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Abstract Background: Brain tumours cause the highest mortality and morbidity rate of all
childhood tumour groups and new methods are required to improve clinical management.
1H magnetic resonance spectroscopy (MRS) allows non-invasive concentration measurements
of small molecules present in tumour tissue, providing clinically useful imaging biomarkers.
The primary aim of this study was to investigate whether MRS detectable molecules can pre-
dict the survival of paediatric brain tumour patients.
Patients and methods: Short echo time (30 ms) single voxel 1H MRS was performed on chil-
dren attending Birmingham Children’s Hospital with a suspected brain tumour and 115
patients were included in the survival analysis. Patients were followed-up for a median period
of 35 months and Cox-Regression was used to establish the prognostic value of individual
MRS detectable molecules. A multivariate model of survival was also investigated to improve
prognostic power.
Results: Lipids and scyllo-inositol predicted poor survival whilst glutamine and N-acetyl
aspartate predicted improved survival (p < 0.05). A multivariate model of survival based on
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three MRS biomarkers predicted survival with a similar accuracy to histologic grading
(p < 5e–5). A negative correlation between lipids and glutamine was found, suggesting a func-
tional link between these molecules.
Conclusions: MRS detectable biomolecules have been identified that predict survival of paedi-
atric brain tumour patients across a range of tumour types. The evaluation of these biomark-
ers in large prospective studies of specific tumour types should be undertaken. The correlation
between lipids and glutamine provides new insight into paediatric brain tumour metabolism
that may present novel targets for therapy.

� 2012 Elsevier Ltd. Open access under CC BY license. 
1. Introduction

Of the solid tumours typically occurring in child-
hood, brain tumours are the most common and have
the highest mortality rate.1 Surgery, chemotherapy and
radiotherapy are commonly used in isolation or combi-
nation to treat these tumours but advances in clinical
management are required to improve survival rates
and reduce long-term morbidity such as effects on cogni-
tive development.2,3

Diagnosis remains the most important determinant
of treatment and whilst this is available from a major
surgical resection in many cases, in others, a diagnosis
is made from a small biopsy or on clinical and imaging
appearances alone. Molecular tests on the tumour tissue
are providing new prognostic markers4,5 and these are
starting to be incorporated into clinical management
strategies. Novel non-invasive biomarkers would add
to this improved tumour characterisation and would
have the advantage of being available for cases where
surgery was not performed.

1H magnetic resonance spectroscopy (MRS) is a non-
invasive technique that measures the concentration of
variety of biomolecules from a volume of interest.6

The technique is widely available clinically and easily
appended to a standard magnetic resonance imaging
(MRI) examination, which is routinely performed at
diagnosis on children with brain tumours. The two main
MRS protocol choices are duration of echo time and
single versus multi voxel acquisition. Short echo time
MRS is the most suitable investigation for detecting
the maximum amount of metabolite information, pro-
vided suitable analysis methods are used.7,8 Single voxel
MRS is generally preferred over multi-voxel spectro-
scopic imaging where disease is localised since it gener-
ally provides better quality data at shorter echo times
for metabolite quantification.9

Abnormal metabolism in tumours has been recogni-
sed for many years10 and this area of research continues
to provide new insight into tumour biology.11 MRS is a
powerful method for the detection of tumour metabo-
lism in-vivo and metabolic profiles have been shown to
characterise brain tumours non-invasively.12,13 Classifi-
cation methods based on MRS profiles have also been
shown to be effective in both adult14 and childhood
brain tumours15 providing information on tumour char-
acterisation useful for clinical management. High-reso-
lution in-vitro MRS analysis of tumours has also
identified a number of potentially useful metabolites
that may be detectable on future clinical MR
platforms.16,17

In addition to metabolites, MRS is effective at mea-
suring the level of mobile lipids (MLs),18 which are often
present at high levels in brain tumour tissue. A number
of studies have shown a significant correlation between
the level of MRS detectable lipids and tumour grade
in adult gliomas19–21 and similar findings have been
found in a more limited number of studies in childhood
brain tumours.22

The primary aim of this study was to determine
whether metabolite levels measured by MRS are able
to predict the survival of paediatric brain tumour
patients in a clinical setting. Single voxel, short echo
time MRS was used to ensure quantification of both
small molecular weight species and MR detectable
lipids.

