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Abstract

Contact structure between individuals in a population has a large impact on the spread of
an epidemic within this population. Many techniques and models are used to investigate
this, from heterogeneous age-age mixing matrices to the use of network models in order
to quantify the heterogeneity in the populations contacts.

For many diseases, the probability of infection per contact, along with the exact con-
tact structure are unknown, compounding the difficulty of identifying accurate contact
structures.

In this thesis, the impact that the contact structure has on the epidemic is examined in
several different ways. Analytical expressions for the variance in the spread of an epidemic
in its early exponential growth phase on heterogeneous networks are derived, showing that
the third moment of the degree distribution is needed to fully specify this variance. This
quantifies the impact that very well connected individuals can have on the early spread of
an epidemic through a network.

The dependency of the potential epidemic on the heterogeneity in workplace sizes and
transmission rates is examined. It is shown that large workplaces can increase the expected
size of the epidemic significantly, along with increasing the effectiveness of control strategies
enacted during the early stages of an epidemic.

In addition to this, a synthetic population is constructed for England and Wales from
available datasets, in an attempt to model the spread of an epidemic through a realistic
network of comparable size to the true population. The contact structure that is derived
from this is compared with that taken from two surveys of contact structure in the same
population, using simple models, and qualitative differences are seen to exist between the
surveyed structures and the synthetic population structure.

vii



Chapter 1

Introduction

Since the work of Kermack and McKendrick [Kermack and McKendrick, 1927], the study
of epidemics using mathematical modelling has become widespread. One of the most
prominently studied models is of a disease which has three compartments or classes which
individuals can pass through, namely: a susceptible class, S, containing those individuals
who can contract the disease; the infectious class, I, who currently have the disease and
can transmit it to those in the susceptible class; and the removed, R, which contains
those who have previously contracted the infection and have now been removed from the
dynamics of the epidemic, be that by recovery to immunity from the infection or by death.
This type of model is often referred to as the SIR model for obvious reasons.

Following this example, a large amount of study of epidemics via the use of mean-field
dynamics has been undertaken [Anderson and May, 1992]. For the mean-field dynamics, a
key assumption is that all members of the population have equal probability of spreading
an epidemic to any other member of the population at all times. Though a very useful
assumption, in reality this is not what is observed, and the heterogeneity that is present
in the contact structures of populations has a large impact on the spread of an epidemic
[Keeling, 2005; Rohani et al., 2010] and has become the subject of numerous survey studies
[Read et al., 2008; Mossong et al., 2008; Danon et al., 2012; Read et al., 2011, 2014].
Additionally, methods to infer contact structures through phylogenetic analysis of disease
strains in populations have recently been developed [Volz et al., 2009; Leventhal et al.,
2012; Frost and Volz, 2013].

The theme of heterogeneity in contact structure is the main focus of this thesis. In §3,
the variance of early growth period of an epidemic on a heterogeneous network is consid-
ered. To investigate this, the neighbourhoods of susceptible and infected individuals are
considered, and the epidemic is shown to be density dependent. The work of Kurtz [1970,
1971] relating to density dependent processes is then used to calculate the variance of the
number of infected individuals during the early growth period. The theoretical expression
that is derived is then compared with that seen from simulating epidemics on networks
and a good agreement between the two is seen.

In §4 data detailing the workplace size distribution of the UK is considered. Workplaces
are where a lot of heterogeneity in the number of contacts that people have is generated,
as the number of contacts made in the home or in schools show much less variance than
the workplace. How this distribution, coupled with transmission rates which are modified
to alter the average infectivity of an individual in different sized workplaces, impacts the



spread of an epidemic is examined. This is achieved by fitting several different distributions
to fit the workplace size distribution, which are then combined with the transmission rates
along with the standard final size equation in a mean-field model to estimate the potential
epidemics size for these fitted distributions. The overall and secondary attack rates, which
give the overall proportion of at risk individuals who become infected, and the proportion
of these infected by the initial infected respectively are also considered for the modified
transmission rates. It is shown that for large workplaces sizes, the increased presence of
which increase the predicted final size of the epidemic, coincide with the lowest secondary
attack rates. This has implications for possible control methods, as many infections can
be averted by acting early in this scenario.

In §5 the construction of a synthetic population, whose contact network represents Eng-
land and Wales is described. This is a network model which has the same number of
individuals as there are in England and Wales, which is constructed to align with several
statistics taken from census data. There have been several similar studies in the last few
years which have focused on the USA [Eubank et al., 2004] and Italy [lozzi et al., 2010].
This involves bringing together many different data sources, such as census data, and di-
ary style information to attempt to create a representative contact network for England
and Wales. Once constructed, this can be used to compare the efficacy of possible in-
tervention strategies on a national scale. Various measures of this synthetic populations
contact structure are then compared with two contact structures derived from surveying
the population of Great Britain. These two surveys are POLYMOD [Mossong et al., 2008]
and the UK contact survey [Danon et al., 2012].

Finally in §6, simulations conducted using the synthetic population are compared with
simulations using simpler models (pairwise approximation, who-acquires-infection-from-
whom and meta-population models), where the contact structure is defined by data gath-
ered from the synthetic population, along with POLYMOD and the UK contact survey.
This is in order to quantify how different these contact structures are, along with what is
gained by including so much detail in the full synthetic population.

Firstly in §2, we introduce basic ideas behind mathematical models of infectious disease
spread, from deterministic mean-field models up to stochastic heterogeneous network mod-
els. This leads into §3 which involves theory of stochastic heterogeneous network models.
Each subsequent chapter has its own introduction detailing the necessary background
material.



Chapter 2

Background

2.1 General modelling techniques

The use of mathematical models to aid in understanding the spread of infectious diseases
began in the 18th Century [Bernoulli, 1766], and has become an important tool in the
study and prevention of epidemics. The beginnings of modern mathematical modelling
of diseases can be seen to have begun with Kermack and McKendrick [1927]. Since this
early investigation, there has been much study of epidemic models and they now take
a variety of mathematical forms [Anderson and May, 1992; Keeling and Rohani, 2008],
and are routinely used to inform policy on disease control and contribute towards public
health plans [Ferguson et al., 2003; Riley et al., 2003; Tildesley et al., 2006; Baguelin et al.,
2010].

The most popular modelling approach is to generate a set of differential equations which
describe the infection process for a population, and then examine what the consequences of
this model are. Individuals in the population are put into separate ‘compartments’, which
describe the state of the infection within the individual in question. A member of the
population will begin in a ‘susceptible’ state, and once exposed to infection will progress
through a number of different compartments as time progresses. The most prominent
example of this is the susceptible-infectious-removed (SIR) model, first formulated in
Kermack and McKendrick [1927] and since described in Dietz [1967], Keeling and Rohani
[2008], Bailey [1975] and many other texts.

In this model, at any point in time everyone is either susceptible to the disease, infectious
with it, or removed from the future disease dynamics. This model is obviously a simplifi-
cation of reality, but provides a useful starting point for modelling diseases where previous
infection confers long-lasting immunity, for example outbreaks of childhood diseases like
measles, some respiratory illnesses like pandemic influenza, and historical pathogens such
as smallpox [Keeling and Rohani, 2008]. It is often assumed that the time scales of the
infection and the epidemic are such that the population size will be the unaltered through-
out the epidemic, with the exception of death caused by the infection, i.e. births and death
by other causes are irrelevant.

In the simplest models, the dynamics are taken to be mean-field, meaning that the rate of
encounters between susceptibles and infecteds is given by the proportion of the population
who are in these compartments. This implies that any susceptible in the population has



an equal probability of contracting the infection at any given time, and that they can
be infected by any infectious member of the population, meaning that members of the
population are interchangeable. For the simplest, deterministic, form of this model, the
governing differential equations are given by the following;:

ds

= _— _B38T

dt b5

dl

o = BST =1 (2.1)
dR

Ranh Y

dt fy Y

where S, I and R are the proportion of individuals in the susceptible, infected and removed
compartments respectively, S + 1 + R = 1,  is the removal rate of infected individuals
and (I is the rate at which the infection is passed on to each susceptible. This is an
example of ‘frequency dependent’ transmission, as as the population size increases, the
number of individuals infected by a randomly chosen individual will not increase. As we
have S+ 1 + R = 1, we can in practice work simply with equations for S and I, as the
value of R will be defined by this relationship.

To see an increase in the number of infected individuals we require that dI/d¢t > 0,
which implies that 8/y > 1/S. If we begin in an entirely susceptible population, then we
require that 5/~ > 1 in order to see an epidemic in the population. This number (3/7)
is referred to as the basic reproduction number and is denoted by Ry. This is equal to
the average number of people that a typical individual infects in an entirely susceptible
population.

There are many ways in which this simple model can be amended to reflect reality more
closely. The transmission rates are time independent, which implies that it is equally
likely to that you will transmit an infection to someone else at all points of your own
infection, which is not what is seen in reality [Hall et al., 1979; Lee et al., 2009]. Some
infections, such as influenza, are also known to be seasonal, meaning that the probability
of infection will increase or decrease depending on the time of year. The assumption of
just three compartments is also often questionable, as it is unlikely that at the moment of
infection, an individual will become infectious themselves, implying that the addition of a
latent infected class is desirable. There is a great deal of work also using this susceptible-
exposed-infectious-removed (SEIR) model e.g. Hethcote and Tudor [1980]; Longini [1986];
Li and Muldowney [1995]; Li et al. [1999] amongst many others.

The advantage of using models with additional compartments is that more complex disease
dynamics can be included in the model, along with the ability to examine increasingly
complex interventions. For example using an SEIR model and modelling the impact of
separating infected individuals from a proportion of their contacts, an individual in the
exposed class can be allowed to transmit the disease to their contacts at a lower rate than
those who are infectious, but will not be identified as infectious and therefore will not be
separated from any of their contacts. In theory any number of compartments can be added
to the model to describe different states of the disease that individuals are in along with
age specific compartments. However, doing this increases the difficulty of parameterising
these models and interpreting their output.

As mentioned previously, the most simple models are deterministic, meaning that if the
same initial conditions are used, the dynamics of the disease will always be identical. This



is not what we would expect to observe in reality, as there are many occasions during a
real epidemic where chance events occur, resulting in a different pattern of disease spread.
Along with this, for (2.1), if the value Ry = /v > 1, we will observe an epidemic, which
will infect a significant fraction of the population, whilst if Ry < 1, then this will not occur.
Again this is not what we would expect to see on all occasions, as supercritical epidemics
can die out, and those with values of Ry < 1 can infect a significant number of people. If a
population is very large, then it is reasonable to expect that the final number of infections
would be similar if we could repeat the whole epidemic process with no additional control
interventions, as all random events get averaged out to impart no significant impact on
the spread of the disease. However if we consider smaller populations, the random events
will have a much greater impact on the final outcome [Bartlett, 1957; Lloyd, 2004; Britton,
2010]. Therefore the use of stochastic models is common place, which allow us to examine
the role that the uncertainty inherent in any epidemic has. The disadvantage of using
such models is the increase in difficulty of extracting meaningful statistics from them due
to this unpredictability.

One of the first stochastic models for epidemics is the Reed-Frost model [Wilson and
Burke, 1942; Abbey, 1952; Bailey, 1975], which takes place in discrete time, to describe
an epidemic spreading through a population. Again this falls into an SIR type model,
where individuals are infectious for one time step, before being removed. Here the number
of susceptible individuals during the next time step is given by a binomial distribution;
S(t 4 1) = Bin(S(t), ¢'®), where ¢ is the probability of contact between any susceptible-
infectious pair in the population. Hence the model is sometimes referred to as a ‘chain
binomial model’, as we are effectively picking from a chain of binomial distributions. The
number of infectious individuals at time ¢+1 is then given by I(t+1) = S(t)—S(t+1).

For a simple stochastic STR continuous time epidemic, we again have S(t), I(t) and R(t)
denoting the number of susceptible, infected and removed members of the population at
time ¢, but these are now random variables. In much research on stochastic epidemics,
the length of a infection of an individual until removal is assumed to be exponentially
distributed, with removal rate 7 per unit time (equivalent to removal being a Poisson
process with rate v). Contacts between members of the population also take place at the
points of a Poisson process with rate 5/N, where N is the population size. This choice
of infection length results in the epidemic process {(S(¢),I(t), R(t)) : ¢ > 0} having the
Markov property [Bailey, 1975], as the next event to take place, be that an infection or a
recovery, depends only on the current state, and not the history of infections.

A common technique for investigating stochastic models is to explicitly realise numerous
stochastic trajectories which are defined by the dynamics of the epidemic [House et al.,
2012]. There are many methods that are used to do this including Sellke’s construction
[Sellke, 1983] and Gillespie’s algorithm [Gillespie, 1977], which both give results equiva-
lent to the stochastic model. Alternatively, the tau-leap method [Gillespie, 2001] gives an
approximation to the stochastic model, but is appreciably faster than the Gillespie algo-
rithm. In practice, many simulations are performed, from which it is possible to extract
statistics such as the expected number of infections or the variance possible in the size of
the epidemic at any point in time.

