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We provide analytical tools to facilitate a rigorous assessment of the quality

and value of the fit of a complex model to data. We use this to provide

approaches to model fitting, parameter estimation, the design of optimiz-

ation functions and experimental optimization. This is in the context

where multiple constraints are used to select or optimize a large model

defined by differential equations. We illustrate the approach using models

of circadian clocks and the NF-kB signalling system.
1. Introduction
Systems Biology is producing a rapidly growing number of complex mathemat-

ical models of dynamic biological systems such as the cell cycle, circadian clocks

and numerous signalling systems. These models are usually highly nonlinear

and have many state variables and parameters. It is therefore very challenging

to understand how the behaviour of these models depends upon model struc-

ture and parameters and to distinguish those features of the model that are

fundamental from those that are accidental or irrelevant. Moreover, the non-

linearity and large size of these models makes validation and calibration

against biological data very difficult.

We focus in this paper on large models given by differential equations, the

most ubiquitous method for such systems. When estimating the parameters of

such systems, it is usual to either introduce a likelihood expressing the prob-

ability of the data given a particular deterministic solution or provide a

function measuring the fit of such a solution to the data. A common choice

for a likelihood is to assume that intrinsic noise can be neglected and that the

main source of stochasticity is observational error, which is often assumed to

be normally distributed. Optimization functions are often based on the Eucli-

dean distance or are a sum of squares each measuring the deviation of a

summary statistic from the data derived value. For the most complex models,

it is often the case that the data only partially constrain the model and therefore,

for these models, such fitting is done by hand or using optimization functions,

where the modellers have to identify qualitative features of interest.

In each case, there is a great need for analytical tools to facilitate fitting and to

provide a rigorous assessment of the quality and value of the fit and our aim here

is to provide some mathematical tools to tackle both of these challenges. To

demonstrate the usefulness of these tools, we apply them to some significant

exemplar models. We are particularly interested in large models with many par-

ameters and state variables. For example, one of the models we consider has

28 state variables and 104 parameters and as we combine this with models for

some mutants, the effective number of state variables is several times this.

Suppose that we are considering such a system and that we have data and

models for the wild-type and a number of mutants in a set of conditions. For

example, the data might be for a wild-type circadian clock or signalling system

and several gene knockouts in a number of environmental conditions. We

assume that for each such combination of genetic background and environmental

conditions (which we henceforth call GE-combinations), we have a model and
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that from the data we have a set of constraints that the models

should satisfy. Note that in this paper, when we talk of the con-

straints, we mean quantitative properties usually derived from

experimental data. They might, for example, quantify the levels

of certain mRNAs or proteins for the given combination, or in

the case of oscillating systems they might determine the period

of the oscillation or the relative phases of the mRNAs or pro-

teins. In general, they will be of the form Ci(g) ¼ C0
i for some

real-valued function Ci of the solution g of interest for one of

the given GE-combinations. The value of C0
i will come from

the experimental data. As usual it is just the parameters k
that we are changing, g, and hence Ci, is a real-valued function

of them and the conditions to be satisfied are of the form

Ci(k) ¼ C0
i . A constraint determines the value of some quantity.

Often these constraints are collected into a single real-

valued function to be locally optimized which effectively

acts as a likelihood function. Approximate Bayesian compu-

tation (ABC) functions in this way. ABC methods seek to

infer parameters by comparing simulated data to the

observed data, in terms of an optimization function that com-

bines a set of summaries C ¼ (C1, . . . , Cm) essentially

equivalent to the constraints mentioned above [1–3]. A

related, less sophisticated approach that has been successfully

employed is to search subspaces of the space of parameters

using such an optimization function to find approximate

local optima [4,5]. For both sorts of methods, the function

to be optimized is usually of the form

w(k) ¼
X

i

ai
2(Ci(k)� C0

i )2 (1:1)

and a key question that we discuss below is how to choose

the function, for example, in the case of (1.1), what constraints

Ci should be used and how should their weights ai be chosen.

However, in the main, our approach will be to consider the

optimization problem in terms of a set of m individual constraints

rather than to try and incorporate them into a single function to

be optimized. We consider this in the context of a combined

model for a set of GE-combinations as formulated below. The

theory that we present allows us to investigate a number of inter-

esting aspects. Firstly, we can consider a combined model that

satisfies a set of constraints C1, . . . , Cm and gives a quantitative

measure of the extent to which the constraints actually constrain

the model. Given that a set of constraints have been applied, we

quantify the extent to which an additional constraint Cmþ1

further constrains the model and explain how its constraint

value can be measured. Secondly, we show that it will usually

be the case that the constraint value declines very rapidly as m
increases. In fact, we also demonstrate that it is reasonable to

expect that many of the constraints will have small norm and

hence be ineffective. Thirdly, we prove a theorem (called m!
m þ 1 Transition theorem) that allows us to use this constraint

value to determine the effects of adding a new constraint to the

form of the optimization problem both in terms of geometry,

analysis and stochastic optimization. Fourthly, we consider the

construction of optimization functions and show how constraint

value can be used to help design them for use in statistical esti-

mation algorithms. Finally, we discuss how to use the results

for experimental design. We want to facilitate the choice of effec-

tive constraints that will better characterize the system when

deciding what experiments to do. We give some examples of

how this can be done using our framework.

It is important to stress at this point that we are not

providing an algorithm for estimating parameter values.
However, as we provide an approach to analytically deter-

mine which sets of constraints are most informative, it can

be used to help determine which are the most useful to use

in some estimation algorithms.

In general, the constraints Ci of interest are nonlinear. Unfor-

tunately, a general global nonlinear theory is not possible

because our current understanding of dynamical systems,

though extensive, is not adequate for this. However, we can

develop a relatively powerful and useful theory based on

local analysis about a particular set of parameter values. This

uses the extensive and powerful perturbation theory for

differential equations.
2. Mathematical preliminaries
We assume that we have a set of models described by a

system of differential equations of the form dxi,k=dt ¼
fi,k(t, xk, k). Each model is for a given GE-combination k.

