efficient room 

temperature 5-endo-trig radical cyclisations mediated by ceric ammonium nitrate to afford 

functionalised y-lactams. The use of 4 equivalents of CAN at room temperature in 

methanol was found to give the highest yields for these reactions and we have postulated 

that this can be explained by the two radical and oxidation sequences required in the 

mechanism (Scheme 94). Also, during these studies we discovered that the solvent (MeOH 

or MeCN) was required to trap the out the final product and that the use of traditional 

radical traps such as diphenyl selenide and diphenyl sulphide were ineffective. The fact that 

these CAN mediated reactions were restricted to a solvent that participated in the 

production of the final product limits the reaction considerably and due to the methoxy 

trapped product being quite stable, a secondary step was required for its removal. Whereas 

a variety of precursors could be efficiently cyclised using our copper(I)-amine chemistry, 
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reactions using CAN were less predictable and proved to be very sensitive towards the 

nature of the substrate. An example of this was the cyclisation of the precursors derived 

from l3-tetralone for both the copper(I) and CAN methods. The copper(I)-amine mediated 

cyclisation of precursors (169) and (230) gave 4-exo-trig (172) and 5-endo-trig (234) 

products respectively, depending on the ligand used (sections 3.2.4 and 3.3.2 respectively), 

whereas cyclisation of precursor (304) did not proceed and competing oxidation reaction 

proceeded to yield (308). Trapping out of the final products with the solvent did become 

particularly useful in the synthesis of the heterocyclic ring portions of natural products, L-

755,807 (129), PI-091 (309) and quinolactacin C (315), especially when we discovered that 

precursor (316) cyclised in both methanol and acetonitrile to furnish both methoxylactam 

(317) and hydroxylactam (323) respectively. The CAN method of producing these 

compounds had distinct advantages over the copper(I)-amine based efforts. The copper(I) 

method required refluxing the precursor (139) in toluene (section 2.3) and trapping out of 

the intermediate acyliminium ion with methanol, which was disfavoured over the formation 

of the diene (140) under these conditions, thus furnishing the methoxylactam (165) in low 

yield (105) (section 3.2.3). Whereas the CAN promoted version of this reaction gave 

excellent yields of both the hydroxy- and methoxy-Iactams at room temperature for a wide 

variety of precursors. 

The removal of the p-methoxybenzyl protecting group from these methoxy- and hydroxy­

lactams was carried out successfully, however elimination of the methoxy- and hydroxy­

groups also resulted under these conditions. Further studies into a more suitable protecting 

strategy will be required. Also, the conjugated dienes resulting from these deprotections 

reactions have been sent for biological testing and identified as potential lead antibiotic 
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compounds (details not reported in this thesis). To further build on this work, potential 

follow up studies may include investigation into the use of a co-oxidant with CAN in order 

decrease the amount of equivalents required for cyclisation and also the use of alternative 

cerium(IV) reagents such as Ce(OTt)4 and Ce(OMs)3 which have shown to be more soluble 

in organic solvents than CAN could be studied. 109 
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CHAPTER 5: Experimental 

Experimental Notes 

Melting points were recorded on a stuart Scientific SMP1 melting point apparatus and 

are uncorrected. Accurate Mass determinations were performed either on a Kratos 

MS80 spectrometer or a Micromass Autospec spectrometer at the University of 

Warwick. Only molecular ions (~ or MIt) and major peaks are reported and the 

intensities of these peaks are quoted as a percentage of the base peak. Microanalysis 

was recorded on a Leeman Labs Inc. CE440 Elemental Analyser. Infra-red spectra were 

recorded in a solution cell, as KBr discs or neat, as stated in the text on a Perkin-Elmer 

1720X Fourier transform spectrometer, with only selected absorbances (v max) being 

reported. IH N.M.R. spectra were recorded at either 250 MHz, 300 MHz, 400 MHz or 

500 MHz on a Broker ACF250, Broker DPX300, Broker ACP400, Broker DPX400 or 

Bruker DPX500 instrument respectively. l3C N.M.R. spectra were recorded at 62.9 

Mhz, 75 MHz, 100.6 MHz or 128.5MHz. Chemical shifts (0) are quoted in parts per 

million (ppm) with residual solvent as an internal standard. Coupling constants (J) are 

quoted in Hertz (Hz). Chemicals used in the experimental were obtained from either 

Lancaster or Sigma-Aldrich at the highest grade available. All solvents were purchased 

from Fisons Scientific Equipment at SLR grade and purified, when needed, by 

literature methods. 186 Flash Chromatography was carried out on silica gel (Merck 

Kieselgel 60F254, 230-400 mesh). TLC was carried out using aluminium backed plates 

pre-coated with silica (0.2mm, 60F254). The TLC plates were developed using one or 

more of the following agents: U.V. fluorescence (254nm), potassium permanganate or 

phosphomolybdic acid. All reactions were conducted under nitrogen unless otherwise 

stated. 
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5.1 Experimental for Chapter 2 

5.1.1 General procedure for the preparation of substituted imines. 151 

A solution of ketone (30 mmol) and the appropriate benzylamine (30 mmol) in toluene 

(20 ml) was stirred under reflux in a Dean Stark apparatus for 4-8 hrs. The solvent was 

removed in vacuo to give the crude compounds that were either used crude, purified by 

distillation or by column chromatography. The imines that were successfully purified 

have been reported below. In some cases a catalytic amount of tosic acid or TiCh was 

added in order to drive the reaction to completion. 151 

Benzyl-cyclopentylidene-amine (362) 

Cyclopentanone and benzylamine were reacted under the conditions described in the 

general procedure 5.1.1 to give the required compound (362): yield (82%); yellow oil; 

IR (CHC13, em-I) 1676, 1617~ IH NMR (250 MHz, CDCh) 5 7.32-7.22 (SR, m, Ar-ill, 

4.42 (2H, s, NCIh), 2.40, (2H, t, J = 6.6 Hz, CIh), 2.27 (2H, t, J = 6.6 Hz, CIh), 1.88-

1.70 (4H, m, CHz x 2); l3C (75 MHz, CDCh) [) 181.8 (s), 140.7 (s), 128.9 (d x 2), 128.8 

(d x 2), 127.4 (d), 58.1 (t), 38.7 (t), 29.7 (t), 25.4 (t), 24.7 (t)~ EI-MS mlz 173 (M+ 13), 

144 (26), 91 (100); Anal. Ca1cd for C12H15N: C, 83.19; H, 8.73; N, 8.08. Found: C, 

83.01; H, 8.70; N, 7.95. 

139 



Chapter 5 

Benzyl-cyclohexylidene-amine (102) 

Cyclohexanone and benzylamine were reacted under the conditions described in the 

general procedure 5.1.1 to give the required compound (102): yield (91 %); yellow oil; 

IR (CHCI3, em-I) 1657, 1603; IH NMR (250 MHz, CDCI3) 87.31-7.29 (5H, m, Ar-H), 

4.53 (2H, s, NClh), 2.36 (4H, m, Clh x 2), 1.72 (2H, m, Clh), 1.64 (4H, m, Clh x 2); 

13C (75MHz,CDCh)8174.7(s), 140.9 (s), 129.4 (dx2), 128.8 (d x 2), 127.7(d),54.5 

(t), 40.7 (t), 29.6 (t), 29.0 (t), 27.4 (t), 26.4 (t); CI-MS mlz 188 (MH+ 75), 107 (80),91 

(100); Anal. Calcd for C13H17N: C, 83.37; H, 9.15; N, 7.48. Found: C, 83.10; H, 8.88; 

N,7.55. 

Benzyl-cyclooctylidene-amine (363) 

Cyc1ooctanone and benzyl amine were reacted under the cO!lditions described in the 

general procedure 5.1.1 to give the required compound (363): yield (68%); yellow oil; 

IR (neat, m-l
) 1642, 1603; IH NMR (250 MHz, CDC13) 87.28-7.19 (5H, m, Ar-H), 4.53 

(2H, s, NClli), 2.42-1.37 (14H, m, Clli x 7); 13C (75 MHz, CDCh) 8177.9 (s), 141.1 

(s), 128.7 (d x 2), 128.2 (d x 2), 126.8 (d), 54.8 (t), 42.3 (t), 40.8 (t), 30.4 (t), 27.8 (t), 

27.2 (t), 26.0 (t), 25.8 (t); EI-MS mlz 215 (M+, 18), 187 (21), 91 (100); HRMS Calcd 

for C1sH2lN 215.1674, found 215.1672. 
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4-Methoxy-N-benzyl-cyclohexylimine (364) 

Cyclohexanone and p-methoxybenzylamine were reacted under the conditions 

described in the general procedure 5.1.1 to give the required compound (364): yield 

(90%); yellow oil; IR (neat, em-I) 1661, 736; IH NMR (250 MHz, CDCI3) 07.24 (2H, d, 

J= 8.7 Hz, CHCHCOCH3), 6.88 (2H, d, J= 8.7 Hz, CH=COCH3), 4.50 (2H, s, NCfu), 

3.81 (3H, s, OClli), 2.40-2.36 (4H, m, Cfu x 2),2.05-2.00 (2H, m, Cfu), 1.70-1.67 (4H, 

m, Cfu x 2); l3C (75 MHz, CDCh) 0174.1 (s), 158.7 (s), 133.2 (s), 129.6 (d x 2), 114.2 

(d x 2),56.3 (q), 53.5 (t), 40.5 (t), 29.1 (t), 27.8 (t), 27.4 (t), 26.5 (t); EI-MS mlz 217 

(M+, 13), 136(17): 121 (100); HRMS Calcd for C17H17N217.1465, found 217.1466. 

(1,2-Dimethyl-propylidene)-( 4-methoxy-benzyl)-amine (365) 

3-methyl-2-butanone and p-methoxybenzylamine were reacted under the conditions 

described in the general procedure 5.1.1 to give the required compound (365): yield 

" (97%); yellow oil; IR (neat, em-I) 1643, 1607; IH NMR (250 MHz, CDCI3) 07.22 (IH, 

d, J = 8.6 Hz, CHCHCOCH3), 6.85 (2H, d, J = 8.6 Hz, CH=COCH3), 4.40 (2H, s, 

NCfu), 3.77 (3H, s, OClli), 2.55 (1H, sp, J = 7.0 Hz, CH(CH3)2), 1.83 (3H, s, OClli), 

1.10 (6H, d, J= 7.0 Hz, CH(Clli)2); BC (75 MHz, CDCh) 0175.4 (s), 158.9 (s), 133.3 

(s), 128.9 (d x 2), 114.2 (d x 2),55.3 (q), 54.4 (t), 40.6 (t), 20) (q x 2), 15.3 (q); EI-MS 
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mlz 205 (M+, 50), 136 (37), 121 (100), 78 (40); HRMS Calcd for C13H19NO 205.1468, 

found 205.1466. 

5.1.2 General procedure for the preparation of trichloroacetamide cyclisation 

precursors 

Method A:1l4 

The appropriate imine (8 mmol) was dissolved in dry toluene (4 ml) and added 

dropwise to a stirred ice-cold solution oftrichloroacetyl chloride (1.1 eq, 8.8 mmol) in 

dry toluene (24 ml) under N2. After stirring for 1hr at 20°C, the mixture was cooled to 

O°C and triethylamine (3.0 eq, 24 mmol) in dry toluene (4 ml) was added slowly. The 

stirring was continued for a further 2 hrs at room temperature and the resulting mixture 

was then added to a solution of saturated aqueous Na2C03. After stirring for 3 hrs at 

20°C, the mixture was extracted with ether (3 x 30 ml), dried over MgS04 and 

concentrated in vacuo to give a residue which was purified by column chromatography, 

petroleum ether: ethyl actetate (9: 1). 

Method B: 

The appropriate imine (9 mmol) was dissolved in dry toluene (50 ml) and cooled to 

O°C with stirring. Trichloroacetyl chloride (9 mmol) was added dropwise to this 

solution, followed by the slow, dropwise addition of N,N-diethylaniline (9 mmol). The 

reaction was then stirred for 2hrs at room temperature and dropped onto H20 (50 ml). 

The organic layer was washed with 10% aq.HCI (10 ml), dried over MgS04 and 

concentrated in vacuo to give a residue which was purified by column chromatography, 

petroleum ether: ethyl acetate (9:1). 
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N-Benzyl-2,2,2-trichloro-N-cyclopent-l-enyl-acetamide (104) 

Imine (362) was reacted under the conditions described in the general procedure 5.1.2 

(Method A) to give the following compound (104): yield (51%)~ yellow oil; IR (neat, 

em-I) 1673, 1617, 1577; IH NMR (300 MHz, CDC13) 0 7.33-7.26 (5H, m, Ar-H), 5.63 

(lH, br, CH=C), 4.71 (2H, s, CfuN), 2.43 (2H, m, Cfu), 2.29 (2H, m, Cfu), 1.89 (2H, 

m, Cfu)~ l3C (75 MHz~ CDCI3) 0 161.3 (s), 140.6 (s), 136.5 (s), 133.3 (d, br), 128.8 (d x 

2), 128.6 (d x 2), 128.1 (d), 90.3 (s), 53.4 (t), 30.6 (t), 29.9 (t), 22.4 (t); EI-MS mlz 317 

(M+, 15), 282 (15), 247 (10), 216 (30), 91 (100)~ HRMS Calcd for CI4HI4Cl3NO 

317.0141, found 317.0144. 

N-Benzyl-2,2,2-trichloro-N-cyclohex-l-enyl-acetamide (97) and 1-(2-Benzylamino-

cyclohex-l-enyl)-2,2,2-trichloro-ethanone (103) 

CI*C~CI 
.~ I CI 

o N 
I 
Bn 

o 

.. Imine (102) was reacted under the conditions described in the general procedure 5.1.2 

to give the following compound (97): yield (Method A 59%); (Method B 81 %); yellow 

oil; IR (neat, em-I) 1677, 1650, 1569~ IH NMR (300 MHz, CDCI3) 0 7.39-7.28 (5H, m, 

Ar-H), 5.57 (lH, br, CH=C), 5.05 (IH, br, CHHN), 4.20 (lH, br, CHHN), 2.20 (2H, m, 

CI:h), 2.00 (2H, m, CI:h), 1.68 (2H, m, CI:h), 1.58 (2H, m, CI:h)~ I3C (75 MHz; CDCI3) . . 
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o 160.8 (s), 136.1 (s), 131.5 (d, hr), 131.1 (d), 128.8 (d x 2), 128.4 (d x 2), 127.7 (d), 

93.2 (s), 53.3 (t), 27.6 (t), 24.7 (t), 22.3 (t), 21.1 (t); EI-MS mlz 331 (M+, 10),296 (65), 

261 (28),226 (27), 125 (50), 91 (100); Anal. Calcd for C1sH16ChNO: C, 54.16; H, 4.85; 

N, 4.21; Found: C, 54.18; H, 4.89; N, 4.19. 

Data for (103): yield (Method A 20%); yellow crystals; mp 62°C, IR (neat, em-I) 2944, 

1683, 1571; IH NMR (250 MHz, CDCh) 0 12.11 (1H, s, hr, NH), 7.28-7.24 (5H, m, Ar­

H), 4.55 (2H, d, J= 6.0 Hz CfuN), 2.75 (2H, m, Cfu), 2.00 (4H, m, Cfu x 2), 1.43 (4H, 

m,Cfu); l3C (75 MHz; CDCI3) 0 178.8 (s), 173.6 (s), 136.2 (s), 129.4 (d x 2), 128.2 (d), 

127.3 (d x 2), 99.6 (s), 47.9 (t), 44.1 (s), 32.6 (t), 28.3 (t), 28.0 (t), 26.1 (t); EI-MS mlz 

331 (~, 55), 324 (36), 108 (27) 91 (100); HRMS Calcd for C1sHI6ChNO 331.0298, 

found 331.0297. 

N-Benzyl-2,2,2-trichloro-N-cyclooct-1-enyl-acetamide (105) and 1-(2-Benzylamino-

cyclooct-1-enyl)-2,2,2-trichloro-ethanone (366) 

c,tC'cD CI 

I ) CI 

o N 3 
I 
Bn 

Imine (363) was reacted under the conditions descrihed in the general procedure 5.1.2 

.. to give the following compound (105): yield (Method A 52%); (Method B 87%); 

yellow oil; IR (neat, em-I) 1700, 1654, 1570; IH NMR (250 MHz, 'CDCI3) 0 7.44-7.25 

(5H, m, Ar-H), 5.58 (IH, hr, CH=C), 5.15 (1H, hr, CHHN), 4.27 (1H, hr, CHHN), 2.85 

(2H, m, CHz), 1.91 (2H, m, Cfu), 1.71-1.40 (8H, m, CHz x 4); l3C (75 MHz; CDCI3) 0 

160.3 (s), 149.1 (s), 135.3 (s), 129.7 (d), 129.0 (d x 2), 128.8 (d x 2), 128.0 (d), 93.1 (s), 
. . 

54.4 (t), 29.2 (t), 28.7 (t), 26.9 (t), 26.4 (t), 26.2 (t), 24.4 (t); EI-MS mlz 360 (M+, 90), 
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333 (60),243 (90),214 (82), 91 (100); HRMS Calcd for C17H2oCI3NO 360.0688, found 

360.0684. 

Data for (366): yield (Method A 15%); yellow crystals; IR (neat, em-I) 2927, 1689, 

1560; IH NMR (250 MHz, CDCh) 8 12.09 (1H, s, br, NH), 7.35-7.25 (5H, m, Ar-H), 

4.58 (2H, d, J = 6. 1Hz CfuN), 2.85 (2H, m, Cfu), 2.68 (2H, m, Cfu), 1.71 (4H, m, Cfu 

x 2), 1.52 (4H, m, Cfu x 2); 13C (75 MHz; CDCI3) 8 178.2 (s), 173.8 (s), 137.4 (s), 

129.4 (d x 2), 128.3 (d), 127.5 (d x 2),99.4 (s), 48.0 (t), 44.2 (s), 32.6 (t), 28.4 (t), 27.6 

(t), 27.0 (t x 2), 26.6 (t); EI-MS mlz 359 (M+, 100), 331 (60), 324 (45), 108 (70); HRMS 

Calcd for C17H20ChNO 359.0610, found 359.0627. 

2,2,2-Trichloro-N-cyclohex-l-enyl-N-( 4-methoxy-benzyl)-acetamide (106) 

Imine (364) was reacted under the conditions described in the general procedure 5.1.2 

(Method B) to give the following compound (106): yield (79%); yellow oil; IR (neat, 

em-I) 1680; IH NMR (250 :MHz, CDC13) 8 7.23 (2H, d, J = 8.5 Hz, CHCHCOCH3), 

6.79 (2H, d, J = 8.5 Hz, CH=COCH3), 5.50 (tH, m, CH=C), -5.00 (IH, br m, CHHN), 

4.10 (IH, br m, CHHN), 3.75 (3H, s, OCH3), 2.18 (2H, m, Cfu), 1.99 (2H, m, Cfu), 

1.66 (2H, m, Cfu), 1.50 (2H, m, Cfu); l3C (75 MHz; CDC13) 8 ~59.5 (s), 141.8 (s), 

136.1 (s), 132.0 (d), 130.7 (d x 2), 128.7 (s), 114.0 (d x 2), 93.7 (s), 55.6 (q), 52.9 (t), 

27.4 (t), 26.8 (t), 24.6 (t), 23.0 (t); EI-MS mlz 361 (M+, 40), 121 (100); HRMS Calcd 
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2,2,2-Trichloro-N-( 4-methoxy-benzyl)-N-(2-methyl-cyclohex-l-enyl)-acetamide 

(107) 

The imine derived from the condensation of p-methoxybenzylamine and 2-

methylcyclohexanone was reacted under the conditions described in the general 

procedure 5.1.2 (Method B) to give the following compound (107): yield (74%)~ clear 

green oil; IR (neat, em-I) 1678, 1653; IH NMR (250 MHz, CDCh) 8 7.20 (2H, m, 

CHCHCOCH3), 6.75 (2H, d, J = 8.6 Hz, CH=COCH3), 5.12 (IH, br m, CIffiN), 4.54 

(IH, br s, CHHN), 3.71 (3H, s, OCH3), 2.20 (IH, m, CHH), 1.96 (3H, m, CHH, Cfu), 

1.51 (4H, m, Cfu), 0.96 (3H, m, ClL); l3e (75 MHz; CDCh) 8 159.7 (s), 135.5 (s), 

132.2 (s), 131.3 (q x 2), 128.3 (s), 114.7 (d x 2), 93.4 (5), 55.5 (q), 54.7 (t), 53.9 (s), 

31.1 (t), 30.1 (t), 23.4 (t), 22.5 (t), 20.8 (q); EI-MS mlz 375 (M+, 80), 121 (l00), 83 

(45)~ HRMS Calcd for C17H20ChN02: 375.0560, found 375.0557. 

2,2,2-Trichloro-N-(l-isopropyl-vinyl)-N-( 4-methoxy-benzyl)-acetamide (139) 

Imine (365) was reacted under the conditions described in the general procedure 5.1.2 

(Method B) to give the following compound (139): yield (81%)~ clear yellow oil; IR 

(neat, em-I) 1674, 1454~ IH NMR (250 MHz, CDCI3) 87.22 (2H, d, J = 8.6 Hz, 

CHCHCOCH3), 6.82 (2H, d, J = 8.6 Hz, CH=COCH3), 5.08 (JH, 5, CHH=C), 4.89 (2H, 
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br s, CfuN), 4.84 (IH, s, CHH=C), 3.77 (3H, s, OClli), 2.47 (IH, m, CH(CH3)2), 1.03 

(6H, d, J = 6.7 Hz, CH(CH3)2); l3C (75 MHz; CDCh) 0 160.8 (s), 159.6 (s), 152.7. (s), 

130.4 (d x 2), 128.0 (s), 114.5 (d x 2), 114.1 (br t), 93.8 (s), 55.6 (q), 54.5 (t), 32.6 (d), 

21.8 (q x 2); EI-MS mJz 350 (M+ 25),280 (44), 246 (70), 121 (100); HRMS Calcd for 

ClsHlSC13NO: 350.0481, found 350.0480. 

5.1.3 General procedure for the cyclisation of trichloroacetamides 

Method A: Cu(I)CI (29.7 mg, 0.3 mmol) was added to solution of the appropriate 

precursor (0.3mmol) and pentylimine ligand (42a) (53 mg, 0.3 mmol) in DCM (2.5 ml). 

The resulting solution was refluxed with stirring for 48 hrs under an inert atmosphere. 

On cooling, the copper residue was removed from solution by flushing it through a 

silica plug with ethyl acetate. The filtrate was then reduced to dryness in vacuo and 

purified by flash chromatography (1:2 petroleum ether: ethyl acetate). 

Method B: Cu(I)CI (29.7 mg, 0.3 mmol) was added to solution of the appropriate 

precursor (0.3 mmol) and TPA (123) (87 mg, 0.3mmol) in toulene (2.5 ml). The 

resulting solution was refluxed with stirring for 2 hrs under an inert atmosphere. On 

cooling, the copper residue was removed from solution by flushing it through a silica 

plug with ethyl acetate. The filtrate was then reduced to dryness in vacuo and purified 

by flash chromatography (9: 1 petroleum ether: ethyl acetate) .. 

1-BenzyI-3-chloro-l,4,5,6-tetrahydro-indo)-2-one (98a) and 1-B~nzyl-3, 7 -dichloro-

1,4,5,6-tetrahydro-indol-2-one (111) 

CI CI 

o 0 
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Precursor (97) was cyclised using the general procedure 5.1.3 (Method A) to furnish the 

following bicyclic systems. Data for (98a): yield (70%); clear yellow oil; IR (neat, Cm-l) 

1658, 1621; IH NMR (300 MHz, CDCI3) 0 7.23-7.14 (5H, m, Ar-H), 5.57 (IH, t, J = 4.7 

Hz, CH=C), 4.78 (2H, s, ClliN), 2.60 (2H, t, J = 6.1 Hz, Clli), 2.27 (2H, q, J = 6.1 Hz, 

Cfu), 1.80 (2H, quint, J = 6.1 Hz, Cfu), l3C (75 MHz; CDCI3) 0 165.1 (s), 140.4 (s), 

137.5 (s), 137.4 (s), 129.2 (d x 2), 128.2 (d), 127.5 (d x 2), 119.6 (s), 112.2 (d), 43.8 (t), 

24.7 (t), 22.6 (t), 22.4 (t); EI-MS rnJz 260 (M+ 55),231 (20), 182 (15), 91 (100); HRMS 

Calcd for C1sH I4CINO: 260.0842, found 260.0839. 

Data for (111): yield (7%); clear yellow oil; IR (neat, cm-l) 1712, 1646; IH NMR (300 

MHz, CDCh) 07.19-7.14 (5H, m, Ar-H), 5.21 (lH, S, CfuN), 2.60 (4H, m, Cfu x 2), 

1.96-1.86 (4H, m, Cfu x 2); l3C (75 MHz; CDCI3) 0 165.6 (s), 141.7 (s), 137.8 (s), 

132.3 (s); 129.0 (s), 128.1 (d x 2), 127.2 (d), 126.6 (d x 2), 119.6 (s), 118.9 (s), 44.9 (t), 

34.9 (t), 23.1 (t), 22.0 (t); EI-MS rnJz 293 (M+, 18),258 (20), 91 (100); HRMS Calcd 

for C1sHl3CI2NO: 293.0374, found 293.0369. 

Precursor (97) was cyclised using the general procedure 5.1.3 method B, which 

exclusively furnished compound (111) in 89% yield. The spectral details matched those 

cited above. 

1-Benzyl-3-chloro-4,5-dihydro-lH-cyclopenta[b]pyrrol-2-one (112) 

CI 

0=<;0 
B~ 

Precursor (104) was cyclised using the general procedure 5.1.3 to furnish the following 

bicyclic system (112): yield (Method A 61%), (Method B 83%); clear oil; IR (neat, cm-
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1) 1707, 1650; IH NMR (500 MHz, CDCh) 0 7.25-7.10 (5H, m, Ar-H), 5.40 (IH, t, J = 

2.5 Hz, CH=C)~ 4.79 (2H, s, CH2N), 2.80 (2H, m, Clli), 2.77 (2H, m, Clli); 13C (75 

MHz; CDCh) 0 165.3 (s), 153.6, 143.4, 136.6, 129.0 (d x 2), 128.1 (d x 2), 127.4 (d), 

114.8 (s), 101.2 (d), 45.7 (t), 35.0 (t), 23.6 (t); EI-MS mJz 245 (M+ 12), 167 (19), 149 

(62), 91 (100); HRMS Calcd for CI4H12CINO: 245.0607, found 245.0615; Anal. Calcd 

for C I4H I2CINO: C, 67.99; H, 4.89; N, 5.65. Found C, 68.44; H, 4.92; N, 5.70. 

1-Benzyl-3-chloro-1,4,5,6, 7,8-hexahydro-cycloocta[b] pyrrol-2-one (113) 

CI 

o 

Precursor (105) was cyclised using the general procedure 5.1.3 to furnish the following 

bicyclic system (113): yield (Method A 65%), (Method B 94%); clear yellow oil; IR 

(neat, cm-I) 1667, 1619; IH NMR (250 MHz, CDCh) 07.35-7.22 (5H, m, Ar-H), 5.55 

(1H, t, J = 5.0 Hz, CH=C), 4.61 (2H, s, ClliN), 2.63 (2H, t, J = 6.0 Hz, Clli), 2.30 (4H, 

13 
m, Clli x 2), 1.80 (4H, m Clli x 2), C (75 MHz; CDCl3) 0 166.1 (s), 140.3 (s), 138.0 

(s), 137.4 (s), 129.3 (d x 2), 128.2 (d), 127.8 (d x 2), 119.1 (s), 112.6 (d), 44.2 (t), 25.8 

(t), 24.7 (t), 23.1 (t), 22.2 (t), 21.5 (t); EI-MS mJz 287 (M+ 25),251 (56),210 (46), 91 

(100); HRMS Calcd for C17HISCINO: 287.1077, found 287.1068. 
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3-Chloro-l-( 4-methoxy-benzyl)-1,4,5,6-tetrahydro-indol-2-one (124) and 1-(4-

Methoxy-benzyl)-I,4,5,6-tetrahydro-indol-2-one (125) 

CI 

o=w 
I 

PMB 

Precursor (106) was cyclised using the general procedure 5.1.3 (method B) to furnish 

the following bicyclic systems. Data for (124): yield (73%); clear yellow oil; IR (neat, 

cm-I) 1657, 1613; IH NMR (300 MHz, CDCI3) 07.20 (2H, d, J = 8.6 Hz, 

CHCHCOCH3), 6.75 (2H, d, J = 8.6 Hz, CH=COCH3), 5.62 (IH, t, J = 4.6 Hz, CH=C), 

4.74 (2H, s, ClliN), 3.79 (3H, s, OClli), 2.61 (2H, t, J = 6.6 Hz, Clli), 2.30 (2H, d, J = 

5.7 Hz, Clli), 1.80 (2H, quint, J = 6.2 Hz, Clli), l3C (75 MHz; CDCI3) 0 165.1 (s), 

159.3 (s), 140.3 (s), 137.4 (s), 129.6 (s), 129.0 (d x 2), 119.6 (s), 114.4 (d x 2), 112.2 

-
(d), 55.6 (q), 43.3 (t), 24.7 (t), 22.9 (t), 22.6 (t); EI-MS mJz 289 (M+ 40), 121 (100), 77 

(20); fIRMS Calcd for CIJ"lI6CIN02: 289.0870, found 289.0866. 

Data for (125): yield (14%); clear yellow oil; IR (neat, cm-I) 1677, 1622; IH NMR (300 

MHz, CDCh) 07.10 (2H, d, J = 8.5 Hz, CHCHCOCH3), 6.75 (2H, d, J = 8.5 Hz, 

CH=COCH3), 5.73 (tH, br s, COCH=C), 5.45 (tH, t, J = 4.8 Hz, CH=C), 4.62 (2H, s, 

ClliN), 3.70 (3H, s, OClli), 2.54 (2H, t, J = 5.7 Hz, Clli), 1.19 (2H, d, J = 5.7 Hz, 

Clli), 1.71 (2H, quint, J = 6.4 Hz, Clli), l3C (75 MHz; CDCh) 0 170.7 (s), 159.1 (s), 

147.9 (s), 140.1 (s), 130.2 (s), 128.8 (d x 2), 115.9 (d), 114.3 (d x 2),.112.3 (d), 55.6 (q), 

44.6 (t), 24.7 (t), 24.6 (t), 23.8 (t); EI-MS mJz 255 (M+ 45), 121 (100),84 (25), 49 (55); 

HRMS Calcd for CtJ"l17N02: 255.1259, found 255.1262. 
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3-Chloro-l-( 4-methoxy-benzyl)-3a-methyl-l,3,3a,4,5,6-hexahydro-indol-2-one (126) 

oc~ 
~N~ 

I 
PMB 

CI _ 

0=<;:0 
I 

PMB 

Precursor (107) was cyclised using the general procedure 5.1.3 (Method B) to furnish 

the following bicyclic systems in a 6:1 mixture of trans (126a) : cis (126b) isomers. 

Data for isomers: yield (96%); clear oil; IR (neat, cm-I) 1645, 1609; IH NMR (300 

MHz, CDCh) 07.08 (2H, d, J = 8.7 Hz, CHCHCOCH3), 6.74 (2H, d, J = 8.7 Hz, 

CH=COCH3), 4.85 (lH, t, J = 3.8 Hz, CH=C), 4.69 (IH, d, J = 15.0 Hz, CHHNtrans
), 

4.55 (lH, d, J = 15.2 Hz, C~is), 4.45 (IH, d, J = 15.2 Hz, C~is), 4.28 (lH, d, J 

= 15.0 Hz, CHHNtranS
), 4.22 (lH, s, CHCltrans), 4.00 (JH, s, CHCICiS

), 3.68 (3H, s, 

OC!:L), l.97 (2H, m, Cfu) l.82 (lH, m, CHH), l.65 (2H, m, Cfu), 1.45 (1H, m, CHID, 

. trans 13 
l.12 (3H, s, CHtS), l.04 (3H, s, CH3 ); C for trans isomer (75 MHz; CDCI3) 0 

169.3 (s), 159.3 (s), 14l.4 (s), 130.4 (d x 2), 128.9 (s), 114.4 (d x 2), 10l.3 (d), 67.6 (d), 

55.6 (q), 43.9 (t), 42.7 (s), 33.0 (t), 23.1 (t), 2l.2 (q), 18.2 (t); 13C for cis isomer (75 

MHz; CDCh) 0 170.6 (s), 159.2 (s), 14l.8 (s), 129.9 (d x 2), 128.2 (s), 114.3 (d x 2), 

102.6 (d), 60.8 (d), 55.6 (q), 43.9 (t), 43.5 (s), 33.0 (t), 25.6 (q), 23.1 (t), 17.8 (t); EI-MS 

mJz 305 (M+ 47),269 (49), 121 (100); HRMS Calcd for C17H20CIN02: 305.1183, found 

305.1177. 

3-Chloro-S-isopropylidene-l-( 4-methoxy-benzyl)-I,S-dihydro-pyrrol-2-one (140) 

o 
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Precursor (139) was cyclised using the general procedure 5.1.3 to furnish the following 

lactam (140): yield (Method A 60%), (Method B 89%); brown solid; mp 45°C; IR 

(neat, cm-I) 1690, 1644, 938; IH NMR (250 MHz, CDCI3) 87.29 (IH, s, CH=C), 6.94 

(2H, d, J = 8.9 Hz, CHCHCOCH3), 6.76 (2H, d, J = 8.9 Hz, CH=COCH3), 4.99 (2H, s, 

C!hN), 3.70 (3H, s, OCfb), 1.89 (3H, s, Cfb), 1.84 (3H, s, Cfb); 13C (75 MHz; CDCI3) 

8 166.8 (s), 159.0 (s), 133.1 (s), 130.0 (s), 129.9 (d), 127.3 (d x 2), 125.3 (s), 124.9 (s), 

114.5 (d x 2), 55.6 (q), 45.9 (t), 23.8 (q), 21.0 (q); EI-MS rn/z 277 (M+ 55), 247 (20), 

121 (100); HRMS Calcd for CIsHI6CIN02: 277.0870, found 277.0868. 

5.1.4 General method for the deprotection of p-methoxybenzylamides 

Ceric ammonium nitrate (548 mg, 1 mmol) was added to a solution of the required 

cyclised compound (0.25 mmol) in 4 ml of 3:1 aceto~itrilelH20 and stirred for 1-2 hrs 

(followed by TLC). The resulting solution was dropped onto H20 (25ml) and extracted 

with ethyl acetate (25ml x 3), dried with MgS04 and reduced to dryness in vacuo. 