2. Patients and methods

2.1. Patients

All patients undergoing MR imaging at Birmingham
Children’s Hospital as part of their clinical investiga-
tions for a suspected brain tumour were eligible to be
enroled on this study. The accrual period was between
September 2003 and July 2009 and patients were fol-
lowed up until January 2010. Dates of death and pro-
gression were determined from the West Midlands
tumour registry database and clinical records. Histo-
pathologic, clinical and radiological features, as avail-
able, were used to form a diagnosis and reviewed by a
multidisciplinary team. All graded tumours were biopsy
proven. Ungraded tumours were either unbiopsied or
biopsied and found to have a WHO diagnosis with no
associated grade. Approval was obtained from the
research ethics committee and informed consent given
by parents/guardians.

2.2. MRI/MRS

MRI and MRS were carried out, prior to the patient
receiving treatment, on a 1.5 T Siemens Symphony

http://creativecommons.org/licenses/by/3.0/
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Magnetom with a single channel head coil and a 1.5 T
GE Signa Excite scanner equipped with an 8-channel
head coil. Standard imaging included T1 and T2
weighted images of the brain followed by gadolinium
contrast administration and then T1 weighted images
of the head and spine where appropriate. The conven-
tional imaging set was used to delineate the margins of
the primary tumour from known characteristics23 and
the voxel for MRS was placed entirely within this region
encompassing as much of the solid component of the
lesion as possible.

Point resolved single voxel spectroscopy (PRESS)24

was performed with an echo time of 30 ms and a repeti-
tion time of 1500 ms. Cubic voxels of either 2 cm or
1.5 cm length were used depending on the size of the
tumour. Water suppressed data were acquired with
128 repetitions from the larger voxels and 256 repeti-
tions from the smaller ones. A corresponding water
unsuppressed spectrum was also acquired with four
scans for use as a concentration reference. Unprocessed
MRS signals were analysed using the LCModele soft-
ware package7 (version 6.2-0). Each spectrum was fitted
using an experimentally acquired basis set and the
SPTYPE = ‘tumour’ parameter was set for all analyses,
recommended for data which may have low levels of N-
Acetyl aspartate (NAA). Metabolite concentrations
were scaled using the water reference acquisition, assum-
ing an NMR-visible water molarity of (35880 mM).25

Each spectrum and its associated voxel placement
were reviewed. Data were rejected if any of the following
conditions were met: the voxel was placed closer than
4 mm to lipid containing structures, a high level of
non-involved brain was within the voxel, the baseline
was unstable, obvious artefacts were present, the sig-
nal-to-noise ratio (SNR) was less than 4 or the overall
metabolite linewidths exceeded 0.15 ppm.
Fig. 1. Flow diagram of patients studied.
2.3. Statistical methods

The following metabolite lipid and macromolecular
quantities were used in subsequent analyses: creatine
(Cr); glutamine (Gln); glutamate (Glu); lactate (Lac);
myo-inositol (m-Ins); scyllo-inositol (s-Ins); taurine
(Tau); phosphocholine (PC); glycerophosphocholine
(GPC); N-Acetylaspartate (NAA); N-Acetylaspartylglu-
tamate (NAAG); lipid signals at 0.9 and 1.3 ppm and
macromolecular signals at 0.9, 1.2, 1.4, 1.7 and
2.0 ppm. The following metabolite amplitudes were
combined since they are difficult to resolve reliably:
phosphocholine and glycerophosphocholine (TCho);
and NAA and NAAG (TNAA). All quantities were
divided by their standard deviation. Since individual
lipid (Lip) and macromolecule signals (MM) are known
to be highly correlated these signals were combined to
form average quantities labelled Lip and MM respec-
tively. Finally, each quantity was split into quartiles to
prevent outliers from dominating the analysis. Whilst
LCModele does measure other molecules, they are typ-
ically not at high enough concentration to be detected in
tumour tissue and were therefore not considered in this
study.