Here, t is time and the vector xk ¼ (x1,k, . . . , xn,k) represents

the state variables (typically for our applications, mRNA

and protein levels). For this GE-combination k, we can

write this system as

dxk

dt
¼ fk(t, xk, k): (2:1)

There is a common vector of parameters k ¼ (k1, . . . , ks) for

all such models. We then integrate all these models into a

single one given by

dx
dt
¼ f(t, x, k), (2:2)

where t is time, f ¼ ( fk1
, . . . , fk‘ ) and x ¼ (xk1

, . . . , xk‘ ), where

k1, . . . , k‘ is the set of GE-combinations being considered.

We also assume that for each of the systems (2.1), dxk/dt ¼
fk (t, xk, k) there is a solution xk ¼ gk(t, k) or a class of solutions

defined for a specific time range 0 � t � Tk that are of parti-

cular interest. For example, for circadian oscillations, the

primary object of interest is an attracting periodic orbit of

equation (2.1) and Tk will be the period of this orbit. On the

other hand, for models of signalling systems, one is often

interested in a solution that is not periodic but is defined by

a given initial condition x0. Such a signalling system is usually

also subject to a given perturbation caused by an incoming

signal and this will typically be modelled by a sudden

change in a system parameter or by the time dependence of

the right-hand side of equation (2.1).

In regulatory and signalling systems, the values of two

parameters may differ by an order of magnitude or more.

Therefore, it is usually not appropriate to consider absolute

changes in the parameters kj, but instead to consider relative

changes. A good way to do this is to introduce new par-

ameters k
0

j ¼ log kj because absolute changes in k
0

j
correspond to relative changes in kj. Then for small changes

dkj to the parameters, the corresponding change to k
0

j is

dk
0

j ¼ dkj=kj which is scaled and non-dimensional. We adopt

the convention that our non-zero parameters kj are henceforth

these logged parameters k
0

j . In fact, the theory applies equally

well to the unscaled parameters but in our examples we

always use logged parameters for the reason given above.

We are interested in the size of the variation of a con-

straint as parameters are varied. However, in the biological

problems we are interested in the optimal value C0
i of a con-

straint Ci is determined by data and this is always only

http://rsif.royalsocietypublishing.org/
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estimated. Therefore, we need to take account of the standard

error e0
i (i.e. the estimated standard deviation of the mean) of

the experimentally observed values of C0
i . The constraint Ci is

not effective if the variation is small compared with e0
i . For

our presentation, it is convenient to always normalize the

constraints by replacing Ci by Ci=e0
i . Therefore, in what fol-

lows, by a constraint, we always mean one that has been

normalized by its standard error of the corresponding data.

0.5

0

–0.5
0 10 20 30 40 50 60 70 80

index i

lo

Figure 1. Norms of the scaled Pokhilko model constraints, log10ðkcikÞ, in
order of decreasing value (open circles). Each norm has been scaled by
dividing by the standard error of the constraint.
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2.1. Constraints and their value
We firstly consider the behaviour of the constraints about a

parameter value k ¼ k
*
. According to Taylor’s theorem, the

local variation of Ci(k) about k ¼ k
*

is given by

Ci(k� þ dk) ¼ Ci(k�)þ ci � dk þO( dkk k2) (2:3)

where ci ¼ (ci,1, . . . , ci,s) is the derivative of Ci at k
*

and
. denotes the usual dot product between vectors. Thus,

ci,j ¼ @Ci=@kj evaluated at k
*
. We therefore call the vectors ci

in Rs the linearized constraints.

If we have a set of constraints Ci(k) ¼ C0
i , i ¼ 1, . . . , m,

with associated linear constraints ci at k ¼ k
*
, there are two

ways in which they can be ineffective. Firstly, such a con-

straint Ci might be insensitive to variation in the parameters

at k
*

which means that ci will have small norm cik k where

cik k2 ¼
Ps

j¼1 c2
i,j. This is because, up to the second-order

terms O( dkk k2),

jCi(k� þ dk)� Ci(k�)j � jci � dkj � cik k: dkk k:

One might think that constraints would be chosen to

ensure that they did not have a small norm. However, in

figure 1, we show the norms of the constraints that were

chosen for an important model of the circadian clock. We

see that many have very small norms. This is not some mistake

on the part of the authors but, surprisingly, is inevitable for

systems like this as we explain below. Even more importantly,

the theory we present explains why we should expect that

large sets of constraints are often strongly non-independent.

The second way is that a linearized constraint in this set

might not be very independent of the other linearized con-

straints in it because it is very close to being a linear

combination of them. This is a problem because then this con-

straint will be largely determined by the others. We now give

a precise description of this.

Suppose that we have such a set of linearized constraints

c1, . . . , cm. For any other linearized constraint c ¼ cmþ1 define

r(cjc1, . . . , cm) to be the unique vector orthogonal to c1, . . . , cm

such that

c ¼
Xm

i¼1

aici þ r(cjc1, . . . , cm) (2:4)

for some a1, . . . , am.

Then for the constraint C to be effective when we have

already applied the other constraints Ci, we need that

r(cjc1, . . . , cm)k k is not too small. This is because in changing

dk ¼ k 2 k
*

to optimize the value of c, the part c
0 ¼

Pm
i¼1 aici is

not allowed to change as it is determined by the other con-

straints Ci. Therefore, only r(cjc1, . . . , cm) can change and

as this has a small norm, the constraint C only has small

variation around k
*
.

Let us explain this in a little more detail. Suppose that the Ci

for i ¼ 1, . . . , m have been optimized so that Ci(k�) ¼ C0
i .
Suppose also that we now want to add the new constraint

Cmþ1 for which Cmþ1(k�) = C0
mþ1 and tune k

*
to k0� so that

Ci(k0�) ¼ C0
i for i ¼ 1, . . . , m þ 1. Then, assuming dk� ¼ k0� � k�

is small, from (2.3), we require that ci � dk� ¼ 0. Therefore, if

n ¼ r(cmþ1jc1, . . . , cm), by (2.4), cmþ1 � dk� ¼ n � dk� and conse-

quently by (2.3), dk�k k � O(jCmþ1(k0�)� Cmþ1(k�)j= nk k). Thus,

if r(cmþ1jc1, . . . , cm) is small, the parameter change that will be

needed will be much larger than the change in Cmþ1 that is

required.