Purification was carried out by flash chromatogtraphy (1:2 petroleum ether : ethyl 

acetate), to give the following deprotected product. 

3-Chloro-5-hydroxy-5-(I-hydroxy-l-methyl-ethyl)-1,5-dihydro-pyrrol-2-one (141) 

Compound (140) was deprotected according to the general procedure 5.1.4: yield 

(22%); brown solid; mp 50°C IR (neat, cm-I) 3342, 1683, 1493, 1312; IH NMR (250 

MHz, CDCh) 8 7.43 (IH, br s, NH), 6.84 (lH, s, CH=C), 4.48 (1H, br s, OH), 3.25 (IH, 
. . 

br s, OID, 1.33 (3H, s, Cfb), 1.19 (3H, s, Cfb); 13C (100 MHz; CDCI3) 8 167.1 (s), 
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141.6 (d), 130.6 (s), 91.2 (s), 74.4 (s), 25.1 (q), 23.7 (q); CI-MS mJz 192 (MIt 50), 174 

(20), 158 (90), 124 (85), 98 (50), 32 (100); HRMS Calcd for C7H lOCIN03: 192.0427, 

found 192.0425. 

5.2 Experimental for Chapter 3 

Benzyl-cyciobeptyJidene-amine (367) 

Cycloheptanone and benzyl amine were reacted under the conditions described in the 

general procedure 5.1.1 to give the required compound (367): yield (88%); yellow oil; 

IR (solution, em-I) 1656, 1620; IH NMR (250 MHz, CDCI3) 07.22-7.13 (5H, m, Ar-H), 

4.41 (2H, s, NCfu), 2.56 (2H, m, Cfu), 2.40 (2H, m, Cfu), 1.70-1.57 (8H, m, Cfu x 4); 

13C (75 MHz, CDCh) 0 177.3 (s), 143.8 (s), 128.7 (d x 2), 128.2 (d x 2), 126.8 (d), 54.8 

(t), 42.7 (t), 41.7 (t), 32.9 (t), 30.8 (t), 30.5 (t), 27.7 (t), 24.7 (t); EI-MS mlz 201 (M+, 

151), 173 (10),91 (100); HRMS Calcd for CI4HI9N 201.1518, found 201.1518. 

.. Benzyl-cyclododecylidene-amine (368) 

Cyclododecalone and benzyl amine were reacted under the conditions described in the 
. . 

general procedure 5.1.1 to give the required compound (368): yield (98%); yellow oil; 
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IR (neat, em-I) 1660, 1600~ IH NMR (250 MHz, CDCh) B 7.26-7.17 (5H, m, Ar-H), 

4.61 (2H, s, NCfu), 2.48-2.37 (4H, m, Cfu x 2), 1.82 (2H, m, Cfu), 1.70 (2H, m, Cfu), 

1.68-1.38 (14H, m, Cfu x 7)~ l3C (75 MHz, CDCI3) 0 173.9 (s), 143.6 (s), 129.2 (d x 2), 

128.3 (d x 2), 126.7 (d), 56.2 (t), 34.7 (t), 30.6 (t), 26.0 (t), 25.2 (t), 25.1 (t), 24.8 (t), 

24.6 (t), 24.0 (t), 23.6 (t), 23.4 (t), 22.9 (t)~ EI-MS mlz 271 (M+, 10), 195 (80), 91 

(100); HRMS CaIcd for CIcJI29N 271.2306, found 271.2307. 

Benzyl-(3,4-dihydro-2H-naphthalen-l-ylidene )-amine (369) 

a-Tetralone and benzylamine were reacted under the conditions described in the 

general procedure 5.1.1 to give the required compound (369): yield (93%)~ brown oil; 
. 

IR (neat, cm-I) 1679, 730; IH NMR (250 MHz, CDCI3) B 7.57-7.11 (9H, m, Ar-ill, 4.81 

(2H, s, NCfu), 2.55 (2H, m, Cfu), 1.72 (2H, m, Cfu), 1.38 (2H, m, Cfu); l3C (75 MHz, 

CDCh) B 164.9 (s), 140.6 (s), 137.5 (s), 137.0 (s), 130.9 (d), 129.5 (d), 129.2 (d x 2), 

128.4 (d x 2), 127.9 (d), 125.9 (d), 125.6 (d), 52.2 (t), 31.7 (t), 31.0 (t), 28.0 (t); EI-MS 

mlz 235 (M+, 19), 195 (62),117 (31), 91 (100); HRMS Calcid for C 17H17N 235.1361, 

found 235.1365. 

Benzyl-(3,4-dihydro-naphthalen-2-yl)-amine (370) 

H 

(X)
,N 

1# , 

154 



Chapter 5 

13-Tetralone and benzylamine were reacted under the conditions described in the 

general procedure 5.1.1 to give the required compound (370): yield (96%); yellow.oil; 

IR (neat, cm-I) 3410, 1629, 1600, 730; IH NMR (250 MHz, CDCh) 07.44-7.24 (5H, 

m, Ar-H), 7.16-7.08 (2H, s, Ar-H), 6.97-6.93 (2H, m, Ar-H), 5.40 (lH, s, C=CH), 4.31 

(2H, s, NClL), 2.91 (2H, dd, J = 8.3, 7.5 Hz), 2.40 (2H, ddd, J = 8.3, 7.6, 6.4 Hz); l3C 

(75 MHz, CDCh) 0146.5 (s), 139.3 (s), 137.8 (s), 131.5 (s), 129.0 (d), 128.3 (d), 127.8 

(d), 127.3 (d), 127.0 (d), 125.8 (d), 123.0 (d), 93.7 (d), 48.3 (t), 29.5 (t), 25.1 (t); El­

MS mlz 235~, 100), 144 (57), 117 (95), 91 (95); Anal Calcd for C17H17N: C, 

86.77; H, 7.28; N, 5.95. Found C, 86.27; H, 7.42; N, 6.17. 

(2-Cyclohex-l-enyl-ethyl)-cyclohexylidene-amine (371) 

2-(I-cyclohexenyl)ethylamine and benzyiamine were reacted under the conditions 

described in the general procedure 5.1.1 to give the required compound (371): yield 

(82%); yellow oil; IR (neat, cm-I) 1650, 1637; IH NMR (250 MHz, CDCh) 05.41 (IH, 

s, C=CH), 3.37 (4H, t, J = 7.5 Hz, ClL x 2),2.72 (2H, t, J =: 7.5 Hz, ClL), 2.33-1.50 

(16H, m, ClL x 8); l3C (75 MHz, CDCl3) 0173.5 (s), 136.5 (s), 122.1 (d), 49.1 (t),44.2 

(t), 40.4 (t), 28.4 (t), 28.1 (t), 27.7 (t), 26.4 (t), 25.8 (t), 23.9 (t), 23.6 (t), 22.8; EI-MS 

mlz 205 (M+, 19), 176 (26), 110 (92), 81(64), 67(68); Anal Calcd for CI4H23N: C, 

81.89; H, 11.29; N, 6.82. Found C, 82.04; H, 10.99; N, 6.79. 
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(2-Bromo-benzyl)-cyclohexylidene-amine (372) 

(X'D I N 

" Br 

Cyclohexanone and o-bromobenzylamine were reacted under the conditions described 

in the general procedure 5.1.1 to give the required compound (372): yield (64%); 

yellow oil; IR (neat, em-I) 1711, 747; IH NMR (250 MHz, CDC13) 07.50-6.87 (4H, m, 

Ar-H), 4.45 (2H, s, NCfu), 2.40 (4H, m, Cfu x 2), 1.67 (4H, m, CH2 x 2), 1.00 (2H, m, 

Cfu); \3C (75 MHz, CDCh) 0164.6 (s), 139.3 (s), 131.7 (d), 131.5 (d), 129.0 (d), 128.3 

(d),123.0 (s), 48.3 (t), 29.5 (t), 29.0 (t), 26.4 (t) 25.1 (t x 2); EI-MS mlz 266 (M+, 100), 

178 (77), 106 (80), 85 (50); Anal Calcd for C\3HIJ3rN: C, 58.66; H, 6.06; N, 5.26. 

Found C, 58.77; H, 5.91; N, 5.03. 

Benzyl-indan-l-ylidene-amine (373) 

a-Indanone and benzyl amine were reacted under the conditions described in the 

general procedure 5.1.1 to give the required compound (373): yield (92%); yellow oil; 

IR (neat, em-I) 1653, 735; IH NMR (250 MHz, CDCI3) 07.46-7.10 (9H, m, Ar-H), 4.69 

(2H, s, NCfu), 3.07 (2H, dd, J= 6.7, 6.1 Hz, Cfu), 2.75 (2H, dd, J= 6.7,6.1 Hz, Cfu); 

\3C (75 MHz, CDCh) 0175.6 (s), 150.1 (s), 140.7 (s), 140.3 (s), 131.6 (d), 128.8 (d x 

2), 128.0 (d x 2), 127.4 (d), 127.2 (d), 126.7 (d), 122.9 (d), 57.7 (t), 28.8 (t), 28.6 (t); 
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EI-MS mlz 221 (M+, 100),91 (96) 44 (44); Anal Calcd for CIJiISN: C, 86.84; H, 6.83; 

N, 6.33. Found C, 86.83; H, 6.88; N, 6.17. 

2,4-Dimethoxy-N-benzyl-cyclohexylimine (374) 

o 
I 

Cyclohexanone and 2,4-dimethoxybenzylamine were reacted under the conditions 

described in the general procedure 5.1.1 to give the required compound (374): yield 

(79%); yellow oil; IR (neat, em-I) 1661, 735; IH NMR (250 MHz, CDCh) 07.20 (lH, 

d, J = 8.1 Hz, Ar-H), 6.47 (2H, d, J = 8.1 Hz, Ar-H), 6.45 (1H, s, C=CH), 4.48 (2H, s, 

NClli), 3.80 (3H, s, DCfu), 3.79 (3H, s, DCfu), 2.40-2.35 (4H, m, Clli x 2),2.10-1.95 

13 (2H, m, Clli), 1.67-1.65 (4H, m, Clli x 2); C (75 MHz, CDC13) 0174.1 (s), 159.9 (s), 

158.3 (s), 129.7 (d), 121.6 (d), 104.3 (d), 98.7 (d), 55.6 (q), 55.1 (q), 48.5 (t), 40.5 (t), 

29.0 (t), 27.9 (t), 27.7 (t), 26.5 (t); EI-MS mlz 247 (M+, 10), 166 (25), 151 (100), 121 

(30); HRMS Calcd for CIsH21ND2 247.1577, found 247.1573. 

4-Methoxy-N-benzyl-cyclooctylimine (375) 

Cyclooctanone and p-methoxybenzylamine were reacted under the conditions described 

in the general procedure 5.1.1 to give the required compound (375): yield (87%); 
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yellow oil~ IR (neat, em-I) 1640, 1589, 1560; IH NMR (250 MHz, CDCh) B 7.15 (2H, 

d, J = 8.6Hz, CHCHCOCH3), 6.76 (2H, d, J = 8.6Hz, CH=COCH3), 4.40 (2H, s, CfuN), 

3.70 (3H, s, OClli), 2.32 (4H, m, CfuC=N), 1.70 (4H, m, CH2 x 2), 1.42 (6H, m, CH2 x 

3); l3C (75 MHz, CDCh) B 177.4 (s), 158.2 (s), 133.4 (s), 129.4 (d x 2), 114.7 (d x 2), 

55.4 (q), 54.0 (t), 40.9 (t), 40.8 (t), 30.4 (t), 27.6 (t), 27.2 (t), 26.0 (t), 25.7 (t)~ EI-MS 

mlz 245 (M+, 30), 136 (25), 121 (100), 77 (25); HRMS Calcd for C1Ji23NO 246.1857, 

found 246.1857. 

(3,4-Dibydro-napbtbaJen-2-yl)-( 4-metboxy-benzyl)-amine (376) 

13-Tetralone and p-methoxybenzylamine were reacted under the conditions described in 

the general procedure 5.1.1 to give the required compound (376): yield (92%); orange 

oil; IR (neat, em-I) 3391, 1658, 1611, 737; IH NMR (250:MHz, CDCI3) B 7.25 (2H, d, J 

= 805Hz, CHCHCOCH3), 7.07 (4H, m, Ar-H), 6.95 (2H, d, J = 805Hz, CH=COCH3), 

5.36 (IH, s, CH=CH2), 4.21 (2H, s, CfuN), 3.83 (3H, s, OCH3), 3.40 (IH, br, NH), 2.87 

(2H, dd, J = 8.6, 7.3 Hz, Cfu), 2.33 (2H, ddd, J = 8.6, 7.3-, 6.2 Hz)~ l3C (75 :MHz, 

CDCh) B 160 (s), 147.3 (s), 137.9 (s), 134.7 (s), 134.3 (s), 128.1 (d x 2), 127.8 (d),127.6 

(d), 126.1 (d), 125.6 (d), 114.1 (d x 2),99.8 (d), 56.0 (q), 50.8 (t), 3~.2 (t), 26.7 (t)~ El­

MS mlz 265 (M+, 45), 136 (87), 121 (100), 106 (40), 77 (30); HRMS Calcd for 

CuJII9NO 265.1466, found 265.1464. 
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Indan-l-ylidene-( 4-methoxy-benzyl)-amine (377) 

a-Indanone and p-methoxybenzylamine were reacted under the conditions described in 

the general procedure 5.1.1 to give the required compound (377): yield (91%); brown 

oil; IR (neat, cm"I) 1698, 1610, 703; IH NMR (250 MHz, CDCh) 07.41 (4H, m, Ar-H), 

7.38 (2 H, d,J= 8.7Hz, CHCHCOCH3) 6.95 (2H, d,J= 8.7Hz, CH=COCH3), 4.66 (2H, 

s, ClhN), 3.81 (3H, s, OClli), 3.07 (2H, m, ClhC=N), 2.76 (2H, m, ClhCH2C=N); l3C 

(75 MHz, CDCh) 0175 (s), 158.5 (s), 152.1 (s), 141.9 (s), 134.0 (s), 131.6 (d), 129.3 (d 

x 2), 126.7 (d),125.8 (d), 122.9 (d), 114.3 (d x 2), 57.1 (t), 55.7 (q), 28.8 (t), 28.6 (t); 

EI-MS mlz 251 (M+, 46), 121 (100), 115 (40), 77 (36); HRMS Calcd for C17H17NO 

252.1388, found 252.1387. 

Cyclohexylidene-( 4-nitro-benzyl)-amine (378) 

Cyclohexanone and p-nitrobenzylamine were reacted under the conditions described in 

the general procedure 5.1.1 to give the required compound (378): rie1d (90%); orange 

oil; IR (CHCI3, cm"I) 1655, 1600, 1521, 1345; IH NMR (250 MHz, CDC13) 8 8.11 (2B, 

d, J = 8.5Hz, CH=CN02), 7.43 (2H, d, J = 8.5Hz, CHCHCN02), 4.53 (2H, s, ClhN), 

2.31 (4H, m, CHzx2), 1.62 (6H,m, CHz x 3); 13C (75MHz,CDCI3)o 176.2 (s), 148.9 

. . 
(s), 145.4 (s), 128.8 (d x 2), 124.0 (d x 2),53.7 (t), 40.4 (t), 29.9 (t), 28.1 (t), 27.3 (t), 
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26.3 (t); EI-MS mlz 232 (~ 82), 149 (55), 136 (40), 106 (100), 77 (25); HRMS Calcd 

5.2.1 General procedure for the synthesis of tertiary bromoacetamide cyclisation 

precursors 

The appropriate imine (9 mmol) was dissolved in dry toluene (50 ml) and cooled to 

O°C with stirring. 2-bromoisobutyryl-bromide (9 mmol) was added dropwise to this 

solution, followed by the slow, dropwise addition of N,N-diethylaniline (9 mmol). The 

reaction was then stirred for 2 hours at room temperature and dropped onto H20 (50 

ml). The organic layer was washed with 10% aq.HCI (10 ml), dried over MgS04 and 

concentrated in vacuo to give a residue which was purified by column chromatography, 

petroleum ether: ethyl acetate (9: 1). 

N-Benzyl-2-bromo-N-( cyclopent-l-enyl)-2-methyl-propanamide (146) 

Imine (362) was reacted under the conditions described in the general procedure 5.2.1 

to give the required compound (146): yield (60%); clear oil; IR (neat, cm-I) 1635; IH 

.. NMR (300 MHz, CDCh) 8 7.29-7.20 (5H, m, Ar-H), 5.58 (lH, m, CH=C), 4.68 (2H, br 

s, CfuN), 2.50-2.41 (2H, m, Cfu), 2.32-2.23 (2H, m, Cfu), 2.00 (6H, br s, ClL x 2), 

1.94-1.85 (2H, m, Cfu); 13C (75 MHz; CDCI3) 8 170.9 (s), 142.6 (s), 137.9 (s), 130.3 

(d), 128.7 (d x 2), 128.3 (d x 2), 127.5 (d), 58.3 (s), 52.4 (t), 33.6 (q x 2),33.0 (t), 30.5 
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(t), 22.4 (t)~ EI-MS mlz 322 (M+' 22), 243 (92), 172 (81)~ 91 (100)~ Anal. Calcd for 

CIJhJ3rNO: C, 59.64~ H, 6.26~ N, 4.35. Found: C, 59.67~ H, 6.28~ N, 4.17. 

N-Benzyl-2-bromo-N-( cyclohex-l-enyl)-2-methyl-propanamide (145) 

j::D 
I 
Bn 

Imine (t02) was reacted under the conditions described in the general procedure 5.2.1 

to give the required compound (145): yield (69%)~ clear oil~ IR (neat, em-I) 1627~ IH 

NMR (300 MHz, CDCI3) 8 7.28-7.18 (5H, m, Ar-H), 5.58 (IH, br m, CH=C), 4.98 (IH, 

br s, CHHN), 4.27 (tH, br s, CHHN), 2.18 (2H, m, Cfu), 2.02 (8H, br m, Cfu, ClL x 

. 13 
2), 1.67 (2H, m, Cfu), 1.55 (2H, m, Cfu)~ C (75 MHz~ CDC13) 8 170.8 (s), 138.1 (s), 

129.9 (s), 128.8 (d x 2), 128.6 (d x 3), 127.5 (d), 58.8 (s), 52.8 (t), 35.0 (q x 2),28.4 (t), 

24.9 (t), 22.9 (t), 21.7 (t)~ EI-MS mlz 336 (~, 39), 256 (85), 164 (60), 91 (100); Anal. 

Calcd for C17H22BrNO: C, 60.71; H, 6.54~ N, 4.17. Found: 60.88~ H, 6.61~ N, 4.26. 

N-Benzyl-2-bromo-N-( cyclohept-l-enyl)-2-methyl-propanamide (147) 

Imine (367) was reacted under the conditions described in the general procedure 5.2.1 

to give the required compound (147): yield (71%); clear oil~ IR (neat, em-I) 1632; IH 

NMR (300 MHz, CDCh) 8 7.18-7.11 (5H, m, Ar- H), 5.54 (tH, br t, J = 5.5 Hz, 

. . 
CH=C), 5.04 (tH, br s, CHHN) 3.99 (tH, br s, CHHN), 2.50-1.03 (IOH, br m, Cfu x 5), 
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1.99 (6H, br s, Clli x 2); BC (75 MHz; CDCh) B 170.4 (s), 137.7 (s), 129.7 (s), 129.3 (d 

x 2), 128.6 (d x 2), 127.7 (d), 105.9 (d), 58.8 (s), 52.1 (t), 34.7 (t), 33.6 (br q x 2), ~2.0 

(t), 27.2 (t), 26.9 (t), 26.3 (t); EI-MS mlz 350 (M+, 2), 269 (97), 254 (26), 91 (100); 

HRMS Calcd for CuJ-I2sBrNO 350.1119, found 350.1128. Anal. Calcd for 

CISH2SBrNO: C, 61.72; H, 6.91; N, 4.00. Found: 61.49; H, 6.93; N, 4.22. . 

N-Benzyl-2-bromo-N-( cyclooct-l-enyl)-2-methyl-propanamide (148) 

Imine (363) was reacted under the conditions described in the general procedure 5.2.1 

to give the required compound (148): yield (95%); yellow oil; IR (neat, em-I) 1632; IH 

NMR (300 MHz, CDCh) B 7.29-7.20 (5H, m, Ar-H), 5.58 (IH, m, CH=C), 5.20-4.00 

(2H, br s, ClliN), 2.50-2.44 (2H, m, Clli), 2.05 (6H, br s, Clli x 2),2.00-1.45 (lOH, m, 

Clli x 2); BC (75 MHz; CDCh) B 171.0 (s), 138.0 (s), 130.5 (s), 128.7 (d x 2), 128.6 (d 

x 2), 128.3 (d), 127.4 (d), 59.0 (s), 53.5 (t), 32.8 (t), 32.6 (t), 30.6 (br q x 2),28.8 (t), 

26.5 (t), 26.3 (t), 26.0 (t); EI-MS mlz 364 (M+, 8), 243 (83), 268 (58), 228 (76), 91 

(100); HRMS Calcd for CI9H26BrNO 364.1276, found 364.1273. 

N-Benzyl-2-bromo-N-( cyclododec-l-enyl)-2-methyl-propanamide (149) 
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Imine (368) was reacted under the conditions described in the general procedure 5.2.1 

to give the required compound (149): yield (78%); yellow oil; IR (neat, em-I) 1624~ IH 

NMR (300 MHz, CDCh) S 7.16-7.08 (5H, m, Ar-H), 5.10 (IH, t, J = 6.9 Hz, CH=C), 

2.41-2.36 (2H, m, Cfu), 1.98-1.83 (8H, m, Cfu, Clli x 2), 1.60-1.53 (2H, m, Cfu), 

1.30-1.04 (14H, m, Cfu), CfuN proton signals too broad to be observed; BC (75 MHz, 

CDCh) S 170.8 (s), 139.3 (s), 137.9 (s), 128.8 (d x 2), 128.6 (d x 3), 127.6 (d), 59.2 (s), 

54.5 (t), 40.7 (t), 34.0 (q x 2),26.6 (t), 25.7 (t), 25.2 (t), 25.0 (t), 24.8 (t), 24.6 (t), 23.1 

(t), 23.0 (t), 22.7 (t) EI-MS m/z 420 (M+, 9), 340 (100), 322 (70), 91 (84); HRMS 

Calcd for C22H34BrNO 420.1902, found 420.1899. 

2-Bromo-N-cyclohex-l-enyl-N-( 4-methoxy-benzyl)-2-methyl-propionamide (150) 

XBD 
a N 

I 
PMB 

Imine (364) was reacted under the conditions described in the general procedure 5.2.1 

to give the required compound (150): yield (78%); clear oil; IR (neat, em-I) 1632; IH 

NMR (250 MHz, CDCl3) S 7.20 (2H, d, J = 8.5 Hz, CHCHCOCH3), 6.80 (2H, d, J = 8.5 

Hz, CH=COCH3) 5.52 (1H, m, CH=C), 4.94 (1H, br s, CHHN), 4.11 (1H, br s, CHHN), 

3.79 (3H, s, OClli), 2.15 (2H, br, Cfu), 1.99 (6H, s, Clli x 2), 1.98 (2H, m, Cfu), 1.68-

1.53 (4H, m, Cfu x 2); BC (75 MHz; CDCh) S 170.7 (s), 159.1 (s), 137.9 (s), 130.3 (d 

x 2), 130.1 (s), 113.9 (d x 2),58.9 (s), 55.5 (q), 52.0 (t), 33.5 (q), 33.2 (q), 28.3 (t), 25.7 

(t), 24.9 (t), 23.5 (t); EI-MS m/z 366 (M+, 20), 286 (92), 208 (77), 121 (100); HRMS 

Calcd for C18H2~rN02: 365.0990, found 365.0994. 
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2-Bromo-N-cyclohex-1-enyl-N-(2,4-dimethoxy-benzyl)-2-methyl-propionamide 

(151) 

Imine (374) was reacted under the conditions described in the general procedure 5.2.1 

to give the required compound (151): yield (84%); clear oil; 1R. (neat, em-I) 1630; IH 

NMR (250 MHz, CDCh) 0 7.23 (IH, d, J = 8.2 Hz, CHCHCOCH3), 6.42 (lH, d, J = 8.2 

Hz, CH=COCH3), 6.40 (lH, m, Ar~H), 5.54 (lH, br t, CH=C), 4.78~4.72 (2H, br, 

CfuN), 3.75 (3H, s, OC!!3), 3.74 (3H, s, OC!!3), 2.14 (2H, m, Cfu), 2.00 (6H, br s, C!!3 

x 2), 1.93 (2H, m, Cfu), 1.63-1.49 (4H, m, Cfu x 2); 13C (75 MHz; CDCl3) 0170.6 (s), 

160.3 (s), 158.8 (s),'130.6 (d), 118.6 (s), 104.3 (d), 98.3 (d), 59.1 (s), 55.4 (q), 55.1 (q), 

34.4 (q), 33.7 (q), 28.2 (t), 25.7 (t), 23.3 (t), 21.6 (t); EI-MS mlz 396 (M+, 20), 316 

(30), 151 (100), 121 (50), 84 (80); HRMS Calcd for C19H2J3rN03: 396.1174, found 

396.1174. 

2-Bromo-N-cyclohex-1-enyl-N-(2-cyclohex-1-enyl-ethyl)-2-methyl-propionamide 

(162) 

Imine (371) was reacted under the conditions described in the general procedure 5.2.1 

to give the required compound (162): yield (40%); yellow oil; IR (neat, em-I) 1632; IH 
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NMR (300 MHz, CDCh) 05.85 (1H, br s, CH=C) 5.43 (1H, br s, CH=C), 3.71-2.90 

(4H, br m, ClliClli), 2.12-1.45 (16H, m, Clli x 8), 1.89 (6H, br s, ClL); 13C (75 MHz; 

CDCh) 0 170.2 (s), 136.2 (s), 135.3 (s), 124.6 (d), 123.0 (d), 50.3 (s), 48.1 (t), 34.9 (t), 

33.3 (q), 32.8 (q), 29.5 (t), 29.0 (t), 28.2 (t), 25.7 (t), 25.0 (t), 23.4 (t), 23.3 (t), 22.9 (t); 

EI-MS m/z 353 (M+, 83), 273 (61), 258 (toO), 180 (85), 81 (75); HRMS Calcd for 

CIsH2sBrNO 353.1354, found 353.1354. 

N-Benzyl-2-bromo-N-(3H-inden-l-yl)-2-methyl-propionamide (167) 

i er 

I 
o N 

I 
Bn 

Imine (373) was reacted under the conditions described in the general procedure 5.2.1 

to give the required compound (167): yield (77%); dark oil; IR (neat, cm-I) 1641; IH 

NMR (250 MHz, CDCI3) 07.87-7.29 (9H, m, Ar-H), 6.37 (IH, br s, CH=C), 5.02 (1H, 

br d, J = 6.1 Hz, CHHN), 4.33 (1H, br d, J = 6.1 Hz, CHHN), 3.35 (2H, br s, CHClli), 

2.06 (6H, s, Cfu x 2); 13C (75 MHz, CDCh) 0 170.9 (s), 142.7 (s), 141.9 (s), 138.3 (s), 

136.4 (s), 133.8 (d), 130.4 (d), 129.4 (d), 128.7 (d x 2), 127.7 (d), 127.2 (d x 2), 126.1 

(d), 119.4 (d), 57.8 (s), 49.2 (t), 36.4 (t), 32.0 (q x 2); EI-M~ m/z 370 (M+, 35), 290 

(100),91 (15); HRMS Calcd for C2oH2oBrNO: 370.0807, found 370.0806. 

N-Benzyl-2-bromo-N-(3,4-dihydro-naphthalen-l-yl)-2-methyl-propionamide (168) 
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Imine (369) was reacted under the conditions described in the general procedure 5.2.1 

to give the required compound (168): yield (58%); yellow oil; IR (neat, em-I) 1632;. IH 

NMR (250 MHz, CDCh) 87.31-7.27 (9H, m, Ar-H), 5.90 (lH, t, J = 4.6 Hz, CH=C), 

5.64 (IH, d, J = 13.8 Hz, CHHN), 3.76 (lH, br d, J = 13.8 Hz, CHHN), 2.79 (2H, t, J 

= 8.1 Hz, CHC!:b), 2.32 (2H, m, C!:b), 2.05 (3H, m, C!b), 1.84 (3H, s, C!b); 13C (75 

MHz, CDCh) 8171.6 (s), 137.8 (s), 137.3 (s), 137.2 (s), 132.3 (s), 130.7 (d), 130.1 (d) 

129.4 (d x 2), 128.7 (d x 2), 128.6 (d), 128.5 (d), 127.8 (d), 127.2 (d), 123.0 (d), 58.5 

(s), 53.3 (t), 35.0 (q), 31.9 (q), 27.4 (t), 23.0 (t); EI-MS mlz 383 (M+, 15),359 (70), 

303 (70), 288 (100) 91 (79); HRMS Calcd for C2lH22BrNO 383.0885, found 

383.0814. 

N-Benzyl-2-bromo-N-(3,4-dihydro-naphthalen-l-yl)-~-methyI-propionamide (169) 

, 
i Br 

I '- I 
o N 

I 
Bn 

Imine (370) was reacted under the conditions described in the general procedure 5.2.1 

to give the required compound (l69): yield (84%); dark oil; IR (neat, em-I) 1649; IH 

NMR (250 MHz, CDCh) 87.34-6.89 (9H, m, Ar-H), 6.28 (lH, br s, CH=C), 4.80 (2H, 

.. br s, C!:bN), 2.97 (2H, t, J = 8.1 Hz, CHC!:b), 2.56 (2H, t, J = 8.1 Hz, C!:b), 2.07 (6H, 

s, C!b x 2); l3C (75 MHz, CDCh) 8 171.0 (s), 139.9 (s), 137.6 (s), 134.5 (s), 133.2 (s), 

128.9 (d), 128.8 (d x 2), 128.3 (d x 2), 127.9 (d), 127.8 (d), 127.2 (d), 127.0 (d), 126.7 

(d), 58.9 (s), 53.4 (t), 34.0 (q x 2), 28.7 (t), 27.9 (t); EI-MS mlz 383 (~, 35), 303 

(100), 288 (80), 171 (65) 91 (95); HRMS Calcd for C21H22BrNO: 383.0885, found 

383.0856. 
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2-Bromo-N-( 4-methoxy-benzyl)-2-methyl-N-(2-methyl-cyclohex-l-enyl)-

propionamide (179a) and 2-Bromo-N-( 4-methoxy-benzyl)-2-methyl-N-(6-methyl­

cyclohex-l-enyl)-propionamide (179b) 

5)) 
I 
PMB 

5:0 
I 
PMB 

The imine derived from the condensation of 2-methylcyclohexanone and p-

methoxybenzylamine was reacted under the conditions described in the general 

procedure 5.2.1 to give a 1:1 mixture ofregioisomeric compounds (179a) and (179b): 

yield (85%); clear oil; IR (neat, cm-
I
) 1666, 1645; IH NMR for mixture ofregioisomers 

(250 MHz, CDCh) 0 7.18 (2H, m, CHCHCOCH3), 6.75 (2H, m, CH=COCH3) 5.39 (1H, 

br m, CH=C), 4.62 (tH, d, J = 14.0 Hz, CillIN), 4.4q (tH, d, J = 14.0 Hz, CHHN), 

3.70 (3H, s, OCfu), 2.29 (2H, br, C!:h), 1.97 (6H, s, Cfu x 2), 1.89 (2H, m, C!:h), 1.87 

(3H, br m, CHCfu), 1.77-1.09 (4H, m, C!:h, CHCH3, CHIl), 1.08 (3H, br s, Cfu), 0.99 

(IH, m, CHH); 13C for mixture of regioisomers (75 MHz; CDCl3) 0 170.8 (s), 159.3 

(s), 133.9 (s), 133.1 (s), 130.9 (d x 2), 130.2 (d), 113.8 (d x 2), 60.4 (s), 59.2 (s), 55.5 

(q), 53.4 (t), 32.0 (q x 2),31.2 (t), 29.8 (t), 25.4 (t), 22.5 (t), 18.4 (q); EI-MS mlz 379 

(M+, 60), 121 (100), 83 (40); HRMS Calcd for C19H2J:3rN02: 379.1147, found 

379.1142. 
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2-Bromo-N-(2-bromo-benzyl)-N-cyclohex-1-enyl-2-methyl-propionamide (1SS) 

Imine (372) was reacted under the conditions described in the general procedure 5.2.1 

to give the required compound (188): yield (33%); yellow oil; IR (neat, cm-I) 1630; IH 

NMR (300 MHz, CDCh) 3 7.41 (IH, app dd,J= 1.1,7.7 Hz, Ar-ill, 7.32 (tH, app dd, 

J = 1.5, 7.7 Hz, Ar-H), 7.19 (tH, app dt, J = 1.1, 7.7 Hz, Ar-ill, 7.00 (tH, app dt, J = 

1.5, 7.7 Hz, Ar-ill, 5.65 (tH, app t, J = 3.8 Hz, CH=C), 4.57-4.43 (2H, br m, CfuN), 

1.64-1.45 (8H, m, Cfu x 4), 1.17 (6H, br s, Clli x 2); l3C (75 MHz; CDCh) 8169.5 (s), 

136.8 (s), 135.7 (s), 131.4 (d), 128.2 (d), 127.5 (d), J26.5 (d), 125.5 (d), 57.7 (s), 51.2 

(t), 31.5 (q x 2), 27.4 (t), 23.9 (t), 22.5 (t), 19.8 (t); EI-MS m/z 415 (M+, 85),334 (80), 

169 (80), 91 (100); HRMS Calcd for C17H2IBr2NO: 412.9989, found 413.0013. 