Along with this, there are several analytical methods which are used to describe stochastic
models. One example is diffusion approximations, which examine the fluctuations from
the deterministic trajectory which the stochastic epidemic converges to as the population
size tends to infinity, by defining an appropriate diffusion process which can be used to



describe the stochastic fluctuations around this deterministic limit [Clancy et al., 2001;
Ross, 2006; Dangerfield et al., 2009; Nasell, 2002]. This work is based on the technical
results derived by Kurtz [1970, 1971] and described again by Ethier and Kurtz [1986],
Andersson and Britton [2000] and many other texts.

Another analytical method for examining this particular epidemic is that of directly con-
sidering the master equation (also called Kolmogorov forward equations) of the Markov
process which governs the probability of seeing a particular state for ps;(t) = P(S(t) =
s,I(t) = i) [Keeling and Ross, 2008; Nasell, 2002]. This allows us to analyse the proba-
bility of any possible state occurring with one model realisation per parameter set, whilst
with Monte Carlo simulation, this requires a large number of realisations to achieve. This
method requires the use of differential equations to describe all possible states of the
epidemic, which is £(N + 1)(N + 2). Therefore as the population size increases, the com-
putational cost of this method becomes infeasible, meaning that it is quicker to simulate
the epidemic multiple times directly via Gillespie’s algorithm or an equivalent approach,
and draw from these simulations, conclusions about the probabilities.

Stochastic moment-closure models are also used to describe the behaviour of the epidemic
by taking the moments of the differential equations describing the epidemics [Isham, 1995;
Herbert and Isham, 2000; Krishnarajah et al., 2005; Keeling, 2000; Nasell, 2003; Keeling
and Rohani, 2008]. For example we can calculate the mean, variance and higher moments
of the number of infective individuals in the population at time t using this method. This
method allows us to, in theory, describe the behaviour of an infinite number of simulations,
but, in practice, it is made difficult by the need to increase the number of moments to
exactly describe the system at any given level. For example the second moment is needed
to describe the evolution of the first moment, and the third moment is needed to describe
the second. Therefore it is often the case that any moment above the second is set to zero,
or at a certain level, the moment is approximated by a combination of lower moments. This
is a great advantage over deterministic models, as these essentially follow this process, but
set any moment above the first to zero. Again, however, it is often preferable to directly
simulate a number of realisations, with the necessary number of simulations increasing as
the order of the moment increases.

The addition of stochasticity is one step towards reality. However the assumption that
all members of the population are equally likely to come into contact any other member
of the population is still used in the models described so far. In many populations, not
all contacts that are made are made at random, for example in human populations many
interactions which would be described as contact take place in the home or at work.
Network models do not make this assumption.

2.2 Network models

The use of networks as a generalisation from homogeneous mixing is becoming one of the
most widely used in epidemiological modelling. Contact between two individuals of the
population we are considering forms a link between them. Once a link is established, the
infection can be passed along it in either direction. Specifically what contact is depends on
the disease, i.e. it is different for a respiratory infection compared to a sexually transmitted
infection. There have been many examples of using networks to study the spread of disease
and the review papers Bansal et al. [2007] and Danon et al. [2011] compare several different



approaches to network modelling.

A network can be described by an N x N matrix A, which is called the adjacency matrix.
The matrix will be symmetric if the network is undirected, meaning that if node ¢ has
node j as a contact, then node j has node i as a contact. If the network is unweighted,
r.e. all links are of equal strength, then the entries of A will be binary, where the entry
A;; will be 1 if nodes i and j have a link between them and 0 otherwise. For weighted
networks, entry A; ; gives the strength of contact between nodes ¢ and j, which can signify,
for example, the length of time which ¢ and j spend together. The degree of a node is the
number of contacts that it has in the network. The degree of node i is denoted k; and is
given by k; = Zj Ajj.

In this context, a network gives the set of contacts made by all members of the population
in question, with whom it is possible to receive or transmit an infection. Some of the
earliest uses of networks in this way detailed the spread of sexually transmitted diseases
e.g. Klovdahl [1985]; May and Anderson [1987]. Such diseases are ideal for study using
networks due to the well defined mechanisms required for transmission to occur, unlike
with many other diseases where short-lived interactions can result in transmissions, for
example with measles [Paunio et al., 1998] or respiratory infections like influenza.

In the network, a pair is two nodes ¢ and j, who are neighbours of each other. A triple is
given by three nodes i, j and [, where ¢ and j are neighbours and j and [ are neighbours.
If 7 and [ are also neighbours, then this triple forms a triangle in the network.

Bearing this in mind, the progression of an epidemic on a pre-specified network avoids the
problem of how to reconstruct a contact network. In this scenario the epidemic will take
place on a predefined or static network, or one which is evolving as defined by a set of
given rules.

2.2.1 Network properties and impact on disease spread

There are several generic properties of networks, each of which can have an impact on the
spread of a disease through the network.

2.2.2 Degree distribution

The degree distribution of a network is the distribution of the number of neighbours
that the nodes in the network have. This is defined by a function P(k), which gives
the probability that a node selected uniformly at random will have k£ neighbours. It is
clear that the higher the degree of a given node, the more likely it is to become infected
during an epidemic, and it is also more likely to spread the infection once it has become
infected. It has also been shown, that as the population size diverges, that if there is a
large variance in the degree distribution, such as in a scale-free network then the infection
can spread very quickly through the network [Barthélemy et al., 2004], and if the variance
is also divergent, then there will be no epidemic threshold in the network, meaning that
no matter what the ratio between removal and transmission rates, the disease will always
infect a non-zero proportion of the population [Bogund et al., 2003; Pastor-Satorras and
Vespignani, 2001; Chatterjee and Durrett, 2009].



In more realistic networks however this increase in variance of degree distribution can
help to control the spread, since if the individuals who have many more than the average
number of contacts, termed “super spreaders”, can be identified and removed from the
dynamics, then this can be much more effective than random control methods [Lloyd-
Smith et al., 2005; Meyers et al., 2005] and even prevent large outbreaks from occurring
[Crépey et al., 2006]. In the case of sexually transmitted diseases or injecting drug users,
it is more realistic to expect that these people can be identified and attempts can be made
to remove them from the dynamics [Magiorkinis et al., 2013].

Along with super-spreaders, who have a large number of contacts, for diseases which
are spread through contaminated droplets, such as SARS and influenza “super-spreading
events” have been observed, which environmental conditions can be responsible for [Riley
et al., 2003; Galvani and May, 2005; Lipsitch et al., 2003]. These events are unpredictable,
which makes preventing them difficult, but we can model them by including more people
with greater numbers of contacts if we desire.

In reality the exact network upon which a disease spreads is unknown, and in many
cases, such as respiratory diseases in humans, essentially unknowable. However without
assuming something about the contact network we are unable to progress at all. There
have been many attempts made to characterise contact patterns, for example Mossong
et al. [2008], Liljeros et al. [2001] and Danon et al. [2012], which lend weight to the opinion
that there is a heavy tail in the distribution of the number of contacts that people have.
This means that in general it is not expected that the distribution of number of contacts
would be Gaussian or binomial, but is more likely to be negative binomial or power law
distribution.

2.2.3 Clustering

The level of clustering in the model gives us the probability that two contacts of a randomly
chosen individual are contacts of each other. It is often denoted by ¢. If the level of
clustering in our model is 0, then the probability of two of my contacts contacting each
other is 0, whilst if it is 1, then it is certain that they will be contacts of each other.
Informally, this is equal to 3 times the number of triangles in the network, divided by the
total number of triples in the network. To calculate it for a given network we perform the

following calculation,
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An increase in clustering will reduce the extent to which an infection will spread [Watts and
Strogatz, 1998; Eames and Keeling, 2003; Kiss et al., 2005; House and Keeling, 2011a] along
with increasing the time to reach the peak of the epidemic [House and Keeling, 2011a].
This is due to the fact that for the infection to spread, it is necessary for an infected
individual to have susceptible contacts. Additionally, it is obvious that to become infected
in the first place, one of your contacts must have been infected before you. Therefore in a
highly clustered network, the probability of having a large number of susceptible contacts
rapidly decreases as the epidemic progresses, since to get infected in the first place, a
number of your own neighbours are likely to have been infected before you. In contrast, in
a network with low or no clustering, the depletion of susceptible contacts that an infected
person will have is slower, and will be O(I), due to the fact that your neighbours are not



also neighbours of the infected you, or the node which infected that node and so on, and
are therefore less likely to have picked up the infection previously.

In terms of combating a particular infection, contact tracing is a common tool for control-
ling and assessing the spread of an epidemic. This is the practice of tracing the contacts
which were made by an infectious individual, as the likelihood that this will lead to an
infected individual is greater than choosing from the population at random. Once traced,
these contacts can be quarantined if necessary, or in the case of animal diseases, where
farms are taken to be nodes rather than individual animals, the farms can be prevented
from further export or import of animals and cordoned off. This has been seen to be
successful in identifying infected individuals for sexually transmitted diseases [Go6tz et al.,
2005; Fish et al., 1989] and it was somewhat successful when used in Great Britain during
the spread of foot-and-mouth disease in 2001 [Ferguson et al., 2001a,b] and the SARS
outbreak of 2002-03 [Lipsitch et al., 2003].

This can be effectively incorporated into a network model; contacts of infected nodes can
be identified, with a certain efficacy, and then quarantined if infected. This contact tracing
is usually accompanied by a specified efficacy within a model, as in reality it is unlikely
that for certain disease types, all contacts will be found. It has been shown [Eames and
Keeling, 2003; Kiss et al., 2005; House and Keeling, 2010], that as clustering increases, the
levels of efficacy needed to produce a given reduction in disease spread decreases. Again
this is because a randomly selected, infectious node is likely to have a greater number
of infectious contacts in a highly clustered network than in a network with no clustering,
meaning that the average number of infectious individuals found each time contact tracing
is performed will be higher. However, as efficacy increases towards 1 this result is reversed
[House and Keeling, 2010], which demonstrates how complicated and subtle the interaction
of clustering and the spread of the epidemic is.

In reality, we may expect that the level of clustering will be non-zero and a survey of the
UK population [Danon et al., 2012] which had over 5,000 responses reports the level of
clustering in the population as being as high as 0.38.

2.2.4 Degree assortativity

A degree assortative network is one in which the high degree nodes are contacts of other
high degree nodes and low degree nodes are neighbours of low degree nodes more than
would be expected at random. A degree disassortative network has nodes with high and
low degree as neighbours more commonly than would be expected at random. This is often
denoted by r. To calculate this for a given network, the following is calculated,
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probability distribution of the remaining degrees of the nodes at either end of a randomly
chosen edge [Newman, 2002b]. This lies between -1 and 1, which define a perfectly disas-

sortative and assortative network respectively.

where ¢, = , which is referred to as the remaining degree, and e;j is the joint

If an epidemic has only one introduction of an infected individual, then the maximum
number of infections that can occur in an epidemic is equal to the size of the largest



connected component of the network. In a network with a divergent number of nodes, if
the largest connected component is a non-zero fraction of the total network size, then this
is referred to as the giant component of the network. It was shown in Newman [2002b],
that all other things being equal, the probability that a giant component exists is greater
for an assortative network than for a random network, and that in turn the probability
is greater for a random network than for a disassortative network. This suggests that
combating disease on assortative networks can be more difficult than other networks, due
to the fact that high degree nodes are connected to each other, removing these nodes will
be redundant until a high proportion of them are removed. This increases the difficulty
of combating the spread of diseases where the networks are assortative, as is the case for
sexual activity, compounding the impact of many sexually transmitted diseases [Potterat
et al., 1985; Granath et al., 1991], along with the practice of needle sharing and the number
of injecting partners in injecting drug users [Mills et al., 2012].

The opposite is true for disassortative networks in that they can be easily broken up by
removing the high degree nodes. This means that these types of networks are especially
vulnerable to targeted attacks and as many networks which are considered valuable, such
as the internet and food webs are disassortative [Martinez, 1991; Zhang et al., 2012], these
may be more vulnerable than anticipated. In terms of disease control, a disease transmit-
ting on a disassortative network, may be more readily controlled if the high degree nodes
can be identified and removed, though in practice this would not be straightforward.

An example of a disassortative network is given in Kiss et al. [2006a], where the difference
between a network describing sheep movements which was derived from data regarding
movements within the UK is compared to a randomly constructed network of the same
size and degree. The nodes of these networks are all places which sheep move to and from,
so include sheep markets along with farms. These data driven networks are disassortative,
meaning that nodes with many connections are more likely to contact nodes with lower
degree. This is due to the fact that the most likely route of movement is from a sheep
market to any number of farms, which results in the market having a higher degree than
the farms to which sheep travel.

This comparison shows that the proportion of nodes which become infected is higher
for random networks. This can be explained by the disassortativity of the data driven
networks, as the linking of high degree nodes with low degree ones implies that it may
take longer on average to reach highly connected nodes in the network, and from there
will transmit infection to nodes with lower than expected degree, slowing the spread of the
epidemic. Additionally these data derived networks also have a longer path length than
the randomly constructed networks, the impact of which is discussed below.