We therefore make the following definition.

Definition 2.1. The constraint value of a constraint C or
linearized constraint c relative to a set of constraints
C1(k) ¼ C0

1, . . . , Cm(k) ¼ C0
m or linearized constraints c1, . . . , cm

is denoted val(cjc1, . . . , cm) and given by

val(cjc1, . . . , cm) ¼ r(cjc1, . . . , cm)k k

The use of the standard error for normalization was dis-

cussed above. It is also important to note that it sets a natural

scale which is necessary because if the normalization is omitted,

then it is possible by scaling to trivially increase the constraint

value because val(lcjc1, . . . , cm) ¼ lval(cjc1, . . . , cm) for all

l . 0. Importantly, its use makes the constraint value

non-dimensional.

Moreover, we emphasize that the practical use of con-

straints such as Ci(k) ¼ C0
i rarely requires exact values for

C0
i . All the applications we consider only require reliable esti-

mates of the order of magnitude of C0
i . Thus only

approximate determination of the standard errors e0
i is

usually required. For some of the data in the examples we

discuss, standard errors were not available but we could esti-

mate the standard deviation and therefore we approximated

the standard error by this.

We will say that a set of constraints is non-degenerate if

they are linearly independent. Many of the results that we

discuss rely on an analysis of the matrix M ¼M(c1, . . . , cm)

whose ith row is the vector ci. In particular, the constraints

are non-degenerate if the rank of M is maximal, i.e. m.

Now suppose that for i ¼ 2, . . . , m, vi ¼ val(cijc1, . . . , ci�1)

and define v1 ¼ c1k k. Then an important result (electronic

supplementary material, theorem S2) is that one can reorder

the constraints so that v1 is maximal among all such

http://rsif.royalsocietypublishing.org/


Table 1. The GE-combinations of the Pokhilko model [6].

GE-
comb.

genetic
background

entraining
signal constraints

k1 WT 12 L : 12 D mRNA levels

k2 WT LL period

k3 WT DD period

k4 toc1 LL period

k5 ztl LL period

k6 lhy/cca1 DD period
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orderings and so that v1 � v2 � � � � � vm. This ordering is

effectively unique subject to the possibility that there might

be multiple constraints with the same vi. We say that such

a set of constraints is ordered. Electronic supplementary

material, theorem S2, provides a fast way to calculate the

ordering of the constraint set using the LQ-decomposition

of a matrix.

A set of constraints can only be non-degenerate if m � s.

However, the result about ordering the constraint values

works equally well for the case m . s. This can be thought

of as an optimal choice of a subset of s independent

constraints. The remaining constraints will be linearly

dependent upon this subset.

k7 prr7/prr9 LL period

k8 gi LL period

k9 cop1 LL period

c.Interface
12:20141303
3. Important exemplar systems: clocks and
signals

In this section, we will demonstrate the practical use of our

mathematical tools using three key examples. Our examples

showcase the wide range applicability of our methodology

both in terms of systems and the type of constraint.

3.1. Pokhilko 2012 model of the plant circadian clock
An important recent model of the plant circadian clock from

[6] consists of n ¼ 28 variables representing the levels of the

following: mRNA and protein of the genes LHY, CCA1,

TOC1, PRR9, PRR7, NI, LUX and ELF4; ZTL protein, LHY

modified protein; mRNA of ELF3 and GI, cytoplasmic pro-

teins of ELF3, GI, COP1; nuclear proteins of ELF3; GI and

COP1 in day and night forms; and the cytoplasmic protein

complexes ELF3-GI, GI-ZTL (ZG) and nuclear protein

complexes ELF3-GI, ELF3-ELF4 and EC.

The model has a complex structure incorporating multiple

positive and negative feedback loops with the interaction

between components described by s ¼ 104 parameters. It

has been constrained by an impressively large collection of

experimental data from the plant Arabidopsis thaliana with

various genetic backgrounds and tested under different

environmental conditions. Most of the parameters are fitted

to the biological data or their values are taken from earlier

models that were likewise fitted to data. Six of the parameters

represent Hill coefficients whose values were not fitted:

instead they were fixed either for the sake of simplicity or

taken to correspond to the experimental evidence of protein

dimerization in some of the gene interactions. We assume

that these six do not form the part of the set of parameters

that can be perturbed.

The model parameter fitting procedure aimed (i) to mini-

mize the deviation of model simulated mRNAs from the

normalized experimental data for nine key genes in WT

plants under cycles of 12 h of light followed by 12 h of dark

(denoted 12 L : 12 D) and (ii) to fit the clock oscillation

period in plants in different GE-backgrounds where the

plant is either in constant darkness or constant light (denoted

DD or LL). The various GE-combinations and constraints are

shown in table 1.

We now briefly outline how the constraints in part (i) are

translated to our framework of constraints. We refer to

the WT 12 L : 12 D GE-combination as k1 (table 1). We let

gk1
(t, k) be the model solution representing the mRNA and

protein levels of the system described by equation (2.1)
with k ¼ k1. The biological data for a particular mRNA

represented by the jth variable in the model gives time-

point measurements T ¼ {t1, t2, . . . , tl} over a 24-h period.

Each time-point measurement translates to a constraint Ci(k)

(i ¼ 1, . . . , l ) that represents the level of the model solution

m(ti) ¼ gk1,j(ti, k) at a time-point ti[ T. The equivalent

linearized constraint for i ¼ 1, . . . , l is

ci(k) ¼
@g j,k1

@k
(ti): (3:1)

The mRNA profiles of nine genes measured at different

time points of the light : dark cycle result in 82 linearized con-

straints of the type above. A detailed breakdown of the

constraints coming from each gene measurement is left to

the electronic supplementary material.

The reader might wonder why we do not use a constraint

on the vector v ¼ (m(t1), :::, m(tl)) rather than what we do

which is to regard these as individual constraints. The key

point is that these measurements m(ti) will be highly corre-

lated. We could assign a constraint value to the vector v

but this would lose the information that some time points

have much greater constraint value than others. This is con-

firmed in electronic supplementary material, table S2,

because the constraint values of the individual constraints

on the mRNA levels can vary by an order of magnitude or

more. In this example and others, one can drop a majority

of the time points with hardly any loss in accuracy.