2-Bromo-N-(4-methoxy-benzyl)-2-methyl-N-(1,4,4a,5,6,7,S,Sa-octahydro-

naphthalen-2-yl)-propionamide (257) 

iBm 
o N 

I 
PMB 

The imine derived from the condensation of decalone and p-methoxybenzylamine was 

reacted under the conditions described in the general procedure 5.2.1 to give the 

required compound (257): yield (63%); yellow oil; IR (neat, cm-I) 1635; IH NMR (250 

MHz, CDCl3) 37.19 (2H, d, J = 8.4 Hz, CHCHCOCH3), 6.81 (2H, d, J = 8.4 Hz, 
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CH=COCH3), 5.44 (IH, s, CH=C), 4.78-4.21 (2H, br m, CfuN), 3.78 (3H, s, OCH3), 

13 2.22-1.85 (4H, m, Cfu x 2), 1.87 (6H, m, CBr(C!:h)2), 1.60-1.19 (1OH, m, Cfu x 5);. C 

(75 MHz, CDCh) B 170.6 (s), 159.2 (s), 134.0 (br d), 130.4 (d x 2), 129.8 (s), 129.8 (s), 

114.4 (d x 2), 58.9 (s), 55.6 (q), 49.7 (t), 33.7 (q x 2), 33.0 (d), 32.3 (d), 32.2 (t), 30.2 

(t), 29.1 (t), 26.8 (t), 23.9 (t), 23.7 (t); EI-MS mlz 420 (~, 45), 339 (70), 324 (15), 121 

(100); HRMS Calcd for C22H3oBrN02 420.1538, found 420.1534. 

2-Bromo-N-( 4-methoxy-benzyl)-2-methyl-N-( 4a-methyl-l,4,4a,5,6, 7 ,8,8a-

octahydro-naphthalen-2-yl)-propionamide (272) 

The imine derived from the condensation of 4a-methyl-octahydro-naphthalen-2-one 

(266)147 and p-methoxybenzylamine was reacted under the conditions described in the 

general procedure 5.2.1 to give the required compound (272): yield (51%); yellow oil; 

IR (neat, cm-1) 1633; 1H NMR (250 MHz, CDCh) B 7.19 (2H, d, J = 8.6 Hz, 

CHCHCOCH3), 6.83 (2H, d, J = 8.6 Hz, CH=COCH3), 5.32 (IH, s, CH=C), 4.90-4.56 

(3H, br m, CfuN), 3.76 (3H, s, OCH3), 2.60-1.99 (3H, m, CH~CH3, CHCfu), 1.98 (6H, 

m, CBr(C!:b)2), 1.69-1.16 (lOH, m, Cfu x 5), 1.17 (3H, m, C!:b); BC (75 MHz, CDCh) 

o 170.6 (s), 159.2 (s), 134.4 (d), 130.2 (d x 2), 130.1 (s), 130.0 (s), 113.9 (d x 2), 58.8 

(s), 55.6 (q), 49.7 (t), 40.0 (d), 38.8 (t), 34.1 (s), 33.9 (q x 2),31.0 (t), 28.9 (t), 26.6 (q), 

25.7 (t), 22.5 (t), 22.0 (t); CI-MS mlz 434 (MH+, 80), 354 (100), 184 (95), 121 (45); 

HRMS Calcd for C23H32BrN02 434.1694, found 434.1695. 
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5.2.2 General procedure for copper mediated cyclisations of tertiary 

bromoacetamides (catalytic method). 

Cu(I)Br (12.9 mg, 0.09 mmol) was added to solution of the appropriate precursor (0.3 

mmol) and Me6-tren (39) (20.7 mg, 0.09 mmol) in dichloromethane (2.5 ml) and stirred 

at room temperature for 20 minutes under N2. The resulting solution was filtered 

through a small silica plug with ethyl acetate to remove the copper residues. The filtrate 

was then reduced to dryness in vacuo and purified by flash chromatography, petroleum 

ether: ethyl acetate (9: 1), to give the observed cyclised products. 

I-Benzyl-3,3-dimethyl-l,3,3a,4,5,6-hexahydro-indol-2-one (152b) andl-Benzyl-3,3-

dimethyl-l,3,4,5,6,7-hexahydro-indol-2-one (152a) 

Precursor (145) was reacted under the conditions described in the general procedure 

5.2.2 to give the following cyclic compounds. Data for (152b): yield (43%); clear oil; 

IR (neat, cm-I) 1672, 1621; IH NMR (300 MHz, C~6) 0 7.30-7.19 (5H, m, Ar-ill, 4.67 

(1H, br s, CHCH2), 4.65 (IH, d, J= 15.2 Hz, CHHN), 4.55 (1H, d, J= 15.2 Hz, CHHN), 

2.17 (IH, m, CH), 1.95 (2H, m, C!:h), 1.62 (2H, m, C!:h), 1.40-1.25 (2H, m, C!:h), 1.25 

" (3H, s, Cfu), 1.01 (3H, s, Clli); 13C (75 MHz; C6D6) 0 183.1 (s), 139.4 (s), 134.2 (s), 

128.8 (d x 2), 127.8 (d x 2), 127.5 (d), 97.5 (d), 46.0 (d), 43.8 (t), 42.9 (s), 23.7 (t), 23.4 

(q), 22.6 (t), 22.1 (t), 20.9 (q); EI-MS mlz 255 (M+, 59), 240 (45), 91 (100), 65 (24); 

HRMS Calcd for C17H21NO: 255.1623, found 255.1617. 

Data for (152a): yield (39%); clear oil; IR (neat, em-I) 1702, 1612; IH NMR (300 MHz, 

C~6) 0 7.21-7.12 (SH, m,.Ar-H), 4.59 (2H, s, C!:hN), 1.80 (4H, m, C!:h x 2), 1.42 (4H, 
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m, Cfu x 2), 1.29 (6H, s, ClL x 2); l3C (75 MHz; C6D6) 8 183.0 (s), 140.2 (s), 138.0 (s), 

128.9 (s), 128.6 (d x 2), 127.4 (d x 2), 120.4 (d), 46.1 (s), 43.1 (t), 22.9 (t x 2), 22.8, (q 

x 2) 20.9 (t), 19.8 (t); EI-MS mJz 255 (M+, 51), 240 (45), 91 (100); HRMS Calcd for 

C17H2INO: 255.1623, found 255.1618. 

I-Benzyl-3,3-dimethyl-3,3a,4,5,6,7-hexahydro-1H-cyciohepta [bJpyrrol-2-one 

(156b) and I-Benzyl-3,3-dimethyl-3,4,5,6, 7 ,S-hexahydro-1H-cyclohepta[b]pyrrol-2-

one (156a) 

Precursor (147) was reacted under the conditions described in the general procedure 

5.2.2 to give the following cyclic compounds. Data for (156b): yield (52%); clear oil; 

IR (neat, cm-I) 1713, 1666; IH NMR (300 MHz, C6D6) 8 7.20-7.01 (5H, m, Ar-H), 4.89 

(lH, ddd, J = 7.0, 4.5, 2.1 Hz, CH=C), 4.71 (IH, d, J = 15.4 Hz, CHHN), 4.53 (lH, d, J 

= 15.4 Hz, CHHN), 2.30 (lH, m, CH), 2.02-1.46 (6H, m, Cfu x 3), 1.18 (3H, s, ClL), 

1.14~1.10 (2H, m, Cfu), 1.07 (3H, s, ClL); BC (75 MHz, C6D6) 8 180.0 (s), 145.1 (s), 

138.0 (s), 129.7 (d x 2), 127.7 (d x 3), 102.5 (d), 49.1 (d), 44.1 (t), 43.3 (s), 30.7 (t), 

28.6 (t), 27.8 (t), 27.1 (t), 26.0 (t), 22.8 (q), 21.7 (q); EI-MS mlz 269 (M+, 87), 215 (76), 

198 (65), 91 (100); HRMS Calcd for CI8H23NO: 269.1779, found 269.1779; Anal. 

Calcd for C ISH23NO: C, 80.26; H, 8.61; N, 5.20. Found: C, 80.15; H, 8.47; N, 5.21. 

Data for (156a): yield (10%); clear oil; IR (neat, cm-I) 1701, 1682, 1664; IH NMR (300 

MHz, C6D6) 87.19-7.03 (5H, m, Ar-H), 4.61 (2H, s, CfuN), 1.99 (2H, m, Cfu), 1.79 

. . 13 
(2H, m, Cfu), 1.41 (4H, m, Cfu x 2), 1.35 (2H, m, Cfu), 1.24 (6H, s, ClL x 2); C (75 
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MHz, CJ)6) S 185.0 (s), 139.6 (s), 137.0 (s), 129.2 (d x 2), 127.6 (d), 127.3 (d x 2), 

124.4 (s), 47.9 (s), 43.4 (t), 30.8 (t), 28.7 (t), 26.9 (t x 2),24.5 (t), 22.7 (q x 2); HRMS 

Calcd for CIsH23NO: 269.1779, found 269.1770; EIMMS mlz 269 (M+, 80),215 (65),91 

(100); Anal. Calcd for CIsH23NO: C, 80.26; H, 8.61; N, 5.20. Found: C, 80.22; H, 

8.49; N, 5.11. 

I-Benzyl-3,3-dimethyl-l,3,3a,4,5,6, 7,8-octahydro-cycloocta(b]pyrrol-2-one (157b) 

and l-Benzyl-3,3-dimethyl-l,3,4,5,6,7 ,8,9-octahydro-cycloocta (b] pyrrol-2-one 

(157a) 

o 

Precursor (148) was reacted under the conditions described in the general procedure 
. 

5.2.2 to give the following cyclic compounds. Data for (157b): yield (60%); clear oil; 

IR (neat, cm-I) 1706, 1604; IH NMR (300 MHz, CJ)6) S 7.39M7.13 (5H, m, ArMH), 4.76 

(lH, d, J = 15.3 Hz, CHAN), 4.70 (lH, m, CH=C), 4.59 (lH, d, J = 15.3 Hz, CHHN), 

2.38 (IH, m, CH), 2.19-1.99 (2H, m, Clli), 1.69M1.45 (2H, m, Clh), 1.31M1.00 (4H, m, 

.13 Clli x 2), 1.23 (3H, s, C!h), 1.18 (3H, s, C!h), C (75 MJh, CJ)6) S 179.8 (s), 143.2 

(s), 138.0 (s), 129.5 (d x 2), 127.9 (d x 2), 127.7 (d), 101.2 (d), 47.7 (d), 44.0 (t), 33.8 

(t), 32.6 (t), 30.2 (t), 27.9 (q), 26.0 (t), 25.7 (t), 24.3 (t), 19.1 (q); EIMMS mlz 283 (M+, 

46), 268 (35), 255 (49), 83 (100); Anal. Cal cd for CI9H2SNO: C, 80.52; H, 8.89; N, 

4.94. Found: C, 80.19; H, 8.67; N, 4.72. 

Data for (l57a): yield (21%); clear oil; IR (neat, cm-I) 1713, 1671, 1605; IH NMR 

(300 MHz, C~6) S 7.30M7.04 (5H, m, ArMH), 4.66 (2H, s, CfuN), 2.10 (4H, m, Clh x 
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2), 1.50-1.29 (8H, m, CH2 x 4), 1.33 (6H, s, Cfu x 2); l3C (75 :MHz, CJ)6) 8 184.3 (s), 

139.6 (s), 135.6 (s), 129.2 (d x 2), 127.7 (d), 127.4 (d x 2), 121.7 (s), 47.7 (s), 43.5 (t), 

+ 30.7 (t), 27.6 (t), 26.5 (t), 26.3 (t), 23.5 (t), 23.4 (t), 23.1 (q x 2); EI-MS mlz 283 (M , 

31), 268 (28), 228 (19), 91 (100); HRMS Calcd for CI~25NO: 283.1936, found 

283.1929; Anal. Calcd for CI~25NO: C, 80.52; H, 8.89; N, 4.94. Found: C, 80.01; H, 

8.77; N, 4.89. 

1-Benzyl-3,3-dimethyl-l,3,3a,4,5,6, 7 ,8,9,1 O,11,12-dodecahydro-

cyclododeca[b]pyrrol-2-one (158b) and I-Benzyl-3,3-dimethyl-

1,3,4,5,6,7,8,9,1 O,II,12,13-dodecahydro-cyclododeca[b ]pyrrol-2-one (158a) 

Precursor (149) was reacted under the conditions described in the general procedure 

5.2.2 to give the following cyclic compounds. Data for (I 58b): yield (15%); clear oil; 

IR (neat, cm-I); 1700, 1609; IHNMR (300 MHz, C6D6) 8 7.16-7.05 (5H, m, Ar-H), 4.72 

(IH, dd, J = 11.4,3.6 Hz, CH=C), 4.63 (lH, d, J = 15.3 Hz, CHHN), 4.57 (lH, d, J = 

15.3 Hz, CHHN), 2.48 (IH, m, CH), 2.13-1.10 (l8H, m, Clli X; 9), 1.26 (3H, s, Cfu), 

1.17 (3H, s, Cfu); I3C (75:MHz, CJ)6) 8179.6 (s), 141.6 (s), 138.2 (s), 129.2 (d), 127.7 

(d x 2), 127.6 (d x 2), 123.5 (s), 106.0 (d), 46.0 (d), 44.1 (s), 43.9 (t), 30.9 (t), 27.9 (t), 

27.5 (q), 26.7 (t x 2),26.4 (t), 25.7 (t), 24.5 (t), 24.1 (t), 23.2 (t), 19.1 (q); EI-MS mlz 

339 (M+, 75), 269 (75), 91 (100); HRMS Calcd for C23H33NO: 339.2562, found 

339.2564; Anal. Calcd for C23H33NO: C, 81.37; H, 9.80; N, 4.13. Found: C, 81.09; H, 

9.67; N, 4.29. .. 
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Data for (l58a): yield (55%); clear oil; IR (neat, cm-I) 1719, 1675, 1601; IH NMR (300 

MHz, CJ)6) 07.11-7.02 (5H, m, ArJj), 4.68 (2H, s, ClhN), 2.00 (4H, m, Clh x,2), 

1.45-1.17 (16H, m, Clh x 8),1.33 (6H, s, Clli x 2); BC (75 MHz, C6D6) 0 183.7 (s), 

139.8 (s), 136.6 (s), 129.2 (d x 2), 127.6 (d), 127.3 (d x 2), 123.6 (s), 47.6 (s), 43.9 (t), 

28.1 (t), 27.3 (t), 26.3 (t), 26.0 (t), 25.4 (t), 25.0 (t), 24.3 (q x 2),23.0 (t), 22.4 (t x 2), 

21.8 (t); EI-MS mlz 339 (M+, 75), 269 (75), 91 (100); HRMS Calcd for C23H33NO: 

339.2562, found 339.2564; Anal. Calcd for C23H33NO: C, 81.37; H, 9.80; N, 4.13. 

Found: C, 81.29; H, 9.87; N, 4.17. 

1-( 4-Methoxy-benzyl)-3,3-dimethyl-l,3,3a,4,5,6-hexahydro-indol-2-one (159b) and 

1-( 4-Methoxy-benzyl)-3,3-dimethyl-l,3,4,5,6, 7-bexabydro-indol-2-one (159a) 

Precursor (150) was reacted under the conditions described in the general procedure 

5.2.2 to give the following cyclic compounds. Data for (159b): yield (47%); clear oil; 

IR (neat, cm-I) 1676, 1613; IH NMR (250 MHz, CJ)6) 07.22 (2H, d, J = 8.5 Hz, 

CHCHCOCH3), 6.74 (2H, d, J = 8.5 Hz, CH=COCH3), 4.73 (lH, m, CH=C), 4.65 (IH, 

d, J= 15.0 Hz, CHHN), 4.55 (lH, d, J= 15.0 Hz, CHHN), 3.27 (3H, s OClli), 2.14 (1H, 

m, CH), 1.93 (2H, m, Clli), 1.68 (2H, m, Clli), 1.38-1.08 (2H, m, Clli), 1.25 (3H, s, 

Clli), 0.97 (3H, s, Clli); BC (75 MHz; CJ)6) 0 183.2 (s), 165.4 (s), 159.5 (s), 131.6 (s), 

129.5 (d x 2), 114.7 (d x 2),99.5 (d), 55.5 (q), 46.1 (d), 43.8 (t), 42.9 (s), 23.7 (t), 23.2 

(q), 22.6 (t), 22.1 (t), 19.9 (q); EI-MS mlz 285 (M+, 30), 121 (100); HRMS Calcd for 

C18H23N02: 285'.1728, found 285.1729. 
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Data for (159a): yield (36%)~ clear oil~ IR (neat, cm-I) 1702, 1613~ IH NMR (250 MHz, 

CJ)6) () 7.15 (2H, d, J = 8.6 Hz, CHCHCOCH3), 6.75 (2H, d, J = 8.6 Hz, CH=COCH3), 

4.51 (2H, s, CfuN), 3.28 (3H, s, OCfiJ), 1.82 (4H, m, Cfu x 2), 1.39 (4H, m, Cfu x 2), 

1.26 (6H, s, CfiJ x 2)~ 13C (75 MHz~ C6D6) () 183.5 (s), 164.3 (s), 159.7 (s), 134.5 (s), 

129.1 (d x 2), 120.1 (s), 114.3 (d x 2),55.1 (q), 46.5 (s), 42.9 (t), 23.1 (t x 2),22.7, (q x 

2) 21.9 (t), 20.0 (t)~ EI-MS rnJz 285 (M+, 70), 121 (100)~ HRMS Calcd for CIsH23N02: 

285.1728, found 285.1733. 

1-(2,4-Dimethoxy-benzyl)-3,3-dimethyl-l ,3,3a,4,5,6-hexahydro-indol-2-one (160b) 

and 1-(2,4-Dimethoxy-benzyl)-3,3-dimethyl-l,3,4,5,6, 7-hexahydro-indol-2-one 

(160a) 

o o 

Precursor (151) was reacted under the conditions described in the general procedure 

5.2.2 to give the following cyclic compounds. Data for (160b): yield (54%); clear oil~ 

IR (neat, em-I) 1677, 1613~ IH NMR (250 MHz, CJ)6) () 7.22 (IH, d, J = 8.2 Hz, 

CHCHCOCH3), 6.42-6.33 (2H, m, CH=COCH3), 5.00 (IH, d, J = 15.6 Hz, CHHN), 

4.89 (IH, m, CH=C), 4.80 (IH, d, J = 15.6 Hz, CHHN), 3.34 (3H, s OCfiJ), 3.28 (3H, s 

OCfiJ), 2.21 (IH, m, CH), 1.94 (2H, m, Cfu), 1.68 (2H, m, Clh),.1.43-1.14 (2H, m, 

13 
Cfu), 1.27 (3H, s, CfiJ), 1.02 (3H, s, CfiJ); C (75 MHz; CJ)6) () 180.2 (s), 160.9 (s), 

158.6 (s), 140.8 (s), 129.2 (d), 118.4 (s), 104.7 (d), 99.5 (d), 97.6 (s), 55.2 (q x 2), 46.1 

(d), 43.3 (s), 38.2 (t), 23.8 (t), 23.2 (q), 22.9 (t), 22.5 (t), 20.2 (q)~ EI-MS mlz 315 (M+, 
. . 

10), 151 (100), 121 (55); HRMS Calcd for CI9H2SN03: 315.8344, found 315.1837. 
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Data for (160a): yield (36%)~ clear oil~ IR (neat, em-I) 1710, 1612~ IH NMR (250 MHz, 

CJ)6) 8 7.15 (lH, m, J = 8.6 Hz, CHCHCOCH3), 6.42-6.30 (2H, m, CH=COCH3), 4;84 

(2H, s, CfuN), 3.35 (3H, s, OC!:L), 3.24 (3H, s, OC!:L), 1.94 (2H, m, Cfu), 1.83 (2H, 

m, Clli), 1.43 (4H, m, Clli x 2), 1.30 (6H, s, C!:L x 2)~ l3C (75 MHz~ C6D6) 8182.6 (s), 

164.3 (s), 160.9 (s), 158.3 (s), 135.0 (s), 129.1 (d), 120.0 (s), 104.7 (d), 99.4 (d), 55.2 

(q), 55.1 (q), 46.5 (s), 37.7 (t), 23.3 (t x 2),22.9, (q x 2) 21.6, (t), 20.2 (t)~ EI-MS mlz 

315 (M+, 35), 151 (100), 121 (35)~ HRMS Calcd for C19H2SN03: 315.1834, found 

315.1833. 

1-(2-Cyciobex-l-enyl-etbyl)-3,3-dimetbyl-l,3,3a,4,S,6-hexahydro-indol-2-one 

(163b) and 1-(2-Cyciobex-l-enyl-etbyl)-3,3-dimetbyl-l,3,4,S,6, 7-bexabydro-indol-2-

one (163a) 

o 

Precursor (162) was reacted under the conditions described in the general procedure 

.. 5.2.2 to give the following cyclic compounds. Data for (l63b): yield (55%); clear oil; 

IR (neat, em-I) 1720, 1676; IH NMR (250 MHz, CJ)6) 85.48 (IH,-br s, CH=C), 4.66 

(lH, m, CHC=CH), 3.57 (tH, dt, J = 6.7, 13.7 Hz, CH2CfuN), 3.48 (tH, dt, J = 6.7, 

13.7 Hz, CH2CfuN), 2.22 (2H, m, CfuCH2N), 2.00 (5H, m, CH, Cfu x 2), 1.96 (6H, m, 

Cfu x 3), 1.65-1.40 (4H, m, Clli x 2), 1.21 (3H, s, C!:L), 0.95 (3H, s, C!:L); l3C (75 

MHz; C6D6) 8 179.6 (s), 140.8 (s), 135.4 (s), 123.0 (d), 96.5 (d), 46.5 (d), 42.0 (s), 38.1 
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(t), 35.9 (t), 28.6 (t), 26.0 (t), 24.2 (t), 23.8 (q), 23.6 (t), 23.1 (t), 23.0 (t), 22.5 (t), 21.2 

(q); EI-MS mJz 273 (M+, 85), 178 (100), 166 (90), 150 (60); HRMS Calcd for 

C1sH27NO: 273.2092, found 273.2093; Anal. Calcd for C1sH27NO: C, 79.07; H, 9.95; N, 

5.12. Found: C, 78.81; H, 9.72; N, 5.16. 

Data for (163a): yield (21%); clear oil; IR (neat, em-I) 1704, 1675; IH NMR(250 MHz, 

CJ)6) () 5.37 (IH, br 5, CH=C), 3.41 (2H, t, J = 7.0 Hz, CH2ClliN), 2.11 (2H, t, J = 7.0 

Hz, ClliCH2N), 1.98-1.80 (8H, m, Clli x 4), 1.64-1.46 (8H, m, Cfu x 4), 1.21 (6H,s, 

Clli x 2); BC (75 MHz; CJ)6) () 179.9 (5), 135.5 (s), 134.3 (s), 123.9 (d), 120.4 (s), 46.4 

(s), 38.9 (t), 38.5 (t), 28.7 (t), 26.0 (t), 23.7 (t), 23.4 (t), 23.0 (t x 2),22.8 (q x 2), 21.8 

(t), 20.2 (t); EI-MS mJz 273 (M+, 30), 178 (100), 166 (40), 150 (65); HRMS Calcd for 

C1sH27NO: 273.2092, found 273.2101; Anal. Calcd for C1sH27NO: C, 79.07; H, 9.95; N, 

.-

5.12. Found: C, 78.77; H, 9.87; N, 5.06. 

I-Benzyl-7a-methoxy-3,3-dimethyl-octahydro-indol-2-one (164) 

Cu(l)Br (12.9 mg, 0.09 mmol) was added to solution of compound (145) (0.3 mmol), 

tren-Me6 (20.7 mg, 0.09 mmol) and 10 equivalents of methanol (0.12 ml) in 

dichloromethane (2.5 ml) and stirred at room temperature for 22 hrs under N2. The 

resulting solution was filtered through a small silica plug with ethyl acetate to remove 

the copper residues. The filtrate was then reduced to dryness in vacuo and purified by 

flash chromatography, petroleum ether : ethyl acetate (9:1), to give the cyclised 

products, I-Benzyl-3,3-dimethyl-l,3,3a,4,5,6-hexahydro-indol-2-one (152b) in 26% 

yield, I-Benzyl-3,3-dimethyl-l,3,4,5,6,7-hexahydro-indol-2-one (152a) in 19% yield 
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and also the cyclised product (164): yield (36%); clear oil; IR (neat, cm-I) 1704, 1677; 

IH NMR (300 MHz, CJ)6) 0 7.55 (2H, app d, J = 7.2 Hz, Ar-H), 7.26-7.19 (3H, m, Ar­

H), 4.84 (1H, d, J = 14.9 Hz, CHHN), 4.10 (lH, d, J = 14.9 Hz, CHHN), 2.73 (3H, s, 

OClli), 1.89 (3H, m, CH, CHz), 1.46 (2H, m, CHz), 1.40-1.15 (4H, m, CHz), 1.33 (3H, 

s, CH3), 1.16 (3H, s, CH3); 13C (75 MHz; CJ)6) 0 178.8 (s), 139.9 (s), 128.6 (d x 2), 

128.1 (d x 2), 127.4 (d), 92.6 (s), 50.0 (d), 47.8 (q), 45.7 (s), 42.2 (t), 34.0 (t), 25.8 (q), 

22.0 (q), 21.7 (t), 21.4 (t), 20.4 (t); EI-MS mlz 287 (M+, 15),255 (90), 240 (70), 212 

(60),91 (100); HRMS Calcd for ClsH2SN02: 287.1885, found 287.1883. 

3-Benzyl-l,l-dimethyl-3,S-dihydro-1H-3-aza-cyclopenta[a ]inden-2-one (170) 

Precursor (167) was reacted under the conditions described in the general procedure 

5.2.2 to give the following cyclic compound: yield (99%); clear oil; IR (neat, em-I) 

1727; IH NMR (250 MHz, CJ)6) 7-24-7.10 (9H, m, Ar-H), 5.06 (2H, S, C!:hN), 3.30 

(2H, m, Clli), 1.38 (6H, s, CH3 x 2); 13C (75 MHz; CJ)6) 0 178.3 (s), 140.9 (s), 139.2 

(s), 138.1 (s), 136.0 (s), 130.1 (s), 127.8 (d x 2), 127.2 (d), -127.2 (d x 2), 126.8 (d), 

.. 126.7 (d), 125.8 (d), 121.9 (d), 46.2 (s), 46.0 (t), 31.9 (t), 23.9 (q x 2); EI-MS mJz 289 

(M+, 60), 274 (93), 91 (100); HRMS Caled for C2oHI9NO: 289.1466, found 289.1475. 
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I-Benzyl-3,3-dimethyl-I,3,4,S-tetrahydro-benzo[g]indol-2-one (171) 

o 

Precursor (168) was reacted under the conditions described in the general procedure 

5.2.2 to give the following cyclic compound: yield (99%); clear oil; IR (neat, cm-I
) 

1706; IH NMR (250 MHz, CJ)6) 7-28-6.83 (9H, m, Ar-H), 4.99 (2H, s, ClliN), 2.54 

(2H, t, J = 8.0Hz, Clli), 1.91 (2H, t, J = 8.0Hz, Clli), 1.24 (6H, s, ClL x 2); l3C (75 

MHz; CJ)6) 8 184.5 (s), 139.2 (s), 137.2 (s), 135.4 (s), 130.0 (s), 130.0 (d x 2), 129.3 (d . 

x 2), 128.9 (d), 128.7 (d), 128.4 (d), 128.1 (d), 127.7 (s), 122.4 (d), 46.2 (s), 46.0 (t), 

29.9 (t), 22.9 (q x 2), 14.6 (t); EI-MS mlz 303 (M+, 35), 288 (55), 91 (100); HRMS 

Calcd for C2IH2INO: 303.1623, found 303.1629; Ana1. Calcd for C2IH2INO: C, 83.13; 

H, 6.98; N, 4.62. Found: C, 82.87; H, 6.90; N. 4.51. 

I-Benzyl-l '-bromo-3,3-dimethylspiro(azetidine-4,2'-I' ,2' ,3' ,4'­

tetrahydronapthalen)-2-one (172) 

Precursor (169) was reacted under the conditions described in the general procedure 

5.2:2 to give the following cyclic compound as a mixture of 1:1 diastereomers: yield 

(99%); clear oil.; IR. (neat, cm-I
) 1747; IH NMR for mixture of diastereomers (250 

MHz, CJ)6) 7-23-7.03 (6H, m, Ar-H), 6.90 (lH, m, Ar-H), 6.65 (2H, m, Ar-H), 5.05 
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(IH, app d, J = 2.2 Hz, CHBr), 3.90 (lH, d, J = 15.6 Hz, CHHN), 3.75 (IH, d, J = 15.6 

Hz, CHHN), 3.09 (Ill, m, CHH), 2.84 (IH, m, NCCHH), 2.63 (lH, m, CHID, 1.96 (UI, 

m, NCCHH), 1.60 (3H, s, Clli), 1.32 (3H, s, Clli); l3C for mixture of diastereomers (75 

MHz; CJ)6) 8 175.0 (s), 138.1 (s), 136.4 (s), 135.7 (s), 130.0 (d), 129.6 (d), 129.4 (d), 

128.8 (d x 2), 127.7 (d x 2), 127.2 (d), 127.0 (d), 67.8 (s), 57.1 (d), 52.4 (d), 43.8 (t), 

25.7 (t), 25.3 (t), 20.2 (q), 18.4 (q); EI-MS mlz 384 (M+, 15),304 (100), 288 (82), 172 

(60), 128 (65), 91 (55); HRMS Calcd for C21H22BrNO: 384.0963, found 384.0960; 

Anal. Calcd for C21H22BrNO: C, 65.63; H, 5.77; N, 3.64. Found: C, 65.51; H, 5.67; N, 

3.60. 

1-( 4-Methoxy-benzyl)-3,3-dimethyl-5-methylene-1-aza-spiro[3.5]nonan-2-one (180) 

and 1-( 4-Methoxy-benzyl)-3,3, 7-trimethyl-1,3,4,5,6, 7-hexahydro-indol-2-one (181) 

Cu(l)Br (12.9 mg, 0.09 mmol) was added to solution of precursor (179) (0.3 mmol), 

tren-Me6 (20.7 mg, 0.09 mmol) in dichloromethane (2.5 ml) and stirred at room 

temperature for 18 hrs under N2• The resulting solution was. filtered through a small 

silica plug with ethyl acetate to remove the copper residues. The filtrate was then 

reduced to dryness in vacuo and purified by flash chromatography, petroleum ether: 

ethyl acetate (4:1), to give the cyclised products (180) and (181): Data for (180): yield 

(47%); clear oil; IR (neat, em-I) 1705, 1620; IHNMR (250 MHz, CDCh) 8 7.20 (2H, d, 

J = 8.6 Hz, CHCHCOCH3), 6.81 (2H, d, J = 8.5 Hz, CH=COCH3), 4.91 (IH, s, 

CHH=C), 4.66 (tH, s, CHH=C), 4.57 (IH, d, J= 15.0 Hz, CHHN), 3.90 (lH, d, J= 15.0 

Hz, CHHN), 3.78 (3H, s OClli), 2.42 (2H, m, CHH), 1.88 (IH, m, CHH), 1.77-1.67 
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(6H, m, Clli x 3), 1.32 (3H, s, C!h), 1.15 (3H, s, C!h); 13C (75 MHz; CDCh) S 174.4 

(s), 159.1 (s), 147.9 (s), 130.8 (S), 129.7 (d x 2), 114.2 (d x 2), 109.7 (d), 71.1 (s),51.0 

(s), 55.6 (q), 43.3 (t), 35.9 (t), 33.8 (t), 26.8 (t), 24.8 (t), 19.2 (q), 18.5 (q)~ EI-MS mlz 

299 (M+, 60), 121 (100); HRMS Calcd for Cl~25N02: 299.1885, found 299.1885. 

Data for (181): yield (41%); clear oil; IR (neat, cm-1
) 1669; IH NMR (300 MHz, 

CDCl3) S 7.00 (2H, d, J = 8.7 Hz, CHCHCOCH3), 6.75 (2H, d, J = 8.7 Hz, 

CH=COCH3), 4.85 (IH, d, J = 15.0 Hz, CHHN), 4.23 (lH, d, J = 15.0 Hz, CHHN), 3.70 

(3H, s OC!h), 2.21 (IH, m, CHCH3), 1.88 (2H, m, Clli), 1.65-1.41 (4H, m, Clli x 2), 

1.09 (3H, s, C!h), 1.07 (3H, s, C!h), 0.97 (3H, d, J = 7.0 Hz, CHC!h); 13C (75 MHz; 

CDCh) S 185.0 (s), 159.0 (s), 138.3 (s), 130.7 (s), 128.1 (d x 2), 121.4 (s), 114.1 (d x 

2),55.6 (q), 45.6 (s), 42.8 (t), 31.1 (t), 25.5 (t), 22.5 (q), 22.3 (q), 20.7 (t), 20.6 (q), 19.4 

(t); EI-MS m/z 299 (M+, 55), 121 (100); HRMS Calcd for Cl~25N02: 299.1885, found 

299.1883. 

1-( 4-Methoxy-benzyl)-3,3,3a-trimethyl-l,3,3a,4,5,6-hexahydro-indol-2-one (184) 

and 1-( 4-Methoxy-benzyl)-3,3, 7-trimethyl-l,3,4,5,6, 7-hexahydro-indol-2-one (181) 

o 

Cu(I)Br (12.9 mg, 0.09 mmol) was added to solution of precursor (179) (0.3 mmol), 

TPA (26.1 mg, 0.09 mmol) in toluene (2.5 ml) and refluxed with stirring for 1 hr. The 

resulting solution was filtered through a small silica plug with ethyl acetate to remove 

the copper residues. The filtrate was then reduced to dryness in vacuo and purified by 

flash chromatography, petroleum ether : ethyl acetate (4:1), to give the cyclised 
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products (184) and (181). Data for (184): yield (64%); clear oil; IR (neat, em-I) 1680, 

1611; IH NMR (250 MHz, CDCh) 37.15 (2H, d, J = 8.6 Hz, CHCHCOCH3), 6.81 (2H, 

d, J = 8.5 Hz, CH=COCH3), 4.79 (1H, m, CH=C), 4.67 (IH, d, J = 15.0 Hz, CHHN), 

4.45 (1H, d, J= 15.0 Hz, CHHN), 3.76 (3H, s OClli), 2.07 (2H, m, C!h), 1.70 (2H, m, 

13 C;th), 1.42 (2H, m, C!h), 1.22 (3H, s, C!iJ), 1.15 (3H, s, C!iJ), 0.97 (3H, s, C!iJ); C 

(75 MHz; CDCl3) 3 182.2 (s), 159.0 (s), 144.4 (s), 130.7 (s), 129.0 (d x 2), 114.1 (d x 

2),99.2 (d), 55.5 (q), 47.9 (s), 43.0 (t), 42.8 (s), 27.9 (t), 23.7 (q), 23.3 (t), 22.7 (q), 20.0 

(t), 17.3 (q); EI-MS mlz 299 (M+, 40), 121 (100), 83 (20); HRMS Calcd for 

Data for (181): yield (21 %); clear oil; Spectral details matched those previously cited 

above. 