2.2.5 Average shortest path length

Path length (or shortest path length) in a network is the number of steps required to
get from one node to another. The average shortest path length is the average of this
number over all pairs of nodes which comprise the network. This is defined per connected
component, since otherwise we would get oo for all networks which are not fully connected.
One can also average the shortest path length from one specific node to all others in the
network, which gives an indication of how likely this node is to become infected during
the epidemic; as this average increases, more and more individuals must become infected
before the epidemic will spread to this node. Generalising this, as the overall average

10



shortest path length increases, the speed of spread of the epidemic will be decreased and
the rate of spatial spread will also decrease [Watts and Strogatz, 1998|.

To move away from the mean-field assumption, a simple way to introduce some structure
into our model is to consider the spread of an epidemic on a lattice [Sato et al., 1994].
Here contacts are defined to be the neighbours of each node on the lattice. This a realistic
assumption to make in certain populations, such as in the spread of fungal parasites from
plant to plant [Otten et al., 2004], but for animal and human populations this is often
not a close approximation of reality. This can be extended to lattices of more than one
dimension and also include links to k nearest neighbours, rather than simply immediate
neighbours.

As the lattice has connections only between nearest neighbours (or some number k nearest
neighbours) the average shortest path lengths will be high. For example to get from one
end of the lattice to the other, an infection must pass through every connecting node.

To avoid this problem the lattice can be re-wired by removing links between certain neigh-
bours, and attaching to a randomly chosen node in the network. This will significantly
decrease these large path lengths which occur. This was popularised by Watts and Stro-
gatz [1998], and these networks were known as ‘small-world’ networks, due to the fact that
as the path lengths were significantly shortened, there were far fewer nodes needed to be
passed through in order to reach anyone in the population. This explains the ‘small-world’
problem examined by Milgram [Milgram, 1967] which gave rise to the notion of six degrees
of separation, as if this is assumed to be representative of the human population, any one
person could then reach any other person, by going through (for arguments sake) six or
fewer intermediaries.

2.2.6 Models and modelling techniques

Having discussed the properties of networks that impact on disease spread, we will now
discuss different network models and techniques used to investigate disease spread on
networks.

The first step away from mean-field mixing, where everyone in the population is able to
contact everyone else, is where every individual in the population has a given number n
contacts. These types of networks are called regular networks. The spread of an epidemic
on these networks have been compared to the mean-field models [Keeling, 2005] and the
impact of small-world effects [Santos et al., 2005]. As noted previously, regularity is a
reasonable assumption for certain populations for [Otten et al., 2004], however for networks
of human interaction, this is a poor assumption Wadsworth et al. [1993]; Liljeros et al.
[2001]; Mossong et al. [2008]; Danon et al. [2012].

Heterogeneity in the number of contacts that individuals have is included in many network
models. For example in Erdés-Rényi (ER) random graphs the link between every pair of
nodes is present with a given probability p. For our purposes, when the construction of a
network is needed, the configuration model [Molloy and Reed, 1995] is used to construct
the network from the degree distribution.

The final size of an epidemic with a given degree distribution along with the mean degree
of the individuals infected has been derived [Newman, 2002a] and aspects related to the
ability of an epidemic to invade the population, including the invasion threshold of an
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epidemic has been calculated [Keeling, 1999; Diekmann and Heesterbeek, 2000].

In most cases, the network upon which either theoretical or simulation based investigation
of epidemics is performed are static networks, fixed at the starting point of the epidemic
e.g. Newman [2002a], Volz [2008] and Mossong et al. [2008] to name a few. However there
are also examples where this network is allowed to evolve over time, interacting with the
spread of the epidemic e.g. Kamp [2010], Miller and Volz [2012] and Pastor-Satorras and
Vespignani [2001]. In the case of Pastor-Satorras and Vespignani [2001] along with May
and Lloyd [2001] and some models of Miller and Volz [2012] the network of contacts is
changing constantly. In reality, the contact network for a respiratory infection will have
some links which are always present (made often or daily), and some which are more short
lived, such as those made whilst using public transport. This has been considered by
including a ‘global’ infection term [Kiss et al., 2006b; Ball and Neal, 2008], which allows
the disease to be passed between members of the population that do not have more than
one interaction.

Similar techniques to those developed for stochastic mean-field models have been used for
investigating stochastic network models, with moment-closure methods e.g. Taylor et al.
[2012], Rand [1999] and Rogers [2011] along with Kolmogorov-forward equation techniques
[Allen et al., 2008; Simon et al., 2011].

Additionally, we note the use of a probability generating function method [Volz, 2008;
Miller, 2010], which allows us to succinctly denote properties of the network which influence
the dynamics, to derive a small number of nonlinear ODEs that describe the dynamics of
an SIR infection on a random heterogeneous network.

In general to consider the dynamics of the epidemic in continuous time, a Markov chain
model is used. For an SIR-type epidemic model on an arbitrary graph with N nodes,
Markov chain would involve 3 ODEs, which quickly becomes computationally intractable.
The method proposed by Ball and Neal [2008] involves creating a configuration model
network at the same time as the epidemic tree, which can be defined by 2M ODEs in the
deterministic large N limit, where M is the maximum number of contacts that any one
node has.

By making an assumption about the neighbourhoods of individuals on the network a far
smaller equation set has been derived [Volz, 2008]. A sophisticated convergence proof
[Decreusefond et al., 2012] has demonstrated the exactness of this assumption, and hence
the equation set, in the large N limit.

To investigate the inherent stochasticity of epidemics without a large increase in dimen-
sionality has led researchers to consider the diffusion limit. This general approach to
stochastic processes is typically either attributed to N G van Kampen [1992] or Kurtz
[1970, 1971]. Here the stochastic Markov model can be approximated by a set of determin-
istic ODEs, with the stochasticity being characterised by scaled white noise processes with
magnitudes defined by the transition rates between the states of the Markov model.

Such methods have been used to derive a low dimensional model in which properties of the
noise in a stochastic epidemic model can be investigated analytically [Alonso et al., 2007;
Black et al., 2009], by Ross [2006] to obtain expressions for the mean and variance of a
meta-populations model, and by Colizza et al. [2006] to model the effect of air travel on the
spread of epidemics in a large-scale network. These models are attractive since they have
the same dimensionality as the deterministic limit [Volz, 2008], but allow investigation of
the stochasticity of the epidemic.
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These methods are employed in the next chapter in order to investigate the variance in
the early growth period of a stochastic epidemic on a heterogeneous network.
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Chapter 3

Early growth variance of epidemics
on heterogeneous networks

In this chapter we will apply the results of Kurtz [1970, 1971] to SIR-type epidemic dynam-
ics on a configuration model network, as was done for SIS dynamics on a regular graph by
Dangerfield et al. [2009]. Using this we obtain a four-dimensional set of stochastic ODEs,
from which we derive an analytical expression for the variance of the asymptotic early
growth of an epidemic on a network given its degree distribution. We simulate epidemics
on various networks to confirm the utility of our analytical results.

3.1 Model description

The following sections are an extended look at the results published in Graham and House
[2013]. Firstly we discuss the construction of a network model and the limitations of using
network models in the way that we have used them.

There are N individuals connected to each other on a configuration model network. This
implies that there is no clustering in the population and so there are no short loops in
the population. This means that the consideration of depletion of susceptible contacts is
made simpler due as we can be sure that when an individual ¢ is infected by individual j,
that the neighbors of ¢ will not have been infected by individual j.

Individuals are compartmentalised by their disease state S, I, or R, and their number
of neighbours on the network, their degree, k.Individuals of type S; become I at a rate
equal to the product of the transmission rate 7 and their number of infectious neighbours.
Individuals of type I become Ry at a rate .

As the aim of this work is to get a theoretical result using diffusion methods, I am interested
in the large N regime, in which [Sg] denotes the expected number of susceptibles of degree
k, [Ir] the expected number of infectious individuals of degree k, and [AB] for the number
of connected pairs of individuals on the network where one is type A and the other is type
B. Omission of a subscript denotes implicit summation, e.g. [S] = >",[Sk]. Proportions
of the population who are, say, susceptible and of degree k are represented by the bracket
less equivalent of the number of the population sharing the same description, therefore in
this case by Sg.
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For the diffusion limit, the population size N is allowed to increase towards oo, whilst
keeping the proportions of susceptibles and infecteds of different degrees constant. What
follows is a description of the deterministic process that the epidemic approaches when
the process can be described as ‘density-dependent’. Using appropriate theory [Kurtz,
1970, 1971], the stochasticity of the system can be characterised, and used to calculate the
variance of the epidemic during its early growth phase.

Limitations of this approach are now considered.

3.1.1 Limitations of network models

The main limitation of network models is that the true network on which an epidemic will
take place is unknown. Using a degree distribution to describe a full contact network is
limited and considering an unweighted network means that much subtlety is lost in the
description of the contact structure of a population.

As mentioned previously, the network is assumed to be unclustered, which is known to
be a poor assumption [Liljeros et al., 2001; Danon et al., 2012]. Additionally, this has a
significant impact on the dynamics of an epidemic as described in §2.2.3.

It is also assumed that the network upon which the epidemic is spread is a static network,
meaning that the network is the same every day, which is again unrealistic.

Next notation and some standard approaches to the SIR on a network are described.

3.1.2 Notation, mean field and pairwise models

The degree distribution is given by P(k) as is noted above, and dj, is used to denote the
proportion of nodes which have degree k. Ndj gives the number of nodes which have
degree k. Also of use to the analysis of this system is the probability generating function
(pgf) of the degree distribution. This is denoted by g(z) and g(z) = >_ dgz”*. Note that
this gives a simple way of expressing many aspects of the system, e.g. ¢'(1) = > kdy, = n
where n is the mean of the degree distribution.

Another assumption about the system is that for susceptible nodes, infection across each
link is independent of all other links that the node in question has. The implication of
this, is that if we calculate the probability that a node with one link which is selected
uniformly at random, conditioned on having only 1 link, is susceptible at time ¢, and label
this 6, then the probability that a node of degree k is susceptible at time ¢ is given by 6*.
If there are no nodes of degree 1, or if we were considering a complete graph or a regular
network, then we can think of this value as being the probability that infection will have
passed down a specific link.

Using this variable, it is clear that § = [S1]/Nd; and that [Sy] = Nd0%. This therefore
also gives that [Sp] = Ndi([S1]/Ndy)*. Using the pgf allows us to express [S] as, [S] =
ST[Sk] = 3 Ndp* = Ng(6). Tt follows that instead of writing down equations that allow
[S] to be tracked, 6 can be used in its place.

The progress of the epidemic can be described by a continuous time Markov chain, as the
state of the system at a future time only depends on its current state. Ostensibly this can
be described using a three-dimensional Markov chain, where we track the values of [S] (or
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0), [I] and [R]. However as the process is running on a network, the rates of change of
these state variables is dependent on the network itself. For example to become infected,
a susceptible node must have an infected neighbour, which therefore means that the rate
of [S] — [I] depends on [ST].

In fact it is simple to write down the evolution of these three state variables.

(8] = —7[s1],
1] =7[S11=(1], (3.1)
[R) = 1]

We therefore see that this set of equations is unclosed, as we need to know the evolution of
[SI] to fully specify the system. Therefore rather than a three-dimensional Markov chain,
a four-dimensional one must be calculated.

Indexing the process of infection or recovery in terms of degree is useful to write down
the rate of changes for the pairwise variables. This is done in Eames and Keeling [2002].
For example to gain an [SI] pair, we can gain one whose susceptible individual has k
neighbours and the infected individual has [ i.e. an [SiI;] pair. Once these have all been
calculated, simply summing over the indexes leads to the differential equations needed
to track the system. When this is done, the problem of needing to keep track of more
variables again occurs, as we have terms involving the number of triples in the system.
As can be seen in House and Keeling [2011b], the differential equation for the full set of
equations at pair level is given by:

(5] = —71s1]

[1] = 7[S1] = 11]

[SS] = —27[SST] (3.2)
[S1] = 7([SSI] — [IS1] ~ [SI]) = ~[ST]

[I1] = 2r([ISI] + [SI)) — 24[I1] .

meaning that the five-dimensional system must become a seven-dimensional one as [SS]]
and [/SI] must also be tracked. This need to increase the size of the system is one which
continues ad-nauseam as to give the exact dynamics at the n-th level requires the inclusion
of (n 4 1)-th level variables (singles depends on pairs, pairs on triples, ... ).

To make progress in this direction, an assumption about the neighbourhood must be made.
An approach is to derive pairwise equations by approximating the triples by some function
of pairs or lower variables such as #. This is often done using moment-closure techniques
[Rand, 1999; Rogers, 2011; House and Keeling, 2011b].

To derive pairwise equations, the method used here is to exploit an assumption about the
neighbourhood of each node. This is due to the fact that when an infection or recovery
takes place, the number of pairs of type [AB] will be changed in a way which is dependent
on the neighbours that the node has. This is why extra consideration is needed to write
down a low-dimensional form for this process as the population size becomes large, since
this requires the distribution of neighbours of each node.