The second type of constraints comes from values of free-

run periods of the plants in different GE-backgrounds

(cf. table 1). The constraint C(k) is the period t(k) of the

model solution gk2 (t, k) for a GE-background, k2 (WT plant

under LL). Thus, the linearization is c(k) ¼ @t/@k. This can

be expressed in terms of the solution gk2 (t, k) using any vari-

able (e.g. jth variable) as follows from [7]. If x0,k2 is a point on

the limit cycle and the corresponding solution is given by

xk2 ¼ g j,k2 (t) so that x0,k2 ¼ g j,k2 (0) then

c(k) ¼ 1

f j,k2
(x0,k2

)

@g j,k2

@k
(t(k�))�

@g j,k2

@k
(0)

� �
: (3:2)

The Pokhilko model matched the period data for the

clock in eight different GE-combinations [6]. A breakdown of

period data fitted and reproduced without fitting is listed in

table 1. Out of the eight models (each associated with one

GE-combination), only four had long-term stable oscillations

and thus only their period profiles can be translated to our

http://rsif.royalsocietypublishing.org/
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Figure 2. Values of the top 80 Pokhilko model constraints in order of
decreasing value, log10 (vi ) (open circles). Inset shows the top 32 ordered
constraints.

rsif.royalsocietypublishing.org
J.R.Soc.Interface

12:20141303

5

 on March 16, 2015http://rsif.royalsocietypublishing.org/Downloaded from 
framework to make up four linearized constraints. These are

the period constraints of GE-combinations k2, k4, k5 and k7.

Several of the GE-combinations in table 1 describe a plant

model with a mutant genetic background. To convert a WT

model to a mutant model, the convention is to set the trans-

lation rate of the knocked-out gene, kj, to be either zero or

sufficiently close to zero. While for a WT model, all par-

ameters can be perturbed, in mutant models, we do not

allow the translation rate of the knocked-out gene to be per-

turbed, as this rate essentially describes the mutant model.

This means that for a constraint ci of a mutant model, we

must set the corresponding ( jth) entry to zero, i.e. ci,j(k) ¼ 0.

When calculating these constraints, we noted that, before

normalization, many had very small norms as is shown in

figure 1. As a small norm means that the constraint only varies

by a small amount when parameters are varied, such constraints

are ineffective and therefore should not be used. We return to

this in §4 where we explain why it is reasonable to expect that

many constraints will be forced to have a small norm.

We scale the constraints by standard errors in the case of

time-series measurements and by standard deviations or

standard errors (depending on which is available in the litera-

ture) in the case of the period constraints. As the time series

are normalized so that peak value is 1, the standard errors

are normalized by the same factor as the time series. More

details are given in the electronic supplementary material.

In total, the Pokhilko model has 86 linearized constraints

and the constraint values of the ranked linearized constraints

are exponentially decreasing (figure 2). The ranking reveals

that there is little value in using more than the top 32 con-

straints (inset in figure 2) as the remaining 54 constraints

have constraint values of less than 1% of the top ranked

constraint value.

The top four constraints are the constraints from GE-

combinations k1 relating to the levels of GI mRNA, and the

period constraints of the model for GE-combinations k2 and

k5 (described in table 1). The full list of the top 20 constraints

is given in electronic supplementary material, table S2. All

four period constraints of the model feature in the list of

top 20 constraints.

Ranking also reveals that there is a large jump in the

constraint values, with the six ranked lowest having near-

zero constraint values. This set of six constraints comprises

a combination of constraints on LUX and ELF4 mRNA

levels of a model of GE-combination k1 (WT plant entrained

to 12 L : 12 D). Closer inspection of the constraints reveals that

the linearized constraints on LUX mRNA levels are nearly

identical to the constraints on ELF4 mRNA levels. This is not

surprising, as the ODE equations describing these two

mRNAs are almost identical. They share the same transcription

term and kinetic constants of (linear) degradation rates and

therefore these constraints are effectively identical.

We also check how much the ranking of the constraints

changes when we perturb the model parameters. Each new

parameter set is obtained by perturbing every parameter kj

from its original value (from [6]) by adding a perturbation

which is normally distributed with mean zero and standard

deviation 0.05 kj (further details are described in the elec-

tronic supplementary material). Under these parameter

perturbations, the models appear to maintain a near-identical

constraint ranking of the top 10 constraints to the ranking of

the original model. Figure 3 shows the top 40 constraint

values for 10 models simulated under different parameter
sets Pi chosen in this way with the top 10 constraints of the

original model (P1) identified by crosses shaded in blue

(with progressively darker shading indicating lower rank of

the associated constraint). These same constraints were ident-

ified in the other 10 models (Pi, i ¼ 2, . . . , 11) and they appear

to feature mainly among the top 10 constraints and to mainly

preserve the rank order. It is also worth noting that aside

from the very similar rank order, each of the 10 models pre-

served the exponential decay in the constraint values of the

constraints. This result indicates that the rankings and the

rate of decay of constraint values are robust to parameter

perturbations.
3.2. Locke 2006 model of Arabidopsis thaliana circadian
clock

The Locke 2006 model [8] is an earlier plant clock model that

describes interaction of a subset of genes from the Pokhilko

model and has n ¼ 16 state variables. The model has s ¼ 77

parameters, most of which correspond to various kinetic

rates and all of which can be perturbed, as even the Hill coef-

ficients are fitted (cf. Pokhilko model). It is interesting to

consider this alongside the Pokhilko model because it is

fitted to qualitative features of the data, for example the

shape of the mRNA expressed through broadness of the

troughs and sharpness of the peaks. Other features fitted

include amplitude of oscillations, timing of peak and

trough mRNA levels, and period of oscillations.