1-(2-Bromo-benzyl)-J,3-dimethyl-l,3,3a,4,5,6-hexahydro-indol-2-one (189) and 1-

(2-Bromo-benzyl)-3,3-dimethyl-l,3,4,5,6,7-hexahydro-indol-2-one (190) 

.. Precursor (188) was reacted under the conditions described in the general procedure 

5.2.2 to give the following cyclic compounds. Data for (189): yield (64%); clear oil; IR 

(neat, cm-I
) 1711, 1681; IH NMR (250 MHz, CJ)6) 3 7.35 (lH, app dd, J = 1.1, 7.9 Hz, 

Ar-H), 7.19-7.11 (tH, m, Ar-H), 6.92 (IH, app t, J = 7.3, 7.6 Hz), 6.65 (lH, app t, J = 

.6.4, 7.6 Hz), 4.8.1 (2H, s, C!hN), 4.61 (lH, m, CH=C), 2.22 (l~, m, CH), 1.82 (2H, m, 

C;th), 1.60 (2H, m, C;th), ~.49 (2H, m, C!h), 1.25 (3H, s, C!iJ), 0.98 (3H, s, C!b); \3C 

182 



Chapter 5 

(75 MHz; CJ)6) 8 180.3 (s), 140.1 (s), 136.7 (s), 133.3 (d x 2), 129.6 (d x 2), 123.5 (s), 

98.3 (d), 46.3 (d), 44.7 (t), 43.2 (s), 23.9 (q), 22.8 (t), 22.2 (t), 21.3 (t), 20.3 (q); EI-MS 

mlz 333 (M+, 70), 254 (100), 169 (75), 91 (55); HRMS Calcd for C17H2oBrNO: 

333.0728, found 333.0728. 

Data for (190): yield (19%); clear oil; IR (neat, cm-I) 1709, 1680; IH NMR (250 MHz, 

CJ)6) 8 7.33 (lH, app dd, J = 1.1, 7.9 Hz, Ar-H), 7.19-7.10 (IH, m, Ar-H), 6.91 (IH, 

app t, J = 7.3, 7.6 Hz), 6.65 (IH, app t, J = 6.5, 7.6 Hz), 4.72 (2H, s, ClliN), 1.82 (2H, 

m, Clli), 1.66 (2H, m, Clli), 1.49-1.32 (2H, m, Clli x 2), 1.26 (6H, s, ClL x 2); 13C (75 

MHz; C6D6) 8 180.1 (s), 143.1 (s), 136.0 (s), 133.0 (d x 2), 129.9 (d x 2), 123.8 (s), 

121.3 (s), 43.1 (t), 42.9 (s), 22.9 (t), 22.8 (t), 21.8 (t), 21.1 (q x 2), 19.8 (t); EI-MS mlz 

333 (~, 25), 254 (100), 169 (70), 91 (35); HRMS Calcd for CI7H20BrNO: 333.0728, 

found 333.0734. 

1-( 4-Methoxy-benzyl)-3,3-dimethyl-l,3,3a,4,4a,5,6, 7 ,8,8a-decahydro-benzo[fJindol-

2-one (258b) and 1-( 4-Methoxy-benzyl)-3,3-dimethyl-l,3,4,4a,5,6, 7 ,8,8a,9-

decahydro-benzo[fjindol-2-one (258a) 

Precursor (257) was reacted under the conditions described in the. general procedure 

5.2.2 to give the following cyclic compounds. Data for (258b): yield (47%); clear oil; 

IR (neat, cm-I
) 1679, 1610; IH NMR (300 MHz, C6D6) 07.20 (2H, d, J = 8.6 Hz, 

CH=COCH3), 6.74 (2H, d, J = 8.5 Hz, CH=COCH3), 4.67 (lH, m, CH=C), 4.57 (1H, d, 

J = 15.5 Hz, CHHN), 4.41 (IH, d, J = 15.5 Hz, CHHN), 3.70 (3H, s OCfu), 2.27 (IH, 
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m, CH), 1.93-1.10 (12H, m, Clli X 5, CH X 2), 1.18 (3H, s, Clli), 0.95 (3H, s, Clli); 13C 

(75 MHz; CJ)6) 0 183.0 (s), 166.0 (s), 159.5 (s), 131.0 (s), 129.9 (d X 2), 114.0 (d x 2), 

99.2 (d), 55.5 (q), 47.0 (d), 44.0 (t), 43.0 (s), 34.3 (d), 30.8 (d), 29.7 (t), 29.3 (t), 23.9 

(t), 23.5 (q), 22.6 (t), 22.1 (t), 19.0 (q); EI-MS mJz 339 (M+, 70), 219 (15), 121 (100); 

HRMS Calcd for C22H29N02: 339.2198, found 339.2198. 

Data for (258a): yield (36%); clear oil; IR (neat, em-I) 1714, 1611; IH NMR (300 

MHz, C~6) 07.18, (2H, d, J = 8.6 Hz, CHCHCOCH3), 6.77 (2H, d, J = 8.6 Hz, 

CH=COCH3), 4.60 (2H, s, ClliN), 3.70 (3H, s, OClli), 1.82 (4H, m, Clli x 2), 1.39-

1.05 (IOH, m, Clli x 4, CH x 2), 1.28 (6H, s, Clli x 2); 13C (75 MHz; C~6) 0 184.0 (s), 

164.1 (s), 160.5 (s), 134.4 (s), 129.0 (d x 2), 121.5 (s), 114.1 (d x 2),55.5 (q), 47.1 (s), 

42.4 (t), 34.5 (d), 31.8 (d), 29.7 (t), 28.6 (t), 23.0 (t x 2), 22.6, (q x 2) 21.1 (t), 20.7 (t); 

CI-MS mJz 340 (~, 100), 220 (15), 121 (15); HRMS Calcd for C22H29N02: 339.2198, 

found 339.2198. 

5.2.3 General synthesis of secondary bromoacetamide cyclisation precursors 

The appropriate imine (9 mmol) was dissolved in dry toluene (50 ml) and cooled to 

O°C. with stirring. 2-bromopropionyl-bromide (9 mmol) was added dropwise to this 

solution, followed by the slow, dropwise addition of N,N-diethylaniline (9 mmol). The 

reaction was then stirred for 2 hours at room temperature and dropped onto H20 (50 

ml). The organic layer was washed with 10% aq.HCI (10 ml), dried over MgS04 and 

concentrated in vacuo to give a residue which was purified by column chromatography, 

petroleum ether: ethyl acetate (9:1). 
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N-Benzyl-2-bromo-N-( cyclohex-l-enyl)-propanamide (196) 

Imine (102) was reacted under the conditions described in the general procedure 5.2.3 

to give the required compound (197): yield (66%); clear oil; IR (neat, cm-I) 1656; IH 

NMR (300 MHz, CDCh) 07.22-7.09 (5H, m, Ar-H), 5.46 (1H, m, CH=C), 4.87-4.55 

(3H, br s, ClliN, CHBrCH3), 2.10 (2H, m, C!:h), 1.97 (2H, m, Clli), 1.76 (3H, d, J = 

8.5 Hz, C!:b), 1.63 (2H, m, Clli), 1.50 (2H, m, Clli); 13C (75 MHz, CDCh) 0 169.6 (s), 

137.9 (s), 137.8 (s), 129.4 (d), 128.9 (d x 2), 128.7 (d x 2), 127.9 (d), 50.3 9 (t), 39.9 

(d), 28.3 (t), 27.4 (t), 25.0 (t), 21.7 (q), 21.4 (t); EI-MS mlz 322 (~. 80), 243 (92),241 

(74),91 (75),55 (100); HRMS Calcd for CIJf2oBrNO: 322.0807, found 322.0809. 

N-Benzyl-2-bromo-N-( cyclooct-l-enyI)-propanamide (202) 

Imine (363) was reacted under the conditions described in the general procedure 5.2.3 

to give the required compound (202): yield (68%); clear oil; IR (neat, cm-I) 1651; IH 

NMR (300 MHz, CDCI3) S 7.21-7.09 (5H, m, Ar-H), 5.37 (IH, m, CH=C), 4.75 (IH, br 

s, CHBrCH3), 4.80-4.30 (2H, br m, ClliN), 2.36-2.28 (2H, m, Clli), 2.00 (2H, m, Clli), 

1. 76 (3H, d, J = 6.7 Hz, CHBrC!:b), 1.45-1.15 (8H, m, Clli x 4); 13C (75 MHz, 

CDCI3) S 170.0 (s), 140.1 (s), 137.9 (s), 131.5 (d), 128.7 (d x 2), 128.6 (d x 2), 127.3 

(d), 51.1 (t), 40:3 (d), 29.2 (t), 28.5 (t), 26.6 (t), 26.2 (t x 2),26.0 (t), 22.5 (q); CI-MS 
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mlz 350 (MIt, 39),270 (100),216 (11); HRMS Calcd for CI8H24BrNO: 350.1119, 

found 350.1121. 

2-Bromo-N-cyclohex-l-enyI-N-( 4-methoxy-benzyl)-propionamide (204) 

XBD 
o N 

I 
PMB 

Imine (364) was reacted under the conditions described in the general procedure 5.2.3 

to give the required compound (204): yield (78%); clear oil; IR (neat, cm-I) 1655; IH 

NMR (300 MHz, CDCh) B 7.16 (2H, d, J= 8.6 Hz, CHCHCOCH3), 6.78 (2H, d, J= 8.6 

Hz, CH=COCH3), 5.44 (IH, br s, CH=C), 4.70 (IH, br s, CHBrCH3), 4.50 (2H, br m, 

CfuN), 3.73 (3H, S, OClL), 2.11-1.94 (4H, m, Clli ?C 2), 1.76 (3H, d, J = 6.6 Hz, 

CHBrClL), 1.64 (2H, m, Cfu), 1.52 (2H, m, Cfu); BC (75 MHz, CDCh) B 169.4 (s), 

159.2 (s), 137.8 (s), 130.9 (d x 2), 130.0 (s), 129.4 (d), 114.0 (d x 2),55.5 (q), 49.7 (t), 

40.0 (d), 27.1 (t), 25.7 (t), 22.6 (t), 22.2 (q), 21.3 (t); CI-MS mlz 352 (M+, 30), 272 (90), 

121 (60); HRMS Calcd for C17H22BrNO: 352.0912, found 352.0911. 

2-Bromo-N-cyclooct-l-enyl-N-( 4-methoxy-benzyl)-propion~mide (205) 

Imine (375) was reacted under the conditions described in the general procedure 5.2.3 

to give the required compound (205): yield (84%); clear oil; IR (neat, cm-I) 1784; IH 

. NMR (300 MHz, CDCI3) B 7.19 (2H, d, J = 8.6 Hz, CHCHCOCH3), 6.80 (2H, d, J = 8.6 

Hz, CH=COCH3), 5.38 (lH, br s, CH=C), 4.80 (IH, br s, CHBrCH3), 4.48 (2H, br m, 
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CfuN), 3.74 (3R, s, OCIL), 2.38-2.00 (4R, br m, Cfu x 2), 1.79 (3H, d, J = 6.6 Hz, 

CHBrCIL), 1.51 (8H, m, Cfu x 4); 13C (75 MHz, CDCh)* 0 169.9 (s), 159.2 (s), 131.5 

(d), 130.0 (d x 2), 114.0 (d x 2),55.5 (q), 50.5 (t), 40.4 (d), 31.3 (t), 29.5 (t), 29.2 (t), 

26.6 (t), 26.3 (t x 2), 22.5 (q); CI-MS mlz 380 (M+, 90), 300 (45), 121 (100); HRMS 

Calcd for CI~2J3rNO: 380.1225, found 380.1225 .... 2 quaternary carbon signals were 

not observed, even after the application of slower relaxation time experiments. 

N-Benzyl-2-chloro-2-phenyl-N-cyclohex-l-enyl-acetamide (203) 

Imine (to2) (9 mmol) was dissolved in dry toluene (50 ml) and cooled to O°C with 

stirring. Chloro-phenyl-acetyl chloride (9 mmol) was added dropwise to this solution, 

followed by the slow, dropwise addition of N,N-diethylaniline (9 mmol). The reaction 

was then stirred for 2 hours at room temperature and dropped onto R20 (50 ml). The 

organic layer was washed with 10% aq.HCl (to ml), dried over MgS04 and 

concentrated in vacuo to give a residue which was purified by column chromatography, 

petroleum ether: ethyl acetate (4:1): yield, (72%); clear orange oil; IR (neat, em-I) 

1632; IR NMR (300 MHz, CDCh) 0 7.61-7.50 (5R, m, AI-H), 7.12-7.20 (5H, m, AI-H), 

5.78 (lR, s, CR=C), 5.41-5.15 (IR, br m, CHCIPh), 4.91-4.30 (2H, br m, CfuN), 2.40 

13 
(2H, m, CHCfu), 2.17-1.50 (6H, m, Cfu x 3); C (75 MHz; CDCh) 0164.0 (s), 137.5 

(s), 129.6 (8), 129.3 (d), 129.2 (d x 2), 129.1 (d x 2), 128.7 (d), 121.1 (s), 128.7 (d x 2), 

128.6 (d x 2), 127.8 (d), 61.4 (d), 49.9 (t), 27.7 (t), 24.5 (t), 22.4 (t), 21.1 (t); EI-MS mlz 
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339 (M+, 15), 304 (95), 185 (14), 149 (55), 91 (100); HRMS Calcd for C21H22CINO: 

339.1389, found 339.1377. 

2-Chloro-N-cyclohex-l-enyl-N-( 4-methoxy-benzyl)-2-phenyl-acetamide (206) 

Imine (364) was reacted under the conditions described for (203) to give the required 

compound (206): yield, (84%); clear yellow oil; IR (neat, em-I) 1660, 1612; IH NMR 

(300 MHz, CDCh) B 7.53-7.15 (7H. m, Ar-H), 6.84-6.79 (2H, m, Ar-H), 5.74 (IH, s, 

CH=C), 5.40-4.39 (3H, br m, ClliN, CHClPh), 3.79 (3H, s, OCH3), 2.07 (2H, m, 

, 13 
CHClli), 1.79-1.53 (6H, m, Clli x 3); C (75 MHz;.CDC13) B 167.3 (s), 164.2 (s), 

159.3 (s), 137.6 (s), 130.8 (d x 2), 129.8 (s), 129.2 (d x 2), 129.0 (d x 2), 128.8 (d), 

128.7 (d), 114.0 (d x 2),60.8 (d), 55.6 (q), 49.9 (t), 28.5 (t), 25.1 (t), 23.0 (t), 21.7 (t); 

EI-MS m/z 369 (M+, 10), 333 (100), 279 (25), 121 (45); HRMS Calcd for 

C22H24CIN02: 369.1495, found 369.1499. 

1-( 4-Methoxy-benzyl)-2,2-diphenyl-l,2,4,5,6, 7-hexahydro-~ndol-3-one (217) 

o 

Imine (364) (9 mmol) was dissolved in dry toluene (50 ml) and cooled to O°C with 

stimng. Chloro-diphenyl-acetyl chloride (9 mmol) was added dropwise to this solution, 

followed by the'slow, dropwise addition of N,N-diethylaniline (9 mmol). The reaction 

188 



Chapter 5 

was stirred for 2 hours at room temperature and dropped onto H20 (50 ml). The organic 

layer was washed with 10% aq.HCI (10 ml), dried over MgS04 and concentrated.in 

vacuo to give a residue which was purified by column chromatography, petroleum ether 

: ethyl acetate (5:1): yield, (80%); clear yellow oil; IR (neat, em-I) 1704, 1677; IH NMR 

(350 MHz, CDC13) 0 7.31-7.09 (12H, m, Ar-H), 6.82 (2H, d, J = 8.6 Hz, CH=COCH3), 

4.64 (2H, s, CfuN), 3.77 (3H, s, OCH3), 2.19 (2H, m, Cfu), 2.00 (2H, m, Cfu), 1.69 

(2H, m, Cfu); l3C (75 MHz; CDCh) 0 179.8 (s), 159.2 (s), 141.3 (s x 2), 137.3 (s), 

130.4 (s), 128.9 (d x 5), 128.7 (d x 4), 127.3 (d x 2), 119.3 (s), 114.4 (d x 2),65.5 (s), 

55.6 (q), 43.3 (t), 23.0 (t), 22.6 (t), 22.2 (t), 21.8 (t); EI-MS mlz 409~, 100), 288 

(15), 121 (70),83 (25); HRMS Calcd for C2sH27N02: 409.2041, found 409.2036. 

2-Bromo-N-cyclohex-l-enyl-N-( 4-methoxy-benzyl)-a~etamide (225) 

Imine (364) (9 mmol) was dissolved in dry toluene (50 ml) and cooled to O°C with 

stirring. Bromo-acetyl bromide (9 mmol) was added dropwise to this solution, followed 

by the slow, dropwise addition of N,N-diethylaniline (9 mmot). The reaction was stirred 

for 3 hours at room temperature and dropped onto H20 (50 ml). The organic layer was 

.. washed with 10% aq.HCI (10 mt), dried over MgS04 and concentrated in vacuo to give 

a residue which was purified by column chromatography, petroleum ether: ethyl 

acetate (4:1): yield (62%); clear oil; IR (neat, em-I) 1652; IH NMR (250 MHz, CDCI3) 

07.16 (2H, d, J = 8.6 Hz, CHCHCOCH3), 6.78 (2H, d, J = 8.6 Hz, CH=COCH3), 5.45 

(IH, br S, CH=C), 4.53 (2H, br m, CfuN), 3.90 (2H, S, CthBr), 3.76 (3H, s, OCfu), 
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2.01 (4H, m, Clli x 2), 1.68 (2H, m, Clli), 1.52 (2H, m, Clli)~ l3C (75 MHz, CDCh) 

B 166.3 (s), 159.3 (s), 138.1 (s), 130.5 (d x 2), 129.7 (s), 129.6 (d), 114.5 (d x 2),55.6 

(q), 49.6 (t), 28.3 (t), 27.7 (t), 25.1 (t), 23.0 (t), 21.7 (t)~ CI-MS mJz 338 (M+, 10),260 

(40), 121 (l00)~ HRMS Calcd for CIJf2oBrN02: 338.0755, found 338.0756. 

2-Bromo-N-cyclohex-l-enyl-N-( 4-nitro-benzyl)-propionamide (207) 

X:D 
I 
PNB 

Imine (378) was reacted under the conditions described in the general procedure 5.2.3 

to give the required compound (207): yield (83%)~ clear oil~ IR (neat, em-I) 1669, 1552, 

1346; IH NMR (300 'MHz, CDCh) B 8.12 (2H, d, J = 8.6. Hz, CH=CN02), 7.40 (2H, d, J 

= 8.6 Hz, CHCHCN02), 5.59 (lH, s, CH=C), 4.82 (lH, m, CHaH~), 4.75 (IH, s, 

CHBrCH3), 4.50 (IH, m, CHaHbN), 2.25-2.00 (4H, m, Cllix 2), 1.77 (3H, d, J= 6.6 Hz, 

CHBrClb), 1.69 (2H, m, Clli), 1.52 (2H, m, Clli)~ l3C (75 MHz, CDCI3) B 173.5 (s), 

170.4 (s), 147.9 (s),145.2 (s), 129.8 (d), 129.4 (d x 2), 124.0 (d x 2),49.9 (t), 39.2 (d), 

28.2 (t), 25.0 (t), 23.0 (t), 22.3 (q), 21.4 (t); CI-MS mJz 367 (M+. 30), 287 (20), 257 

(75), 152 (70), 106 (65) ; HRMS Calcd for C16HI~rN203: 367~0657, found 367.0671. 

N-Benzyl-2-hromo-N-(3,4-dihydro-naphthalen-l-yl)-propionamide (227) 

XBr 

I 
o N 

I 
Bn 
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Imine (369) was reacted under the conditions described in the general procedure 5.2.3 

to give the required compound (227): yield (60%); clear oil; IR (neat, em-I) 1677; .IH 

NMR (250 MHz, CDCh) 07.21-7.15 (9H, m, Ar-H), 5.86 (IH, t, J = 4.6 Hz, CH=C), 

5.54 (lH, d, J= 14.3 Hz, CHaH~), 4.40 (lH, q, J= 6.7,6.4 Hz, CHBrCH3), 3.83 (IH, 

d, J = 14.3 Hz, CllaHbN), 2.82 (2H, m, C!h), 2.33 (2H, m, C!h), 1.75 (3H, d, J = 6.7 

Hz, CHBrC!b); l3C (75 MHz, CDCh) 0 170.9 (s), 137.8 (s), 137.4 (s), 136.5 (s), 133.3 

(s), 130.3 (d), 129.7 (d), 129.4 (d), 128.8 (d x 2), 128.7 (d x 2), 128.0 (d), 127.3 (d), 

51.0 (t), 40.2 (d), 27.6 (t), 23.1 (t), 22.4 (q); EI-MS mlz 370 (M+, 10), 290 (81), 145 

(30),91(60), 83 (100); HRMS Calcd for C2oH2oBrNO: 370.0806, found 370.0805. 

2-Bromo-N-(3,4-dihydro-naphthalen-l-yl)-N-(4-methoxy-benzyl)-propionamide 

(228) 

Imine (370) was reacted under the conditions described in the general procedure 5.2.3 

to give the required compound (228): yield (80%); clear oil; IR (neat, em-I) 1661; IH 

NMR (300 MHz, CDCh) 07.20-7.17 (5H, m, Ar-H), 6.84-6.80 (3H, m, Ar-H), 5.84 

(lH, t, J= 4.6 Hz, CH=C), 5.58 (lH, d, J= 10.4 Hz, CHaHbN), 4.40 (IH, q, J= 6.7,6.6 

Hz, CHBrCH3), 3.85 (IH, d, J= 10.4 Hz, CllaH~), 3.78 (3H, S, OCH3), 2.84 (2H, m, 

C!h), 2.34 (2H, m, C!h), 1.76 (3H, d, J = 6.6 Hz, CHBrClli); l3C (75 MHz, CDCh) 

o 170.7 (s), 159.4 (s), 137.3 (s), 136.4 (s), 131.8 (s), 130.7 (d), 130.3 (d x 2), 129.3 (d), 

129.0 (s), 128.4 (d), 127.4 (d), 121.9 (d), 114.0 (d x 2),55.6 (q), 50.3 (t), 40.2 (d), 27.5 
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(t), 23.1 (t), 21.5 (q); CI-MS m/z 400 (MIt. 65), 320 (100), 200 (80), 121 (50); HRMS 

Calcd for C2IH22BrN02: 400.0912, found 400.0911. 

2-Bromo-N-(3H-inden-l-yl)-N-( 4-methoxy-benzyl)-propionamide (229) 

XBr 

I 
o N 

I 
PMB 

Imine (377) was reacted under the conditions described in the general procedure 5.2.3 

to give the required compound (229): yield (56%); clear oil; lR (neat, em-I) 1669; IH 

NMR (300 MHz, CDCh) 37.50 (2H, d, J= 8.6 Hz, CHCHCOCH3), 7.31-7.16 (4H, m, 

Ar-H), 6.81 (2H, d, J = 8.6 Hz, CH=COCH3), 6.30 (IH, s, CH=C), 5.40 (lH, m, 

CHBrCH3), 4.35-4.09 (2H, br m, ClliN), 3.75 (3H, s, OCH3), 3.41 (2H, br s, Cfu), 1.75 

(3H, d, J = 6.4 Hz, CHBrClli); l3C (75 MHz, CDCl3) 3 170.8 (s), 160.1 (s), 143.9 (s), 

141.2 (s), 136.2 (s), 131.4 (d x 2), 129.9 (s), 128.6 (d), 128.4 (d), 127.2 (d), 126.6 (d), 

126.3 (d), 114.1 (d x 2), 55.6 (q), 50.7 (t), 39.4 (d), 36.7 (t), 22.2 (q); EI-MS m/z 385 

(M+. 80), 305 (50), 250 (30), 121 (100); HRMS Calcd for C2oH2oBrN02: 386.0755, 

found 386.0754. 

2-Bromo-N-(3,4-dihydro-naphthalen-2-yl)-N-(4-methoxy-benzyl)-propionamide 

(230) 

XBr 

I 
o N 

I 
PMB 
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Imine (376) was reacted under the conditions described in the general procedure 5.2.3 

to give the required compound (230): yield (69%); clear oil; IR (neat, em-I) 1645; IH 

NMR (300 MHz, CDCh) 0 7.33 (2H, d, J = 8.6 Hz, CHCHCOCH3), 7.22 (3H, m, Ar­

H), 7.05 (IH, m, Ar-H), 6.90 (2H, d, J = 8.6 Hz, CH=COCH3), 6.31 (IH, s, CH=C), 

4.94 (IH, m, CHBrCH3), 4.77 (2H, br m, ClliN), 3.85 (3H, s, OCH3), 2.99 (2H, m, 

Clli), 2.45 (2H, m, Clli), 1.91 (3H, d, J = 6.8 Hz, CHBrC!:b); I3C (75 MHz, CDC13) 

o 169.5 (s), 159.5 (s), 139.1 (s), 134.4 (s), 133.0 (s), 130.6 (d x 2), 129.5 (s), 128.9 (d), 

128.8 (d), 128.1 (d), 127.3 (d), 127.2 (d), 114.3 (d x 2),55.6 (q), 50.3 (t), 40.0 (d), 28.9 

(t), 27.4 (t), 22.5 (q); CI-MS mlz 400 (MH+. 55), 320 (60), 200 (30), 121 (100); HRMS 

Calcd for C2IH22BrN02: 400.0912, found 400.0909. 

2-Bromo-N-( 4-methoxy-benzyl)-N-(2-methyl-cyclohex-l-enyl)-propionamide (235a) 

and 2-Bromo-N-( 4-methoxy-benzyl)-N-(6-methyl-cyclohex-l-enyl)-propionamide 

(235b) 

J)) 
I 
PMB 

J:o 
I 
PMB 

Imine derived from the condensation of p-methoxybenzylamine and 2-

methylcyclohexanone was reacted under the conditions described in the general 

procedure 5.2.3 to give a 1:1 mixture of double bond regioisomers: yield (60%); clear 

oil; IR (neat, em-I) 1659, 1645; IH NMR for mixture of regioisomers (250 MHz, 

CDCh) 07.12 (2H, d, J = 8.7, CHCHCOCH3), 6.73 (2H, d, J = 8.7 Hz, CH=COCH3), 

5.55 (tH, br s, CH=C), 5.00 (IH, d, J = 14.2, CHHN), 4.58 (IH, m, CHBrCH3), 3.82 

(lH, d, J = 14.2; CHHN), 3.78 (3H, s, OC!:b), 2.29-1.94 (4H, ro, Clli x 2), 1.70 (3H, d, 
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J = 6.6 Hz, CHBrCIL), 1.56 (2H, m, Clli), 1.38 (2H, m, Clli), 0.83 (3H, d, J = 7.0 Hz, 

CIL); l3C for mixture of regioisomers (75 MHz, CDCh) 0 169.7 (s), 159.4 (s), 142.7 

(s), 130.4 (d x 2), 129.9 (s), 129.3 (d), 114.7 (d x 2),67.8 (s), 55.6 (q), 46.4 (t), 40.7 (d), 

40.4 (q), 31.0 (t), 30.8 (d), 25.0 (t), 24.9 (t), 22.0 (t), 21.5 (t), 19.8 (q); CI-MS mlz 365 

(M+, 57), 121 (100); HRMS Calcd for ClsH24BrN02: 365.0990, found 365.0988. 

4-0xo-piperidine-l-carboxylic acid benzyl ester (239) 

j)
)l "Bn 

N 0 

o 

Benzyl chloroformate (2.4 g, 14.3 mmol) was added dropwise to a stirring solution of 

4-piperidone hydrochloride (2 g, 13 mmol) and sodium ~arbonate (3 g, 28.6 mmol) in a 

2: 1 waterffHF solution at O°C. The reaction mixture was allowed warm to room 

temperature, stirred for a further 30 minutes, extracted with diethyl ether (2 x 50 mls), 

washed with brine and dried with MgS04 before being reduced to dryness in vacuo. 

The compound (239) was used directly for the next step: yield (83%); clear oil; IR 

(neat, em-I) 2962, 1703, 1429, 1273; IH NMR (250 MHz, CDCI3) 07.31 (5H, m, Ar-H), 

5.15 (2 H, s, OClli) 3.76 (4H, t, J = 6.1Hz, ClliCO), 2.42 (4H, t, J = 6. 1Hz, ClliNCO); 

l3c (75 MHz, CDC13) 0207.0 (s), 155.5 (s), 136.7 (s), 128.9 (d x 2), 128.4 (d x 2), 128.4 

(d), 67.9 (t), 43.5 (t x 2),41.4 (t x 2); EI-MS mlz 233 (M+, 45), 142 (20), 91 (100),65 

(20); HRMS Calcd for Cl3HI5N03 233.1051, found 233.1050. 
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4-[(2-Bromo-propionyl)-( 4-methoxy-benzyl)-amino]-3,6-dihydro-2H-pyridine-l-

carboxylic acid benzyl ester (240) 

o 

X
Bf ('~)l ..... Bn 
~ o. 

o N 
I 
PMB 

The imine derived from the condensation of (239) and p-methoxybenzylamine was 

reacted under the conditions described in the general procedure 5.2.3 to give the 

required compound (240): yield (35%); clear oil; IR (neat, em-I) 1663, 1655; IH NMR 

(300 MHz, CDCh) a 7.38-7.34 (5H, m, Ar-H), 7.16 (2H, d, J= 8.5 Hz, CHCHCOCH3), 

6.81 (2H, d, J = 8.5 Hz, CH=COCH3), 5.49 (1H, br s, CH=C), 5.17 (2H, s, OCfuAr), 

4.62-4.53 (3H, br s, CHBrCH3, CfuN), 3.98 (2H, m, CHCfuN), 3.77 (3H, s, OC!:b), 

3.56 (2H, m, CH2CfuN), 2.44 (2H, t, J = 5.9 Hz, CfuCH2N), 1.80 (3H, d, J = 6.6 Hz, 

CHBrC!:b); l3C (75 MHz, CDCl3) a 169.3 (s), 159.4 (s), 155.5 (s), 136.7 (s), 130.8 (d), 

130.4 (d), 129.8 (d x 2), 129.4 (d x 2), 129.2 (s), 128.8 (s), 128.4 (d x 2), 114.5 (d x 2), 

68.0 (t), 55.6 (q), 49.7 (t), 43.1 (t), 43.0 (t), 41.3 (t), 39.7 (d), 22.2 (q); CI-MS mlz 487 

(M+, 15),407 (70), 274 (45), 234 (100), 121 (75), 108 (80), 91 (92); HRMS Calcd for 

.. 2-Bromo-N-( 4-methoxy-benzyl)-N-(1,4,4a,5,6, 7 ,8,8a-octahydro-naphthalen-2-yl)-

propionamide (255) 

;r::m 
I 
PMB 
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The imine derived from the condensation of decalone and p-methoxybenzylamine was 

reacted under the conditions described in the general procedure 5.2.3 to give the 

required compound (255): yield (76%); clear yellow oil; IR (neat, em-I) 1650; IH NMR 

(250 MHz, CDCh) 8 7.17 (2H, d, J = 8.6 Hz, CHCHCOCH3), 6.77 (2H, d, J = 8.6 Hz, 

CH=COCH3), 5.36 (1H, s, CH=C), 4.69-4.20 (3H, br m, ClbN, CHBrCH3), 3.74 (3H, s, 

OCH3), 2.22-1.85 (4H, m, Clb x 2), 1.77 (3H, d, J = 6.4 Hz, CHBrC!b), 1.60-1.19 

(10H, m, Clli x 5); BC (75 MHz, CDCh) 8 169.5 (s), 159.3 (s), 134.4 (d), 131.3 (d x 2), 

130.0 (s), 129.8 (s), 114.0 (d x 2),55.6 (q), 49.7 (t), 36.1 (d), 33.0 (d), 32.3 (d), 32.2 (t), 

30.2 (t), 26.8 (t), 23.9 (t), 23.7 (t) 22.6 (q); EI-MS mJz 406 (M+. 70), 326 (82), 121 

(100); HRMS Calcd for C2IH28BrN02: 406.1381, found 406.1379. 

2-Bromo-N-[17-(1,5-dimethyl-hexyl)-1 0, 13-dimethyl-. 

4,5,6,7 ,8,9,1 O,II,12,13,14,15,16,17-tetradecahydro-1B-cyclopenta[a] phenanthren-

3-yl]-N-( 4-methoxy-benzyl)-propionamide (261) 

XB'I 
o N 

I 
PMB 

The imine derived from the condensation of a-cholesterone and p-

methoxybenzylamine was reacted under the conditions described in the general 

procedure 5.2.3 to give the required compound (261): yield (89%); yellow crystals; mp 

32-J5°C; IR (KBr Disc, em-I) 1652; IH NMR (300 MHz, CDCh) 87.16 (2H, d, J = 8.9 

Hz, CHCHCOCH3), 6.77 (2H, d, J = 8.9 Hz, CR=COCH3), -5.30 (tH, br s, CH=C), 

4.64-4.30 (3H, br m, ClbN, CHBrCH3), 3.72 (3R, s, OCH3), 1.96-1.91 (2H, m, 
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CHCfu), 1.76 (3H, d, J = 6.7 Hz, CHBrCH3), 1.65-0.96 (27H, m, Cfu X 10, CH X 7), 

0.87 (3H, d, J = 6.7 Hz, CHCI!J), 0.84 (3H, m CI!J), 0.83 (3H, m CI!J), 0.70-0.61 (6H, 

m CH(CI!J)2), ; 13C (75 MHz, CDCh) 5 169.4 (s), 159.4 (s), 130.4 (d X 2), 130.0 (s), 

129.9 (s), 128.4 (d), 114.0 (d X 2),56.7 (q), 55.5 (d), 53.2 (d), 48.1 (t), 42.3 (t), 41.6 (d), 

40.1 (t), 40.0 (d), 38.9 (t), 38.6 (t), 36.9 (t), 36.1 (d), 35.8 (d), 34.6 (s), 32.8 (s), 32.2 (t), 

28.5 (t), 28.4 (t), 28.3 (t), 24.7 (t), 24.3 (t), 23.2 (q), 23.0 (q), 22.6 (d), 22.5 (q), 21.0 (t), 

19.1 (q), 12.4 (q X 2); CI-MS mlz 640 (MH+, 10),560 (25), 194 (35), 121 (100); HRMS 

Calcd for C3sHSsBrN02: 640.3729, found 640.3722. 