Note that whatever assumptions are made, the equations that result from it, must agree
with (3.2) at pair level. For example when calculating the differential equation for [S], the
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result must be [S] = —7[SI] and the recovery term for [/] must be given by —2v[I1].

The following assumption is made about the neighbourhoods around a susceptible of de-
gree k: the distribution of susceptible, infected or removed neighbours of this node is
independent of k. This is the same assumption that was made in Volz [2008] and was
proven to be asymptotically correct in Decreusefond et al. [2012]. Defining ng, n; and
ng to be the number of susceptible, infected and recovered neighbours respectively, the
probability of a neighbourhood is given by a multinomial distribution as follows:

k —z—y, T
P(ng = z,ny = ylk) :Df,y,k = <Jr,y,k—:):—y> (1—ps —qs)* Ypéqd (3.3)
where,
[SS] [ST]
PS==37a7°95= <= 3507 - 3.4
S kS T S ekls 4

Here the term (a;,y,kk—:c—y) = k!/zly!(k—x—y)!, is the multinomial coefficient. The fact that
ps and gg are given by (3.4) means that no matter where on the network the susceptible
node is, the distribution of its neighbours will be the same. This implies that after the
epidemic begins, some time must be allowed to pass, in which the initial conditions of the
system are forgotten before this assumption is accurate.

Note that we have not yet made an assumption regarding the distribution of neighbours
around an infected node. This is due to the fact that this is far more complicated than
the neighbourhood of a susceptible, as the longer a node is infected, the more infected
(or at least non-susceptible) neighbours it is likely to have. This is analysed in detail in
§3.2.

3.1.3 Density dependent processes

To calculate the variance of the epidemic process on the network, the work of Kurtz [1970,
1971] is used. There are a few conditions that the process must satisfy in order for this
to be used, the first one of which is that the process can be thought of as a density
dependent one. The definition of a density dependent process is given in Kurtz [1970], and
is conveniently set out in Ross [2006].

To begin this definition note the following; the epidemic process is a continuous-time
Markov chain, which is denoted Xy, with a discrete state space labelled Exy C ZP, where
D is the dimension of the state space. The rate of transition between states j and j+1, with
J,j+1 € Ey is given by gn(j,j +1). The following is the definition of a density-dependent
process given in Kurtz [1970]:

Definition 1. A one parameter family of Markov chains, Xn(t), with state space En C
7P is called density dependent if and only if there exist continuous functions f(z,1), where
x € RP, 1 € RP, such that the rates of transitions corresponding to Xn(t) are given by

Defining Yy (t) = Xn(t)/N as the density process, and F(z) = >, [f(z,1). In Kurtz [1970]
it is shown that Yy satisfies

LE(Yn(s) = E(F(Vn(5))) (35)
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and that for all e > 0

lim P(sup Y (s) — Y(s)| > e) ~0, (3.6)
N—oo SSt
where Y (s) is the solution of
d
&Y(s) =F(Y(s)) . (3.7)

Essentially, this definition tells us that if the transition rates in the density process Yx(t)
depend only on the current state through the density j/N, then the Markov process Xy (t)
is density dependent.

This tells us that even though the process Yy is stochastic, as N — oo it can be approxi-
mated by a set of deterministic differential equations, here defined by Y, such that (3.7)
holds.

Along with this calculation of the deterministic approximation, Dangerfield et al. [2009]
shows how the variance of the process during the early growth period can be calculated
using the work of Kurtz [1970, 1971], which is the goal of this analysis. Therefore it
remains to show that the epidemic process in question is density dependent.

For the system in question let Xy = ([S1], [S2], ..., [Sm], [11], [L2], - - -, [La], [SS], [S1], [11]),
where M is the number of neighbours that the most connected node in the system has. This
therefore defines Yy = ([S1]/N,...,[Sm]/N,[11]/N, ..., [Iym]/N,[SS]/N,[SI]/N,[II]/N).
We can calculate the change in the variables of X, denoted above by [, by considering
the events that can occur. Namely, these are the infection of a susceptible of degree k,
who has x susceptible neighbours and y infected neighbours getting infected. The other
event that can occur is an infected of degree k who has again = susceptible neighbours and
y infected neighbours being removed from the dynamics via recovery or death.

The changes in the variables X caused by the first event is given by

lT,:C,y,k’ = (_5k‘,17 _5]6,27 ERE} _5/€,M7 5k,17 5]6,27 s 75k‘,M7 _va r—=1y, 2y) . (38)

The delta functions are needed because, for example, [S1] and [I1] only change if the degree
of the susceptible node is 1. There will always be an increase of the number of infecteds by
1, and the fact that the central susceptible has = susceptible neighbours giving z [SS] pairs,
these are double counted which gives the —2z change in [SS]. The y infected neighbours,
which make y [ST] pairs, become [II], which get double counted explaining the 2y change
in [IT], whilst the = [SS] pairs become [SI] pairs, explaining the x —y change in [SI]. For
the second event, following a similar process,

l%x,%k = (0, 0, e ,0, —5].371, —5k72, ey _5k’,M7 0, —Z, —2y) (3.9)

First consider the transition rates related to the change in variables given by [, ; , 1, which
is denoted by qn (7,7 + lrzyk). The assumption given at (3.3) is used to calculate this.
For the infection event, the rate of transition is given by

qN(j:j + lT,:p,y,k) = Ty[Sk]Df,y,k ) (310)

as for this event to occur, a susceptible of degree k with x susceptible nodes and y sus-
ceptible nodes must be infected, which gives the [Sk]Diy,k term as this is assumed to be
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the number of such nodes. The rate that these nodes are infected is 7 multiplied by the
number of neighbours who are infected, hence the 7y part. When this is written out in
full, using the value of Df y. Siven in (3.3), the following expression is obtained:

s i) o) (58 D)

:N<Ty[5]\’;](fl?,y,klix—y> Cf\}g] Zklkw]\,;]>x<[if] Zkz[%])y

L 18S1+1s1] 1 ka-y
(_ N zkk[%]> ’

Z:Nf(j/N, lT,:Jc,y,k) )

(3.11)

where f(j/N,l; .,k is given by the term which is preceded by the IV after the second
equality sign above and is simply given by 7y ([Sg]/N )Df y.k- Therefore the infection events
can be thought of as being density dependent as they satisfy definition 1.

Using (3.7), the development of the system of variables Yy (¢) due to transmissions can be
approximated by the following deterministic calculation:

d .
ay(t) = Z Z lT,x,y,kf(J/Na lT,:p,y,k) (3.12)
k Y

As an example consider what occurs for each [S|/N term. From (3.12), it can be seen
that

d [Sn] _

A Z Z —0n,kf(3 /N, L gy k)
k ZE’
[Sy] 5 (3.13)
= =T 2 ¥Diyn -

x7y

where the summation over z and y leads to simply calculating the average number of
infected partners of a node with degree n. Using (3.3) this is given by n[SI]/ )", k[Sk].
The differential equation governing [S,]/N is therefore:

A[S] _ IS _nlST
dt N N S, k[Sk

(3.14)

Summing over all values of n will give the differential equation for [S]/N, which should
agree with (3.1). This gives:

d 18] _ _1gpnZnnlSa [51] (3.15)

atN SeklS N

as is expected from (3.1).

Making similar calculations for [I]/N gives that for the transmission events

d []

N T[SI]NZnn[S"] s8] (3.16)

SikS] TN
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which again agrees with (3.1).
Now consider [SS]/N. Following the same method gives:

SSIS
dt N ZZ Sk = Zk — D[Sk (Z[f k]:%Sk]]) . (317)

Again using the variable 6, which is the proportion of degree 1 nodes which are still
susceptible this expression can be re-written to involve the pgf g(). Remembering that
[Sk] = Ndib* gives,

d| [Ss)is1) or (SS][S1]
i Z"’ VIS R = W 2 - DN o S e
27N [SS][SI] 62", k(k — 1)d082
N N? (0, kd0F1)2
_[85)[S1] ¢"(6)
N N g'(9)?

(3.18)

For ease of notation, instead of writing [A]/N to denote the density of a variable, such
as [S]/N, define [A]/N = (A). Lumping together the differential equations for [Sk]’s and
[Ix]’s and performing similar calculations for [SI|/N and [II]/N ((SI) and (II)) gives
the following set of equations which govern the evolution of the system due to trans-
mission processes, which are indexed by 7 to signify that they only include transmission
terms:

(8)r = —7(S1)
(I)T = T(SI)
N g9"(9)
(SS)r = -2 (SS),ESI) 700)° (3.19)
(51, = (505 (159) - (51) 1)
Il(e)
(I1), = 27(S1)(SD)?, OER

Note that this set of equations requires knowledge of the change in 8 as time increases. As
S = g(0), it turns out that it is easier to keep track of @ instead of S, as the calculation
of S given 6 is simpler than the reverse. When the differential equation governing 6 is
calculated, it is seen that

(S1)
g0)
This is easy to show from (3.14), if n = 1 and noting that § = (S1)/d; and (S) =
0%,

p—— (3.20)

For the recovery events,

o Goj +1) = AIDL = Ny

Iy
"Ey’ N 7y7k ) (3.21)
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For this to satisfy the definition of a density dependent process, ’y[l’“]Dl & must be a
function of variables in Yy, which is denoted f(j /N lyzyk). One way to ensure that this
is the case is to make an analogous definition for D y.k 88 is made for DS This would
mean defining

e e ) () ()™

where all bracketed terms from X, such as [ST], can be replaced by their equivalent term
from Y}, as the division by N would be cancelled in each term.

z,y,k*

This approach however does not correctly capture the neighbourhoods of the infecteds,
namely that the longer that a node has been infected, the more infectious neighbours
it is likely to have. Attempting to make a more accurate approximation for Diqu is a
non-trivial problem, and will be returned to later in this section.

Note that in (3.2), the terms which involve recovery events (those multiplied by ) are
all at the level of pairs or lower. Hence whatever assumption is made about DI vk 1O
generate the pairwise approximation terms, the terms generated must agree with those in
(3.2).

To calculate the recovery terms according to (3.7), the following calculation is made
7YN Zzl% ,y,kf ]/N l'ymyk (3'23)

This gives no terms for (S) or (SS), but does for the rest of Yy.

For (I,,),
=33 —n,k(Ix)DL, = —v(In) Y DI, =T, . (3.24)
k zy z,y

Summing over n then gives (I) = —v(I), which agrees with (3.2).
Considering (ST) leads to evaluating

I)=—y) ()Y DL, . (3.25)
k €,y
To agree with (3.2), this also gives the constraint that if the Di y. oust satisfy both

> (I)> DL, =(I)and > (Ix)> aDL, ;= (SI). (3.26)
k x,y k T,y

Note that the first condition is automatically satisfied for any sensible assumption about
Di ko 85 Z%y Diy’k = 1, due to the fact that this sums over all possible arrangements
for neighbours of a degree k infected node, and therefore must be equal to 1.

To finish this calculation consider the differential equation governing the recovery events
involving (I71). This gives

IT) = =2y ) (Ix) Y yDi,p = —29(11) (3.27)
k T,y
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which again must match with (3.2), giving >, (k) >_, , yD! gk = ).

Putting together the transmission event equations with the recovery event equations from
(3.2) leads to the following closed, but inexact set of equations:

(51)

g'(0)

(I) = 7(51) —~(I)

o o g'(6)
(55) = ~2r(S8)(ST) s

(SI) = 7(S1) ( 9°(0) ((SS) - (51)) - 1) — ~(S])

g'(0)
N g"(9)
(1) = 2r(SD)(ST)

b= —r

[\

(3.28)

Q

N

+27(SI) —2y(11) .

Q

Note that the only place that terms involving (II) appear is in the differential equation
for (II), which means that this is not needed to fully specify the system. Further, the
calculation of this variable is the only place in which knowledge of the number of infected
partners of an infected node is needed, therefore this is not needed to understand the
system dynamics either. Therefore instead of considering Di,y,k i.e. the probability of
having x susceptible neighbours and y infected neighbours for an infected node of degree
k, we can ignore the number of infected neighbours so Dik = Zy Diy%k can be used
instead.

This leaves a closed, density dependent system of dimension four which is governed by the
first four differential equations of (3.28).

The deterministic approximation to the stochastic process has now been calculated, and
can be written succinctly if instead of considering Yy as defined previously, the system
Zn = (0,(I),(SS),(SI)) is considered, as it has been shown that Yy can be written in
terms of the variables in Zy. The deterministic system of equations in (3.28) can be
summarised as

Zn =Y lefe(Zn,le) (3.29)

where e refers to any event that can occur, i.e. a susceptible with a given degree and a
given number or susceptible and infected neighbours getting infected, or an equivalent
infected recovering. [ is the change in the Zy variables from the event e and f.(Zn,l¢) is
the rate of this event given by fr .y k(ZN, 724k = 7'y(S/rc)D5§,y7,€ or frayk(ZN,lyoyk) =
’Y(Ik’)Di,y,k'

For the transmission event (degree k node, x susceptible neighbours, y infected neigh-
bours), the change in Zy is given by

ZT’I7y>k = (_5k31/d17 17 _2'%'7 (x - y)) ) (3.30)
and for the similar recovery event

lVarvyuk = (O’ _17 07 —JU) . (331)

Using the same notation, by Dangerfield et al. [2009], the full stochastic system can be
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written as

Zn =Y lefe(Zn,1) + Y I/ Fe(Zn, 1o)Ee (3.32)

where &, is an independent standard Gaussian noise process associated with the event e.
This is not detailed in full here as the as the square root in the ) lev/fe(Zn,le) term,
means that we cannot simplify the expressions by taking moments of (3.3) as we can for
the > lefe(Zn,le) term (which was done to derive (3.28)).