To test the primary hypothesis, univariate Cox-
Regression was performed on each individual measured
molecular quantity. A multivariate model of survival
was also investigated using Cox-Regression and model
simplification was performed using backward stepwise
model selection. All statistical analysis was performed
using the survival library written for the R software
package.26

3. Results

Two hundred and fourteen patients presented with a
suspected brain tumour during the accrual period and
115 were eligible for inclusion in the survival analysis.
A flow chart illustrating the reasons for exclusion is
shown in Fig. 1. All patient deaths were a direct result
of their primary disease. The mean age of patients was
90 months with a standard deviation of 55 months and
68% were male. From the patients included in the sur-
vival analysis, 78 had graded tumours and 37 were
ungraded.

Hazard ratios, estimated by Cox-Regression, for each
molecular quantity are given in Table 1. Four of the 11
quantities considered were found to be significant pre-
dictors of survival based on likelihood ratio tests
(p < 0.05). The corresponding Kaplan–Meier survival
curves are shown in Fig. 2; median values were used
as cut-offs.



Table 1
A summary of univariate survival hazard ratios and significance values
for all MRS signals analysed. The likelihood ratio test was used for
significance testing.

Signal Hazard ratio p

Cr 1.023 0.874
Gln 0.713 0.022
Glu 1.057 0.710
Lac 1.001 0.992
Lip 1.373 0.039
m-Ins 1.067 0.661
MM 0.838 0.228
s-Ins 1.354 0.050
Tau 1.231 0.153
TCho 1.024 0.875
TNAA 0.734 0.047
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The average and standard deviation of all the four
significant quantities are given in Table 2, grouped by
tumour diagnosis. A summary of the distribution of
diagnoses and frequency of deaths is also provided in
Table 2. Patients diagnosed with pilocytic astrocytoma,
optic pathway glioma, tectal plate glioma, DNET, ger-
minoma or ependymoma in general had high survival
rates. Conversely, patients with medulloblastoma, dif-
fuse pontine glioma, atypical teratoid/rhabdiod tumour
and glioblastoma had lower survival rates, confirming
that the relative survival prospects for the more com-
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Fig. 2. A Kaplan–Meier survival plots for (A) lipids at 1.3 PPM, (B) glutam
the Chi square test for equality.
mon tumour groups was in good agreement with other
studies.27

An informative multivariate Cox-Regression model
of survival is summarised in Table 3. The combination
of glutamine, scyllo-inositol and lipids yielded a signifi-
cant model based on a likelihood ratio test (p = 9e–3).
The hazard ratios indicated that glutamine is a marker
of improved survival whereas lipids and scyllo-inositol
are markers of poor survival, consistent with Table 1.

A scatterplot of glutamine and lipid concentrations
for the cohort is shown in Fig. 3. A significant negative
Pearson product-moment correlation coefficient (r =
–0.26, p = 0.0046) was found between these quantities
indicating a possible metabolic link between these
molecules.

A simple method for demonstrating how the multi-
variate Cox-Regression model could be used to stratify
patients is described as follows. We define a risk score
(z) as the sum of the following values:

z ¼ 0:252� Lipþ 0:315� s-Ins� 0:263�Gln

where coefficients are derived from the hazard ratios in
Table 3. A cut-off value of 0.9 was found to best discrim-
inate between high and low risk cases where z > 0.9 de-
notes a high risk case and z 6 0.9 denotes a low risk
case. Fig. 4, part (A) shows Kaplan–Meier survival
curves for the high and low risk cases. A significant
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Table 2
Patients by diagnostic groups with mean (SD) quantities (derived from concentration quartiles) of MRS signals related to survival.