2-Bromo-N-[17-(1,5-dimethyl-hexyl)-10,13-dimethyl-

4,5,6,7 ,8,9,1 O,II,12,13,14,15,16,17-tetradecahydro-1H-cyclopenta[a]phenanthren-

3-yl]-N-( 4-nitro-benzyl)-propionamide (262) 

Xsr 

I 
o N 

I 
PNB 

The imine derived from the condensation of a-cholesterone and p-nitrobenzylamine 

was reacted under the conditions described in the general procedure 5.2.3 to give the 

required compound (262). Crystals of X-ray quality were produced via slow 

recrystallisation from chloroform: yield (72%); white crystals; mp 43-46°C; IR (KBr 

disc, em-I) 1657, 1607, 1522, 1343; IH NMR (300 MHz, CDCI3) 5 8.15 (2H, d, J = 8.7 

Hz, CH=CN02), 7.42 (2H, d, J = 8.7 Hz, CHCHCN02), 5.43 (lH, br s, CH=C), 4.85-

4.42 (3H, br m, CfuN, CHBrCH3), 2.03 (2H, m, CHCfu), 1.80 (3H, d, J = 6.8 Hz, 

CHBrCI!J), 1.69-0.95 (27H, m, Cfu X 10, CH X 7), 0.89 (3H, d, J = 6.7 Hz, CHCI!J), 

197 



Chapter 5 

0.85 (3H, m ClL), 0.83 (3H, m ClL), 0.73-0.64 (6H, m CH(ClL)2), ; 13C (75 MHz, 

CDCh) 0 169.5 (s), 147.0 (s), 144.7 (s), 135.7 (s), 128.9 (d x 2), 128.1 (d), 123.4 (d x 

2),56.0 (d), 53.1 (d), 48.0 (t), 42.3 (t), 41.6 (d), 40.0 (t), 39.9 (d), 38.9 (t), 38.5 (t), 36.9 

(t), 36.1 (d), 35.8 (d), 34.6 (s), 32.8 (s), 32.0 (t), 28.5 (t), 28.4 (t), 28.0 (t), 24.7 (t), 24.3 

(t), 23.1 (q), 23.0 (q), 22.8 (d), 22.5 (q), 21.0 (t), 19.1 (q), 13.0 (q x 2); CI-MS mlz 640 

(MIt. 55), 575 (30), 545 (toO), 440 (60), to6 (65); HRMS Calcd for C37HssBrN202: 

655.3474, found 655.3462. 

2-Bromo-N-( 4-methoxy-benzyl)-N-( 4a-methyl-l,4,4a,5,6, 7 ,8,8a-octahydro-

naphthalen-2-yl)-propionamide (269) 

The imine derived from the condensation of 4a-methyl-octahydro-naphthalen-2-one 

(266)147 and p-methoxybenzylamine was reacted under the conditions described in the 

general procedure 5.2.3 to give the required compound (269): yield (84%); clear yellow 

oil; IR (thin film, cm-1) 1652; IH NMR (250 MHz, CDCh) 07.18 (2H, d, J = 8.6 Hz, 

CHCHCOCH3), 6.80 (2H, d, J = 8.6 Hz, CH=COCH3), 5.30 (IH, s, CH=C), 4.67-4.20 

(3R, br m, ClLN, CHBrCH3), 3.74 (3H, S, OCH3), 2.56-1.89 (3H, m, CHCCH3, 

CHClL), 1.78 (3H, d, J = 6.7 Hz, CHBrClL), 1.67-1.08 (lOR, m, ClL x 5), 1.18 (3H, 

m, CHCC.fu); BC (75 MHz, CDCh) 0169.6 (s), 159.2 (s), 134.4 (d), 130.5 (d x 2), 

130.1 (s), 130.0 (s), 114.0 (d x 2),55.6 (q), 49.7 (t), 41.8 (d), 40.0 (d), 38.8 (t), 34.1 (s), 

31.0 (t), 28.9 (t), 26.6 (q), 25.7 (t) 22.6 (q), 22.5 (t), 22.0 (t); CI-MS mlz 420 (MH+. 15), 
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340 (65), 243 (15), 121 (100); HRMS Calcd for C22H3oBrN02: 420.1538, found 

420.1539. 

2-Bromo-N-( 4a-methyl-l,4,4a,5,6, 7 ,8,8a-octahydro-naphthalen-2-yl)-N-( 4-nitro-

benzyl)-propionamide (273) 

XB'I 
o N 

I 
PNB 

The imine derived from the condensation of 4a-methyl-octahydro-naphthalen-2-one 

(266)147 and p-nitrobenzylamine was reacted under the conditions described in the 

general procedure 5.2.3 to give the required compound (273): yield (47%); clearyeUow 

oil; IR (thin film, em-I) 1650, 1545, 1339; IH NMR (309 MHz, CDCh) 38.07 (2H, d, J 

= 8.4 Hz, CH=CN02), 7.39 (2H, d, J= 8.4 Hz, CHCHCN02), 5.37 (IH, s, CH=C), 4.94-

4.29 (3H, m, ClliN, CHBrCH3), 2.60-1.85 (3H, m, CHCCH3, CHClli), 1.81 (3H, d, J= 

6.7 Hz, CHBrCI:L), 1.76-1.18 (10H, m, Clli x 5),1.16 (3H, m, CHCCI:L); 13C (75 MHz, 

CDCI3) 3 170.0 (8), 147.6 (s), 145.5 (s), 145.4 (8), 129.6 (d x 2), 128.5 (d), 124.0 (d x 

2),49.9 (t), 41.7 (d), 40.5 (d), 38.8 (t), 34.2 (s), 31.4 (t), 28.9 (t), 26.6 (q), 25.6 (t) 22.6 

(q), 22.4 (t), 22.1 (t); CI-MS mlz 435 (MH+. 90), 355 (30), ~25 (100), 220 (85), 106 

5.2.4 General procedure for cyclisation of secondary bromoacetamides 

(stoichiometric method) 

Cu(I)Br (43mg, 0.3 mmol) was added to solution of bromoacetamide (O.3mmol) and 

TPA-ligand (123) (290 mg, 0.3mmol) in 2.5ml of the appropriate solvent. The resulting 

solution was refluxed with stirring for 2hrs. On cooling, the copper residue was 
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removed from solution by flushing it through a silica plug with ethyl acetate. The 

filtrate was then reduced to dryness in vacuo and purified by flash chromatography (9: 1 

petroleum ether: ethyl acetate). 

1-Benzyl-3-methyl-1,4,S,6, 7, 7a-hexahydro-indol-2-one (197) 

Precursor (196) was dissolved in toluene (2.5 ml) and reacted under the conditions 

described in the general procedure 5.2.4 to give the following cyclic compound: yield 

(72%); clear oil; IR (neat, cm-I
) 1687; IH NMR (250MHz, CDCI3) 0 7.17-7.09 (5H, m, 

Ar-H), 4.90 (IH, d, j = 15.0 Hz, CJffiN), 4.12 (IH, d,.f = 15.0 Hz, CJffiN), 3.39 (lH, 

m, CR). 2.65 (1H, m, CHH), 2.19 (IH, m, CHH), 1.95 (IH, m, CHH), 1.83 (2H, m, 

Cfu), 1.74 (3H, m, ClL), 1.20 (2H, m, Cfu), 0.85 (IH, In, CHH); l3C (75 MHz, CDCh) 

o 172.6 (s), 153.4 (s), 138.5 (s), 129.4 (d x 2), 128.2 (d x 2), 127.6 (d), 124.6 (s), 60.3 

(d), 44.1 (t), 33.4 (t), 27.5 (t), 26.3 (t), 22.5 (t), 8.8 (q); EI-MS mlz 241 (M+, 100),226 

(35),91 (85); HRMS Calcd for C1J-i19NO: 241.1466, found 241.1459. 

I-Benzyl-3-methyl-l,4,S,6, 7 ,8,9,9a-octahydro-cycloocta (b]pyrrol-2-one (208) 

o 

Precursor (202) was dissolved in toluene (2.5 ml) and reacted under the conditions 

described in the general procedure 5.2.4 to give the following cyclic compound: yield 

(78%); clear oil; lR (neat, ~m-l) 1706; IH NMR (250MHz, CDCh) 0 7.17-7.09 (5H, m, 
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Ar-H), 4.99 (JH, d, J = 15.2 Hz, CHHN), 3.87 (IH, d, J= 15.2 Hz, CHHN), 3.60 (JH, 

m, Cill, 2.51 (1H, m, CHH), 2.12 (IH, m, CHH), 1.87 (1H, m, CHH), 1.82 (2H, m, 

C!h), 1.75 (3H, m, ClL), 1.690-1.14 (7H, m, C!h x 3, CHH); 13C (75 MHz, CDC}3) 8 

172.8 (s), 153.0 (s), 139.1 (s), 129.4 (d x 2), 128.1 (d x 2), 127.3 (d), 123.6 (s), 60.1 (d), 

44.5 (t), 29.2 (t), 28.4 (t), 27.5 (t), 26.3 (t), 22.5 (t), 21.3, (t), 9.3 (q); EI-MS mlz 269 

(M+, 43), 191 (70),91 (100); HRMS Calcd for CI!#23NO: 269.1779, found 269.1779. 

1-( 4-Methoxy-benzyl)-3-methyl-l,4,5,6, 7, 7a-hexahydro-indol-2-one (210) 

o 

Precursor (204) was dissolved in toluene (2.5 ml) ansi reacted under the conditions 

described in the general procedure 5.2.4 to give the following cyclic compound: yield 

(86%); clear oil; lR (neat, cm-I) 1690; IH NMR (300MHz, CDCh) 87.18 (2H, d, J = 

8.6 Hz, CHCHCOCH3), 6.80 (2H, d, J= 8.6 Hz, CH=COCH3), 4.92 (IH, d, J= 15.0 Hz, 

CHHN), 4.12 (JH, d, J = 15.0 Hz, CHHN), 3.78 (3H, s, OClL), 3.42 (IH, m, CH), 2.65 

(IH, m, CHH), 2.19 (JH, m, CHH), 1.95 (IH, m, CHH), 1.85 (2H, m, C!h), 1.78 (3H, 

m, ClL), 1.29 (2H, m, C!h), 0.95 (IH, m, CHH); l3C (75 MHz, CDCh) 8 172.6 (s), 

159.1 (s), 153.3 (s), 130.5 (s), 129.6 (d x 2), 124.7 (s), 114.3 (d x 2),60.2 (d), 55.6 (q), 

43.6 (t), 33.4 (t), 27.5 (t), 26.3 (t), 23.8 (t), 8.8 (q); EI-MS mlz 271 (M+, 85), 163 (40), 

121 (100); HRMS Calcd for C 17H21N02: 271.1572, found 271.1576. 
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1-( 4-Methoxy-benzyl)-3-methyl-l,4,S,6, 7 ,S,9,9a-octahydro-cycloocta[b]pyrrol-2-

one (211) and 1-( 4-Methoxy-benzyl)-3-methyl-l,3,3a,4,S,6,7 ,S-octahydro­

cycloocta[b]pyrrol-2-one (214) 

Precursor (205) was dissolved in toluene (2.5 ml) and reacted under the conditions 

described in the general procedure 5.2.4 to give the following cyclic compounds. Data 

for (211): yield (82%); clear oil; IR (neat, cm-I) 1700; IH NMR (300MHz, CDCh) 

07.10 (2H, d, J= 8.6 Hz, CHCHCOCH3), 6.72 (2H, d, J= 8.6 Hz, CH=COCH3), 4.99 

(IH, d, J = 15.0 Hz, CHHN), 3.87 (IH, d, J = 15.0 Hz, CHHN), 3.70 (3H, s, OClL), 

3.64 (IH, m, Cm, 2.57 (IH, m, CHH), 2.08 (1H, m, GHH), 1.90 (lH, m, CHH), 1.85 

(2H, m, Clli), 1.78 (3H, app d, J = 1.7 Hz, ClL), 1.60-1.17 (7H, m, Clli x 3, CHH); BC 

(75 MHz, CDCl3) 0 172.9 (s), 159.1 (s), 155.7 (s), 130.5 (s), 1-29.6 (d x 2), 128.7 (s), 

114.3 (d x 2), 61.9 (d), 55.6 (q), 43.4 (t), 28.8 (t), 26.7 (t), 26.4 (t), 25.2 (t), 24.4 (t), 

21.9 (t), 9.3 (q); CI-MS mlz 300 cr~,flt, 70), 192 (45), 121 (100); HRMS Calcd for 

CI~25N02: 300.1963, found 300.1973. 

Data for (214): yield (7%); clear oil; IR (neat, em-I) 1652; IH NMR (300MHz, CDCI3) 

07.13 (2H, d, J = 8.9 Hz, CHCHCOCH3), 6.83 (2H, d, J = 8.9 Hz, CH=COCH3), 4.65 

(IH, m, CH=C), 4.60 (IH, d, J = 15.3 Hz, CHHN), 4.42 (lH, d, J = 15.3 Hz, CHHN), 

3.71 (3H, s, OClL), 2.45 (IH, m, Cm, 2.16 (IH, s, CHCH3), 2.57 (lH, m, CHH), 2.03 

(IH, m, CHH), 1.96 (IH, m, CHH), 1.84-1.40 (7H, m, Clli x 3, CHH), 1.15 (3H, d, J = 

7.4 Hz, ClL); BC (75 MHz, CDCh) 0 178.9 (s), 159.0 (s), 143.2 (s), 130.1 (s), 129.8 (d 

x 2), 114.2 (d x 2), 101.7 (d), 55.6 (q), 45.0 (d), 44.0 (d), 43.1 (t), 38.2 (t), 29.3 (t),25.8 
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(t), 25.4 (t), 23.7 (t), 18.1 (q); EI-MS mlz 299 (M+, 65), 244 (45), 180 (50), 121 (100); 

HRMS Calcd for Cl~25N02: 299.1885, found 299.1884. 

I-Benzyl-3-phenyl-l,4,S,6, 7,7 a-hexahydro-indol-2-one (209) 

Ph 

o 

Cu(l)CI (29.7 mg, 0.3 mmol) was added to solution of (203) (0.3mmol) and TPA-ligand 

(123) (290 mg, O.3mmol) in toluene (25ml). The resulting solution was refluxed with 

stirring for 2hrs. On cooling, the copper residue was removed from solution by flushing 

it through a silica plug with ethyl acetate. The filtrate was then reduced to dryness in 

vacuo and purified by flash chromatography, petrolemn ether: ethyl acetate (9: 1): yield 

(59%); clear oil; IR (neat, em-I) 1676; IH NMR (250MHz, CDCh) 0 7.45-7.12 (10H, m, 

Ar-H), 5.10 (IH, d, J = 15.2 Hz, CHHN), 4.15 (1H, d, J = 15.2 Hz, CHHN), 3.26 (tH, 

m, CH), 2.70 (IH, m, CHI!), 1.89 (IH, m, CHH), 1.65 (tH, m, CHH), 1.25 (2H, m, 

Clli), 0.95-0.62 (3H, m, Clli, CHH); J3C (75 MHz, CDCh) 0 170.7 (s), 155.5 (s), 138.3 

(s), 131.9 (s), 129.7 (d x 2), 129.2 (d), 129.0 Cd x 2), 128.9 (d x 2), 128.8 (s), 128.1 (d x 

2), 127.7 (d), 60.3 (d), 44.4 (t), 33.5 (t), 27.7 (t), 27.0 (t), 23.~ (t); EI-MS mlz 303 (M+, 

100),225 (20),91 (70); HRMS Calcd for C21H21NO: 303.1623, found 303.1624. 

1-( 4-Methoxy-benzyl)-3-phenyl-l,4,S,6, 7, 7a-hexahydro-indol-2-one (212) 

Ph 
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Precursor (206) was reacted under the conditions described above for (209) to give the 

following cyclic compound: yield (87%); clear oil; IR (neat, cm-I) 1726; IH NMR 

(250MHz, CDCI3) 87.50-7.19 (7H, m, Ar-H), 6.83 (2H, d, J = 8.6 Hz, CH=COCH3), 

5.04 (lH, d, J = 15.0 Hz, CHHN), 4.15 (IH, d, J = 15.0 Hz, CHHN), 3.78 (3H, s, 

OClL), 3.65 (IH, dd, J = 5.5 Hz, CR), 3.00 (IH, m, CHH), 2.40 (IH, m, CHH), 2.18 

(IH, m, CIffi), 1.80 (2H, m, Cfu), 1.37-1.06 (3H, m, Cfu, CIffi); l3C (75 MHz, CDCh) 

8 170.6 (s), 159.3 (s), 155.4 (s), 132.0 (s), 130.5 (s), 129.8 (d x 2), 129.7 (d x 2), 129.1 

(s), 128.6 (d x 2), 128.0 (d), 114.3 (d x 2),60.1 (d), 55.7 (q), 43.7 (t), 33.6 (t), 27.8 (t), 

27.0 (t), 23.7 (t); EI-MS mlz 333 (M+, 50), 121 (100), 83 (55); HRMS Calcd for 

C22H23N02: 333.1728, found 333.1732. 

3-Methyl-l-(4-nitro-benzyl)-I,4,5,6,7,7a-hexahydro-indol-2-one (213) 

o 

Precursor (207) was dissolved in toluene (2.5 ml) and reacted under the conditions 

described in the general procedure 5.2.4 to give the following cyclic compound: yield 

(65%); clear oil; IR (neat, cm-I
) 1698, 1530; IH NMR (250MHz, CDCh) 8 8.11 (2H, d, 

J = 8.8 Hz, CH=CN02), 7.30 (2H, d, J = 8.8 Hz, CHCHCN02), 4.89 (lH, d, J = 16.0 

Hz, CHHN), 4.35 (IH, d, J = 16.0 Hz, CHHN), 3.47 (lH, m, CR), 2.69 (IH, m, CHH), 

2.18 (lH, m, CHH), 1.97 (IH, m, CHH), 1.85 (2H, m, Cfu), 1.83 (3H, m, Clli), 1.32-

0.92 (3H, m, Cfu, CHH); l3C (75 MHz, CDCh) 0 172.9 (s), 153.9 (s), 147.6 (s), 146.2 

(s), 128.8 (d x 2), 124.8 (s), 124.3 (d x 2), 60.9 (d), 43.9 (t), 33.5 (t), 27.4 (t), 26.4 (t), 

23.7 (t), 8.8 (q);.EI-MS mlz 286 (M+, 100),271 (45),256 (35), 106 (55); HRMS Calcd 

for C16HlSN203: 286.1317, found 286.1313. 
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1-Benzyl-3-methyl-l,4,5,6-tetrahydro-indol-2-one (21S) 

o 

Precursor (196) was dissolved in 1,2-dichloroethane (2.5 ml) and reacted under the 

conditions described in the general procedure 5.2.4 to give the following cyclic 

compound: yield (42%); clear oil; IR (neat, cm-I) 1706; IH NMR (250MHz, CDCl3) 

07.23-7.02 (5H, m, Ar-H), 5.00 (tll, t, J = 4.5 Hz, CH=C), 4.69 (2H, s, ClliN), 1.99 

(2H, t, J = 5.5 Hz, Clli), 1.87 (3H, s, ClL), 1.74 (2H, q, J = 5.5 Hz, Clli), 1.34 (2ll, 

quint, J = 5.5 Hz, Cfu); l3C (75 MHz, CDCh) 0 164.3 (s), 150.1 (s), 140.0 (s), 138.9(s), 

128.9 (d x 2), 127.6 (d x 2), 127.5 (d), 121.9 (s), 108.5 (d), 43.2 (t), 24.6 (t), 23.7 (t), 

22.9 (t), 8.8 (q); EI-MS mlz 239 (~, 91), 216 (60), 91 (100); HRMS Calcd for 

CI6H17NO: 239.1310, found 239.1316. 

I-Benzyl-3-methyl-l,4,5,6, 7 ,S-hexahydro-cycloocta[b]pyrrol-2-one (219) 

o 

Precursor (202) was dissolved in 1,2-dichloroethane (2.5 ml) and reacted under the 

conditions described in the general procedure 5.2.4 to give the following cyclic 

compound: yield (57%); clear oil; IR (neat, cm-I) 1685; IH NMR (250MHz, CDCl3) 

07.38-7.13 (5H, m, Ar-H), 5.27 (tH, t, J = 8.8 Hz, CH=C), 4.83 (2H, s, ClliN), 2.77 

(2H, t, J = 7.0 Hz, Cfu), 2.43 (2H, app q, J = 7.0, 7.9 Hz, Cfu), 1.91 (3H, s, ClL), 1.69-

1.18 (6H, m, Cfu x 3); l3c (75 MHz, CDCh) 0 170.9 (s), 143.1 (s), 142.8 (s), 138.2(s), 

128.9 (d x 2), 127.9 (d x 2), 127.5 (d), 122.0 (s), 109.8 (d), 42.8 (t), 26.3 (t), 25.8 (t), 
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24.7 (t), 23.6 (t), 21.8 (t), 8.6 (q); EI-MS mlz 267 (M\ 25), 160 (30), 91 (100); HRMS 

Calcd for CIsH2INO: 267.1623, found 267.1620. 

1-( 4-Methoxy-benzyl)-3-methyl-l,4,5,6-tetrahydro-indol~2-one (221) 

Precursor (204) was dissolved in 1,2-dichloroethane (2.5 ml) and reacted under the 

conditions described in the general procedure 5.2.4 to give the following cyclic 

compound: yield (71%); clear oil; IR (neat, cm-I) 1704; IH NMR (250MHz, CDCh) 

87.14 (2H, d, J = 8.6 Hz, CHCHCOCH3), 6.82 (2H, d, J = 8.6 Hz, CH=COCH3), 5.05 

(1H, t, J= 6.0 Hz, CH=C), 4.68 (2H, s, CfuN), 3.72 (3~, s, OCH3), l.97 (2H, t, J= 5.5 

Hz, Cfu), 1.80 (3H, s, C!:h), 1.72 (2H, q, J = 5.5 Hz, Cfu), 1.35 (2H, quint, J = 5.5 Hz, 

Cfu); 13C (75 MHz, CDCh) 8 169.1 (s), 159.2 (s), 150.1 (s), 140.0 (s), l38.9(s), 129.9 

(d x 2), 121.8 (s), 114.5 (d x 2), 110.2 (d), 55.6 (q), 43.1 (t), 25.8 (t), 24.7 (t), 22.5 (t), 

8.9 (q); EI-MS mlz 269 (M\ 55), 246 (26), 121 (100); HRMS Calcd for C17HI9N02: 

269.1415, found 269.1416. 

1-( 4-Methoxy-benzyl)-3-methyl-l,4,5,6, 7 ,8-hexahydro-cycloocta [b) pyrrol-2-one 

(222) 

o 

Precursor (205)· was dissolved in 1,2-dichloroethane (2.5 mt) and reacted under the 

conditions described in the general procedure 5.2.4 to give the following cyclic 
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compound: yield (86%); clear oil; IR (neat, em-I) 1701; IH NMR (250MHz, CDCh) 

37.15 (2H, d, J= 8.7 Hz, CHCHCOCH3), 6.85 (2H, d, J= 8.7 Hz, CH=COCH3), 5.26 

(IH, t, J = 8.6 Hz, CH=C), 4.89 (2H, s, CfuN), 3.76 (3H, s, OClli), 2.80 (2H, t, j = 7.0 

Hz, Cfu), 2.45 (2H, m, Cfu), 1.93 (3H, s, Clli), 1.72-1.15 (6H, m, Cfu x 3); l3C (75 

MHz, CDCh) 3 170.9 (s), 158.3 (s), 143.2 (s), 143.0 (s), 138.5(s), 129.3 (dx 2), 122.0 

(s), 114.0 (d x 2), 109.5 (d), 55.4 (q), 42.5 (t), 27.0 (t), 25.8 (t), 24.3 (t), 23.4 (t), 21.9 

(t), 9.0 (q); EI-MS mlz 297 (~, 65), 121 (100); HRMS Calcd for CI9H23N02: 

297.1729, found 297.1725. 

I-Benzyl-3-phenyl-l,4,5,6-tetrahydro-indol-2-one (220) 

Ph 

o 

Cu(l)CI (29.7 mg, 0.3 mmol) was added to solution of (203) (O.3mmol) and TPA-ligand 

(123) (290 mg, 0.3mmol) in 1,2-dichloroethane (2.5ml). The resulting solution was 

refluxed with stirring for 2 hours. On cooling, the copper residue was removed from 

solution by flushing it through a silica plug with ethyl acetate. The filtrate was then 

reduced to dryness in vacuo and purified by flash chromatography, petroleum ether: 

ethyl acetate (9:1): yield (64%); clear oil; IR (neat, em-I) 1707; IH NMR (300MHz, 

.. CDCh) 37.45-7.12 (10H, m, Ar-H), 5.32 (tH, t, J = 6.4 Hz, CH=C), 4.69 (2H, s, 

CfuN), 3.73 (3H, s, OClli), 2.78 (2H, t, J = 6.4 Hz, Cfu), 2.33 (2H, q, J = 5.8 Hz, 

Cfu), 1.75 (2H, quint, J = 6.4 Hz, Cfu); l3C (75 MHz, CDCI3) 3 170.0 (s), 150.0 (s), 

139..5 (s), 132.8 (s), 131.1 (s), 129.9 (d x 2), 129.6 (d x 2), 129.3 (d), 128.4 (d x 2), 

.128.2 (d x 2), 1~8.0 (d), 127.7 (s), 109.6 (d), 42.8 (t), 25.0 (t),.24.7 (t), 24.3 (t); EI-MS 

mlz 301 (~, 65), 91 (toO); HRMS Calcd for C2IHI9NO: 301.1467, found 301.1466. 
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1-( 4-Metboxy-benzyl)-3-pbenyl-l,4,5,6-tetrabydro-indol-2-one (223) 

Ph 

o 

Precursor (206) was reacted under the conditions described above for (220) to give the 

following cyclic compound: yield (74%); clear oil; IR (neat, cm-I) 1700; IH NMR 

(250MHz, CDCI3) 37.68-7.22 (7H, m, Ar-H), 6.83 (2H, d, J = 8.5 Hz, CH=COCH3), 

5.64 (lH, t, J = 6.4 Hz, CH=C), 4.77 (2H, s, ClliN), 3.76 (3H, s, OClb), 2.80 (2H, t, J 

= 6.5 Hz, Clli), 2.30 (2H, q, J = 5.8 Hz, Clli), 1.77 (2H, quint, J = 6.4 Hz, Clli); 13C 

(75 MHz, CDCh) 0 169.5 (s), 159.5 (s), 139.1 (s), 136.9 (s), 132.1 (s), 130.7 (s), 129.8 

(d x 2), 129.6 (d x 2), 129.3 (d x 2), 128.0 (d), 125.7 (s), 114.3 (d x 2), 111.2 (d), 55.6 

(q), 42.7 (t), 24.7 (t), 24.5 (t), 23.9 (t); EI-MS mlz 33.1 (~, 70), 121 (100); HRMS 

Calcd for C22H21N02: 331.1572, found 331.1573. 

3-MethyI-l-( 4-nitro-benzyl)-1,4,5,6-tetrahydro-indol-2-one (224) 

o 

Precursor (207) was dissolved in 1,2-dichloroethane (2.5 ml) and reacted under the 

conditions described in the general procedure 5.2.4 to give the following cyclic 

compound: yield (60%); clear oil; IR (neat, cm-I) 1706, 1544; IH NMR (300MHz, 

CDC}3) 38.14 (2H, d, J= 8.8 Hz, CH=CN02), 7.34 (2H, d, J= 8.8 Hz, CHCHCN02), 

5.31 (IH, t, J = 4.7 Hz, CH=C), 4.77 (2H, s, Cl:hN), 2.48 (2H, t, J = 6.2 Hz, Clli), 2.18 

(2H, q, J = 5.0 Hz, Clli), 1.77 (3H, s, C!i3), 1.35 (2H, m, Clli); l3C (75 MHz, CDC13) 3 
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171.4 (s), 147.6 (s), 145.7 (s), 141.0 (s), 138.9(s), 128.9 (d x 2), 124.3 (d x 2), 123.9 (s), 

109.0 (d), 42.6 (t), 24.6 (t), 23.6 (t), 22.9 (t), 8.8 (q); EI-MS mlz 284~, 75), 248 (20), 

106 (35),83 (100); HRMS Calcd for C16H16N203: 284.1160, found 284.1160. 

N-Cyclobex-l-enyl-N-( 4-metboxy-benzyl)-acetamide (226) 

Cu(I)Br (43mg, 0.3 mmol) was added to solution of (225) (0.3mmol) and TPA-ligand 

(123) (290 mg, O.3mmol) in toluene (2.5ml). The resulting solution was degassed and 

heated in a sealed tube at 120°C for 48 hours. On cooling, the copper residue was 

removed from solution by flushing it through a silica plug with ethyl acetate. The 

filtrate was then reduced to dryness in vacuo and purified by flash chromatography (9: 1 

petroleum ether: ethyl acetate) to give starting precursor (225) in 58% yield and 

compound (226): yield (17%); clear oil; IR (neat, em-I) 1700; IH NMR (250 MHz, 

CDCh) 37.15 (2H, d, J = 8.5 Hz, CHCHCOCH3), 6.79 (2H, d, J = 8.5 Hz, 

CH=COCH3), 5.33 (1H, br s, CH=C), 4.47 (2H, br m, ClkN), 3.76 (3H, s, OClL), 1.97 

(3H, S, CH3), 1.86 (4H, m, Clk x 2), 1.56 (2H, m, Clk), 1.45 (2H, m, Cfu); 13C (75 

MHz, CDCI3) 3 170.1 (s), 159.1 (s), 139.2 (s), 130.7 (s), 130.4 (d x 2), 129.5 (d), 114.3 

.. (d x 2),55.6 (q), 49.1 (t), 28.5 (t), 25.1 (t), 23.1 (t), 22.0 (t), 21.9 (t); CI-MS mlz 259 

(M+, 57), 216 (15), 121 (100); HRMS Calcd for CI6H2IN02: 259. 157i, found 259.1571. 
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I-Benzyl-3-methyl-l,4,S,9b-tetrahydro-benzo[g]indol-2-one (231) 

Precursor (227) was dissolved in toluene (2.5 ml) and reacted under the conditions 

described in the general procedure 5.2.4 to give the following cyclic compound: yield 

(85%); clear oil; IR (neat, cm-I) 1711; IHNMR (250MHz, CDCI3) 0 7.30-7.11 (9H, m, 

Ar-H), 5.53 (lH, d, J = 15.0 Hz, CHHN), 4.58 (tH, s, CH), 4.43 (tH, d, J = t5.0 Hz, 

CHHN), 2.83 (2H, t, J = 7.3 Hz, Cfu), 2.66 (tH, t, J = 7.3 Hz, Cfu), 1.63 (3H, br s, 

CH3); l3C (75 MHz, CDCI3) 0 172.5 (s), 154.3 (s), 140.5 (s), 138.2 (s), 137.0 (s), 130.8 

(d), 129.0 (d x 2), J28.8 (d x 2), 128.3 (d), 128.1 (d), 126.8 (s), 121.1 (d), 115.8 (d), 

60.7 (d), 41.8 (t), 29.2 (t), 24.6 (t), 8.7 (q); EI-MS mlz'289(~, 80),91 (toO); HRMS 
"-

Calcd for C2oHI9NO: 289.1467, found 289.1465. 

1-( 4-Methoxy-benzyl)-3-methyl-l,4,S,9b-tetrahydro-benzo[g]indol-2-one (232) 

o 

Precursor (228) was dissolved in toluene (2.5 ml) and reacted under the conditions 

described in the general procedure 5.2.4 to give the following cyclic compound: yield 

(91%); clear oil; IR (neat, cm-I) 1706; IH NMR (250MHz, CDCI3) 0 7.21-7.14 (6H, m, 

Ar-H), 6.81 (2H, d, J = 8,9 Hz, CH=COCH3), 5.55 (IH, d, J = 15.0 Hz, CHHN), 4.51 

(IH, s, CH), 4.60 (IH, d, J = 15.0 Hz, CHHN), 3.76 (3H, s, OClli), 2.87 (3H, m, Cfu, 

CHH), 2.30 (tH, m, CHID, 1.78 (3H, br s, Clli); l3C (75 MHz, CDCl3) 0 t75.3 (s), 
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159.4 (s), 153.4 (s), 137.8 (s), 136.1 (s), 130.1 (s), 130.0 (d x 2), 128.3 (d), 128.0 (d), 

127.6 (d), 126.5 (s), 123.6 (d), 114.5 (d x 2), 60.7 (d), 55.6 (q), 46.9 (t), 28.6 (t), 23.7 

(t), 9.5 (q); EI-MS mlz 320 ~, 75), 184 (20), 121 (100), 83 (45); HRMS Calcd for 

C2IH2IN02: 320.1650, found 320.1653. 

3-(4-Methoxy-benzyl)-1-methyl-3a,8-dihydro-3H-3-aza-cyclopenta[a]inden-2-one 

(233) 

o 

Precursor (229) was dissolved in toluene (2.5 ml) and reacted under the conditions 

described in the gerieral procedure 5.2.4 to give the following cyclic compound: yield 

(84%); clear yellow oil; IR (neat, em-I) 1682; IH NMR (250MHz, CDC13) 07.28-7.15 

(6H, m, Ar-H), 6.84 (2H, d, J = 8.9 Hz, CH=COCH3), 5.14 (tH, br s, CH), 5.09 (tH, d, 

J = 15.0 Hz, CHHN), 4.60 (1H, d, J = 15.0 Hz, CHHN), 3.77 (3H, s, OC!:b), 3.61 (3H, 

m, C!h), 1.81 (3H, br s, C!:b); l3C (75 MHz, CDC13) 0 175.1 (s), 159.4 (s), 157.4 (s), 

144.6 (s), 139.7 (s), 130.3(s), 129.8 (d x 2), 128.5 (d), 128.3 (d), 127.6 (s), 126.9 (d), 

125.8 (d), 114.5 (d x 2),67.2 (d), 55.7 (q), 46.7 (t), 31.0 (t), 10.0 (q); EI-MS mlz 305 

(M\ 55), 170 (40), 121 (100); HRMS Calcd for C2oH19N02: 305.1415, found 305.1414. 