3.1.4 Early growth behaviour

The starting point with any analysis of the behaviour of the system in the early growth
period is assuming that the early growth of the infection is exponential, with rate . That
is,

[I] = NTexp(rt) , (3.33)

or equivalently (I) = Iexp (rt) where I is a constant related to the prevalence of the
infection as the early asymptomatic behaviour commences. We consider the case where
I is a small parameter, i.e. I < 1. When approximating other variables during the early
growth period, only the lowest order terms of (I) will be considered, where we ignore higher
order terms due to the fact that I < 1. Additionally in taking the diffusion limit I should
be significantly larger than 1 but also significantly smaller than the total population size
N. In the large N limit, this stage of the epidemic is potentially infinitely long, but for
smaller populations, this is likely to be a short period. This is because in the earliest stage
of the epidemic a certain length of time must be allowed to pass, and a certain number of
infections must take place before the growth of the epidemic will be exponential with rate
given by 7.

At the disease-free equilibrium of the system the variables we are considering take the
following values,
0=1,(I)=0,(SS)=nand (SI)=0. (3.34)

By examining the early growth period, we consider the dynamics which follow from begin-
ning a small perturbation from this equilibrium position at ¢ = 0. If the parameters that
we have dictate that the equilibrium is unstable, then we will diverge from the equilibrium
and the growth in the number of infected individuals grows exponentially at rate r as
stated in (3.33). This is essentially equivalent to standard linear stability analysis. We use
this as an Ansatz from which we can derive the behaviour of the remaining variables.

We begin by considering . It is clear that the value of 6 in this early stage is very close
to 1 and that the amount that this differs from 1 by a factor that is linear in [I]/N = (I).
This is because to alter #, a member of the population must become infected, and as 6
is a proportion, this results in the division by N. Therefore in the early growth of the
epidemic, 6 can be approximated by:

0=1-Ky(I), (3.35)

where Ky is a constant to be evaluated.

Following this chain of logic on, we consider functions of 6, such as g(6). Now g(0) =
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g(1 — Ky(I)). Using Taylor’s theorem, this can be written as

o(6) =91~ Kol)) = 9(1) = Ka(Dg'(1) + O (3.30
Taking only the lowest order terms in (I) gives g(#) = g(1), so any function of 6,

g9(0) =g9(1), (3.37)
in the early growth period.

Next the differential equation for (/) from (3.28) is considered. As (I) = Texp (rt),
(I) = r(I). Additionally (3.28) gives, (I) = 7(ST) — v(I), therefore

T+y
-

(1) = r(I) = 7(ST) = v(I) = (SI) =

(I) . (3.38)

Substituting this result into the equation for 6 in (3.28) and using (3.37) gives

oo @ (3.39)

g'(1)

This is integrable as (I) = Iexp (rt) and when the integration is performed, using the
initial conditions /(0) = 0 and #(0) = 1 we get the result that

h=1— (1) . (3.40)

~—

rg'(1
Comparing this with (3.35) shows that Ky = (r +v)/r¢’(1).

Next consider (SS). When all the population is susceptible (SS) = 1 = ¢/(1), as every
linked pair in the population is an (SS) pair. To reduce the number of (SS) pairs, someone
must become an infected, therefore (SS) is approximated by

(SS) == g/(l) - K(SS)I y (341)

where K(gg) is a constant to be found.

Considering again (3.28), the equation for (SI) can be re-written, noting that (S7) is
O((I)) and that (SI) = r(SI) by (3.38), to give,

g"(1)
g'(1)?

Using this equation r can be written in terms of the parameters 7, v and properties of the
network ¢’(1) and ¢”’(1). Substituting (3.41) into this equation gives,

r(SI) = Tw(SI) — 7-&1)2[((55)(8])(1) —7(SI) —~(SI) . (3.43)

g'(1) g (1)

Cancelling (ST) from both sides, and ignoring the term involving K(gsy(/), as there are
terms of a lower order in (1), gives,

(20 1)y )
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This relationship for r agrees with that given in Diekmann and Heesterbeek [2000].

Now (3.38) can be written as,

g"(1) )
ST = —-1]I. 3.45
(5 (349
Finally to evaluate K (gg), the differential equation for SS from (3.28) is considered.
. ¢'(1)
(89) = —Kgg)r(I) = —QT(SI)(SS)gl(l)2 , (3.46)

where (3.41) is used to give the first equality. Substituting (3.41) and (3.45) into the right
hand side yields,

g9"(1) (g”(l) > g"(1) (9”(1) > 2
- K rl =27 -1 () +27 — 1)K g5 I* . 3.47
) s \gm )OI g gy ) K G40
Cancelling an (I) on both sides and again ignoring the final term gives,
T9"(1) (g”(l) ) " (9”(1) ) 1
K =2— —1)=21g"(1 —1 . (3.48
©9 =2 gm L) PO\ e) ) rrm—gm) —em - G

The following is the set of equalities that we have for the early growth period of the
epidemic:

(I)=1TIexprt,
0=1—FKyI), 5.19)
(88) =4'(1) — Kgs)(1 '
(SI) = (9"(1)/g'(1) —=1)(I) ,
with,
r=r(swigw-1) -1,
Ko =(r+7)/rg' (1), (3.50)

2T

K(ss) = —(9"(1)/d' M) (g"(1)/g'(1) = 1) .

Note that for self-consistency of the Ansatz (3.33) we require that the value of r must be
positive, as it is the growth parameter of the epidemic. This implies that,

T@/,/((ll)) - 1) > 7. (3.51)

3.1.5 Early growth variance
As detailed previously, the aim of this analysis is to calculate the variance of the amount

of infection in the population in the early growth period of the epidemic. To progress
towards this goal additional entities must first be defined.
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Firstly let 0% be the time dependent covariance matrix of our state variables Zy. Define
by B the Jacobian of the deterministic limit of our system (3.28), where the expression
for the variables evaluated during the early growth period, detailed in (3.49), are input.
Finally G is the local covariance matrix associated with an event i.e. when a susceptible
node becomes infected, or an infected node recovers. This gives the covariance between all
the state variables in Zy = (6, (1), (SS), (SI)), so, for example the (1,2) entry of G gives
the covariance between 6 and (I).

Now if it is possible to write G as G(I) where G along with B being constant then the
following equation from Dangerfield et al. [2009] may be used, which is again derived from
the theoretical work of Kurtz [1970, 1971],

ra? —Bo? — ?BT =[G exp (rt) — exp (Bt)G exp (Bt)T]T , (3.52)

where r and T are as previously defined.

The B matrix as stated above is the Jacobian matrix of the deterministic limit of the
system (3.28), evaluated using (3.49). The Jacobian of (3.28) is given by

gy 0
0 —y 0 T
B: "
—27(SS)(SI) 9;(<; 0 —27(51/ §$Q y —2r(59) 41D
r(SD((SS) ~ (SD)gh s 0 m(SDI (SR (89— (SD) —1) =

(3.53)

Inputting the early growth approximations for the variables and working at O(1), (rather
than O((I))) gives,

T

0 0 0 7O 0 0 0 —-75
0 — 0 T 0 —y 0 T
B = 0 0 0 97 9/((11)) = 0 0 0 _27_9///((11)) . (354)
" g
00 0 7(Z 1)+ 00 0 7

As shown in Kurtz [1970] and Ross [2006], G is calculated using the following expres-
sion,

zg - Zfe ZN: e e,J (355)

where [ ; is the i-th entry in the change in variables vectors given by (3.30) and (3.31)
and fe(Zn, 1) is the rate of the event e, which were also calculated previously. The aim
is to find an expression for o2, as this will give us the variance of the epidemic during the
early growth phase.

Now follows specific details of how the various matrices in the (3.52) can be calculated.
To calculate G, we calculate the matrix G and then divide by (7).

We begin by defining F, and F, to be the outer products of (3.30) or two terms from
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(3.31) These are given by,

Ok Ok 2201,k (y—2)d1,k
c(z? dy dy dy 0 0 0 O
F—L - 1 —2x T —y F—L 010 =z
T N? 21371k 9 A2 2y —z)| 7 N?{0 00 0
—)5 0 z 0 x?
% —y 2a(y—z) (z—y)°
(3.56)
We can then decompose G as
G=1> y(SkD;, Fr+v> (Ix)DL,F, . (3.57)

k7z7y k’m

As, for example, (I) is the 2nd entry of Zy and (SS) is the 3rd, the (2,3) entry of
G = G(p),(s5)- As an example we calculate Gy (sg) explicitly. As stated this is the (2,3)
entry of G, therefore we use the (2,3) entries of F; = —2z and F., = 0. Therefore,

T
Gy (ss) = ~2773 D_ (Sk)ayD3 - (3.58)
k,x,y

The sum over k can be separated from the sum over = and y, and the fact that the (1,1)
moment of a multinomial distribution with variables k,p and ¢ is given by k(k — 1)pq is
used. Therefore

T [SS] [ST]
G =-2— Sk k(k—1 . 3.59
s = i 2 S KD 5 ST R (6:59)
Using that [S] = Ndi6* and (Si) = d0* and then rearranging:
T g//(e)
G 1), (s5) = —2m(55)(51)g,(9)2 : (3.60)

When all the terms for the G matrix have been evaluated then inputting (3.49) gives the
correct matrix for the early growth period. Doing this for G(;) (ss) ignoring any terms of
higher order than (I)/N?, i.e. any term which is O((I)?2/N?) will be ignored. This gives
the following expression for G(j) (ss):

Ginss) = ~2 5 (?g)_? 2y oy, (3.61)

using the fact that ¢’(#) and ¢”(0) will become ¢’(1) and ¢”(1) in the early growth period,
and defining ¢ = ¢(™(1). This then gives,

- T 99"~ d)

GCunss) =2 2 (3.62)

With the exception of the final entry, all entries of G- can be similarly evaluated, ma‘king
use of the assumption relating to the distribution of the states of neighbors of susceptible
nodes, given by Df , and what is known about DI from (3.26). The final entry is
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an exception, as it is necessary to evaluate Zk%y 221 kDgIm - 1f the analogous assumption
to the susceptible neighbourhoods is made for the neighbours of infected individuals, as
detailed in (3.22), then this is easy enough to calculate by simply calculating moments.
However, as previously mentioned, this assumption is known to be incorrect due to the
age distribution of the infecteds. A more careful approach to this problem is given in the
next section.

3.2 Neighbourhoods around an infected node

Firstly to give some more idea of why we must be more careful with the neighbours of
infected nodes, we give the following argument.

3.2.1 Explanation of infected neighbourhood problem

The standard approach to simulating epidemics on networks is as follows. Begin by using
the configuration model process, we let individual ¢ have K; stubs, and at time O the
network adjacency matrix A; ;(t = 0) = 0,V4, j. Then the process is defined to take

(Ki, Kj7Ai,j7 Ajﬂ') — (K; — 1,K; -1, Az‘,j + 1,Aj7i + 1) at rate KK; . (3.63)

Running this process until the absorbing state K; = 0,V gives the adjacency matrix of
a configuration model network, although as previously described, different corrections of
O(N~1) due to self-edges and multiple-edges will arise in a finite population [Durrett,
2007].

Once the network is established and the epidemic process occurs upon it, individuals are
in one of the compartments S, I or R and interact with each other as defined by the
adjacency matrix of the network. The rate of infection to a susceptible with y infected
neighbours is then given by 7y and infectious nodes recover at rate ~.

A different way of understanding these two separate processes has been presented [Ball
and Neal, 2008] in which they were combined into one process which assembles the network
and spreads the infection at the same time. In this construction, every node in the network
is given a number of half-links, which are then paired up as the epidemic progresses to
form contacts between individuals in the following two ways:

e An infected with [ remaining half-links makes contacts at rate 7l; if it links to a
susceptible then the infection will be transmitted with probability 1.

e When an infected recovers (which happens at rate ) all of its remaining half-links
will be paired off with randomly selected half-links in the population.

During the early growth period of the epidemic, if this process is paused at a time t and then
the network is completed using configuration model methods, then this will be equivalent
to constructing the network using the configuration model first and then running the
epidemic on it until time ¢ using the Gillespie algorithm, or some other suitable method.
If the distribution of the disease state of neighbours around the infected nodes is then
studied, it is clear from this explanation, that a node of a given degree k£ which has been
infected for a given time a, will have a different distribution of neighbours than a node of
equal degree which has been infected for a time b where b # a.
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3.2.2 Neighbourhoods of infected nodes

Essentially, the reason that this is of interest is that to calculate Ggr) (sr), the evaluation
of the following is required

X = ZxQIkDi,k , (3.64)
k,x

and so the task is to determine the number of infectives of degree k, and the second
moment of the distribution of the number of susceptibles around such infectives.