Diagnosis Frequency Events Gln Lip s-Ins TNAA

Astrocytoma high grade 7 5 2.4 (1.1) 3.0 (1.2) 1.7 (1.3) 1.9 (0.9)
Astrocytoma low grade 31 3 2.7 (1.1) 2.4 (1.0) 1.7 (0.6) 2.6 (1.0)
ATRT 3 3 2.0 (1.7) 3.7 (0.6) 2.3 (1.5) 1.0 (0.0)
Biopsied other 5 2 2.2 (1.3) 2.8 (1.3) 2.8 (1.3) 1.6 (0.9)
DNET 5 0 2.6 (0.9) 1.4 (0.5) 2.8 (1.1) 3.6 (0.9)
Ependymoma 7 3 3.1 (1.1) 3.0 (1.2) 2.7 (1.4) 2.3 (1.0)
Germ cell 6 0 2.3 (1.5) 3.5 (0.5) 2.8 (0.8) 2.3 (1.2)
PNET 24 13 2.0 (1.1) 3.2 (0.6) 2.7 (1.2) 1.6 (0.7)
Unbiopsied diffuse pontine glioma 9 8 1.9 (0.9) 1.6 (0.7) 3.3 (0.9) 3.8 (0.4)
Unbiopsied optic pathway glioma 9 0 3.1 (0.8) 1.2 (0.4) 2.6 (0.9) 3.4 (0.5)
Unbiopsied other 9 0 2.7 (1.2) 1.4 (1.0) 2.9 (1.2) 3.4 (0.7)

Table 3
A summary of the multivariate Cox Regression model for all tumours;
based on MRS detectable metabolites.

Signal Hazard
ratio

Lower 95%
conf.

Upper 95%
conf.

p

Glutamine 0.769 0.568 1.042 0.090
Scyllo-inositol 1.370 1.014 1.851 0.041
Lipid 1.268 0.939 1.761 0.116

Likelihood ratio test p = 0.0091, 3 df.
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Fig. 3. A scatterplot of glutamine and lipid concentrations.
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difference was found between the survival prospects of
the two groups using the Chi square test for equality
(p < 5e–5). Part (B) shows Kaplan–Meier survival
curves for high grade (WHO III, IV) and low grade
(WHO I, II) tumours for comparison. Similar predictive
accuracies between the presented survival model and
histopathological grade are apparent from the survival
curves.

Example spectra are shown in Fig. 5 to illustrate the
spectral appearance of the fitted signals found to be
important in the Cox-Regression. Both spectra were
taken from patients diagnosed with classic medulloblas-
toma. The spectra from patients (A) and (B) exhibit fea-
tures of high-risk and low-risk disease respectively.
Patient (B) was alive at the end of the study (31 months)
whereas patient (A) died after 9 months. The risk scores
(z) for the high-risk and low-risk cases were 2.0 and 0.3
respectively.
4. Discussion

This study has shown that the metabolite and lipid
levels of tumours, detected non-invasively by short echo
time MRS at diagnosis, predict survival in a cohort of
children with brain tumours. Our results confirm that
tumour lipids, previously reported as a prognostic bio-
marker,28 are robust in this larger cohort. Furthermore,
due to the shorter echo time (30 ms) used in this study,
we were able to identify glutamine and scyllo-inositol as
useful prognostic markers.

Our study found that the combination of lipids, gluta-
mine and scyllo-inositol were able to predict survival
with a similar accuracy to histologic grade (Fig. 4). Most
paediatric brain tumours undergo surgery; therefore a
histologic grading is often available. However, MRS pro-
vides additional prognostic information on the tumour,
which may strengthen, or challenge that obtained from
histopathology and other tests. Where a tumour associ-
ated with a favourable prognosis has an MRS profile
implying a more aggressive course, treatment intensifica-
tion may be considered. For tumours that are not biop-
sied, approximately a quarter of all cases, prognostic
information is still available from MRS since it is a
non-invasive technique. Where this information contra-
dicts that available from other methods, such as conven-
tional imaging, an argument could be made for biopsying
the tumour or altering the treatment plan. In addition,
tissue biopsy may present a risk of morbidity for tumours
in certain locations and MRS can provide important
non-invasive information for these cases.