3-( 4-Methoxy-benzyl)-1-methyl-3,3a,4,5-tetrahydro-benzo[ ejindoi.2-one (234) 

o 
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Precursor (229) was dissolved in toluene (2.5 ml) and reacted under the conditions 

described in the general procedure 5.2.4 to give the following cyclic compound: yield 

(96%); clear oil; IR (neat, cm-I) 1675; IH NMR (250MHz, CDCI3) () 7.22-7.15 (6H, m, 

Ar-H), 6.81 (2H, d, J = 8.5 Hz, CH=COCH3), 5.00 (lH, d, J = 15.0 Hz, CHAN), 4.60 

(IH, d, J = 15.0 Hz, CHHN), 3.99 (IH, s, Cll), 3.73 (3H, s, OClL), 2.85 (3H, m,CHz. 

CHH), 2.32 (IH, m, CHID, 2.01 (3H, br s, Clb); l3C (75 MHz, CDCh) () 172.9 (s), 

159.3 (s), 143.6 (s), 134.7 (s), 130.4 (s), 130.0 (s), 129.8 (d x 2), 129.4 (d), 129.1 (d), 

128.3 (d), 127.4 (s), 123.8 (d), 114.4 (d x 2), 59.3 (d), 55.6 (q), 44.5 (t), 29.4 (t), 28.7 

(t), 10.9 (q); EI-MS m/z 320 (M\ 75), 121 (20),83 (100); HRMS Calcd for C2IH2IN02: 

320.1650, found 320.1648. 

1-( 4-Methoxy-benzyl)-3, 7-dimethyl-l,4,5,6, 7, 7a-hexahydro-indol-2-one (236) 

o 

Precursor (235) was dissolved in toluene (2.5 mt) and reacted under the conditions 

described in the general procedure 5.2.4 to give the following mixture of diastereomers 

in a ratio of2:1 respectively. Yield for mixture (88%); yellow oil; IR for mixture (neat, 

cm-I) 1650, 1647; IH NMR for major diastereomer (250MHz, CDCh) () 6.94 (2H, d, J 

= 8.6 Hz, CHCHCOCH3), 6.62 (2H, d, J = 8.6 Hz, CH=COCH3), 4.89 (IH, d, J = 15.0 

Hz, CHHN), 3.60 (IH, d, J = 15.0 Hz, CHHN), 3.55 (3H, s, OClL), 3.39 (IH, d, J = 4.0 

Hz, Cll), 2.57 (2H, m, CHz), 2.24 (3H, m, Cfu, CHCH3), 1.78 (IH, m, CHH), 1.62 (3H, 

m, Cfu), 0.99 (1H, m, CHH), 0.34 (3H. d, J = 7.0 Hz, CHCfu); 13C for major 

diastereomer (1.5 MHz, CDCh) () 173.0 (s), 159.2 (s), 150.3 (~), 130.3 (s), 129.7 (d x 2), 

126.1 (s), 114.3 (d x 2),62.4 (d), 55.6 (q), 43.4 (t), 32.2 (d), 30.0 (t), 25.9 (t), 21.1 (t), 
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10.9 (q), 8.8 (q); IH NMR for minor diastereomer (250MHz, CDCI3) 36.85 (2H, d, J= 

8.8 Hz, CHCHCOCH3), 6.59 (2H, d, J = 8.8 Hz, CH=COCH3), 4.92 (lH, d, J = 15.6 Hz, 

CHHN), 4.10 (IH, d, J = 15.6 Hz, CHH,N), 3.55 (3H, s, OClli), 2.95 (IH, d, J = 8.5 Hz, 

CH), 2.50 (IH, m, CHH), 1.61 (3H, m, Clli), 1.50-1.31 (5 H, m, CH2 x 2, CHCH3), 1.00 

(lH, m, CHH), 0.94 (3H, d, J = 6.1 Hz, CHClli); l3C for minor diastereomer (75 MHz, 

CDCh) 3 174.4 (s), 158.9 (s), 153.8 (s), 130.6 (s), 129.0 (d x 2), 124.6 (s), 114.3 (d x 

2), 66.8 (d), 55.6 (q), 46.3 (t), 42.0 (d), 34.1 (t), 26.4 (t x 2), 21.6 (q), 8.9 (q); EI-MS 

mlz mixture 265 (M+, 61), 177 (53), 121 (100), 83 (40); HRMS Calcd for C1sH23N02: 

285.1729, found 285.1734. 

1-( 4-Methoxy-benzyl)-3-methyl-2-oxo-l,2,4,6, 7, 7a-hexahydro­

pyrrolo(3,2c]pyridine-5-carboxylic acid benzyl ester (241) 

o 

Precursor (240) was dissolved in toluene (2.5 ml) and reacted under the conditions 

described in the general procedure 5.2.4 to give the following cyclic compound: yield 

(42%); clear oil; lR (neat, em-I) 1690; IH, NMR (300MHz, CDCI3) 8 7.27-7.22 (5H, m, 

Ar-H), 7.04 (2H, d, J = 8.6 Hz, CHCHCOCH3), 6.75 (2H, d, J = 8.6 Hz, CH=COCH3), 

5.03 (2H, br s, ClliAr), 4.80 (IH, d, J = 15.0 Hz, CHHN), 4.10 (1H, d, J = 15.0 Hz, 

CJffiN), 4.09 (2H, br m, CfuNCO), 3.67 (3H, s, OCI1), 3.58 (lH, m, CH), 3.42 (tH, 

m, CHH), 2.73 (IH, m, CHH), 2.06 (IH, m, CHH), 1.78 (3H, br s, Clli), 1.00 (IH, m, 

CHH); 13C (75 MHz, CDCh) 8173.9 (s), 171.9 (s), 159.4 (s), 155.4 (s), 145.6 (s), 136.7 

(s), 129.9 (s), 129.5 (d x 2), 128.9 (d x 2), 128.6 (d), 128.3 (d'x 2), 114.4 (d x 2),67.9 
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(t), 58.8 (d), 55.6 (q), 43.9 (t), 42.8 (t), 42.0 (t), 32.6 (t), 9.2 (q)~ EI-MS m/z 406 (M+, 

20), 121 (100); HRMS Calcd for C24H26N204: 406.1892, found 406.1891. 

1-( 4-Methoxy-benzyl)-3-methyl-l,4,4a,5,6, 7 ,8,8a,9,9a-decahydro-benzo[fjindol-2-

one (256) 

o 

Precursor (255) was dissolved in toluene (2.5 ml) and reacted under the conditions 

described in the general procedure 5.2.4 to give the following cyclic compound: yield 

(75%); clear oil; IR (neat, em-I) 1697; IH NMR (300MHz, CDC13) B 7.16 (2H, d, J = 

8.6 Hz, CHCHCOCH3), 6.84 (2H, d, J= 8.6 Hz, CH=CQCH3), 4.90 (IH, d, J= 15.0 Hz, 

CHHN), 4.13 (IH, d, J = 15.0 Hz, CHHN), 3.80 (3ll, s, OClli), 3.42 (Ill, dd, J = 5.0, 

6.4 Hz, CH), 2.80 (lH, m, CHH), 2.43 (IH, m, CHH), 2.28 (IH:m, CHH), 1.85 (4H, m, 

Cfu x 2), 1.82 (3H, br s, Clli), 1.80-1.39 (6H, m, Cfu x 2, CH x 2), 0.95 (lH, m, 

CHH); 13C (75 MHz, CDCh) B 172.7 (s), 159.1 (s), 151.6 (s), 130.7 (s), 129.6 (d x 2), 

124.3 (s), 114.2 (d x 2),60.7 (d), 55.6 (q), 44.5 (t), 38.0 (d), 37.9 (d), 34.2 (t), 31.1 (t), 

27.6 (t), 27.1 (t), 24.1 (t), 20.9 (t), 8.8 (q)~ EI-MS m/z 325 (M+, 85), 217 (20), 121 

(100); HRMS Calcd for C21H27N02: 325.2041, found 325.2039. 
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1-(1,5-Dimethyl-hexyl)-7-( 4-methoxy-benzyl)-9,10a,12a-trimethyl-

2,3,3a,3b,4,5,5a,6,6a, 7,10,108,1 Ob,11,12,12a-hexadecahydro-lH-7-aza­

dicyclopenta[a,h]phenanthren-8-one (263) 

Precursor (261) was dissolved in toluene (2.5 ml) and reacted under the conditions 

described in the general procedure 5.2.4 to give the following cyclic compound: yield 

(69%); clear oil; IR (neat, cm-l) 1751, 1719, 1701; lH NMR (30O:MHz, CDCI3) 87.12 

(2H, d, J = 8.6 Hz, CHCHCOCH3), 6.79 (2H, d, J = 8.6 Hz, CH=COCH3), 4.98 (IH, d, 

J = 14.8 Hz, CHHN), 3.87 (Ill, d, J = 14.8 Hz, CHHN), 3.74 (3ll, s, OCH3), 3.48 (IH, 

dd, J = 5.8, 9.0 Hz, CH), 2.64 (IH, d, J = 13.0 Hz, CHH), 1.98 (tH, dt, J = 2.8, 12.5 

Hz, CH), 1.80 (2H, m, CHCfu), 1.77 (3H, s, CH3), 1.64 (3H, m, CHH, Cfu), 1.59-0.87 

(22H, m, CH x 6, Cfu x 8), 0.86 (3H, d, J = 6.4 Hz, CHCH3), 0.83 (3H, d, J = 6.6 Hz, 

CH(CH3)2), 0.82 (3H, d, J = 6.6 Hz, CH(CH3)2), 0.61 (3H, s, CH3), 0.56 (3H, s, CH3); 

I3C (75 MHz, CDCh) 8 172.6 (s), 159.1 (s), 152.1 (s), 130.5 (s), 129.7 (d x 2), 126.8 

(s), 114.4 (d x 2),60.1 (d), 56.7 (d), 56.6 (d), 56.5 (d), 55.6 (q), 54.4 (d), 43.8 (d), 43.6 

.. (d), 42.8 (t), 40.1 (t), 39.9 (t), 38.9 (t), 36.5 (t), 36.1 (d), 35.9 (t), 35.8 (d), 32.2 (t), 28.8 

(s), 28.6 (s), 28.4 (t), 24.6 (t), 24.2 (t), 23.2 (q), 22.9 (q), 21.6 (t), 19.0 (q) 12.3 (q x 2), 

8.8 (q); CI-MS m/z 560 (MH+, 70), 306 (toO), 136 (70), 121 (75); HRMS Calcd for 

C3sHs7N02: 560.4467, found 560.4464. 
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1-(1,S-Dimethyl-hexyl)-7 -( 4-methoxy-benzyl)-9,lOa,12a-trimethyl-

2,3,3a,3b,4,S,Sa,7,lO,lOa,lOb,11,12,12a-tetradecahydro-lH-7-aza-

dicyclopenta [a,h ]phenanthren-8-one (264) 

Precursor (261) was dissolved in 1,2-dichloroethane (2.5 ml) and reacted under the 

conditions described in the general procedure 5.2.4 to give the following cyclic 

compound: yield (79%); clear oil; IR (neat, cm- I
) 1710, 1700; IH NMR (300MHz, 

CDCh) 57.15 (2H, d, J = 8.6 Hz, CHCHCOCH3), 6.82 (2H, d, J = 8.6 Hz, 

CH=COCH3), 5.00 (1H, d, J = 15.0 Hz, CH.HN), 4.66 (1H, br s, CH=C), 4.14 (1H, d, J 

= 15.0 Hz, CIffiN), 3.76 (3H, s, OC!h), 2.67 (IH, d, J = 14.8 Hz, CHH), 2.12 (tH, dt, J 

= 3.0, 12.8 Hz, CH), 1.95 (2H, m, CHCfu), 1.79 (3H, s, CH3), 1.68 (lH, m, CHID, 

1.65-0.88 (22H, m, CH x 6, Clli x 8), 0.87 (3H, d, J = 6.5 Hz, CHCfu), 0.84 (3H, d, J 

= 6.6 Hz, CH(C!h)2), 0.83 (3H, d, J = 6.6 Hz, CH(Cfu)2), 0.64 (3H, s, Cfu), 0.59 (3H, 

s, C!h); I3c (75 MHz, CDCh) 8 173.0 (s), 159.1 (s), 152.2 (s), 145.6 (s), 130.1 (s), 

129.8 (d x 2), 125.8 (s), 114.3 (d x 2), 110.9 (d), 56.8 (d), 56.6 (d), 56.5 (d), 55.8 (q), 

.. 54.4 (d), 43.7 (d), 42.9 (t), 40.6 (t), 39.9 (t), 38.7 (t), 37.0 (t), 36.3 (d), 36.1 (t), 35.8 (d), 

32.1 (t), 28.9 (s), 28.6 (s), 28.1 (t), 24.6 (t), 24.4 (t), 23.2 (q), 23.0 (q), 21.6 (t), 19.1 (q), 

+ 12.9 (q), 12.4 (q), 8.8 (q); CI-MS mlz 557 (MH , 52), 303 (66), 121 (100); fIRMS 

Calcd for C38HssN02: 557.4233, found 557.4232. 
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1-(1,5-Dimethyl-hexyl)-9,1 Oa,12a-trimethyl-7-( 4-nitro-benzyl)-

2,3,3a,3b,4,5,5a, 7,10,1 Oa,1 Ob,II,12,12a-tetradecahydro-1H-7-aza-

dicyclopenta[ a,h ]phenanthren-8-one (265) 

o 

Precursor (262) was dissolved in toluene or 1,2-dichloroethane (2.5 ml) and reacted 

under the conditions described in the general procedure 5.2.4 to give the following 

cyclic compound: yield (76%) and (59%) respectively~ clear oil~ IR (neat, cm-I) 1683, 

1522~ IH NMR (300MHz, CDCh) 8 8.14 (2H, d, J = 8.7 Hz, CH=CN02), 7.27 (2H, d, J 

= 8.7 Hz, CHCHCN02), 4.88 (tH, d, J = 16.6 Hz, CHHN), 4.83 (1H, d, J = 2.3 Hz, 

CH=C), 4.74 (IH, d, J= 16.6 Hz, CHHN), 2.70 (tH, d, J = 15.8 Hz, CIffi), 2.15 (IH, 

dt, J = 2.8, 12.8 Hz, CH), 2.00 (2H, m, CHCfu), 1.87 (3H, s, CH3), 1.76 (IH, m, CHH), 

1.60-0.87 (22H, m, CH x 6, Cfu x 8), 0.88 (3H, d, J = 6.4 Hz, CHC!:L), 0.85 (3H, d, J 

= 6.6 Hz, CH(Cfu)2), 0.82 (3H, d, J = 6.6 Hz, CH(C!:Lh), 0.71 (3H, s, C!:L), 0.63 (3H, 

s, Cfu)~ 13C (75 MHz, CDCh) 0 171.6 (s), 147.5 (s), 145.7 (s), 141.0 (s), 138.2 (s), 

128.0 (d x 2), 125.4 (s), 124.2 (d x 2), 112.2 (d), 56.6 (d), 56.5 (d), 53.4 (d), 45.9 (d), 

.. 43.4 (t), 42.9 (t), 42.6 (t), 41.2 (t), 40.2 (t), 36.7 (s), 36.5 (s), 36.1 (d), 35.7 (d), 32.2 (t), 

28.5 (t), 28.3 (t), 28.2 (d), 27.1 (t), 24.5 (t), 23.2 (q), 22.9 (q), 21.6 (t), 19.0 (q) 13.3 (q), 

12.4 (q), 8.8 (q); EI-MS mlz 572 (MH+, 15), 542 (20),439 (100), 315 (25), 106 (70)~ 
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1-( 4-Methoxy-benzyl)-3,4a-dimethyl-l,4,4a,5,6, 7,8,8a,9,9a-decahydro-

benzo[t]indol-2-one (270) 

Precursor (269) was dissolved in toluene (2.5 ml) and reacted under the conditions 

described in the general procedure 5.2.4 to give the following cyclic compound: yield 

(86%); clear oil; IR (neat, cm-I
) 1697; IH NMR for mix of diastereomers (300MHz, 

CDCh) 07.14 (2H, d, J = 8.8 Hz, CHCHCOCH3), 6.80 (2H, d, J = 8.8 Hz, 

CH=COCH3), S.OO (IH, d, J= IS.O Hz, CHHN), 4.90 (1H, d, J = IS.0 Hz, CHHN), 4.10 

(tH, d, J = 15.0 Hz, CHHN), 3.97 (IH, d, J = 15.0 Hz, CHHN), 3.77 (3H, s, OClb), 
, .. 

3.63 (IH, m, Cm, 3.47 (IH, m, Cm, 2.80 (tH, m, CHH), 2.43 (IH, m, CHH), 2.28 (tH, 

m, CHH), 1.85 (4H, m, Cfu x 2), 1.77 (3H, m, CH3), 1.48-1.08 (SH, m, Cfu x 2, CH), 

1.08 (3H, s, Clb), 0.95 (IH, m, CHH), 0.74 (3H, s, Clb); l3c for mixture of 

diastereomers (75 MHz, CDCh) 0 172.6 (s), 159.2 (s), 151.9 (s), 130.0 (s), 129.6 (d x 

2), 126.1 (s), 114.3 (d x 2),60.3 (d), 60.0 (d), 55.6 (q), 43.7 (t), 43.5 (d), 41.2 (t), 40.1 

(t), 38.0 (t), 36.1 (d), 34.8 (t), 31.7 (s), 30.5 (s), 26.9 (q), 26.4 (q), 22.5 (t), 22.2 (t), 22.1 

(t), 21.9 (t), 20.2 (t), 16.4 (t), 8.7 (q); EI-MS mlz mixture 340 (M+, 40), 300 (60), 256 

(20),212 (40), 121 (100); HRMS Calcd for C22H29N02: 340.2277, found 340.2287. 

1-( 4-Methoxy-benzyl)-3,4a-dimethyl-l,4,4a,5,6, 7 ,8,8a-octahydro-benzo[t] indol-2-

one (271) 
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Precursor (269) was dissolved in 1,2-dichloroethane (2.5 ml) and reacted under the 

conditions described in the general procedure 5.2.4 to give the following cyclic 

compound: yield (70%); clear yellow oil; IR (neat, em-I) 1704; IH NMR (250MHz, 

CDCh) B 7.15 (2H, d, J = 8.7 Hz, CHCHCOCH3), 6.79 (2H, d, J = 8.7 Hz, 

CH=COCH3), 5.09 (IH, d, J = 16.0 Hz, CHHN), 4.92 (IH, d, J = 3.0 Hz, CH=C), 4.84 

(IH, d, J = 16.0 Hz, CHHN), 3.77 (3H, s, OCH3), 1.97 (2H, m, Cm, 1.92 (2H, m, Clli), 

1.77 (3H, s, Cfu). 1.72-1.35 (8H, m, Clli x 4), 1.16 (3H, br s, CH3); 13C (75 MHz, 

CDCh) B 171.6 (s), 159.1 (s), 150.1 (s), 140.1 (s), 139.0(s), 129.8 (d x 2), 124.8 (s), 

114.3 (d x 2), 111.1 (d), 55.7 (q), 43.2 (t), 39.2 (d), 31.6 (s), 26.9 (t), 25.8 (t), 25.0 (t), 

24.0 (t), 22.7 (q), 22.5 (t), 8.7 (q); EI-MS mlz 337 (~, 81), 121 (100); HRMS Calcd for 

C22H27N02: 337.2042, found 337.2039. 

3-Methyl-octahydro-indol-2-one (244) 

"' .. r-h 
O~NY 

H H 

A solution of I-Benzyl-3-methyl-l,4,5,6,7,7a-hexahydro-indol-2-one (197) (50 mg, 0.21 

mmol in 10 ml of dry tetrahydrofuran) was added to a stirred-solution of lithium metal 

.. (40 mg, 5.8 mmol) in liquid ammonia (20 ml) at -78°C. The reaction mixture was 

allowed to warm to room temperature and stirred for a further 20 minutes. Quenching 

was carried out by the cautious addition of H20 (10 ml), Removal of excess NH3 was 

achieved by exposing the reaction mixture to air for 30 minutes. The resulting solution 

was diluted with dichloromethane (30 ml), washed with H20 (10 ml), brine (10 ml), 

dried with MgS04 and reduced to dryness in vacuo, yield '(95%); white crystalline 
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solid; IR (KBr Disc, cm-I) 3421,3104, 1696, 1694; IH NMR (250 MHz, CDCI3) 0 6.03 

(lH, br s, NH), 2.92 (lH, m, NHCH), 1.95 (2H, m, CHCH3, CHH), 1.77 (3H, m, CHH, 

C!h), 1.29-1.18 (5H, m, CHCHCH3, CHH X 2, C!h), 1.06 (3H, d, J = 7.0 Hz, CHCH3); 

l3C (75 MHz, CDCh) 0 181.3 (s), 58.9 (d), 52.9 (d), 47.6 (d), 31.2 (d), 27.7 (t), 26.2 (t), 

24.8 (t), 12.9 (q); EI-MS mlz 153 (M+, 100), 110 (95), 81 (55),67 (70); HRMS Calcd 

for C~lsNO: 153.1154, found 153.1155; Anal. Calcd for C~lsNO: C, 70.55; H, 9.87; 

N, 9.14. Found C, 70.51; H, 9.87; N, 9.10. 

5.2.5 General method for the deprotection of p-methoxybenzylamides 

Ceric ammonium nitrate (438 mg, 0.8 mmol) was added to a solution of the required 

cyclised compound (0.32 mmol) in 3.2 ml of3:1 acetonitrileIH20 and stirred for 1hour. 

The resulting solution was dropped onto H20 (25 ml) and extracted with ethyl acetate 

(25 ml x 3), dried with MgS04 and reduced to dryness in vacuo. Purification was 

carried out by flash chromatogtraphy (1:2 petroleum ether : ethyl acetate), to give the 

following oxidisedl deprotected products. 

3-Methyl-l,4,5,6,7,7 a-hexahydro-indol-2-one (245) 

o 

Compound (210) was deprotected under the conditions describ~d in the general 

procedure 5.2.5 to give the following compound: yield (96%); white crystalline solid; 

IR (neat, cm-I) 3437, 3263, 1644; IH NMR (250 MHz, CDCI3) 06.98 (lH, br s, NH), 

3.67 (lH, dd, J = 5.8 Hz, NHCH), 2.73 (IH, m, CHH), 2.28 (IH, m, CHCHH), 2.01 

(2H, m, C!h), 1.81 (lH, m, CHH), 1.75 (3H, app t, J = 1.5 Hz, C!b), 1.42 (lH, m, 
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CHID, 1.18 (tH, m, CHID, 1.03, m, CHCHH); 13C (75 MHz, CDCl3) 0 175.8 (s), 156.0 

(s), 124.6 (s), 57.8 (d), 35.1 (t), 27.0 (t), 26.5 (t), 23.7 (t), 8.4 (q); EI-MS mlz 151 (W, 

100), 136 (80), 122 (80),94 (50), 80 (45); HRMS Calcd for C<}f13NO: 151.0997, found 

151.0997; Anal. Calcd for C9HI3NO: C, 71.29; H, 8.67; N, 9.26. Found C, 71.29; H, 

8.61; N, 9.27. 

Compound (210) (0.7 mmol) was refluxed with stirring in trifluoroacetic acid (8.5 ml) 

for 2 hours (followed by TLC). The reaction mix was cooled to room temperature, 

quenched on ice and extracted with dichloromethane (25 ml x 3). The organic layer 

was then washed with saturated sodium hydrogen carbonate (25 ml x 3), dried with 

MgS04 and reduced to dryness in vacuo. Purification was carried out by flash 

chromatogtraphy (1:2 petroleum ether: ethyl acetate), to give the deprotected lactam 

(245): yield (83%). The spectral details matched those shown above. 

1-( 4-Methoxy-benzyl)-3,3-dimethyl-3,3a,4,5-tetrahydro-l H-indole-2,6-dione (246) 

Compound (159b) was reacted under the conditions described in the general procedure 

5.2.5 to give the following compound (246): yield (74%); clear oil; IR (neat, em-I) 

1732, 1706; IH NMR (250 MHz, CDCI3) 07.14 (2H, d, J = 8.5 Hz, CHCHCOCH3), 

6.80 (2H, d, J = 8.5 Hz, CH=COCH3), 5.51 (IH, d, J = 1.8 Hz, CH=C), 4.60 (IH, d, J= 

15.0 Hz, CHI-IN), 4.55 (IH, d, J= 15.0 Hz, CHHN), 3.76 (3H, s OClL), 2.75 (tH, ddd, 

J= 1.8, 2.8 Hz, CH), 2.50 (tH, m, CHHCO), 2.32 (tH, m, CHHCO), 2.00 (IH, m, 

CHHCH), 1.83· (tH, m, CHHCH), 1.33 (3H, s, ClL), 1.07 (3H, s, ClL); l3c (75 MHz; 

CDCh) 0 197.0 (s), 181.8 (s), 163.8 (s), 159.6 (s), 129.3 (d x 2), 127.4 (s), 114.6 (d x 
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2), 103.6 (d), 55.6 (q), 46.2 (d), 44.l (t), 42.8 (s), 37.6 (t), 23.5 (q), 22.4 (t), 21.7 (q)~ 

EI-MS mlz 299 (M+, 55),271 (l00), 121 (75)~ HRMS Calcd for CIsH2IN03: 299.1521, 

found 299.1521. 

1-Benzyl-3,3-dimethyl-3,3a,4,5-tetrahydro-1H-indole-2,6-dione (247) 

o 

Compound (152b) was reacted under the conditions described in the general procedure 

5.2.5 to give the following compound (246): yield (68%)~ clear oil; IR (neat, em-I) 

1713, 1700~ IH NMR (250 MHz, CDCI3) 87.29-7.19 (5H, m, Ar-ill, 5.47 (lH, d, J = 

1.8 Hz, CH=C), 4.69 (lH, d, J = 15.0 Hz, CHHN), 4.60 (lH, d, J = 15.0 Hz, CHHN), 

2.75 (IH, ddd, J = 1.8, 2.5 Hz, CH), 2.58 (IH, m, CHHCO), 2.32 (IH, m, CHHCO), 

2.01 (lH, m, CHHCH), 1.83 (IH, m, CHHCH), 1.33 (3H, s, Clli), 1.08 (3H, s, Clli); 

13C (75 MHz; CDCI3) 8 198.3 (s), 181.8 (s), 163.9 (s), 135.2 (s), 129.3 (d x 2), 128.2 

(d), 127.4 (d x 2), 103.6 (d), 46.2 (d), 44.5 (t), 42.8 (s), 37.6 (t), 23.5 (q), 22.4 (t), 21.7 

(q)~ EI-MS mlz 269 (M+, 85), 226 (90), 91 (100)~ HRMS CaIed for C17HI9N02: 

269.1415, found 269.1416. 

3-Methyl-l ,4,5,6,7,8,9 ,9a-octahydro-cycIoocta [b] pyrrol-2-one (24.8) 

Compound (211) was deprotected under the conditions described in the general 

procedure 5.2.5 to give the following compound: yield (88%); white crystalline solid~ 
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IR (neat, em-I) 3379, 3263, 1676, 1476; IH NMR (250 MHz, CDCI3) 06.65 (IH, br s, 

NH), 4.00 (IH, br s, NHCID, 2.62 (lH, app dt, J = 5.5, 5.6 Hz, CHH), 2.17 (lH,' m, 

CHH), 2.00 (IH, m, CHCHH), 1.73 (3H, br s, C!:b), 1.67 (IH, m, CHCHH), 1.40 (4H, 

m, CHz x 2); l3C (75 MHz, CDCI3) 0 175.6 (s), 158.3 (s), 129.2 (s), 60.0 (d), 28.3 (t), 

28.1 (t), 27.2 (t), 26.7 (t), 25.3 (t), 22.0 (t), 8.9 (q); EI-MS mlz 179 (M+, 85), 151 (70), 

136 (100),122 (65),110 (55); HRMS Calcd for CllH17NO: 179.1310, found 179.1304; 

Anal. Calcd for CllH17NO: C, 73.70; H, 9.56; N, 7.81. Found C, 73.38; H, 9.47; N, 

7.87. 

3-Phenyl-l,4,5,6, 7, 7a-hexahydro-indol-2-one (249) 

Ph 

a 

Compound (212) was deprotected under the conditions described in the general 

procedure 5.2.5 to give the following compound: yield (84%); white crystalline solid; 

IR (KBr disc, em-I) 3374, 3083, 1684, 1600; IH NMR (250 MHz, CDCI3) 07.42 (5H, 

m, Ar-H), 6.79 (IH, br s, NH), 3.84 (IH, m, NHCH), 3.06 (lH, m, CHH), 2.40 (2H, m, 

CHz), 2.25-1.82 (4H, m, CHz x 2), 1.25 (lH, m, CHH); 13C (75 MHz, CDCh) 0 173.7 

(s), 158.1 (s), 131.6 (s), 129.6 (d x 2), 129.0 (s), 128.7 (d x 2), 128.0 (d), 57.7 (d), 35.3 

(t), 27.3 (t), 27.1 (t), 23.6 (t); EI-MS mlz 213 (M+, 90), 184 (80) 151 (60), 135 (100), 77 

(45); HRMS Ca1cd for CI4H1SNO: 213.1154, found 213.1150; Anal. Ca1cd for 

CI4HISNO: C, 78.84; H, 7.09; N, 6.57. Found C, 78.56; H, 7.06; N, 6.58. 

223 



Chapter 5 

3-Methyl-l,4,S,9b-tetrahydro-benzo[g]indol-2-one (2S0) 

Compound (232) was deprotected under the conditions described in the general 

procedure 5.2.5 to give the following compound: yield (86%)~ white crystalline solid~ 

IR (KBr disc, em-I) 3401, 3267, 1680, 1456; IH NMR (300 MHz, CDCI3) 8 7.47 (IH, br 

s, NH), 6.92 (lH, m, Ar-H), 6.65-6.57 (3H, m, Ar-H), 3.53 (IH, ro, NHCH), 2.67 (IH, 

ro, CHH), 2.34-2.21 (3H, ro, Cfb, CHH), 1.19 (3H, br s, C[h); 13C (75 MHz, CDC13) 8 

173.9 (s), 154.8 (s), 136.4 (s), 136.2 (s), 128.8 (d), 128.l (d), 126.6 (d), 125.4 (d), 125.3 

(s), 84.9 (d), 29.4 (t), 20.7 (t), 8.9 (q)~ EI-MS mlz 200 (M+, 55), 167 (55) 149 (l00)~ 

HRMS Calcd for C 13H13NO: 200.1075, found 200.1076; Anal. Calcd for C J3HJ3NO: C, 

78.36; H, 6.58; N, 7.03. Found C, 77.96; H, 6.32~ N, 7.07. 

I-Methyl-3,3a,4,S-tetrahydro-benzo[ e]indol-2-one (2S1) 

o 

Compound (234) was deprotected under the conditions described in the general 

procedure 5.2.5 to give the following compound: yield (79%); white crystalline solid~ 

IR (KBr disc, em-I) 3407, 3209, 1652; IH NMR (300 MHz, CDC}3) 8 7.59 (lH, br s, Ar­

H), 7.24 (lH, m, NH), 7.22-7.19 (3H, ro, Ar-H), 4.09 (lH, m, NHCH), 2.97 (2H, m, 

CHz), 2.39 (IH, m, CHCHH), 2.07 (3H, ro, C[h), 1.55 (IH, m, CHCHH~ J3C (75 MHz, 

CDCl3) 8 176.0 (s), 150.6 (s), 137.6 (s), 130.7 (s), 129.5 (d), 129.3 (d), 127.9 (d), 126.8 
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(d), 125.6 (s), 56.6 (d), 31.2 (t), 28.7 (t), 10.4 (q); EI-MS mlz 199 (M+, 100), 184 (75) 

170 (30), 128 (20); HRMS Calcd for C13H13NO: 199.0997, found 199.0999; Anal. 

Calcd for C 13H 13NO: C, 78.36; H, 6.58; N, 7.03. Found C, 77.90; H, 6.33; N, 7.04. 

1-(1,5-Dimethyl-hexyl)-9,10a,12a-trimethyl-

2,3,3a,3b,4,5,5a,6,6a, 7,10,1 Oa,1 Ob,11,12,12a-hexadecahydro-1H-7-aza­

dicyclopenta[ a,h] phenanthren-8-one (379) 

o 

H 

Compound (379) was deprotected under the conditions described in the general 

procedure 5.2.5 to give the following compound: yield (81%); white crystalline solid; 

IR (KBr disc, cm-I
) 3222, 1708, 1680; IH NMR (300MHz, CDCh) ~ 7.06 (IH, br s, 

NH), 3.72 (IH, dd, J= 10.7,6.6 Hz, NHCH), 2.63 (IH, d, J = 13.4 Hz, CHH), 1.93 (2H, 

m, CHC!h), 1.69 (3H, s, Cfu), 1.65 (3H, m, CHH, C!h), 1.59-0.87 (23H, m, CH x 7, 

Cfu x 8), 0.84 (3H, d, J = 6.4 Hz, CHCfu), 0.80 (3H, d, J = 6.6 Hz, CH(Cfu)2), 0.79 

(3H, d, J = 6.6 Hz, CH(Cfu)2), 0.58 (3H, s, Cfu), 0.55 (3H, s, Cfu); l3c (75 MHz, 

CDC13) ~ 176.0 (s), 164.0 (s), 126.7 (s), 58.0 (d), 56.7 (d), 56.6 (d), 54.6 (d), 43.9 (d), 

42.9 (s), 40.2 (s), 40.1 (t), 39.9 (t), 39.1 (t), 37.7 (t), 36.5 (t), 36.1 (d), 35.8 (d), 32.2 (t), 

28.7 (t), 28.6 (t), 28.4 (d), 24.6 (t), 24.2 (t), 23.2 (q), 22.9 (q), 21.6 (t), 19.1 (t), 12.4 (q x 

2), 8.3 (q); CI-MS mlz 439 (MIt, 15), 279 (30), 167 (45), 149 (100), 83 (25); HRMS 

Calcd for C3oH49NO: 440.3892, found 440.3896; Anal. Calcd for C3oH49NO: C, 81.94; 

H, 11.23; N, 3.19. Found C, 81.97; H, 11.21; N, 3.17. 
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5.2.6 General procedure for copper mediated cyclisations of bromoacetamides in 

the ionic liquid [bmim][PF6] 

Cu(I)Br (12.9 mg, 0.09 mmol) was added to solution of the appropriate precursor (0.3 

mmol) and Me6-tren (39) (20.7 mg, 0.09 mmol) in I-butyl-3-methylimidazolium 

hexaflurophosphate157 [bmim][pF6] (2.5 ml) and stirred at room temperature for 20 

minutes under N2• The resulting solution was washed with toluene (5 ml x 2) and 

reduced to dryness in vacuo to give the observed cyclised products. To recycle the 

catalyst the remaining [bmim][pF6]/CuBr:(39) solution was added to another 0.3 mmol 

of the appropriate precursor and the procedure was carried out again. 