A typical constraint on oscillation period was given in the

previous subsection (equation (3.2)), while a constraint on

amplitude can easily be obtained from constraints on solution

levels (equation (3.1)). To define broadness of peaks and

troughs for a variable of interest, we followed the description

in [8]. Locke et al. describe the difference in the value of a par-

ticular variable in gk(t, k) 2 h before and after the peak value

time. For a sharp peak, the expectation is for the variable

levels to fall quickly on either side of the peak. Consider

the jth variable of gk(t, k) and define the ratio of how fast

the level of gj,k(t, k) falls 2 h after time of its peak fj by,

a ¼
g j,k(fj)� g j,k(fj � 2)

g1,k(fj)
:

http://rsif.royalsocietypublishing.org/
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Together with the constraint on the timing of the peak,

c1(k) ¼
@fj

@k
, (3:3)

constraining

c2(k) ¼ a
@g j,k

@k
(fj)�

@g j,k

@k
(fj þ 2) (3:4)

ensures that the ratio of levels of the jth variable at the two

time points is fixed.

As we can calculate the partial derivative with respect to

parameters of any variable of solution gj,k(t, k) at any time

point, we can derive similar constraints to fix the ratio of

levels at any time. Note that the constraint of the peak

timing (equation (3.3)) can also be obtained from the partial

derivatives @gj,k/@k, [7] q.v. This mathematical description,

as well as the full description of other constraints listed

above are given in the electronic supplementary material.

The full list of GE-combinations and the constraints is given

in the electronic supplementary material. Construction of

mutant models and their constraints follows closely the descrip-

tion we outlined above for the Pokhilko model. In the mutant

versions of the Locke model, whole sub-networks of the clock

can become non-functional, i.e. multiple model variables con-

verge to the zero equilibrium. This means that the relevant

model structure can be reduced and the effect of fewer par-

ameters needs to be considered in the constraints (i.e. more

entries of the linearized constraints can be set to zero). The full

list of these types of reductions for Locke mutant models is

outlined in the electronic supplementary material.

The data presented in [8] does not have any error bars,

so it is not possible to extract any error measurements per-

taining to the shape of the oscillations and their peak times.

We describe how we determined the s.e. in the electronic

supplementary material.

The Locke model has 24 linearized constraints and

their ranking according to constraint value also shows an

exponential decrease (figure 4).

Only the top 17 constraints show any significant con-

straint value, with the value of the 17th constraint at 1.96%

of the highest value. The top five constraints are associated
with the period of the WT clock in LL, LHY/CCA1 ampli-

tude in WT 12 L : 12 D, the period of the lhy/cca1 mutant

clock in DD, the level of LHY/CCA1 fall after peak in the

toc1 mutant clock in 12 L : 12 D and the period of the toc1
mutant plant in DD. The full list of top constraints is pre-

sented in electronic supplementary material, table S4. It is

worth noting that the period constraints for WT LL and

both mutants, lhy/cca1 and toc1, feature at the top of the rank-

ings. It is not possible to compare the ranking of the

constraints from the Locke and Pokhilko models because,

even though they do model the same biological system,

their constraints are very different. However, it is worth

noting that the two constraints that feature in both models

(periods of the WT and the toc1 mutant clocks in LL

conditions) are featured at the top of both rankings.
3.3. NF-kB signalling system
We consider the model of the NF-kB system from [9]. The sol-

ution of interest is a transient solution describing the

oscillations in the level of cytoplasmic and nuclear NF-kB con-

centration resulting from an incoming signal of tumour-

http://rsif.royalsocietypublishing.org/
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necrosis factor-a (TNFa). The system is compared to exper-

iments where cells were subjected to constant and pulsatile

TNFa signals for total periods of approximately 600 min. Sali-

ent characteristics of the ratio of nuclear to cytoplasmic NF-kB

(henceforth denoted by N : C NF-kB) were identified and the

model constructed to match the observed characteristics.

N : C NF-kB does not feature as a variable of the NF-kB

model, hence we introduce an additional ODE for the

dynamics of N : C NF-kB and consequently the number n
of state variables is 16. Other state variables include those

describing cytoplasmic and nuclear NF-kB, IkBa, their com-

plexes, and also the A20 gene and the kinase IKK and its

activated and inactivated states. The IKK system is activated

downstream of the TNFa receptors and this, in turn, causes

phosphorylation and subsequent degradation of IkB freeing

NF-kB to enter the nucleus. This activates IkBa transcription

and the subsequent production of IkBa protein that binds the

nuclear NF-kB and pulls it back into the cytoplasm, restarting

the cycle.

The model has s ¼ 28 parameters, most of which are rate

constants. Parameter values were fitted to match the

observed N : C NF-kB oscillatory responses such as peak

timing, persistence in oscillations and specific decay in oscil-

lation amplitude. The various GE-combinations and the full

list of associated constraints are shown in the electronic

supplementary material.

The NF-kB model of Ashall et al. [9] was fit using specific

cost functions (described in electronic supplementary material,

table S5 of [9]). A score of 1 is set to approximately match 1 s.d.

from the mean of the respective feature (that they wish to

match). From this information, we could extract the standard

errors which we used to scale the model constraints. Further

details are given in the electronic supplementary material.

The key observed characteristics of the model translate to

25 linearized constraints, details of which are given in the

electronic supplementary material. Some of the target charac-

teristics for model parameter fitting that are outlined in [9]

could be eliminated (more information about that elimination

is given in electronic supplementary material). The 25 linear-

ized constraints are ranked in order of decreasing constraint

values in figure 5 and they show an exponential decrease in

constraint values. Only the top seven constraints (listed in

table 2) have any significant constraint value (i.e. their own

values are higher than 1% of the top value).
4. Ordered constraints tend to have rapidly
decreasing constraint values and many
unnormalized constraints have a small norm

The examples of §3 manifest the two properties mentioned at

the beginning of the paper, namely that the constraint values

decrease rapidly and that many unnormalized constraints

have a small norm. We now explain why this is the case.