Many children with brain tumours are treated on
sophisticated protocols which stratify patients on an
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increasingly complex set of prognostic markers combin-
ing clinical information, conventional imaging, histolog-
ical markers and more recently tumour biology. The role
of MRS within this process needs to be determined by
its inclusion in large multi-centre clinical trials and this
study demonstrates the importance of including MRS
in such trials.

A strong association between MRS detectable
lipids and tumour grade has been reported in adult
gliomas19–21 and childhood brain tumours22 suggesting
that high intracellular lipid levels are a non-invasive mar-
ker of brain tumour malignancy. Work on cultured cells,
tumour tissue ex-vivo and animal models have shown that
an increase in MRS detectable lipids is associated with
cell stress,29 apoptosis30 and hypoxia as a result of com-
promised vascularity.31 MRS detectable lipids are there-
fore associated with several factors known to be present
in aggressive tumours that have a poor prognosis.

The link between lipids and malignancy is expected
since one of the key requirements for rapidly proliferat-
ing cells is a boost in lipid synthesis, providing constitu-
ent molecules for cellular membranes. The recent work
of Metallo et al.32 has shown that glutamine, rather than
glucose, is the major carbon source for lipid synthesis in
A549 adenocarcinoma cells under hypoxic conditions
through a previously underappreciated pathway. In
our work, intra-cellular glutamine has been shown to
be a prognostic marker of survival in paediatric brain
tumours, supporting evidence of its importance to
tumour proliferation. Furthermore, an inverse correla-
tion between intra-cellular glutamine and mobile lipids
has been shown (Fig. 3) supporting recent studies link-
ing glutamine and lipogenesis.33 Fig. 5 illustrates the
variance of glutamine and lipids present in medulloblas-
toma, and further work is warranted to investigate
therapeutic targeting of these pathways.

The MRS measurement of glutamate and glutamine
is difficult at 1.5 T, due to their overlap with other
signals. However, two recent studies comparing high-
resolution in-vitro and in-vivo MRS34,35 have shown a
good correlation between the techniques for these
metabolites, suggesting that their prognostic strength is
high enough to outweigh the inaccuracy in their mea-
surement. Further in-vivo MRS studies using higher field
strengths, such as 3 T which are now commonly avail-
able in clinics,36 optimised acquisition parameters37

and advanced analysis methods8 will improve the detec-
tion accuracy of these and other metabolites in clinical
practice.

In addition to lipids and glutamine, N-acetyl aspar-
tate and scyllo-inositol were found to be significant
prognostic markers. N-acetyl aspartate is commonly
used as a marker of neuronal density and viability and
has been noted in a previous study as a potential prog-
nostic marker when combined with choline.28 The exact
function of N-acetyl aspartate in tumours is unknown.
In diffuse tumours it may indicate the level of entrapped
neurones, however it is thought to play an important
role in osmoregulation and this could be relevant to its
presence in tumour cells.38 Scyllo-inositol is a novel
prognostic marker, however its role in tumour metabo-
lism is poorly understood and warrants further study.

In conclusion, the study has demonstrated that short
echo time single voxel MRS can be used to predict
patient survival in paediatric brain tumours with a sim-
ilar accuracy to histologic grading. A novel link between
intracellular glutamine and mobile lipids has been iden-
tified, a pertinent finding given recent evidence that glu-
tamine is crucial to lipogenesis in hypoxic tumour cells.
These findings provide information that may improve
both the clinical management and molecular under-
standing of paediatric brain tumours.
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