5.3 Experimental for Chapter 4 

5.3.1 General procedure for the preparation of N-Acyl Enamines 

A solution of ketone (10 mmol) and the appropriate benzyl amine (10 mmol) in toluene 

(15 ml) was stirred under reflux in a Dean Stark apparatus for until no starting material 

could be detected by tlc analysis (typically 4-8 hours). The solution was then cooled to 

O°C with stirring. Methyl malonyl chloride (10 mmol) was added dropwise to this 

solution, followed by the slow, dropwise addition of N,N-diethylaniline (10 mmol). The 

reaction was then stirred for 2 hours at room temperature and dropped onto H20 (30 

ml). The organic layer was washed with 10% aq.HCI (10 mi), dried over MgS04 and 

concentrated in vacuo to give a residue which was purified by column chromatography, 

petroleum ether: ethyl acetate (1: 1). 
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N-Cyclohex-l-enyl-N-(4-methoxy-benzyl)-malonamic acid methyl ester (290) 

Me~C:t D 
o N 

I 
PMB 

The imine derived from the condensation of cyc1ohexanone and p-

methoxybenzylamine was reacted under the conditions described in general procedure 

5.3.1 to afford the required compound (290): yield (57%)~ clear yellow oil~ IR (neat, 

em-I) 1768, 1634~ IH NMR (250 MHz, CDCh) 07.11 (2H, d, J = 8.5 Hz, 

CHCHCOCH3), 6.72 (2H, d, J = 8.5 Hz, CH=COCH3), 5.31 (IH, s, CH=C), 4.47 (2H, 

br s, CfuN), 3.67 (3H, s, OClli), 3.62 (3H, s, OClli), 3.44 (2H, s, COCfuCO), 1.90 

(4H, m, CH2 x 2), 1.54 (2H, m, Clli), 1.43 (2H, m, Clli)~ 13C (75 MHz~ CDCI3) 0 168.8 

(s), 165.6 (s), 159.1 (s), 138.2 (s), 130.3 (d x 2), 129.9. (s), 129.6 (d), 114.4 (t), 55.4 (q), 

52.5 (q), 48.7 (t), 39.4 (t), 27.5 (t), 24.3 (t), 22.5 (t), 21.3 (t); EI-MS mJz 317 (M+ 67), 

217 (45), 121 (100), 83 (35)~ HRMS Calcd for C18H23N04: 317.1627, found 317.1630. 

N-( 4-Methoxy-benzyl)-N-(6-methyl-cyclohex-l-enyl)-malonamic acid methyl ester 

(30la) 

Me02C:t !? 
o N 

I 
PMB 

The imine derived from the condensation of 2-methylcyclohexanone and p-

methoxybenzylamine was reacted under the conditions described in general procedure 

5.3.1 to afford the required compound (301a): yield (69%); clear oil~ IR (neat, cm-I) 

1766, 1633, 1610; IH NMR (250 MHz, CDCl3) 87.15 (2H, m, CHCHCOCH3), 6.76 

(2H, m, CH=COCH3), 5.24 (lH, s, CH=C), 4.60 (lH, J = 14.0 Hz, CHHN), 4.40 (lH, J 
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= 14.0 Hz, CHHN), 3.71 (3H, s, OCIL), 3.66 (3H, s, OCIL), 3.30 (lH, d, J = 15.3 Hz, 

COCHHCO), 3.20 (IH, d, J = 15.3 Hz, COCHHCO), 2.33 (lH, m, CHCH3), 1.91 (2H, 

m, CHz), 1.61-1.37 (4H, m, CHz X 2)~ 13C (75 MHz~ CDCh) 0 169.0 (s), 168.7 (s), 

159.3 (s), 134.7 (s), 131.0 (s), 131.7 (d), 130.4 (d X 2), 113.8 (d X 2),55.4 (q), 52.6 (q), 

48.9 (t), 41.5 (t), 29.1 (d), 25.5 (t), 23.6 (t), 19.7 (t), 18.4 (q); EI-MS mlz 331 (M+ 57), 

231 (43), 121 (l00)~ HRMS Calcd for Cl~25N04: 331.1784, found 331.1781. 

N-(3,4-Dihydro-naphthalen-l-yl)-N-( 4-methoxy-benzyl)-malonamic acid methyl 

ester (303) 

The imine derived from the condensation of a-tetralone and p-methoxybenzylamine 

was reacted under the conditions described in general procedure 5.3.1 to afford the 

required compound (303): yield (66%); orange oil; IR (neat, em-I) 1772, 1640, 1613, 

735; IH NMR (250 MHz, CDCh) 07.24-7.04 (6H, m, Ar-H), 6.81 (2H, d, J = 8.6 Hz, 

CH=COCH3), 5.79 (lH, t, J = 4.6 Hz, CH=C), 5.47 (IH, d, J = 14.0 Hz, CHHN), 3.80 

(IH, d, J = 14.0 Hz, CHHN), 3.74 (3H, s, OCIL), 3.64 (3H, S·, OCIL), 3.42 (IH, d, J = 

15.6 Hz, COCHHCO), 3.29 (IH, d, J = 15.6 Hz, COCHHCO), 2.75 (2H, t, J = 8.0 Hz, 

) 
13 

CHz), 2.28 (2H, m, CHz; C (75 MHz; CDCb) 0 168.7 (s), 166.8. (s), 159.3 (s), 137.4 

(s), 137.3 (s), 131.3 (s), 130.8 (d X 2), 130.1 (d), 129.9 (s), 128.8 (d), 128.5 (d), 127.4 

(d), 122.3 (d), 114.0 (d X 2), 55.5 (q), 52.6 (q), 49.9 (t), 41.1 (t), 27.9 (t), 23.1 (t); El-

MS mlz 365 (M+ 40), 265 (25), 145 (100), 121 (45); HRMS Ca1cd for C22H23N04: 

365.1627, found 365.1627. 
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N-(3,4-Dihydro-naphthalen-2-yl)-N-( 4-methoxy-benzyl)-malonamic acid methyl 

ester (304) 

Me02C~ I 
o N 

I 
PMB 

The imine derived from the condensation of J3-tetralone and p-methoxybenzylamine 

was reacted under the conditions described in general procedure 5.3.1 to afford the 

required compound (304): yield (69%); orange oil; IR (neat, cm-I) 1763, 1638, 1610, 

735; IH NMR (250 MHz, CDCh) 07.25-7.12 (6H, m, Ar-H), 6.82 (2H, d, J = 8.7 Hz, 

CH=COCH3), 6.18 (lH, br s, CH=C), 4.73 (2H, br s, CfuN), 3.79 (3H, s, OClli), 3.72 

(3H, s, OClli), 3.55 (2H, s, COCfuCO), 2.88 (2H, t, J = 6.7 Hz, Cfu), 2.34 (2H, t, J = 

6.7 Hz, Cfu); l3C (75 MHz; CDCh) 0 168.7 (s), 165.6 (s), 159.4 (s), 139.5 (s), 134.2 

(s), 133.0 Es), 130.5 (d x 2), 129.4 (s), 128.7 (d), 128.4 (d), 128.2 (d), 127.8 (d), 127.2 

(d), 114.1 (d x 2),55.7 (q), 52.7 (q), 49.7 (t), 41.7 (t), 28.8 (t), 27.5 (t); EI-MS rnJz 365 

(M+ 77),265 (15), 145 (26), 121 (100); HRMS Calcd for C22H23N04: 365.1627, found 

365.1631. 

N-(I-Isopropyl-vinyl)-N-(4-methoxy-benzyl)-malonamic acid methyl ester (316) 

and 2-Isopropyl-3-(4-methoxy-benzyl)-6-methoxycarbonylmethyl-2-methyl-4-oxo-

3,4-dihydro-2H-[1,3]oxazine-5-carboxylic acid methyl ester (318) 
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The imine derived from the condensation of 3-methyl-2-butanone and p­

methoxybenzylamine was reacted under the conditions described in general procedure 

5.3.1 to afford compounds (316) and (318). Data for (316): yield (33%); clear oil; IR 

(neat, em-I) 1742, 1652; IH NMR (250 MHz, CDCI3) B 7.17 (2H, d, J = 8.8 Hz, 

CHCHCOCH3), 6.76 (2H, d, J = 8.8 Hz, CH=COCH3), 4.98 (IH, s, CHH=C), 4.64 (IH, 

s, CHH=C), 4.60 (2H, br s, ClliN), 3.72 (3H, s, OClL), 3.67 (3H, s, OClL), 3.44 (2H, s, 

COClliCO), 2.39 (lH, sep, J = 6.7 Hz, CH(CH3)2), 1.04 (6H, d, J = 6.7 Hz, 

CH(CH3)2); l3C (75 MHz; CDCI3) B 168.9 (s), 166.1 (s), 159.2 (s), 153.0 (s), 130.3 (d x 

2), 129.6 (s), 114.1 (t), 114.0 (d x 2),55.6 (q), 55.5 (q), 48.8 (t), 41.4 (t), 31.9 (d), 21.4 

(q x 2); EI-MS mlz 305 (M+ 15), 204 (25), 184 (30), 121 (100); HRMS Calcd for 

C J7H23N04: 305.1627, found 305.1627. 

Data for (318): yield (36%); yellow oil; IR (neat, em-I) 1742, 1732, 1652, 1616; IH 

NMR (250 MHz, CDCb) B 7.15 (2H, d, J = 8.6 Hz, CHCHCOCH3), 6.77 (2H, d, J = 

8.6 Hz, CH=COCH3), 5.25 (1H, d, J = 15.9 Hz, CHHN), 3.95 (lH, d, J = 15.9 Hz, 

CHHN), 3.86 (IH, d, J = 15.9 Hz, CHHCO), 3.79 (3R, s, OCR3), 3.73 (3H, s, OCH3), 

3.69 (3H, s, OClL), 3.50 (IH, d, J = 15.9 Hz, CHHCO), 2.70 (2H, sep, J = 6.7 Hz, 

CH(CH3)2), 1.44 (3H, s, ClL), 0.95 (3H, d, J = 6.7 Hz, CHClL), 0.89 (3H, d, J = 6.7 

Hz, CHClL); l3c (75 MHz; CDCI3) B 168.5 (s), 165.8 (s), 160,1 (s), 159.0 (s), 131.0 (s), 

128.6 (d x 2), 114.3 (d x 2), 107.1 (s), 98.9 (s), 60.8 (s), 55.6 (q), 52.7 (q), 52.3 (q), 46.2 

(t), 39.2 (t), 33.9 (d), 19.7 (q), 17.7 (q), 17.5 (q); EI-MS mlz405 (~63), 291 (22), 121 

(100); HRMS Calcd for C2IH27N07: 405.1788, found 405.1784. 
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N-(1-Isopropyl-vinyl)-N-(4-methoxy-benzyl)-malonamic acid ethyl ester (330) and 

2-Isopropyl-3-(4-methoxy-benzyl)-6-methoxycarbonylmethyl-2-methyl-:4-oxo-3,4-

dihydro-2H-[1,3]oxazine-5-carboxylic acid ethyl ester (332) 

The imine derived from the condensation of 3-methyl-2-butanone and p-

methoxybenzylamine was reacted under the conditions described in general procedure 

5.3.1, using ethyl malonyl chloride (9 mmol) as the acylating agent, to afford 

compound (330) and (332). Data for (330): yield (27%); clear oil; IR (neat, em-I) 1740, 

1655; IH NMR (250 MHz, CDCI3) 0 7.18 (2H, d, J = 8.8 Hz, CHCHCOCH3), 6.79 (2H, 

d, J = 8.8 Hz, CH=COCH3), 4.98 (IH, aap d, J = 1.2 Hz, CHH=C), 4.67 (lH, s, 

CHH=C), 4.58 (2H, br s, ClliN), 4.15 (2H, q, J = 7.0 Hz, OClliCH3), 3.74 (IH, s, 

OCH3), 3.44 (2H, s, COClliCO), 2.41 (IH, sep, J = 6.7 Hz, CH(CH3)2), 1.23 (2H, q, J 

= 7.0 Hz, OCH2C!:L), 1.06 (6H, d, J = 6.7 Hz, CH(CH3)2); l3C (75 MHz; CDCI3) 0 

168.5 (s), 166.2 (s), 159.2 (s), 153.1 (s), 130.3 (d x 2), 129.7 (s), 114.5 (br t), 114.0 (d x 

2),61.6 (t), 55.5 (q), 48.7 (t), 41.6 (t), 31.9 (d), 21.1 (q x 2), 14.5 (q); EI-MS mJz 319 

(M+ 20),204 (30), 198 (35), 121 (100); HRMS Calcd for CIsfh5N04: 319.1783, found 

319.1786. 

Data for (332): yield (30%); yellow oil; IR (neat, em-I) 1742, 1740, 1643; IH NMR 

(300 MHz, CDCI3) 57.15 (2H, d, J = 8.5 Hz, CHCHCOCH3), 6.81 (2H, d, J = 8.5 Hz, 

CH=COCH3), 5.30 (IH, d, J = 15.8 Hz, CHHN), 4.29 (2H, q, J = 7.2 Hz, OClliCH3), 

4.18 (2H, m, CH20ClliCH3), 3.96 (lH, d, J = 15.8 Hz, CHHN), 3.86 (IH, d, J = 16.0 

Hz, CHHCO), 3.77 (3H, s, OC!:L), 3.50 (lH, d, J = 16.0 Hz, CHHCO), 2.72 (2H, sep, J 
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= 6.8 Hz, CH(CH3)2), 1.46 (3H, s, C!L), 1.33 (3H, t, J = 7.2 Hz, OCH2C!L), 1.26 (3H, 

t, J = 7.1 Hz, CH20CH2Cfu), 0.99 (3H, d, J = 7.0 Hz, CHCfu), 0.92 (3H, d, J = 6.6 

Hz, CHCfu)~ 13C (75 MHz~ CDCh) 0167.9 (s), 165.0 (s), 160.2 (s), 159.0 (s), 131.1 (s), 

128.6 (d x 2), 114.3 (d x 2), 107.6 (s), 98.7 (s), 61.8 (t), 61.5 (t), 60.7 (s), 55.6 (q), 46.1 

(t), 39.4 (t), 33.9 (d), 19.7 (q), 17.7 (q), 17.6 (q), 14.6 (q), 14.5 (q)~ EI-MS mlz 433 (M+ 

15), 319 (15),228 (25), 205 (100), 121 (67)~ HRMS Calcd for C23H31N07: 433.2100, 

found 433.2103. 

N-(2,4-Dimethoxy-benzyl)-N-(1-isopropyl-vinyl)-malonamic acid ethyl ester (331) 

and 3-(2,4-Dimethoxy-benzyl)-6-ethoxycarbonylmethyl-2-isopropyl-2-methyl-4-

oxo-3,4-dihydro-2H-[1,3]oxazine-5-carboxylic acid ethyl ester (333) 

The imine derived from the condensation of 3-methyl-2-butanone and 2,4-

dimethoxybenzylamine was reacted under the conditions described in general 

procedure 5.3.1, using ethyl malonyl chloride (9 mmol) as the acylating agent, to afford 

compounds (331) and (333). Data for (331): yield (34%); dear oil; IR (neat, em-I) 

1747, 1661; IH NMR (250 MHz, CDCh) 07.19 (IH, d, J = 8.2 Hz, CHCHCOCH3), 

6.33 (2H, m, CH=COCH3), 4.87 (lH, app d, J = 1.2 Hz, CHH=C), 4.64 (IH, s, 

CHH=C), 4.63 (2H, br s, CHzN), 4.10 (2H, q, J = 7.0 Hz, OCHzCH3), 3.69 (tH, s, 

OClL), 3.66 (3H, s, OClL), 3.41 (2H, s, COClhCO), 2.43 (lH, sep, J = 7.0 Hz, 

CH(CH3)2), 1.19 (2H, q, J = 7.0 Hz, OCHzC!:L), 1.00 (6H, d, J = 7.0 Hz, CH(CH3)z); 

13 C (75 MHz; CDCh) 0 168.5 (s), 166.2 (s), 160.4 (s), 158.7 (s), 153.4 (s), 131.0 (d), 
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117.9 (s), 112.7 (t), 110.4 (d), 98.3 (d), 61.4 (t), 55.5 (q x2), 42.2 (t), 41.6 (t), 31.5 (d), 

20.9 (q x 2), 14.4 (q); EI-MS mlz 349 (M+ 51),306 (20), 234 (100), 198 (86) 151 (47); 

HRMS Caled for C19H27N05: 349.1889, found 349.1889. 

Data for (333): yield (37%); yellow oil; IR (neat, em-I) 1759, 1731, 1626; IH NMR 

(250 MHz, CDCh) 06.98 (lR, d, J = 7.9 Hz, CHCHCOCH3), 6.36 (2H, m, 

CH=COCH3), 5.10 (lH, d, J = 16.7 Hz, CHHN), 4.23 (2H, m, OCfuCH3), 4.08 (2H, m, 

CH20CfuCH3), 4.02 (lH, d, J = 16.7 Hz, CHHN), 3.85 (IH, d, J = 16.1 Hz, CHHCO), 

3.71 (3H, s, OCfu), 3.68 (3H, s, OCfu), 3.45 (lR, d, J = 16.1 Hz, CHHCO), 2.74 (2H, 

sep, J = 6.7 Hz, CH(CH3h), 1.39 (3H, s, Cfu), 1.28 (3H, t, J = 7.0 Hz, OCH2Clli), 1.17 

(3H, t, J = 7.0 Hz, CH20CH2Clb), 0.93 (3H, d, J = 6.7 Hz, CHClb), 0.86 (3H, d, J = 

6.7 Hz, CHClli); 13C (75 MHz; CDCI3) 0 167.9 (s), 165.1 (s), 160.7 (s), 157.3 (s), 131.1 

(s), 128.3 (d), 119.2 (s), 107.7 (s), 104.7 (d), 98.8 (s), 98.4 (d), 61.7 (t), 61.3 (t), 60.7 

(s), 55.6 (q), 55.5 (q), 41.3 (t), 39.4 (t), 33.8 (d), 18.6 (q), 17.7 (q), 17.6 (q), 14.5 (q), 

14.4 (q); EI-MS mlz 463 (M+ 22), 235 (100), 200 (400), 151 (58); HRMS Caled for 

C24H33NOg: 463.2206, found 463.2206. 

N-(2-Cyclohex-l-enyl-ethyl)-N-(1-isopropyl-vinyl)-malonamic acid methyl ester 

(336) 

Meo,c~ 

o NJY 
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The imine derived from the condensation of 3-methyl-2-butanone and 2-( 1-

cyclohexenyl)ethylamine was reacted under the conditions described in general 

procedure 5.3.1, to afford the required compound (336): yield (39%); clear oil; IR 

(neat, em-I) 1744, 1630, 1612; IH NMR (250 MHz, CDCh) 35.35 (IH, br s, CH=C), 

5.06 (lH, s, CHH=C), 4.89 (IH, s, CHH=C), 3.64 (3H, s, OCH3), 3.36 (2H, s, 

COCfuCO), 3.25 (2H, m, CH2CfuN), 2.37 (IH, sep, J = 7.0 Hz, CH(CH3)2), 2.09 (2H, 

m, CfuCH2N), 1.87 (4H, m, Cfu x 2), 1.50 (4H, m, Cfu x 2), 1.05 (6H, d, J = 7.0 Hz, 

CH(CH3)2); l3C (75 MHz; CDCh) 3 168.9 (s), 164.5 (s), 153.6 (s), 134.9 (s), 123.2 (d), 

113.0 (t), 51.5 (q), 44.5 (t), 41.4 (t), 35.8 (t), 31.8 (d), 28.5 (t), 25.5 (t), 23.2 (t), 22.6 (t), 

21.0 (q x 2); EI-MS mlz 293 (M+ 75), 193 (46), 125 (100), 109 (33); HRMS Calcd for 

C17H27N03: 293.1991, found 293.1986. 

N-(l-Isopropyl-vinyl)-N-[2-(4-nitro-phenyl)-ethyl]-malonamie acid methyl ester 

(345) 

The imine derived from the condensation of 3-methyl-2-butanone and p-

nitrophenylethylamine was reacted under the conditions described in general procedure 

5.3.1, to afford the required compound (345): yield (42%); orange oil; IR (neat, em-I) 

1735,1628, 1531; IH NMR (250 MHz, CDC}3) 3 8.15 (lH, m, CHCN02), 7.38 (2H, m, 
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CHCHCOCH3), 5.13 (lH, app d, J = 1.3 Hz, CHH=C), 4.88 (lH, s, CHH=C), 3.71 (2H, 

m, CH2CfuN), 3.70 (3H, s, OCH3), 3.44 (2H, s, COCfuCO), 3.00 (2H, m, CfuCH2N), 

2.40 (lH, sep, J = 6.8 Hz, CH(CH3)2), 1.11 (6H, d, J = 6.8 Hz, CH(CH3)2); l3C (75 

MHz; CDCh) 3 168.9 (s), 166.2 (s), 164.5 (s), 153.7 (s), 146.9 (s), 130.0 (d x 2), 124.0 

(d x 2), 113.5 (t), 52.7 (q), 47.1 (t), 40.9 (t), 35.7 (t), 32.0 (d), 21.4 (q x 2); EI-MS mlz 

334 (M+ 62), 107 (35), 91 (l00); HRMS Calcd for C17H22N20S: 334.1529, found 

334.1533. 

N-(l-sec-Butyl-vinyl)-N-( 4-methoxy-benzyl)-malonamic acid methyl ester (339) 

The imine derived from the condensation of 3-methyl-2-pentanone and p-

methoxybenzylamine was reacted under the conditions described in general procedure 

5.3.1 to afford the required compound (339): yield (41%); clear oil; IR (neat, em-I) 

1757, 1650; IH NMR (250 MHz, CDCh) 3 7.l4 (2H, d, J = 8.6 Hz, CHCHCOCH3), 

6.76 (2H, d, J = 8.6 Hz, CH=COCH3), 4.93 (lH, s, CHH=C), 4.66 (lH, s, CHH=C), 

4.60 (2H, br s, CfuN), 3.71 (3H, s, OCfu), 3.68 (3H, ~, OCfu), 3.43 (2H, s, 

COCfuCO), 2.10 (IH, app sex, J = 6.7 Hz, CH(CH3)CH2CH3), 1.57 (IH, m, 

CH(CH3)CHHCH3), 1.22 (IH, m, CH(CH3)CHHCH3), 1.00 (3H, d, J = 6.7 Hz, 

CH(Cfu)CH2CH3), 0.84 (3H, app t, J = 7.6, 7.3 Hz, CH(CH3)CH2Cfu); l3C (75 MHz; 

CDCI3) 3 169.3 (s), 166.0 (s), 159.4 (s), 154.0 (s), 130.2 (d x 2), 129.4 (s), 114.4 (t), 

114.1 (d x 2), 55.5 (q), 52.5 (q), 48.6 (t), 44.6 (t), 35.9 (d), 27.6 (t), 19.5 (q), 12.0 (q); 

EI-MSmlz 319 (M+ 61),121 (100),83 (55); HRMS Calcd for CIsH2SN04: 319.1784, 

found 319.1778. 
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N-(1-sec-Butyl-vinyl)-N-[2-( 4-nitro-phenyl)-ethyl]-malonamic acid methyl ester 

(346) 

The imine derived from the condensation of 3-methyl-2-pentanone and p-

nitrophenylethylamine was reacted under the conditions described in general procedure 

5.3.1, to afford the required compound (346): yield (44%); orange oil; IR (neat, cm-I) 

1735, 1628, 1531; IH NMR (250 MHz, CD~h) 8.10 (2H, d, J = 8.8 Hz, CHCN03), 

7.32 (2H, d, J = 8.8 Hz, CHCH=N02), 5.04 (IH, app d, J = 1.0 Hz, CHH=C), 4.84 (IH, 

s, CHH=C), 3.70 (3H, s, OCfu), 3.69 (2H, m, CH2CfuN), 3.39 (2H, s, COCfuCO), 

2.94 (2H, d, J = 7.7 Hz, CfuCH2N), 2.10 (IH, app sex, J = 7.0 Hz, CH(CH3)CH2CH3), 

1.60 (IH, m, CH(CH3)CHHCH3), 1.24 (IH, m, CH(CH3)CHHCH3), 1.02 (3H, d, J = 

7.0 Hz, CH(CH3)CH2CH3), 0.87 (3H, app t, J = 7.3 Hz, CH(CH3)CH2Cfu); BC (75 

MHz; CDCh) 8 168.8 (s), 166.2 (s), 152.7 (s), 146.7 (s), 130.0 (d x 2), 124.0 (d x 2), 

113.7 (t), 52.6 (q), 45.7 (t), 41.0 (t), 40.6 (d), 33.9 (t), 27.6 (t), 18.3 (q), 12.1 (q); EI-MS 

m/z 348 (M+ 36), 248 (47), 166 (100), 136 (56); HRMS Calcd for CIsH24N20S: 

348.1685, found 348.1681. 
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3-(2,4-Dimethoxy-benzyl)-6-heptyl-2-isopropyl-2-methyl-2,3-dihydro-[1,3]oxazin-

4-one (358) 

R 

o~,l/ 
Dm~ T 

R = (CH2)6CH3 

The imine derived from the condensation of 3-methyl-2-pentanone and 2,4-

dimethoxybenzylamine was acylated with 3-oxo-decanoyl chloride (352) under the 

conditions described in general procedure 5.3.1, to afford the required compound (358): 

yield (59%); yellow oil; IR (neat, em-I) 1767, 1728, 1613; IH NMR (250 MHz, CDCh) 

06.98 (lH, d, J = 8.1 Hz, CHCHCOCH3), 6.35 (2H, m, CH=COCH3), 5.17 (lH, s, 

CH=C), 5.00 (1H, d, J = 17.0 Hz, CHHN), 4.qO (lH, d, J = 17.0 Hz, CIffiN), 3.70 (3H, 

m, OClli), 3.67 (3H, m, OClli), 2.65 (2H, sep, J = 6.7 Hz, CH(CH3)2), 2.10 (2H, t, J = 

7.4 Hz, CHz), 1.46 (2H, m, CHz), 1.32 (3H, s, CfiJ), 1.22 (8H, m, CHz x 4), 0.90 (3H, d, 

J = 7.0 Hz, CHClli), 0.85 (3H, d, J = 7.0 Hz, CHClli), 0.80 (3H, s, Clli); 13C (75 MHz; 

CDCh) 0 166.4 (s), 164.1 (s), 160.0 (s), 157.4 (s), 128.4 (d), 119.5 (s), 104.6 (d), 98.4 

(d), 98.1 (d), 97.3 (s), 55.6 (q), 55.5 (q), 40.4 (t), 38.6 (t), 38.5 (d), 29.8 (t), 29.3 (t x 2), 

25.9 (t), 22.9 (t), 19.0 (q), 17.8 (q), 17.6 (q), 14.5 (q); fIRMS Calcd for C24H37N04: 

403.2722, found 403.2718. 

5.3.2 General procedure for cyclisations utilising ceric ammonium nitrate 

Ceric ammonium nitrate (723 mg, 1.32 mmol) was added to a stirring solution of the 

appropriate precursor (0.33 mmol) in methanol or acetonitrile (4 ml) and stirred at 

room temperature for 20 minutes. The resulting solution was dropped onto H20 (25 ml) 

and extracted with ethyl acetate (25 ml x 3), dried with MgS04 and reduced to dryness 
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in vacuo. Purification was carried out by flash chromatogtraphy (1: 1 petroleum ether : 

ethyl acetate), to give the following cyclic products. 

7 a-Methoxy-l-( 4-methoxy-benzyl)-2-oxo-2,4,5,6, 7,7 a-hexahydro-IH -indole-3-

carboxylic acid methyl ester (291) 

Me02C 

o 

OMe 

Precursor (290) was cyclised in methanol according to the general procedure 5.3.2: 

yield (65%); orange oil; IR (neat, cm- l
) 1752, 1687; IH NMR (250MHz, CDCh) 0 7.25 

(2H, d, J = 8.9 Hz, CHCHCOCH3), 6.77 (2H, d, J = 8.9 Hz, CH=COCH3), 4.62 (lH, d, 

J = 15.0 Hz, CHHN), 4.13 (lH, d, J = 15.0 Hz, CHHN), 3.86 (3H, s, OClli), 3.77 (3H, 

s, OClli), 3.46 (IH, m, CHH), 2.73 (3H, s, OClli), 2.19 (IH, m, CHH), 1.62 (2H, m, 

Cfu), 1.26 (IH, m, CHH), 1.20 (2H, m, Cfu), 1.00 (lH, m~ CHH); 13C (75 MHz, 

CDCI3) 0 169.7 (s), 166.1 (s), 163.1 (s), 159.1 (s), 130.7 (s), 130.3 (d x 2), 123.0 (s), 

114.0 (d x 2), 91.6 (s), 55.6 (q), 52.4 (q), 50.1 (q), 41.7 (t), 39.2 (t), 28.0 (t), 26.5 (t), 

14.6 (t); EI-MS mlz 345 (M+, 35), 315 (100), 121 (85); HRMS Calcd for C19H23N05: 

345.1576, found 345.1573. 

1-( 4-Methoxy-benzyl)-2-oxo-2,4,5,6-tetrahydro-1H-indole-3-carboxylic acid methyl 

ester (300) 
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A crystal of tosic acid was added to a solution of compound (291) (0.25 mmol) in 

dichloromethane or toluene (2.5 mls) and refluxed for 1 hour The resulting solution 

was cooled, washed with water, dried with MgS04 and reduced to dryness in vacuo: 

yield (99%); clear yellow oil; IR (neat, em-I) 1709, 1650; IH NMR. (250MHz, CDCI3) 

B 7.27 (2H, d, J = 8.5 Hz, CHCHCOCH3), 6.71 (2H, d, J = 8.5 Hz, CH=COCH3), 5.72 

(lH, t,J= 5.3 Hz, CH=C), 4.70 (2H, s, CHzN), 3.85 (3H, s, OClL), 2.75 (3H, s, OClL), 

2.52 (IH, m, CHz), 2.22 (IH, m, CHz), 1.67 (2H, m, CHz); l3C (75 MHz, CDCh) B 

167.5 (s), 163.4 (s), 156.1 (s), 155.7 (s), 143.5 (s), 130.7 (s), 130.4 (d x 2), 123.3 (s), 

116.5 (d), 114.6 (d x 2), 55.5 (q), 52.4 (q), 41.7 (t), 39.2 (t), 28.0 (t), 26.5 (t); HRMS 

Calcd for C18H19N04: 313.1314, found 313.1312. 

7a-Methoxy-l-( 4-methoxy-benzyl)-7-methyl-2-oxo-2,4,5,6, 7, 7a-hexahydro-1H­

indole-3-carboxylic acid methyl ester (302) 

Me02C 

o 

Precursor (301a) was cyclised in methanol according to the general procedure 5.3.2: 

yield (78%); orange oil; IR (neat, em-I) 1767, 1674; IH NMR .(250MHz, CDC13) B 7.41 

(2H, d, J = 8.7 Hz, CHCHCOCH3), 6.78 (2H, d, J = 8.7 Hz, CH=COCH3), 4.41 (lH, d, 

J = 14.3 Hz, CHHN), 4.15 (IH, d, J = 14.3 Hz, CHHN), 3.86 (3H, s, OClL), 3.75 (3H, 

s, OClL), 3.42 (1H, m, CHH), 2.56 (3H, s, OCH3), 2.46 (IiI, m, CHCH3), 2.03 (2H, m, 

CHz), 1.78 (2H, m, CHz), 1.55 (lH, m, CHH), 0.43 (3H, m, CHClL); l3c (75 MHz, 

CDCh) B 168.3 (s), 166.7 (s), 162.9 (s), 159.3 (s), 131.3 (d x 2), 129.9 (s), 124.4 (s), 

113.9 (d x 2), 95.3 (s), 55.6 (q), 52.6 (q),50.3 (q), 42.7 (t), 39.0 (d), 39.0 (d), 27.8 (t), 

239 



Chapter 5 

26.2 (t), 22.3 (t), 12.8 (q); EI-MS mlz 359 (M+, 60), 329 (75), 121 (100); HRMS Calcd 

for C2oH2SNOS: 359.1733, found 359.1731. 

3-(Hydroxy-methoxy-methylene )-1-( 4-methoxy-benzyl)-1,3-dihydro-benzo[g] indol-

2-one (305) 

OMe 

o 

Precursor (303) was cyclised in methanol or acetonitrile according to the general 

procedure 5.3.2: yield (47% or 72% respectively); dark orange oil; IR (neat, cm-I) 3326, 

1687, 1528; IH NMR (250MHz, CDCh) 0 8.~0 (IH, d, J = 7.6 Hz, Ar-H), 7.79 (IH, d, 

J = 7.6 Hz, Ar-H), 7.60 (tH, d, J = 7.6 Hz, Ar-ill, 7.40 (2H, d, J = 8.5 Hz, 

CHCHCOCH3), 7.24 (3H, m, Ar-H), 6.84 (2H, d, J = 8.7 Hz, CH=COCH3), 5.50 (IH, d, 

J = 16.8 Hz, CHHN), 5.30 (IH, d, J = 16.8 Hz, CHHN), 3.77 (3H, s, OClL), 3.74 (3H, 

s,OClL); l3C (75 MHz, CDCh) 0 175.6 (s), 170.7 (s), 165.0 (s), 159.3 (s), 140.6 (s), 

136.3 (s), 129.8 (d), 128.6 (d x 2), 126.8 (d), 126.7 (d), 124.9 (d), 122.9 (d), 122.7 (s), 

121.1 (s), 120.6 (s), 114.8 (d x 2),55.6 (q), 54.4 (q), 46.2 (q);.EI-MS mlz 361 (M+,73), 

121 (100); HRMS Calcd for C22HI9N04: 361.1/314, found 361.1318. 