It has been observed [7] that a large class of models of

regulatory and signalling systems of the sort that we are con-

sidering have the following property: there is (i) a rapidly

decreasing sequence of s positive numbers, ~s1 � . . . � ~ss,

(ii) s n-dimensional time series defined for 0 � t � T, Ui(t) ¼
(Ui,1(t), . . . , Ui,n(t)), i ¼ 1, . . . , s, which are of unit length

and orthogonal to each other in the L2 sense, and (iii) an

orthogonal s � s matrix W, such that for any change in
parameters k! k þ dk, the corresponding change dg in the

solution of interest is

dg(t) ¼
X

i

li ~siUi(t)þO dkk k2),
�

(4:1)

where li ¼
P

j Wij dkj. This result comes from the singular

value decomposition UDVt of the linearization of the map

from parameters k to the solution of interest. The columns

of U are the time series Ui(t), V ¼Wt is a s � s orthogonal

matrix and D is a diagonal matrix with entries ~si. In [7],

this observation is formulated for a model with a single

GE-combination, however the same decomposition will

apply for a model where multiple GE combinations are inte-

grated, though here the decay of the singular values ~si may

be slower. The relevant result in [7] is expressed as in (4.1).

However, such a result is implicitly contained in the earlier

papers [10,11] because the ~s2
i are eigenvalues of the Fisher

information matrix (FIM) discussed there. They showed that

they decrease quickly in some systems biology models.

This observation was developed further in [12–14]. The

decay was also found early on in the context of circadian

clocks in [15,16].

It is shown in the electronic supplementary material that

for such a model under very general conditions, an ordered

set of constraints c1, . . . , cm will have

vi ¼ val(cijc1, . . . , ci�1) � O(~si)

and thus that the rapid decline of the ~si implies rapid decline

of the constraint values vi. This assumes that the constraints
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are functions of the parameters through their dependence on

the solution of interest of equation (2.1) or (2.2).

As the reader will see from the figures, there is no natural

gap in the constraint values vi. However, there is a natural

cut-off given by vi � 1 because if vi	1, the unconstrained

variation defined by the constraint value is small compared

with the uncertainty in the constraint.

We mentioned above that many constraints that have been

used to analyse the systems above have linearizations with a

very small norm. When we observed this, we realized that one

can argue that this is a consequence of equation (4.1). As the con-

straints Ci are functions of the solution of interest g, i.e.

Ci(k) ¼ Di(g( � , k)), it follows from (4.1) that the linearized con-

straints satisfy ci ¼ ~Di �W, where ~Di ¼ (~s1di �U1, . . . ,~ssdi �Us)

and di is the derivative of Di with respect to g evaluated at

g( � , k�) (see section 3 of the electronic supplementary material).

Therefore, as W is orthonormal,

cik k ¼ ~Di
�� ��: (4:2)

As the Ui are orthogonal, it seems reasonable to assume

that di �Uj is uncorrelated with di �U‘ if j = ‘. If we

assume that the norms of the di are O(1), then we can

model the �Di as random s-dimensional vectors with O(1)

norm. As is explained in the electronic supplementary

material, it follows from this that, with high probability not

less than 1 2 O(e21s/4),

cik k2 ¼ ~Di
�� ��2 � ~s2

11þO(~s2
kþ1):

In the electronic supplementary material, this is illus-

trated with an example showing the expected distribution

of norms cik k under these assumptions.

As constraints are not very useful, if their norm is small

compared with their uncertainty, we already get some very

useful information by just checking these norms. Indeed,

we see that about 75 of the constraints on the Pokhilko

2012 model have norms less than 10% of the norm of the con-

straint with the greatest norm. For the Locke and NF-kB

models, about 50% of the constraints are this small.
5. The geometric interpretation of constraint
value

5.1. Geometric shape of the approximate solution set
We provide a geometric interpretation of constraint value when

m � s by considering the geometric shape of the approximate

solution set. When m . s, this set might be empty. Consider

the mapping C : Rs ! Rm given by C(k)¼ (C1(k), . . . , Cm(k)).

We assume that the corresponding linear constraints c1, . . . , cm

are ordered and that the matrix M ¼M(c1, . . . ,cm) has maximal

rank. Let s1 � s2 � . . . � sm . 0 be its positive singular values

and let Vi and Ui be its right and left singular vectors.

In this case, as M is of maximal rank, the set S of par-

ameters values which satisfy the constraints will, near the

parameter vector of interest k
*

be a (s 2 m)-dimensional

sub-manifold of the parameter space.

In the electronic supplementary material, theorem S4, we

prove that the set of parameter values that approximately

satisfy the constraints,

S1 ¼ {k: Ci(k)� C0
i

�� �� � 1 for i ¼ 1, . . . , m}
tends in a precise sense as 1! 0 to the set Em
1 given by

Xm

i¼1

s2
i l

2
i � 12, (5:1)

where l and the parameters k are related by the equation

l ¼W . (k 2 k
*
), i.e. li ¼

Ps
j¼1 Wij(kj � k�j), where W is an

orthogonal matrix. This orthogonality is important because it

ensures that objects in the l coordinate system are measured

on the same scale as in the original coordinate system. There-

fore, E1 is the interior of an m-dimensional ellipsoid with

principal axes of length si in both coordinate systems.

Therefore, we can interpret the effectiveness of the con-

straints as follows. The constraints only constrain the

parameter values insofar as they constrain the li and the

extent of this is that (i) l1, . . . , lm must satisfy equation

(5.1) (i.e. that (l1, . . . , lm) regarded as a point in Rm must

be inside the ellipsoid Em
1 given by equation (5.1)) and

(ii) lmþ1, . . . , ls are unconstrained.

For an ordered set of linear constraints the notion of

constraint value fits nicely with this interpretation because

our m! m þ 1 Transition theorem tells us that adding a

constraint Cmþ1 with linearization cmþ1 and constraint value

vmþ1 ¼ val(cmþ1jc1, . . . , cm)

changes all the singular values by at most a O(1) scaling and

adds a new singular value which is of the order s ¼ vmþ1.

Thus, it adds a new principal axis to S1 the size of which is

of the order of 1/vmþ1.
6. Construction of optimization functions
We consider functions of the form

w(k) ¼ � 1

2

Xm

i¼1

a2
i (Ci(k)� C0

i )2 (6:1)

and suppose that k
*

is a maximum of this function. If m � s,

and the matrix M ¼M(c1, . . . , cm) has full rank s, then the

structure of w about its minimum is given by its Hessian.

The Hessian is the matrix F of partial derivatives (@2f/

@ki@kj) evaluated at k
*
.