At the time of infection of a degree k node, the distribution of susceptible neighbours is
given by Df = Zy Df vk which assumes that the distribution of susceptible, infected and
recovered neighbours are given by a multinomial distribution with probability of choosing

a susceptible node, given by [SS]/>", k[Sk] or equivalently (SS)/> , k(Sk). However,
we must take into consideration that the node which infected the central node, must be
infected, therefore it will have at least 1 infected neighbour, so the number of susceptible
neighbours is distributed as follows:

P(ng =z) = Bin<ns =zin=k—1,p= %) , (3.65)

where Bin implies that this is a binomial distribution with n = k—1andp = (SS)/ >, k(Sk).

(SS) is known in the early growth period (3.49), but (Sk) has not been calculated yet. To
calculate (Sy), use again the fact that (S;) = di0%, which implies that

(Sk) = dpbF = dpk6* 16 (3.66)

which implies that,
t t .
/ (S)(a)da = / okt — a)t=10(t — a)da . (3.67)
0 0

Inputting (3.28) and (3.49) to give § and 6 respectively gives
e (0 D0 (D®e (')
0(t—a)*10(t—a) = —(1— Ko(I)) < 1) < ) 1) .

g'(1) g'(1) g g'(1
(3.68)
(3.67) now becomes,
S - —rde )LD =T W) [ g,
/0 (Su)(a)da = —rhde(1) LS /0 da (3.69)

The initial conditions are given by (Sg)(0) = di and (I)(0) = 0. Performing the integra-
tions and then using these initial conditions gives,

(1) — o'(1 .
(Si)(t) = di — dek(I)W(l ey . (3.70)
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Therefore (SS)/ >, k(Sk) becomes

(59)  _ 9'(1) — K(ss)(1) B
Yik(Se) g k(dy — dek(f)(g”g),(;lg);(l))(l —e ) =1+0(() (3.71)

where we have used that ¢'(1) = >, kdj.

The infected node infects its neighbours at rate 7, therefore if we consider a neighbour of
an infected node of age a, the probability that they have not been infected by that specific
infected node is given by e~7*. However they may have been infected by another of their
neighbours, which will be called global infection. If the neighbour is of degree [, then there
are [ — 1 other links to consider. The probability that they have not been infected by a
different neighbour is given by #'~1, as this is the probability of avoiding global infection
down these [ — 1 links. Therefore the probability that they are still susceptible is given by
01 -1 e~ Ta.

In addition to this, the probability of a given neighbour having degree [ is given by
ldy/ > kdy, as ld; is the total number of links which belong to nodes of degree [ and
> i kdy, is the total number of nodes.

The probability that a given neighbour of an infected node is still susceptible can be worked
out using the law of total probability,

1
E P(neighbour is susceptible|degree = [) P(degree =1) = — E I te ™ . (3.72)
n
l l

Now use the fact that >, 10"~ = ¢(f) and that in the early growth period, ¢'(6) ~
g'(1) = n, to see that (3.72) is approximately equal to e~ 7.

Therefore the probability of an infected of age a and degree k having x susceptible neigh-
bours is given by:

P(ns = z|infected time a ago) = Bin <n5 =zln=k—-1,p= e_m>. (3.73)

Going back to (3.64), we must also calculate (Ij) in order to evaluate x. To calculate (1),
we note that the number of (Ij) nodes is given by the number of nodes of degree k which
are no longer (Si) and have not yet recovered (divided by the population size V).

- %(Sk) = —dk%G’“ = —Ndgkf6* " . (3.74)

As the infected nodes have been infected at different time, this can be incorporated as the
probability that an infective of age a (a node which was infected length of time a ago) is
still infected is given by e~ 7%, as recovery takes place at rate . Therefore the value of
(Ir) at a given time t is given by evaluating the following integral:

(I) = — dyk /Ot O(t — a)(0(t — a))Le™ 7 da

:dek(I)W/o e e % ,

(3.75)
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where the second equality is given by comparing this integral to (3.69).

This implies that equation (3.64) is given by the following expression:

_ (¢"(1) =g M) [* _(ria . e
X_Zk:rkdk(l)(t)g/(w/o e~ (r+7) (Zx:ﬁ Bin(z|k — 1, ¢ )>da,

(g”(l) — g/(l)) ¢ —(r a,—Ta —Ta
:T(I)(t)W/O Zk:k(k—l)dke (rag <1+(k:—2)e )da,

(3.76)

where the second line is given by taking the second moment of the binomial distribution.
Moving the summation over k and the terms k£ and dj inside the integral allow us to
use the pgf in order to simplify this expression as ¢”(1) = >, k(k — 1)dj, and ¢"'(1) =
> k(k —1)(k — 2)d;. We therefore have that,

X = 7—([)(9”(19)/(;)2/(1)) /Ot g,,(l)e_(r+fy+7—)a + g///(l)e—(r+’y+27—)ada ) (377)

This can be integrated to give the following result,

Zw%fkw;,k:<I><g"(1)‘9'<1”( i g"<1>+Tg'”<1>), (3.78)
k,x

g'(1)? r+v+71 r+y+27

at the leading order. G(gpy, (s is then given by (3.78) divided by N2,

We have now calculated G by making an assumption about the infected neighbourhoods.
However, this assumption is constrained by (3.26). The first equation is trivially satis-
fied as it is a probability distribution, however we must check that the second equation
PACIDI a:Dng?k = (S1) is satisfied.

3.2.3 Satisfaction of constraints

We begin by defining the constraint to be given by (, where ¢ := >, (Ix) vay :cDiyk.
Now comparing this with x, we see that we have a very similar expression, so we therefore

follow a similar process in order to evaluate it,

= T M te*(T*F )a z Bin(zlk — 1. e 79 a
= b [ (Z Binalk — 1.e7™) ) da

') - g 1) [ )
=r([)F L o / k(k — 1)dge~rF1)ae=Ta
=gy &0k
Again, simplifying by using the pgf and then integrating, we see
/! 1 A 1 1 1
=g g0 50

g'(1)? r+y+T

Asr = T(Z,l((ll)) - 1) — v we have that r +~v+ 7 = Ti;/’/((ll))' Substituting this in to (3.80),
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we get the following expression,

! / / ! /"

g (1) —g()g(1)g"(1 g (1

¢=7() ()/ 2() ()”<):(I) /(>—1 : (3.81)
g'(1) 79"(1) g'(1)

Comparing this with the expression for (ST) in the early growth period, given in (3.49),

we see that they are equal, and therefore the assumption made about the neighbourhoods
of infecteds preserve the self-consistent solution produced by the Ansatz (3.33).

Now that this remaining entry of G has been calculated and has been shown to be consis-
tent with the rest of the approach taken, we give the matrix in the results section which
follows.

3.3 Results

Firstly we give the full G, and then the results gained from solving (3.52) to calculate the
variance of the number of infections in the early stage of the epidemic.

3.3.1 Full G matrix

~ (9" — g')
Gop= 9 —9)
6,0 g’d1N2 )
! /
A A g —4g
G@,I = GLB = _(g/]VQ)7
Ge,ss = Gss,e =0,
e Gy T =9
G p— G T ———
6,S1 SI.,0 g/N2 )
. 1 gll
Grr= N <T<g’ - 1) —I—7>7
2 2 21 9"(9" - 9')
Grss=CGggr = ——=
1,8S SS,I N2 9/2 ) (382)
R R 1 g// gl/
Grsr = Ggrr= N2<g’ - 1) <T<g’ 1)+~
N ar (4" ,
a _ g / m
S5,55 = <g, (9" +9")

N A 2T g’
e el _ m( 9 _ 4
$8,ST S1LSS = iNa g 7 ;

R 1 gll g/// _ g// _"_ g/
con b5 (7

(g//_g/) T " T "m
7 N2g2 r+7+7‘g +r+7+27'g ’

This is the remaining piece needed to fully detail (3.52) which contains the covariance
between all of the variables in Zy, and specifically the variance of (I). We can now solve
this algebraically.
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3.3.2 Early growth variance

As described above (3.52) must be solved for o2, This is too complicated to do by hand,
and so computer algebra in Mathematica was used to complete this calculation. The full
expression for the variance during the early growth period is extremely complicated. This
is seen below in (3.83), though it is not informative due to its complexity:

T — r 20,0 I t(y+r) _ r q'T v "
Var(I) = ! (Te 2“/t(et(’Y+ - D) <T (9"~ ") Y vir T v TY ))

N2(2y +7) Y+ 9?(y+r)

Te 2t t(’y-‘r'r) _ ot "
DG ) er (=) s (G 1))

arert T2y — )OO —1)(g' - LT+ M +g")

v 9*(y+r)
2ret (g’ = g")(€" = D'y +2) (v + 1) = g"T(y +27) +29" (v +7)%)

ot 9%r(y+7)(y +27)
2re” ((g' =g NG (v =)+ g"7) " g’

5 ( 7° +(?—1)(’Y+T(?—1)) -
Mg (v =) + 9" ) (vg + 79" — g)e' O + g'r + g'T — g"'7)

g?(y+r)
(3.83)

As the population size approaches infinity, this can be simplified by taking a large ¢ limit.
This is not appropriate in smaller populations, as the length of time until we leave the
early growth period due to susceptible depletion is too small to take this limit. As the
population gets larger however, this length of time will increase enough that the dynamics
are dominated by the large ¢ limit.

Defining tea1y as the time at which the epidemic begins to grow at the rate predicted in
Diekmann and Heesterbeek [2000], and the time at which the depletion of susceptibles
affects the growth rate and we leave the early growth phase at tgepletea- When the current
time satisfies teary < t < tgepleted, the expression for the variance of the number of
infecteds can be simplified. This regime will exist in an extremely large network if the
initial amount of infection in the network I is sufficiently small, but in a smaller population,
this regime does not exist, again due to the length of time spent in the early growth
phase.

In this limit, the mean and variance of prevalence obey the following expression,

!
Mean(I) — Ie™ | for r = T(g—/ -1)—7,
g
Var(I) — 7g'(29"(y+7)* + (v +27)((v + 7)g’ — 79"))
— :
Mean(I)? — N2(y+7)(y+27)(¢' = 9")((v +7)g' — 79")

(3.84)

where I is a constant related to the prevalence of infection as the early asymptotic be-
haviour commences at teary, and g(”) = g(")(l).
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Figure 3.1: Early asymptotic dependence of the standard deviation of infection prevalence,
divided by infection prevalence, on the skew I' of the network degree distribution. The
curve is plotted from equation (3.84). Parameter values are: mean degree = 10; variance
in degree = 100; transmission rate 7 = 0.05; recovery rate v = 0.1. Skewness of degree is
varied between realistic values (0 and 100) to see how the variance of the asymptotic early
prevalence of infection is affected. We see that as the skewness is increased we get a higher
variability of prevalence. This is as expected, since the higher the skew, the more neigh-
bours the most connected individuals of the population have, reducing the predictability
of the epidemic due to chance events amongst this small but epidemiologically influential

group.

Figure 3.1 shows how the variance in prevalence changes as skew in degree increases. Seeing
that as the skew increases we get an increase in the variance of the epidemic during early
growth, we would therefore see that if we had a network whose degree distribution is a
power law, would show greater variation than a negative binomially distributed network
with the same mean and variance would show. We think of this increase in variation being
caused by the members of the population who are very well connected in the network.
These people have been called super-spreaders in the past [Stein, 2011; Galvani and May,
2005; Meyers et al., 2005]. If the disease reaches these people in the early growth phase
of the epidemic then we can expect a rapid increase in disease prevalence, as there will
be many ST pairs through which the disease can be passed, whilst if they do not get it in
this early phase, there will not be this rapid increase, which generates the large variance
in this stage of the epidemic. We note that for the I term in (3.84) we have no analytical
traction on what this should be for a given epidemic. If we wish to compare this result to
simulation, we will fit the value of T so that the analytical prediction and the simulated
results agree at a given point. As this is simply multiplied by the other terms, fitting it
simply scales the prediction up or down rather than fine tuning the prediction itself.
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3.4 Comparison with simulation

To see the accuracy of the predictions detailed, we compare them to simulations on net-
works. To construct these networks, we use the configuration model [Molloy and Reed,
1995]. This process is described next.

3.4.1 Network construction

To construct an uncorrelated network with a given degree distribution, P(k), the config-
uration model is used [Molloy and Reed, 1995; Newman, 2003].

To realise this for finite IV, the following method is employed:

e Draw as many numbers from the degree distribution P(k) as there are members of
the population. If the sum of these numbers is odd, then randomly select a previously
drawn number and reduce it by 1.

e Assign each member of the population one of these drawn numbers which then
corresponds to the number of ‘half-links’ they are given.

e Starting with the first node, which has k half-links say, pair each of the k half-
links up with another from the population. This corresponds to adding 1 to the
corresponding entry in the adjacency matrix A, so if we join up a link from node ¢
to node j, then we add one to A(7, j) and A(j,7) as the links are undirected.

e Repeat until all half-links have been paired up.