N-(4-Methoxy-benzyl)-N-naphthalen-2-yl-malonamic acid methyl ester (308) 
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Precursor (304) was cyclised in methanol or acetonitrile according to the general 

procedure 5.3.2: yield (45% or 77% respectively); dark orange oil; IR (neat, em-I) 1755, , 

1681, 1513, 935; IH NMR (250MHz, CDCI3) 87.78 (2H, m, Ar-H), 7.68 (IH, m, Ar­

H), 7.46 (lH, m, Ar-H), 7.39 (IH, m, Ar-H), (2H, d, J = 8.7 Hz, CHCHCOCH3), 6.99 

(IH, m, Ar-H), 6.71 (2H, d, J = 8.7 Hz, CH=COCH3), 4.85 (2H, s, CfuN), 3.70 (3H, s, 

OClli), 3.57 (3H, s, OClli), 3.16 (2H, s, COCfuCO); 13C (75 MHz, CDCI3) 8168.6 (s), 

166.4 (s), 159.4 (s), 139.3 (s), 133.8 (s), 133.0 (s), 130.7 (d x 2), 130.2 (d), 129.4 (s), 

128.4 (d), 128.1 (d), 127.7 (d), 127.4 (d), 127.3 (d), 127.2 (d), 126.3 (d), 114.2 (d x 2), 

55.6 (q), 53.0 (q), 52.6 (q), 42.1 (t); EI-MS mlz 363 (M+, 25), 262 (20), 121 (100); 

HRMS Calcd for C22H21N04: 363.1471, found 363.1470. 

5-Isopropyl-5-methoxy-l-(4-methoxy-benzyl)-2-oxo-2,5-dihydro-lH-pyrrole-3-

carboxylic acid methyl ester (317) and 5-Isopropyl-4,5-dimethoxy-l-(4-methoxy-

benzyl)-2-oxo-2,5-dihydro-lH-pyrrole-3-carboxylic acid methyl ester (329) 

Ceric ammonium nitrate (723 mg, 1.32 mmol) was added to a stirring solution of 

precursor (316) (100 mg, 0.33 mmol) in MeOH (4 ml) and refluxed for 2 hrs. The 

resulting solution was dropped onto H20 (25 ml) and extracted with ethyl acetate (25 

ml x 3), dried with MgS04 and reduced to dryness in vacuo. Purification was carried 

out by flash chromatogtraphy (1:1 petroleum ether: ethyl acetate), to give the following 

cyclic products. Data for (317): yield (29%); orange oil; IR (neat, em-I) 1751, 1719, 

1701, 1611, 1512; IH NMR (250 MHz, CDCI3) 87.48 (lH, s, CH=C), 7.37 (2H, d, J = 

8.6 Hz, CHCHCOCH3), 6.77 (2H, d, J = 8.6 Hz, CH=COCH3), 4.32 (2H, s, ClhN), 
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3.86 (3H, s, OClL), 3.75 (3H, s, OClL), 2.74 (3H, s, OClL), 2.20 (IH, sep, J = 6.7 Hz, 

13 CH(CH3)2), 1.07 (3H, d, J = 6.7 Hz, CHClL), 0.43 (3H, d, J = 6.7 Hz, CHClL); C (75 

MHz; CDCh) 0 165.6 (s), 161.8 (s), 159.2 (s), 153.3 (d), 133.8 (s), 131.0 (d x 2), 129.9 

(s), 114.0 (d x 2),98.3 (s), 55.6 (q), 52.8 (q), 51.7 (q), 42.2 (t), 33.9 (d), 18.4 (q), 16.5 

(q); EI-MS mJz 333 (M+ 25), 198 (45), 121 (100); HRMS Calcd for CISH23NOs: 

333.1576, found 333.1585. 

Data for (329): yield (23%); dark orange oil; IR (neat, cm-I) 1752, 1719, 1701, 1615, 

I 1513; H NMR (250 MHz, CDCh) 0 7.38 (2H, d, J = 8.6 Hz, CHCHCOCH3), 6.82 (2H, 

d, J = 8.6 Hz, CH=COCH3), 4.33 (2H, s, CfuN), 3.87 (3H, s, OClL), 3.79 (3H, s, 

OClli), 3.61 (3H, s, OClli), 2.85 (3H, s, OClli), 2.22 (1H, sep, J = 7.0 Hz, CH(CH3)2), 

0.95 (3H, d, J = 7.0 Hz, CHC!L), 0.58 (3H, d, J = 7.0 Hz, CHClli); 13C (75 MHz; 

CDCI3) 0 175.3 (s), 165.7 (s), 161.8 (s), 159,3 (s), 133.3 (s), 131.1 (d x 2), 129.6 (s), 

113.9 (d x 2),97.8 (s), 55.6 (q), 55.4 (q), 52.7 (q), 50.1 (q), 43.0 (t), 34.6 (d), 17.1 (q), 

16.9 (q); EI-MS mJz 363 (M+ 60), 333 (100), 198 (26), 121 (42); HRMS Calcd for 

S-Isopropyl-S-methoxy-l-( 4-methoxy-benzyl)-2-oxo-2,S-dihydro-l H-pyrrole-3-

carboxylic acid methyl ester (317) 

Precursor (316) was cyclised in methanol according to the general procedure 5.3.2 to 

afford (317) in 67% yield. The spectral details matched those previously cited above. 
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5-Hydroxy-5-isopropyl-l-( 4-methoxy-benzyl)-2-oxo-2,5-dihydro-lH-pyrrole-3-

carboxylic acid methyl ester (323) 

Precursor (316) was cyclised in acetonitrile according to the general procedure 5.3.2 

and no purification was required: yield (95%); orange oil; IR (neat, cm-I) 3366, 1749, 

1718, 1613, 1513; IH NMR (250 MHz, CDCI3) S 7.54 (IH, s, CH=C), 7.31 (2H, d, J = 

8.6 Hz, CHCHCOCH3), 6.75 (2H, d, J = 8.6 Hz, CH=COCH3), 4.43 (tH, d, J = 15.0 

Hz, CHHN), 4.30 (tH, d, J = 15.0 Hz, CHHN), 3.79 (3H, s, OC!b), 3.73 (3H, s, OC!b), 

2.14 (IH, sep, J = 6.8 Hz, CH(CH3)2), 1.05 (3H, d, J = 6.8 Hz, CHCH3), 0.35 (3H, d, J 

13 = 6.8 Hz, CHC!b); C (75 MHz; CDCh) S 165.7 (s), 162.3 (s), 159.1 (s), 155.0 (d), 

130.7 (d x 2), 130.5 (s), 130.3 (s), 114.1 (d x 2), 93.6 (s), 55.6 (q), 52.7 (q), 42.2 (t), 

33.7 (d), 18.3 (q), 16.5 (q); EI-MS mlz 319 (M+ 59), 216 (15), 136 (80), 121 (100); 

HRMS Calcd for C17H21NOs: 319.1420, found 319.1420. 

5-lsopropyl-5-methoxy-l-( 4-methoxy-benzyl)-2-oxo-2,5-dihydro-lH-pyrrole-3-

carboxylic acid ethyl ester (334) 

Precursor (330) was cyclised in methanol according to the general procedure 5.3.2: 

yield (58%); orange oil; IR (neat, cm-I) 1755, 1722, 1704, 1616, 1514; IH NMR (250 

MHz, CDCh) S 7.42 (tH, s, CH=C), 7.37 (2H, d, J =8.6 Hz, CHCHCOCH3), 6.77 (2H, 
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d, J = 8.6 Hz, CH=COCH3), 4.32 (4H, m, OClliCH3, ClliN), 3.74 (3H, s, OClli), 2.74 

(3H, s, OClli), 2.19 (lH, sep, J = 7.0 Hz, CH(CH3)2), 1.34 (3H, t, J = 7.1 Hz, 

OCH2CH3), 1.07 (3H, d, J = 7.0 Hz, CHClli), 0.43 (3H, d, J = 7.0 Hz, CHClli); l3C (75 

MHz; CDCI3) 0 165.7 (s), 161.3 (s), 159.2 (s), 152.6 (d), 134.0 (s), 130.6 (d x 2), 129.8 

(s), 113.9 (d x 2),97.9 (s), 61.9 (t), 55.7 (q), 51.6 (q), 42.1 (t), 33.9 (d), 18.3 (q), 17.2 

(q), 14.5 (q); EI-MS rnlz 347 (M+ 25),212 (60), 212 (60), 121 (100); HRMS Calcd for 

CI9H2SNOs: 347.1733, found 347.1732. 

5-Hydroxy-5-isopropyl-l-( 4-methoxy-benzyl)-2-oxo-2,5-dihydro-lH-pyrrole-3-

carboxylic acid ethyl ester (335) 

"' 

Precursor (330) was cyclised in acetonitrile according to the general procedure 5.3.2 

and no purification was required: yield (97%); orange oil; IR (neat, cm-I) 3373, 1752, 

1728, 1620, 1511; IH NMR (300 MHz, CDCI3) 07.46 (lH, s, CH=C), 7.27 (2H, d, J = 

8.5 Hz, CHCHCOCH3), 6.69 (2H, d, J = 8.5 Hz, CH=COCH3), 4.43 (lH, d, J = 15.0 

Hz, CHHN), 4.20 (3H, m, CIrnN, OClliCH3), 3.67 (3H, s, OCH3), 2.09 (lH, sep, J = 

7.0 Hz, CH(CH3)2), 1.26 (3H, t, J = 7.0 Hz, OCH2Clli), 1.03 (3H, d, J = 7.0 Hz, 

CHCH3), 0.29 (3H, d, J = 7.0 Hz, CHClli); 13C (75 MHz; CDCh) 0 165.9 (s), 161.8 (s), 

159.0 (s), 154.7 (d), 131.0 (d x 2), 130.6 (s), 130.3 (s), 114.0 (d x 2), 93.6 (s), 61.8 (t), 

55.6 (q), 42.0 (t), 33.7 (d), 18.2 (q), 16.5 (q), 14.4 (q); EI-MS rnlz 333 (M+ 10), 212 

(15), 136 (33), 121 (100); HRMS Calcd for CISH23NOs: 333.1576, found 333.1570. 
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1-(2-Cyclohex-l-enyl-ethyl)-5-isopropyl-5-methoxy-2-oxo-2,5-dihydro-lH-pyrrole-

3-carboxylic acid methyl ester (337) 

Precursor (336) was cyclised in methanol according to the general procedure 5.3.2: 

yield (52%); orange oil; IR (neat, em-I) 1755, 1717, 1617, 1511; IH NMR (300 MHz, 

CDCh) 8 7.47 (lH, s, CH=C), 5.43 (lH, br s, CH=C), 3.81 (3H, s, OClL), 3.75 (lH, m, 

CH2ClLN), 2.72 (3H, s, OClli), 2.44 (2H, m, ClLCH2N), 2.21 (lH, sep, J = 7.0 Hz, 

CH(CH3)2), 2.09 (4H, m, ClL x 2), 1.66 (4H: m, ClL x 2), 1.16 (3H, d, J = 7.0 Hz, 

CHClL), 0.68 (3H, d, J = 7.0 Hz, CHCH3); 13C (75 MHz; CDCh) 8 165.5 (s), 162.3 (s), 

154.7 (d), 136.9 (s), 131.1 (s), 123.9 (d), 97.8 (s), 52.9 (q), 51.8 (q), 38.5 (t), 37.0 (t), 

33.6 (d), 28.5 (t), 25.7 (t), 23.1 (t), 22.3 (t), 18.6 (q), 16.9 (q); EI-MS rn/z 321 (M+ 65), 

303 (35), 125 (l00); HRMS Calcd for ClsH27N04: 321.1940, found 321.1938. 
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1-(2-Cyclohex-l-enyl-ethyl)-5-hydroxy-5-isopropyl-2-oxo-2,5-dihydro-l H-pyrrole-

3-carboxylic acid methyl ester (338) 

Precursor (336) was cyclised in acetonitrile according to the general procedure 5.3.2 

and no purification was required: yield (96%)~ orange oil~ IR (neat, em-I) 3323, 1749, 

1717, 1620, 1513~ IH NMR (300 MHz, CDCh) 87.55 (IH, s, CH=C), 5.43 (lH, br s, 

CH=C), 3.84 (3H, s, OClli), 3.54 (lH, m, CHHN), 3.11 (lH, m, CHHN), 2.39 (IH, m, 

CIffiCH2N), 2.39-2.15 (2H, m, CIffiCH2N, CH(CH3)2), 2.02 (4H, m, CHz x 2), 1.57 

(4H, m, CHz x 2), 1.14 (3H, d, J = 7.0 Hz, CHClli), 0.66 (3H, d, J = 7.0 Hz, CHClli)~ 

l3C (75 MHz~ CDCI3) 8 165.0 (s), 162.3 (s), 154.6 (d), 136.4 (s), 130.9 (s), 123.9 (d), 

92.9 (s), 52.7 (q), 38.3 (t), 36.8 (t), 33.6 (d), 28.4 (t), 25.6 (t), 23.1 (t), 22.6 (t), 18.2 (q), 

16.8 (q)~ EI-MS rn/z 307 (M+ 45), 292 (28), 125 (l00)~ HRMS Calcd for C17H2SN04: 

307.1784, found 307.1781. 

5-sec-Butyl-5-hydroxy-l-(4-methoxy-benzyl)-2-oxo-2,5-dihydro-lH-pyrrole-3-

carboxylic acid methyl ester (340) 

Me02C 

o 
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Precursor (339) was cyclised in acetonitrile according to the general procedure 5.3.2 to 

afford a 1:1 mixture of diastereomers. Data for mixture: yield (84%)~ orange oil~ IR 

(neat, cm-I
) 3256, 1747, 1721, 1619, 1525~ IH NMR (250 MHz, CDCh) 07.54 (lH, s, 

CH=C), 7.51 (lH, s, CH=C), 7.33 (2H, m, CHCHCOCH3), 6.77 (2H, m, CH=COCH3), 

4.62 (lH, d, J = 15.0 Hz, CIffiN), 4.44 (IH, d, J = 14.9 Hz, CIffiN), 4.36 (IH, d, J = 

14.9 Hz, CHHN), 4.20 (lH, d, J = 15.0 Hz, CHHN), 3.79 (3H, s, OCfu), 3.75 (3H, s, 

OCfu), 2.08 (IH, m, CH(CH3)CH2CH3), 1.77 (IH, m, CH(CH3)CH2CH3), 1.06 (3H, d, 

J = 7.0 Hz, CH(Cfu)CH2CH3), 0.93 (3H, d, J = 7.0 Hz, CH(CH3)CH2CH3), 0.82 (2H, 

m, CH(CH3)CfuCH3), 0.44 (2H, m, CH(CH3)CfuCH3), 0.36 (3H, m, 

CH(CH3)CH2Cfu), 0.33 (3H, m, CH(Cfu)CH2CH3)~ l3C (75 MHz~ CDCh) 0 165.9 (s), 

165.7 (s), 162.2 (s), 159.2 (s), 159.0 (s), 155.6 (d), 130.7 (d x 2), 130.6 (d x 2), 130.3 

(s), 129.7 (s), 114.1 (d x 2), 114.0 (d x 2), 93.6 (s), 93.4 (s), 55.7 (q), 55.6 (q), 52.6 (q), 

42.1 (t), 41.9 (t), 40.7 (d), 40.2 (d), 25.1 (t), 23.6 (t), 14.4 (q), 13.0 (q), 12.9 (q), 11.6 

(q)~ EI-MS m1z 333 (M+ 45), 230 (25), 121 (l00)~ HRMS Calcd for ClsH23NOs: 

333.1576, found 333.1576. 

5.3.3 General method for the attempted deprotection of p-methoxybenzylamides 

Method A: Ceric ammonium nitrate (548 mg, 1 mmol) was added to a solution of the 

required cyclised compound (0.25 mmol) in 4 ml of3:1 acetonitrileIH20 and stirred for 

1-2 hrs (followed by TLC). The resulting solution was dropped onto H20 (25 ml) and 

extracted with ethyl acetate (25 ml x 3), dried with MgS04 and reduced to dryness in 

vacuo. Purification was carried out by flash chromatogtraphy (1:2 petroleum ether : 

ethyl acetate), to give the following deprotected products. 

Method B: The required cyclised compound (0.7 mmol) was refluxed with stirring in 

trifluoroacetic acid (8.5 ml) for 1-2 hours (followed by TLC). The reaction mix was 
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cooled to room temperature, quenched on ice and extracted with dichloromethane (25 

ml x 3). The organic layer was then washed with saturated sodium hydrogen carbonate 

(25 ml x 3), dried with MgS04 and reduced to dryness invacuo. Purification was carried 

out by flash chromatogtraphy (1:2 petroleum ether: ethyl acetate), to give the following 

deprotected products. 

5-Isopropylidene-2-oxo-2,5-dihydro-lH-pyrrole-3-carboxylic acid methyl ester 

(323) 

Compound (323) was deprotected according to the general procedure 5.3.3 (Method A, 

yield 95%), (Method B, yield 86%)~ brown solid~ IR (neat, em-I) 3461, 1735, 1683, 

I 
1522; H NMR (250 MHz, CDCI3) 89.71 (lH, br s, NH), 7.97 (IH, s, CH=C), 3.86 

(3H, s, OC!:b), 2.11 (3H, s, C!:b), 2.09 (3H, s, C!:b); l3C (75 MHz; CDCh) 8 168.8 (s), 

163.2 (s), 140.1 (d), 133.3 (s), 133.0 (s), 127.6 (s), 52.4 (q), 21.4 (q), 20.9 (q); EI-MS 

mJz 181 (M+ 100), 166 (35), 150 (50), 123 (72), 83 (70); HRMS Cal cd for C9HllN03: 

181.0739, found 181.0739. 

5-sec-Butylidene-2-oxo-2,5-dihydro-lH-pyrrole-3-carboxylic acid methyl ester 

(343) 
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Compound (340) was deprotected according to the general procedure 5.3.3 to give a.l : 1 

mixture of cis:trans isomers. Data for isomers: (Method A, yield 97%), (Method B, 

yield 93%), light brown solid; IR (neat, em-I) 3443, 1742, 1686, 1520; IH NMR (300 

MHz, CDCh) 8 10.0 (lH, br s, NH), 9.84 (IH, br s, NH), 7.93 (lH, s, CH=C), 3.83 (3H, 

s, OClL), 2.43 (2H, m, CBzCH3), 2.10 (3H, s, ClL), 2.04 (3H, s, ClL), 1.13 (2H, m, 

CH2ClL); l3c (75 MHz; CDCI3) 8 168.8 (s), 168.6 (s), 163.2 (s), 140.5 (d), 139.7 (d), 

138.6 (s), 138.3 (s), 132.7 (s), 132.3 (q), 124.9 (s), 124.7 (s), 52.4 (q), 28.0 (t), 27.8 (t), 

18.8 (q), 18.3 (q), 14.3 (q), 12.6 (q); EI-MS mfz 195 (M+ 75), 180 (35), 164 (78), 123 

(76),83 (100); HRMS Calcd for ClOHI3N03: 195.0895, found 195.0894. 

4-Hydroxy-5-isopropylidene-l-( 4-methoxy-benzyl)-2-oxo-pyrrolidine-3-carboxylic 

acid methyl ester (344) 

A solution of(323) (223 mg, 0.7 mmol, in 1 ml of ethyl acetate) was added to a stirring 

solution of 10% palladium/carbon (25 mg) in ethyl acetate (3 ml) under H2• The 

resulting suspension was stirred for 3 days, filtered and red~ced to dryness invacuo. 

Purification was carried out by flash chromatogtraphy (4:1 petroleum ether: ethyl 

acetate): yield (97%); clear oil; IR (neat, em-I) 3329, 1762, 1647; IH NMR (250 MHz, 

CDCI3) 87.25 (2H, d, J = 8.5 Hz, CHCHCOCH3), 6.82 (2H, d, J = 8.5 Hz, 

CH=COCH3), 4.65 (1H, d, J = 14.3 Hz, CIlliN), 4.55 (lH, d, J = 14.3 Hz, CIlliN), 

3.83 (3H, s, OCH3), 3.76 (3H, s, OClli), 3.68 (2H, s, CH x 2), 1.82 (3H, s, CH3), 1.64 

(3H, s, ClL); IH (300 MHz, DMSO-D6) 87.18 (2H, d, J = 8.8 Hz, CHCHCOCH3), 6.87 

249 



Chapter 5 

(2H, d, J = 8.8 Hz, CH=COCH3), 4.56 (1H, d, J = 14.7 Hz, CHHN), 4.50 (1H, d, J = 

14.3 Hz, CHHN), 4.35 (1H, d, J = 5.8 Hz, CHCH), 4.00 (1H, d, J = 5.8 Hz, CHCB), 

. l3 
3.72 (3H, s, OCR3), 3.69 (3R, s, OClli), 1.73 (3R, s, Clli), 1.58 (3R, s, Cfu); C (75 

MHz, CDCh) B 173.6 (s), 169.9 (s), 168.0 (s), 159.8 (s), 130.4 (d x 2), 127.3 (s), 114.1 

(d x 2), 88.1 (s), 55.6 (q), 54.1 (q), 51.1 (d), 50.5 (d), 43.1 (t), 26.5 (q), 25.3 (q); EI-MS 

m1z 319 (M+ 100),313 (55), 216 (30), 136 (45), 121 (70); HRMS Calcd for C17H2INOs: 

319.1420, found 319.1421. 

4-[ 4-Ethoxycarbonyl-2-hydroxy-2-isopropyl-l-( 4-methoxy-benzyl)-5-oxo-

pyrrolidin-3-yl]-1-isopropyl-2-( 4-methoxy-benzyl)-3-oxo-6-oxa-2-aza-

bicyclo[3.1.0]hexane-4-carboxylic acid ethyl ester (359) 

Compound (323) (320 mg, 0.96 mmol) was added to a stirring solution of methyl 

lithium (2.4 ml, 3.8 mmol) in dry tetrahydrofuran (5 ml) at -78°C. The reaction was 

stirred for 1 hr and slowly allowed warm to room temperature (-20 minutes). The 

reaction was then quenched with slow addition of R20 (5 ml) and the resulting 

suspension was extracted with dichloromethane (3 x 15 ml). The combined organic 

extracts were washed with brine (10 ml), dried over MgS04 and reduced to dryness in 

vacuo. Purification was carried out by flash chromatogtraphy (1:1 petroleum ether: 

ethyl acetate). Discernible data for (359): yield (37%); clear oil; IR (neat, em-I) 3425, 
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1756, 1752, 1682, 1680, 1532, 730; IH NMR (250MHz, CDCI3) 87.29 (2H, d, J =.8.7 

Hz, CHCHCOCH3), 7.23 (2H, d, J = 8.7 Hz, CHCHCOCH3), 6.73 (2H, d, J = 8.7 Hz, 

CH=COCH3), 6.69 (2H, d, J = 8.7 Hz, CH=COCH3), 4.65 (1H, d, J = 14.5 Hz, CHHN), 

4.32 (1H, d, J = 15.0 Hz, CHHN), 4.27 (IH, d, J = 15.0 Hz, CHHN), 4.15 (5H, m, 

OCfuCH3 x 2, CH), 3.93 (IH, d, J = 14.5 Hz, CHHN), 3.82 (IH, d, J = 3.0 Hz, 

CHCH), 3.70 (3H, s, OClL), 3.68 (3H, s, OClL), 3.39 (IH, s, OID, 3.24 (IH, d, J = 3.0 

Hz, CHCH), 2.17 (IH, sep, J = 7.0 Hz, CH(CH3)2), 1.88 (1H, sep, J = 7.0 Hz, 

CH(CH3)2), 1.19 (6H, m, OCH2ClL x 2),0.75 (3H, d, J = 7.0 Hz, CHClL), 0.62 (3H, d, 

J = 7.0 Hz, CHClL), 0.51 (3H, d, J = 7.0 Hz, CHClL), 0.40 (3H, d, J = 7.0 Hz, 

CHClL); l3c (75 MHz, CDCh) 8 167.9 (s), 167.8 (s), 167.4 (s), 167.3 (s), 159.3 (s), 

159.2 (s), 131.2 (d x 2), 130.4 (d x 2), 129.9 (s), 114.1 (d x 2), 113.8 (d x 2), 107.6 (d), 

92.8 (s), 79.8 (d), 67.2 (s x 2),63.1 (t), 62.6 (t), 55.6 (q), 55.5 (q), 51.7 (d), 47.5 (d), 

43.7 (t), 43.5 (t), 35.9 (d), 34.1 (d), 17.3 (q), 1.1.2 (q), 16.8 (q), 16.7 (q), 14.5 (q), 14.2 

(q); TOF MS ES+ mlz 689 (100, MNal, 617 (30), 510 (85), 428 (90), 328 (55); HRMS 

Calcd for C36~6N201ONa: 689.3050, found 689.3040. A D20 shake confirmed the 

position of the hydroxyl group. 

5-Isopropylidene-4-(4-methoxy-benzyl)-3-oxo-4-aza-tricyclo[5.2. 1.02
,6j dec-8-ene-2-

carboxylic acid methyl ester (361) 

A solution of (323) (300 mg, 0.94 mmol, in Iml of toluene) was added to solution of 

cyclopentadiene (12.5 mg, 1.88 mmol) in toluene (5 ml) and refluxed for 1 hour. The 
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reaction was cooled to room temperature and reduced to dryness in vacuo. Purification 

was carried out by flash chromatogtraphy (4:1 petroleum ether:ethyl acetate) to yield a 

1:1 mixture of exo (361a) : endo (361b) products respectively. Data for "exo-product 

(361a): yield (37%); clear oil; IR (neat, cm-I) 1737, 1678, 1519; IH NMR (250 MHz, 

CDCh) B 7.07 (2H, d, J = 8.9 Hz, CHCHCOCH3), 6.83 (2H, d, J = 8.9 Hz, 

CH=COCH3), 6.34 (IH, m, CH=CH), 6.26 (IH, m, CH=CH), 4.98 (IH, d, J = 16.2 Hz, 

CHHN), 4.72 (IH, d, J = 16.2 Hz, CHHN), 3.76 (3H, s, OClli), 3.71 (3H, s, OClli), 

3.47 (IH, br s, C=CHCH), 3.05 (IH, br s, C=CHCHCH), 3.01 (IH, br s, C=CHCHCH), 

1.76 (3H, s, CH3), 1.68 (3H, s, CH3), 1.43 (2H, br s, Clli); l3C (75 MHz; CDCh) B 

173.5 (s), 171.3 (s), 158.9 (s), 138.2 (d), 137.7 Cd), 133.3 (s), 129.9 (s), 127.6 (d x 2), 

114.4 (d x 2), 106.3 (s), 64.5 (s), 55.6 (q), 53.0 (q), 49.9 (d), 49.1 (d), 48.9 (d), 46.3 (t), 

44.3 (t), 23.1 (q), 19.5 (q); EI-MS m/z 367 (M+ 60), 302 (100), 269 (25), 121 (67); 

HRMS Calcd for C22H2SN04: 367.1784, found 367.1782. 

Data for endo-product (361h): yield (43%); clear oil; IR (neat, em-I) 1741, 1678, 1521; 

IH NMR (250 MHz, CDCh) S 7.00 (2H, d, J = 8.5 Hz, CHCHCOCH3), 6.74 (2H, d, J = 

8.5 Hz, CH=COCH3), 6.10 (lH, m, CH=CH), 5.98 (lH, m, CH=CH.), 4.76 (lH, d, J = 

16.5 Hz, CHHN), 4.54 (IH, d, J = 16.5 Hz, CHHN), 3.71 (3H, s, OClli), 3.69 (3H, s, 

OCfu), 3.51 (lH, br s, C=CHCH), 3.46 (IH, d, J = 3.5 Hz, C~CHCHCH), 3.22 (lH, br 

s, C=CHCHCH), 1.70 (3H, s, CH3), 1.58 (2H, m, Cfu), 1.53 (3H, s, ClL); 13C (75 

MHz; CDC13) 0173.5 (s), 173.6 (s), 158.8 (s), 136.4 (d), 136.1 (d), 132.7 (s), 130.4 (s), 

127.6 (d x 2), 114.3 (d x 2), 105.9 (s), 62.6 (s), 55.6 (q), 52.9 (q), 52.0 (t), 49.9 (d), 49.3 

(d), 46.9 (d), 46.1 (t), 23.0 (q), 19.4 (q); CI-MS m/z 368 (MH+ 80),359 (34), 302 (100), 

121 (68); HRMS Calcd for C22H25N04: 367.1784, found 367.1783. 
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Table 2. Crystal data and structure refinement for jmd. 

Identification code 

Empirical formula 

Formula weight 

Temperature 

Wavelength 

Crystal system 

Space group 

Unit cell dimensions 

Volume, Z 

Density (calculated) 

Absorption coefficient 

F(OOO) 

Crystal size 

e range for data collection 

Limiting indices 

Reflections collected 

Independent reflections 

o 
Completeness to e = 22.49 

Max. and min. transmission 

Refinement method 

Data / restraints / parameters 

2 
"Goodness-of-fit on F 

Final R indices [I>2a(I)] 

R indices (all data) 

Absolute structure parameter 

Extinction coefficient 

Largest diff. peak and hole 

jmd 

C37H54BrN203 

654.73 

210(2) K 

0.71073 A 

Orthorhombic 

P2
1

2
1

2
1 

a = 6.207(3) A 
b = 10.818(5) A 

c = 53.38(3) A 

3584(3) A3
, 4 

3 
1.213 Mg/m 

1.182 nun-1 

1396 

alpha 

beta 

gamma 

0.20 x 0.13 'x 0.04 nun 

1;92 to 22.49
0 

= 90
0 

= 90
0 

= 90
0 

-6 s h s 6, -7 s k s 11, -57 s 1 s 34 

13626 

4690 (R
int 

= 0.1675) 

99.7 % 

0.9542 and 0.7979 

2 
Full-matrix least-squares on F 

4690 / 216 / 434 

0.976 

R1 = 0.0893, wR2 = 0.1958 

R1 = 0.1801, wR2 = 0.2273 

0.14(3) 

0.023(2) 

0.264 and -0.247 eA-3 



0(2) 

C(37) 

C(S} . 

Br(1) 

C(14) 
C(1S) -

C(9) 

C(23) 



• o. d Table 3. Bond lengths [Al and angles [ 1 for Jm • 

C29-C30A 1. 36 (6) C29-C28 1.495 (14) 

C29-C30 1.71(3) C29-Br1 1. 814 (13) 

C29-Br1A 1.S51(13) N1-C28 1.3S5(13) 

N1-C1 1.419(12) N1-C31 1.510(12) 

01-C28 1.226(11) C1-C7 1.321(14) 

C1-C2 1.495(14) C2-C3 1.571 (12) 

C3-C4 1.490 (13) C3-C8 1.565(13) 

C4-C6 1.521(12) C4-C5 1.524 (12) 

C4-C11 1.573(12) C6-C7 1.521(13) 

C8-C9 1.509(12) C9-C10 1. 511 (13) 

C10-C11 1.483(12) C10-C12 1.551(11) 

C11-C16 1.564(13) C12-C17 1.519(12) 

C12--C13 1.523(13) C13-C14 1.506(14) 

C13-C15 1.577(12) C13-C19 1.566(12) 

C15-C16 1.494 (11) C17-C18 1.545(13) 

C18-C19 1.530 (12) C19-C20 1.513(12) 

C20-C21 1.512(16) C20-C22 1.537(13) 

C22-C23 1. 587 (14) C23-C24 1. 514 (14) 

C24-C25 1.54(2) C24-C25A 1.578(16) 

C31-C32 1.491(12) C32-C33 1.3900 

C32-C37 1. 3900 C33-C34 1.3900 
C34-C35 1. 3900 C35-C36 1.3900 

C35-N2 1.457 (12) C36-C37 1. 3900 
N2-03 1.230 (11) N2-02 1.317(11) 
C25-C26 1.54(2) C25-C27 1.56(2) 
C25A-C27A 1.470 (17) C25A-C76A 1.519(17) 

C30A-C29-C28 109(3) C30A-C29-C30 90 (3) 
C2S-C29-C30 105.S(14) C30A-C29-Br1 17(2) 
C2S-C29-Br1 10S.0(S) C30-C29-Br1 106.2(12) 
C30A-C29-Br1A 106(3) C28-C29-Br1A 108.3(S) 
C30-C29-Br1A 18.1(9) Brl-C29-Br1A 120.6(6) 
C28-N1-C1 123.3(10) C28-N1-C31 119.9(8) 
C1-N1-C31 116.5(8) C7-C1-N1 120.4(11) 
C7-C1-C2 121.3(9) N1-C1-C2 117.9(10) 
C1-C2-C3 111.5(9) C4-C3-C8 113.6(S) 
C4-C3-C2 112.5(9) CS-C3-C2 109.0(S) 
C3-C4-C6 106.S(S) C3-C4-C5 111.9(9) 
C6-C4-C5 109.5(8) C3-C4-C11 107.4(7) 
C6-C4-Cll 109.2(8) C5-C4-C11 111.9(7) 
C7-C6-C4 111. 7 (8) C1-C7-C6 124.8(10) 
C9-C8-C3 110.5(9) C8-C9-C10 111.4(9) 
C11-C10-C9 111.2 (8) C11-C10-C12 109.9(7) 

" C9-C10-C12 112.2(8) C10-C11-C4 112.7(S) 
C10-C11-C16 113.3(7) C4-C11-C16 113.1(8) 
C17-C12-C13 103.3(8) C17-C12-C10 118.5(8) 
C13-C12-C10 115.3(8) C14-C13-C12 113.5(9) 
C14-C13-C15 10S.5(8) C12-C13-C15 104.7(7) 
C14-C13-C19 111.7(7) C12-C13-C19 101.5(7) 
C15-C13-C19 116.7(8) C16-C15-C13 112.4(S) 
C15-C16-C11 114.7(8) C12-C17-C18 103.S(8) 
C19-C18-C17 108.1(8) C20-C19-C18 112.0(8) 
C20-C19-C13 119.7(8) C18-C19-C13 101.5(7) 
C21-C20-C19 113.4(8) C21-C20-C22 110.7(10) 
C19-C20-C22 111.3(9) C20-C22-C23 113.2(10) 



C24-C23-C22 108.9(9) C23-C24-C25 111.9(16) 
C23-C24-C25A 107.8(11) C25-C24-C25A 5.2(17) 
01-C28-N1 121.9(11) 01-C28-C29 123.0(11) 
N1-C28-C29 114.9(10) C32-C31-N1 112.0(8) 
C33-C32-C37 120.0 C33-C32-C31 117.6(7) 
C37-C32-C31 122.4(7) C34-C33-C32 120.0 
C33-C34-C35 120.0 C34-C35-C36 120.0 
C34-C35-N2 124.1(8) C36-C35-N2 115.8(8) 
C37-C36-C35 120.0 C36-C37-C32 120.0 
03-N2-02 122.5(13) 03-N2-C35 124.2(12) 
02-N2-C35 113.2(12) C24-C25-C26 119(3) 
C24-C25-C27 97(3) C26-C2S-C27 89.0(14) 
C27A-C25A-C26A 93.1(15) C27A-C25A-C24 113.3(15) 
C26A-C25A-C24 101.1(15) 

symmetry transformations used to generate equivalent atoms: 
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