Without any loss of generality, we can incorporate the

coefficients ai into the constraints and thereby assume that

ai ¼ 1. The second derivatives of w are given by

@2w

@ki@kj
¼
X
‘

@C‘

@ki

@C‘

@kj
þ (C‘ � C0

‘ )
@2C‘

@ki@kj

� �

¼
X
‘

@C‘

@ki

@C‘

@kj
(6:2)

when k ¼ k
*
. If c1, . . . , cm are the linearized constraints associ-

ated with C1, . . . , Cm at k
*

and M ¼M(c1, . . . , cm), then the

right-hand term of (6.2) is the ijth entry of the matrix F ¼
MtM, where Mt is the transpose of M. Thus, we see that if

m , s, then F has zero eigenvalues and the Hessian of w is

degenerate. Thus, we now consider the case m � s but men-

tion the alternative case in a note below. Indeed, it is worth

noting that in some applications (e.g. in [4,5]), the functions

w used are of the form in (6.1) with m , s.

Alternatively, one can use the function f as an artificial

likelihood and regard P(C1, . . . , Cm) ¼ exp (w)=Z as the

(normal) distribution of the vectors C ¼ (C1, . . . , Cm) (Z is

the normalizing factor). In this case, the matrix F is the FIM
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for the system, i.e. F is the P-expectation of the Hessian of

2V ¼ 2logP which is given by

Fij ¼ EP
@ log P(Cjk�)

@ki

@ log P(Cjk�)
@kj

� �
¼ �EP

@2 log P(Cjk�)
@ki@kj

� �
:

The inverse of the FIM provides an approximation of the

covariance (i.e. the multidimensional spread around the

mode) of the posterior probability distribution P(kjC) and pro-

vides a lower bound (generally known as the Cramér-Rao

bound) for the error covariance of any unbiased estimator of

the true parameters.

In either case, we are interested in the singular values

sF
1 , . . . , sF

s and singular vectors VF
i of F ¼M*M. However,

the singular values of F are just the squares of the singular

values for M and the singular vectors VF
i are the right singu-

lar vectors of M. The singular values and singular vectors of F
characterize the nature of w near its maximum. For example,

close to the maximum, the level hypersurfaces of w are

approximated by the hypersurfaces

Xs

i¼1

sF
i l

2
i ¼ 12 (6:3)

where li ¼ (k � k�) � VF
i . This tells us that k is well constrained

in the directions VF
i with sF

i large and badly constrained in

the directions VF
i , where sF

i is small. This approximation

result follows from well-known results about so-called

Morse functions and arguments similar to those used in

electronic supplementary material, theorem S4.

In particular, we are interested in how the singular values

change when we remove or add a new constraint to w. To

determine whether to add a new constraint in the case of

m � s, one should firstly reorder the constraints using the

algorithm defined by electronic supplementary material

theorem S2, but using the constraints c1, . . . , cmþ1 instead of

c1, . . . , cm. This is because, when reordered, the new con-

straint may move much higher up the list and have a

greater constraint value. One can then use the reordered list

of constraints c
0
1, . . . , c

0
mþ1 after possibly deleting those with

the lowest values val(c
0

jþ1jc
0
1, . . . , c

0

j).

Although above we are restricted to the case m � s, the

discussion above does apply to the case m , s if one restricts

parameter changes that are allowed to be only those

that do not change the linear combinations lmþ1, . . . , ls of

the parameters.

In this case, we use the m! m þ 1 Transition theorem

(electronic supplementary material, theorem S5) to address

how the singular values change when we remove or add a

new constraint to w. The Transition theorem tells us that

adding a new constraint Cmþ1 with linearization cmþ1 and

constraint value vmþ1 ¼ val(cmþ1jc1, . . . , cm) has the following

effect. Consider the singular values sF0
1 , . . . , sF0

m of the new

matrix F’, where F0 ¼ M�mþ1Mmþ1 with Mmþ1 ¼M(c1, . . . , cm,

cmþ1). These have an interlacing property in that

sF0
1 � sF

1 � sF0
2 � . . . � sF0

m � sF
m � sF0

mþ1:

and moreover, in the electronic supplementary material, we

show that sF0
mþ1 � v2

mþ1 while for 1 � i � m

sF
i � sF0

i � (1þ 2 ak k)sF
i þ v2

mþ1,

where a ¼ (a1, . . . am) is such that cmþ1 �
Pm

‘¼1 a‘c‘ is normal

to c1, . . . , cm.
A simple way to characterize the effectiveness of w is via

the condition number of the matrix F which can be taken to

be given by kF ¼ sF
1=s

F
m as this determines the ratio of the

lengths of the major and minor axes of the ellipsoid given

by (6.3). Using the above inequalities, we see that

kF0 ¼
sF0

1

sF0
mþ1

� sF
1

v2
mþ1

¼ sF
m

v2
mþ1

kF:

Therefore, to improve the condition number, one must find

new constraints whose constraint value exceeds the smallest

singular value of M.

This quantifies the usefulness of adding a new constraint.

It is only useful when its reordered constraint value is rela-

tively high. Using a low-value constraint involves extra

computational cost with no significant improvement in

terms of estimation utility. Moreover, because of the results

of §4 finding constraints with good reordered constraint

value will require careful design.
7. Experimental optimization
Experimental design in systems biology has been discussed

extensively from a number of points of view including classi-

cal approaches using Fisher information [17], sensitivity

analysis [18] and methods to maximize the expected

mutual information between prior and posterior parameter

distributions ([19] and references therein). In this section,

we illustrate how the constraint value can be used for exper-

imental design. The idea is that once a working model has

been formulated and the current constraints C1, . . . , Cm ana-

lysed, then one can test new GE-combinations for new

constraints C with a high value val(cjc1, . . . , cm). To do this,

we formulate the model in equation (2.2) for all the relevant

GE-combinations including the new one.

We now give some illustrative examples. In each case a

gene mutant is simulated by putting the corresponding trans-

lation rate to zero and not allowing this rate to change when

perturbing the parameters.

7.1. Pokhilko 2012 model and the prr9 and ni mutants
No constraints for these mutants were used in formulating

the Pokhilko 2012 model. One can therefore ask whether an

experiment on the mutants will add value. When this exper-

iment is being considered, we could predict the value of it for

our purposes using our techniques and this can be used to

help assess the priority of this experiment. In fact, the periods

of these mutants are already known [20], but the discussion

still illustrates our approach had we not had the data already.