This produces an uncorrelated network as all pairs are generated independently, condi-
tioned on degree. Therefore if we know that nodes [ and m are connected and that nodes
m and n are connected, then the probability of nodes [ and n being connected is equal to
that of any two randomly chosen nodes one of which has the same degree as node [ and
the other the same degree as node n.

In theory, if this process is carried out on an infinite population, then no repeated edges
will be produced. However for a finite network, multiple edges between nodes or self-edges
will be generated at a rate proportional to 1/N. This will correspond to a value greater
than one in A or a non-zero entry on the diagonal of A.

Self links in the network are not permitted and in this disease context would have no
meaning, as you cannot infect yourself if you are susceptible. Therefore allowing self edges
would simply alter the effective degree distribution. As an example, if everyone had one of
their edges to themselves, comprising of 2 half-links, then the disease would effectively be
spreading on a network whose mean number of neighbours was 2 lower than if these links
were to others members of the population. Multiple links between nodes (which would
be indicated by integer values > 1 in the adjacency matrix) are also not included in this
model. We therefore need a method to eliminate these.

3.4.2 Removal of network defects

There are several available methods for dealing with these network defects, the method
we use follows. The first step in the process of removing these defects is to obtain a list of
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all the nodes which have multiple connections between them and self-edges. The method
for the multiple edges is slightly different from the self edge case.

For the multi edge case, one at a time the extra links between nodes are broken, say
between node ¢ and j, and then a randomly selected and connected pair of nodes will also
be selected, say nodes ¢ and 5. We then connect i and ' together and j and 7 together,
which leaves the degree distribution unaltered. This is then repeated until there are no
repeated- and self-edges. This process can be seen in figure 3.2.

(a) (b)

Figure 3.2: Demonstration of removal of multiple connections defect. (a) shows two nodes
which have more than one connection between them, along with another randomly selected
pair of nodes. In (b) one of the repeated connections between the first pair of nodes is
broken, along with the connection between the randomly selected pair of nodes. The
broken half-links from the first pair of nodes are then paired with the broken half-links
from the second pair of nodes.

To remove self-links from a node ¢, a pair of nodes j and k are selected. This link is then
broken and both j and k are connected to node ¢. This again leaves the degree distribution
unaltered and the process is demonstrated in figure 3.3.
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(2 (b)

Figure 3.3: Demonstration of removal of self-link defect. (a) shows a node with a self-link
and a pair of connected nodes. (b) The self-link is broken, leaving its two constituent
half-links, which are then connected to the two half-links that are made from breaking the
link between the two connected nodes.

In theory, it would be possible for the process explained above to fail at some point due
to lack of available node combinations needed to alter the defects of the network, though
the probability of this depends on the degree distribution and the size of the network.
For example if the degree distribution allows nodes to have more connections than the
population size, if a node did have more connections than the population size, then this
process would obviously fail to produce a network with no multiple links in it. However for
any networks that we consider here, this process never fails, as the probability of failure is
ver low, due to the size of the population and the degree distributions considered.

3.4.3 Results of simulation

The way that we have compared our analytical results to simulation is by considering the
impact of the skew of the degree distribution on the variance of the number of infecteds in
the early growth period. To do this we consider networks whose degree distributions have
the same mean and variance but different skews. It is expected that the network which
has the larger skew will also demonstrate a larger variance during this early phase of the
epidemic. We also compare the analytical prediction to the one which is generated by our
simulations to see how accurate the analytical prediction is.

There are several difficulties to achieving this that we wish to note. Firstly, the analytical
results depend on the network being extremely large. There is obviously a limit to the
size of network that we can consider and the simulations here were run on networks of size
10°, which was sufficiently large for our purposes.

Secondly, the analytical results only work for the early growth phase of the infection, which
can be defined as the time when the pool of susceptibles is not significantly depleted.
Whilst in an arbitrarily large network this can last for an arbitrarily long time, in a
finite network, this is not true and will vary depending on the degree distribution of the
network along with its size N. Along with this, as previously noted, we have to allow
some time at the beginning of the epidemic in which the impact of the initial conditions
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have diminished and we are in a period which the system has approached its average early
asymptotic behaviour. Together these imply that in a finite network, this period may be
very short, or may not exist at all. In the networks that we consider, this period does
exist and is defined to be the period in which the growth in the number of infecteds is the
same as predicted in Diekmann and Heesterbeek [2000] (given in (3.84)).

Finally, the assumptions made for the analytical system such as how the number of triples
in the network can be approximated by doubles and the pgf g(z), will be inexact in the
finite network that we construct. There is no guarantee that this will be appropriately
accurate; convergence is O(N 1) but we do not have knowledge of the pre factors.

To simulate the epidemics, the Gillespie algorithm [Gillespie, 1977] on networks of size 10°
is used. To converge onto the average early growth, we allow each simulation to achieve
a certain number of infections (10%) and then we set the simulation time to zero and let
the epidemic progress from there. In the system of size 10°, allowing 10? infections is also
small enough that the susceptibles will not be depleted significantly enough to affect the
rate of growth of the epidemic. We ran 10? simulations on two networks with the same
mean and variance but with different skew.

Figure 3.4 shows the result of these simulations compared with the prediction given by
(3.83). We can see that as predicted the network with the higher skew exhibits more
variance in number of infecteds in the early growth stage and also we see that the analytical
prediction and the simulations have a good agreement.
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Figure 3.4: Comparison of simulated results to analytical predictions. Dashed lines
are simulations and full lines are analytical predictions. Simulations are on two different
networks, which have the same mean and variance for their degree distribution (mean
~ 5.4 and variance =~ 67.2) but different skewness: 24.3 for red / black lines and 6.7
for the pink / grey lines. Transmission and recovery rates are 7 = 0.0408 and v = 0.1
respectively. (a) shows a period of time at which we have agreement in the growth of
the number of infecteds between the two networks that is strongly in agreement with the
theoretical prediction from Diekmann and Heesterbeek [2000]. (b) is also taken for this
time and we can see that the theoretical prediction that we have described previously in
this paper deviates slightly from simulation.
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3.5 Branching process approximation

Along with the pairwise assumption that has just been detailed, it is possible to approach
this problem of the early growth period by imbedding a branching process in the full
dynamics. We can then derive results about what variance we would observe in the k-th
generation of infecteds.

We define the degree of a node to be denoted by a random variable D, which follows some
specified distribution. The probability that a neighbour of yours has degree k is then
given by kP(D = k)/E(D), where P(D = k) = di and E(D) = n. Then we consider
a discrete time Reed-Frost epidemic on the configuration model of the network given by
our degree distribution. This is a discrete time model, meaning that we are concerned
with the number of invectives in successive “generations” of the disease. We note that
if you are an initial infective, then you are in generation 0 of the epidemic, if you are
infected by an initial infective, then you are in generation 1 and so on. The number of
people that each infected individual with degree k in generation n infects, is then chosen
from a binomial distribution, with n = k — 1 and probability p. As we are assuming no
clustering in the population, and are in the early stage of the epidemic, then the only
non-susceptible neighbours that an infected individual has is the individual who infected
them. Again corrections to this are O(1/N).

Suppose that we have I, infected individuals in generation n. Then in generation n + 1,
there will be 22‘121 B; infectives, where B; is the number of ‘children’ of each infective
1.

The B;’s are independent and identically distributed. To progress from here we first
calculate the probability generating function for the B’s. To do this we calculate,

E(s?) = i s"P(B =b). (3.85)
b=0

Using the law of total probability we get that:

ot

P(B =) P(B=bD=k)P(D=k),
= - ] (3.86)
- b k—1-b k
= 1— .
k=0
Substituting this into (3.85) and swapping the order of summation to get,
1 00 k—1 E—1
E(s?) = (D) > (Z ( b >(8p)b(1 —p)’“‘l"’> kdy,
k=0 \ b=0
1 < - 3.87)
= > kdp(1—p+sp)*t, (3.
(D) 2=

= E(lD)g’(l —p+sp) .
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From this, we get that the mean and variance in B are given by

Py E(DD —1))p
E(B) =79 (1) = ——— =",
E(D) E(D) ss)
() _BPWD -~ DD -2 EDD - )p (DD - ))p)’
E(D) E(D) E(D)
The expectation for the number of invectives in generation k follows and is given by,
I—1
=E Y B =E(B)E(Iy1) =E(B)"I . (3.89)
The law of total variance then tells us that the variance of I is given by,
Ik I
var(l) = <V&I‘<ZB | 1) 1)) —l—var(EZBi]Ik_l) ,
i=1
Iy 1
= E( > Var(B,-)) + var(E(By)i_1) , (3.90)
i=1
= E(I}_1)var(B) + var(I;_1)E(B)? ,
= [HE(B)*var(B) + var(Iy_1)E(B)? .
Substituting this expression for var(1;) for decreasing values of i gives us
var(Iy) = LE(B)* (1 + E(B) +... + E(B)* Yvar(B) ,
E(B)k -1 (3.91)
= LE(B)* 1 —var(B) .

When we substitute in the the expression for the mean and variance of B from (3.88) we
get,

IE(D)

<E(D(D ~ (D= 2))p*  ED( ( >2> (3.92)
g

E(D)
e e

Now, letting k become large, and setting E(B)* = €™, p = 7/(7 + ), to correspond as
closely as possible to continuous-time results, we obtain

2rtg/g”/7_2 +g’g”7’(7—|—7) ( //)27_2

var(ly) — loe g (T +7)(rg" — (T +7)g")

, (3.93)

which is not in agreement with (3.84). This prediction shows pure exponential growth in
the variance of the number of infected individuals as t increases, which is not what is seen
in the previous prediction, or in the simulations performed.
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This is as we would expect, because the reasoning in §3.1 above depends critically on the
Markovian nature of the dynamics. In contrast, the branching process can account for
non-Markovian dynamics, but does not allow for the fact that high-degree infective nodes
create new infections more quickly than low-degree infective nodes. The two approaches
are therefore best seen as complementary.

3.6 Summary

In this chapter we have derived an approximation to the variance in the number of infected
individuals during the early growth period of an epidemic, on a heterogeneous network.
This involved making a previously formulated assumption [Volz, 2008], which has since
been shown to be correct [Decreusefond et al., 2012] about the neighbourhoods of suscepti-
ble individuals. It also involved the formulation of an assumption related to the number of
susceptible neighbours that infected individuals have, and the demonstration that this was
consistent with constraints that came from the exact unclosed dynamics of an epidemic
on a network (3.2).

Once this was done, the prediction that we derived was tested against simulations pre-
formed using Gillespie’s algorithm [Gillespie, 1977] on a configuration model network [Mol-
loy and Reed, 1995], and was shown to have a strong agreement with the variance displayed
by these simulations.

Finally, a branching process approximation was also derived, and this was seen to be
qualitatively different from the one derived using our previous assumptions. This was as
we expected, as by taking the branching process approximation, we are ignoring crucial
information about the timings of events, and therefore something as time dependent as
the variance during the early growth would not be expected to have much agreement with
results derived using this process.
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Chapter 4

The impact of workplace size
distribution on disease spread

4.1 Introduction

As we have seen in the previous chapter, the heterogeneity which is contained within the
network, in terms of its degree distribution can have a large impact on the epidemic. For
human populations, when it comes to diseases which can be spread without the need for
intimate contact, or the sharing of bodily fluids, the main source of this heterogeneity in
contact patterns is in the workplaces. This is due to the fact that the number of contacts
that a person has in work will depend on many things, including the size of the workplace,
along with the type of work undertaken, whilst households are generally of a similar size
and have a much smaller maximum size than workplaces, and school class sizes are again
less variable than workplace sizes.

Workplace contacts are simply any contacts made at a place of work. For our purposes,
the interactions between children and between children and adults at schools are not
included here, but those between staff at schools are. Workplace contacts will, in most
cases, differ from contacts made at home, as there will be limited or no physical contact.
However, time spent together will be larger than in other situations such as travelling
and shopping (as evidenced by the UK time use survey [UK Data Service]), implying
greater epidemiological impact than these situations. Additionally, many contacts will be
repeated, so the probability of an infection passing between two people who make contact
in a workplace is larger than two people who make a transitory contact.

Workplaces are also the place where the majority of adult-adult mixing will occur (schools
for child-child, homes for child-adult), and so can be epidemiologically important in terms
of control of epidemics. Alongside households and schools, they are thought of (with good
reason) as the main magnifiers of disease, and in general the mixing of a large number
of people can have a significant affect on the spread of an infection [Lloyd-Smith et al.,
2005; Meyers et al., 2005] and have been included in studies of the spread of epidemics e.g.
Mossong et al. [2008]; Ferguson et al. [2006]; Pellis et al. [2008]. The potential impact of
these large gatherings is clear, due to the fact that the more people who are contacted by
an infectious person, the greater the probability is that the infection will be spread.

This chapter considers the impact of the distribution of workplace sizes on the possible final
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size of an epidemic which takes place in workplaces. We are interested in this question, as
in many cases, when data is not available, modellers are forced to choose a workplace size
distribution based on data which is from a different country, which may or may not be
representative of the newly studied country [Ferguson et al., 2006]. This chosen distribution
may have a great influence on the epidemic, as in some way, it imposes the contact patterns
that take place within workplaces and may lead to a large over or underestimation of the
possible spread within workplaces.