Moreover, given that we have it, we can also ask whether if it

does add value and whether one should put in the effort to

reparametrize the model to match it.

Therefore, using the Pokhilko 2012 model, we simulated

the prr9 mutant and ni mutant models in constant light. In

fact, Salomé & McClung [20] have measured periods of the

both prr9 and prr5 mutants ( prr5 is a proxy for our ni com-

ponent) in three different clock markers. They estimate the

period of the prr9 mutant to range from 25.3 h+0.1 s.e. to

26.2 h+0.4 s.e. for the different markers. The model prr9
mutant period is 23.90 h, slightly shorter than the estimated

periods. The period constraint for the prr9 mutant is calcu-

lated as explained above and it is scaled by the larger s.e.
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(i.e. 0.4). When compared to the other model constraints, the

scaled prr9 period constraint has very high constraint value.

By order of decreasing value, it is the fourth highest con-

straint, with the constraint value approximately 26% of the

top constraint value.

Salomé & McClung [20] also estimate the period of the

prr5 mutant to range from 23.1 h+0.1 s.e. to 23.9 h+ 0.2

s.e. for the different markers. In the model, the NI component

is meant to be the proxy for PRR5. The model ni mutant

period is 24.3281 h and so, within the estimated ranges. The

period constraint for the ni mutant is calculated as explained

above and it is scaled by the larger s.e. (i.e. 0.2). When com-

pared to the other model constraints, the scaled ni period

constraint has the highest constraint value and ranks as

the most influential constraint. We thus conclude that, from

this point of view, both the knockout experiments have

significant value.

7.2. A20 knockdown for NF-kB
A similar approach can be used with the NF-kB model. As an

example, we test whether the predictive constraint on the

period of the A20-knockout-mutant model under constant

TNFa adds value compared to the other constraints. The

A20 mutant model is simulated by halving the transcription

of A20. While the WT model under constant TNFa has a

period of 93.95 min (calculated as the average peak distance

from third to last (in this case, sixth) peak), the A20 mutant

has a shorter period of 85.07 min (calculated as the average

peak distance from third to last (in this case, seventh)

peak). The period constraint is calculated and the entry rel-

evant to A20 translation in the constraint is set to 0 (as this

rate is not allowed to change in the mutant). The A20 predic-

tive constraint ranks as the 12th top constraint (in order of

decreasing constraint value). Its value is a lot lower than

that of the top constraint value, approximately 0.0031% of

the top value. Our model prediction is that this constraint

does not add much value to the models given that the

other constraints have been applied.
8. Discussion
There is a huge literature on fitting ODE systems to data and the

relevant literature is simply too extensive to list. A key reference

is [21] which initiated one of the main lines of enquiry in this area

and [22] is a recent example of this with a good reference list.

Methods using stochastic simulation such as MCMC, a Bayesian

approach and/or hierarchical models have also been increas-

ingly used, and [23,24] are examples of this. These methods

generally employ a single likelihood or likelihood-like objective

function as opposed to our approach which considers the optim-

ization problem in terms of a set of many individual constraints.

Moreover, they are so far only applied to relatively small sys-

tems. Similar questions are also being actively pursued for

fully fledged stochastic models and this is currently a very

active area of research [25–31]. A link between these two

approaches and a possible way to move to bigger systems is

given by the ABC methods and the ideas in this paper may

aid the move to larger systems by helping construct good likeli-

hoods and enabling better understanding of the shape of

likelihood and optimization functions.

The examples that we discuss show that our approach

gives a substantial amount of valuable information on the
value of constraints, information that is very difficult, if not

impossible, to obtain by intuition. They show that for these

large state-of-the-art models, only a fraction of the constraints

have non-negligible constraint values and they identify

which of the constraints are valuable. This knowledge is

extremely useful when fitting models and allows for a more

rational approach. The examples given also demonstrate

that this approach can be successfully applied to both

quantitative and qualitative constraints.

We have demonstrated the non-intuitive fact that one

should expect the constraint value of many constraints to be

small and consequently ineffective. We characterized what

can be learned from this approach in terms of understanding

the geometry of the optimization problem, design of optimi-

zation functions and artificial likelihoods and experimental

optimization. One can also use this theory to give useful infor-

mation on how to optimize a non-optimal system using both

deterministic and stochastic approaches. For example, when

using deterministic gradient following methods, it is well-

known [32] that a common problem is that the algorithms of

the successive line minimization type are ineffective when

the level surfaces of the constraints or optimization function

have a ellipsoidal structure with an extreme aspect ratio of

the sort we find. Our results suggest methods for choosing

the move direction. Moreover, the most effective methods

for moving to an optimum use Newton’s method and this

relies on inverting the derivative of the constraint map. As

this is our matrix M(c1, . . . , cm), its smallest singular value

tells us how well controlled the Newton algorithm will be.

Finally, statistical optimization methods can use an artificial

likelihood of the type we have analysed.

The fact that in a typical model, only a few constraints

will have a significant value leads to an interesting new

concept of a tight model. Suppose that we have an ordered

set of constraints C1, . . . , Cm and that Crþ1, . . . , Cm have

very small constraint values. Furthermore, suppose that we

have tuned the parameters so that C1, . . . , Cr are satisfied.

If we then demand that any further parameter changes

must not change C1, . . . , Cr, it will be extremely difficult to

tune Crþ1, . . . , Cm because of their very small constraint

values. Therefore, if Crþ1, . . . , Cm are quantitatively correct,

this can be interpreted as suggesting that the structure of

the model is correct. If the correctness of these small value

constraints has not been artificially determined, then it is

reasonable to define such a model as tight in the sense

that a large number of constraints take the correct value

even though only a proportion of them can be tuned by

adjusting parameters.

If system biologists are to reliably use complex models to

provide robust understanding, it is crucial that there are

analytical tools to enable a rigorous assessment of the quality

and selection of these models and their fit to current bio-

logical knowledge and data. Our aim in this paper is to

contribute to that.
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