To tackle this problem we consider how postulated, size dependent, infection rates in
workplaces can change the predicted final size of an epidemic in workplaces. Along with
this we investigate the distribution of the number of employees in workplaces throughout
the UK, which is given by a dataset provided by Blue Sheep [Bluesheep data source]. This
is a private data source, which combines data from 20 separate sources to give, amongst
many other datasets, the distribution of workplace sizes in the UK. This dataset is updated
monthly and a version from February 2012 was used for this work.

As the impact of this distribution on the spread of disease is the question of interest, we
discuss methods which can be used to fit different distributions to the data, anticipating
likely choices that modellers would take if faced with modelling workplaces with no data
to inform the distribution of workplace sizes. Next, we combine these fits to distributions
with the dependence on transmission rates on the spread of the epidemic, and calculate
the expected number of infected individuals in each circumstance, allowing us to quantify
the effect of these distributions on the spread of the disease. Finally, the sensitivity
of the attack rate of the epidemic within workplaces to the workplace size distribution is
considered, and the attack rates are compared with those expected in differently distributed
collections of individuals (such as in households) with similar transmission rates.

4.2 Transmission rates and their impact on the final size of
an epidemic

We are interested in how the distribution of workplace sizes can impact the spread of an
epidemic. In particular we are interested in how much difference having a large number
of workplaces with a high number of employees can make to the spread of infection. It
may be expected that these may be multipliers of infection, as if there are more people
to contact and spread the epidemic onto, then there will be more chance of spreading the
epidemic, along with increasing the probability of super-spreading events.

To investigate this we consider the spread of an STR type infection through a workplace as
being modelled by the standard set of STR equations with removal rate v and transmission
rate given by f(N), where N is the population size. This is modelled by a set of three
differential equations, also given previously in (2.1), though with a different transmission
rate here,
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Here we have that the value of Ry = f(IN)/v. For the classic mean field SIR equations
of Kermack and McKendrick [1927], which is the form given in (2.1), f(N) = §/N. This
term can be thought of as the product of the contact rate between individuals and the
probability of transmission between contacts, which is assumed to be invariant to any
change in population size. For this formulation of f(IV), the contact rate can is inversely
proportional to the population size. This is described as frequency dependent transmission
i.e. the rate of transmission does not alter when the population density increases, it only
depends on the number of contacts, as in this scenario, increasing the population N will
increase the numbers of susceptibles to contact proportionally, the division by N will
counteract this change, leaving the total rate of transmission unchanged.

In large populations, the assumption of frequency dependent transmission is intuitive, and
has been shown to be representative, for example, with the spread of measles in England
and Wales [Bjgrnstad et al., 2002]. This is due to the fact that it is unexpected that on
average people will infect greatly more people if they live in a large city such as London
as opposed to a smaller city or town. This is because patterns of behaviour relating to
contact are similar, and so will be averaged out over the whole population, giving a value
of Ry which is similar in both large and small towns or cities.

Unlike for a large population like a town or city, this is not necessarily a good assumption
for a workplace, as it is likely that there is some density dependence in the transmission
rate, leading to more infected individuals as the number of potential infectees (') increases
e.g. on large shop floors or open plan offices where there are more opportunities for contact.
When the size of the population is increased towards infinity, Ry is usually kept constant,
by using a frequency dependent transmission term meaning that an infected person will, on
average, continue infecting the same number of people in a large workplace as a small one,
which is unlikely to be accurate for workplaces. To take an extreme example a workplace of
4 people means that the maximum number of people you can ever infect in the workplace
is 3, whilst if you work in a large workplace, then there is much more opportunity to
spread the epidemic and infect more than 3 people.

By altering f(IV) we can model different amounts of transmission in the population. This
can be used to investigate the impact of workplace size on the level of infection in the
population and can lead to larger or smaller epidemics than the one that would be observed
if we consider frequency dependent transmission, where f(N) = §/N. We are therefore
interested in considering the final size of epidemics in a population.

The final size of the epidemic in a population can be derived from (4.1) and is indicative
of the level of spread achieved by the infection. To derive this, we divide the equation for
I by the one for S and integrate to derive the well established equation for the final size
of an SIR epidemic in a population. This is denoted by R, and the result is given by the
following implicit equation,

Roo = (1 — e~ floftey | (4.2)

where Ry = f(N)/~ is the reproduction number. To derive this equation, the conditions of
S(0) = N, I(0) = 0 and I(co0) = 0 are used along with the fact that Ry = S(0) —S(00) =
N — S(o00). To find the proportion of the population which will be infected by the end of
the epidemic, R, root finding techniques are used on (4.2).

We note here that we are treating each workplace as a separate population in which the
epidemic takes place in. By doing this we can calculate the value of R, for each individual
workplace and then work out what this means in terms of number of infecteds at this
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workplace. This is at best a crude approximation as in general the mean field equations
are held to be true as the population size tends towards infinity. This is clearly not the case
for the workplaces (the largest workplaces are capped to 7,500 to be in agreement with the
Blue Sheep data), but is a useful tool that we can use to investigate how the distribution
of workplace sizes can have an influence on the number of cases of an epidemic.

To investigate the effect of the transmission rate on the epidemic, we define f(N) =
B/N'=¢. This means that the mean field equations are adjusted to the following,

as __ s1
dt " Nl-e

dr ST

al _ _ 4.3
5 = P (4.3)
dR
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a !

The addition of the € to the equations adds the ability to tune the affect of increasing the
workplace size. From this set of ODEs we have that Ry = 8/vyN'~¢, allowing us the adjust
the number of expected infections in a workplace of size N, by altering e. By changing
€ from 0 to 1, we tune between mass action, or frequency dependent transmission, and
density dependent transmission. Primarily we are interested in the change to Ry and R
as € is increased. In reality, the actual number of contacts you make will have a strong
dependence on the size of workplace that you are in, but there may be some threshold at
which you may not make any more contacts. For example you are unlikely to make more
contacts in a workplace with 5,000 employees as opposed to 1,000, though no limit on the
number of possible contacts has been modelled here.

Figure 4.1a shows the increase in Ry due to increasing e for various populations of size
100, 1,000 and 10,000.

For a given value of NV, we set ¢ = 0 and consider the scenario where Ry = 1. With ¢ = 0,
we have that Ry = 3/yN. This therefore defines the relationship between g3, v and N, as
we must have § = yN.

For non-zero values of €, we have that Ry = 3/yN!'~¢. As we have constrained 3 above
to be given by 8 = N, the value for Ry is then given by Ry = yN/yN'=¢ = N/N1~¢,
thereby leading to an increase in the value of Ry.

Obviously increasing € increases Ry, and the affect is also dependent on N, meaning that
the amplification of Ry due to € will be larger in a large population than a small one. To
plot figure 4.1a, we vary the values of 5 and v so that in the ¢ = 0 case, Ry would have
the same value for each population size.

We can also study what happens to the final size of the epidemic when we increase €. To
do this we differentiate (4.2) with respect to e.

ORs _ Odexp(—RsRy)

= 4.4
Oe Oe (44)

Using the chain rule, we can write this as follows:
8Roo . 8ROOR0 dexp(—RooRO) (4 5)

Oe Oe dR Ry
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Figure 4.1: (a) Change in Ry as € and N are increased.  and 7 are defined by 8 = N,
as this means that we will be considering the Ry = 1 situation when ¢ = 0. In (b) we see
the final size of an epidemic where we alter e for various values of N. We calculate Ry
using Rg = N/N'=¢. Then for a small non-zero ¢ we use root finding techniques to find
the value of R from (4.2). Equation (4.8) is then numerically integrated to obtain the

values for this figure.
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We then use the product rule for differentiation to evaluate the right hand side of this
equation along with the fact that Ry can be written as Ryg = Sexp (eln N)/N~ to allow
us to differentiate Ry with respect to € giving

ORy

— =RogIn N . 4.
9 Ry In (4.6)
Once this is done, we find that,
OR OR
De = _<66R0 +ROORO 1nN> (—exp(—RooRo)) s (47)

We now note that from (4.2) exp(—RoRo) = 1 — R and also that Ry = 3/yN'~¢ so that
when we rearrange (4.7) we obtain the following differential equation,
dRs  NIn(N)B(1 — Reo)Roo

de YN — (1 — Ry)BN¢ (48)

This cannot be solved analytically, so we solve numerically and do so using fourth order
Runge-Kutta. To do this though, we need an initial condition. This can be found by
inputting a small value for Ry into (4.2) and using root finding techniques to calculate
the corresponding value of Ry, from which we can then evolve the system to calculate the
change in R, as we increase €. For any value of ¢, we can find the final size by using root
finding techniques on (4.2), meaning that we do not require this differential equation to
achieve our goals, but by deriving this we can more easily see the impact of € directly.

Figure 4.1b demonstrates how R, changes when we increase € for different values of N.
This shows that there is a large increase in the final size of the epidemic if we increase €
by any small amount. It also clearly shows that increasing the size of the population will
increase the final size non-linearly, as can be seen by comparing the curves for N = 100
to N = 1,000 or 10,000. For the study of the workplaces, this will mean that the large
workplaces will have a proportionately larger influence on the total final size of the epidemic
than expected. Therefore when we try to fit a distribution to the workplace data, if the
fit is good in the bulk of the distribution, and poor at the tail, then we may get a large
disagreement in the number of people who would be infected in total from this fitted
distribution and the true data. As previously discussed, the use of likelihood methods to
fit the distribution in a descriptive way may be compromised, as the fact that the majority
of the data occurs for low sizes of workplaces means that we will likely get a good fit to
the distribution in this region, which may result in a poor fit to the tail.

Figure 4.2 displays the number of workplaces that have a large number of employees
(> 100), by ward. As we would expect, these cluster around big cities such as London,
Birmingham and Manchester. We would therefore anticipate that the spread of epidemics
through workplaces would be more severe in these areas than in other areas where there
are fewer large workplaces.

Figure 4.3 shows the effect of € on the final size of an epidemic for a population, for various
populations. The x-axis gives the value of Ry for the ¢ = 0 case, though this is not the
same as the value of Ry for the when € > 0. For example if the x-axis has a value 2, this
means that 3 = 2yN, so the true value for Ry in the ¢ > 0 case is given by 2N/N!~.
Even considering the smallest difference in € at € = 0.01 and for a value of N = 300, we
see that the final size raises to over 10% for the case when Ry = 1 for ¢ = 0, meaning that
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we will potentially have 30 more cases than expected in the ¢ = 0 regime.

30+

25

Figure 4.2: Number of workplaces with a high number of employees, showing concentra-
tion in main urban areas.
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Figure 4.3: Final size of an epidemic where we alter € and N. Even a small change from
€ =0 to e = 0.01 can give a significant increase in the final size of the epidemic.

As we have been preparing for so far, the aim is to see how the distribution of workplace
sizes can alter the spread of a disease in the population. To examine this we consider the
distribution of workplace sizes in the UK, which is discussed next.

4.3 Blue Sheep data

The dataset we use is a proprietary dataset, which is compiled from over 20 separate
sources, which gives the postcode location and size of workplaces in the UK [Bluesheep
data source]. This is similar to the dataset used by Ferguson et al. [2006] which considered
the distribution of US workplaces. This dataset along with the methods used to attempt
to fit distributions to it is described next.

4.3.1 Description of data and fitting methods

The workplace data provided by Blue Sheep gives the number of employees in over
2,000,000 workplaces around the UK. The mean of this distribution is 12.23, it has a
large variance of 829 and has a value of skewness of a 39.5, meaning that it is right-
skewed, which is sometimes described as a ‘heavy tail’. We wish to see how the number of
employees is distributed and will therefore try to fit to the data with heavy tailed distri-
butions e.g. a power law or log-normal distribution. In figure 4.4 we can see the number
of workplaces with between 1 and 100 employees. This clearly demonstrates a problem in
fitting this data to an appropriate probability distribution, as it shows that there has been
significant rounding of the data, seen most prominently by the increases in numbers of
workplaces whose number of employees is a multiple of 5 or 10. This occurs as the number
of employees who are physically in a workplace from day to day is, in most cases, not a
constant, along with the fact that people are more likely to report round numbers than
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other numbers, an oft-observed phenomenon. This means that if the number of employees
is around 20 then it is more likely that the number 20 will be reported than a neighbouring
integer.

x 10
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Figure 4.4: Number of workplaces containing between 1 and 100 employees.

To get around this problem, we use methodology which was been developed in Virkar and
Clauset [2012]. This methodology allows us to test the likelihood of different distributions
representing a binned data set, i.e. a dataset where the counts for discrete values are
grouped together and summed. The aim of this is to allow us to get around the fact that
the data has been rounded to multiples of 10 (or 50 or 100 when the number of employees
gets higher). By binning the data appropriately we hope to output a less biased dataset,
which would be indistinguishable from applying the same set of bins to the “true” non
rounded dataset. To see this we can consider the following example. Take the number of
workplaces which have between 27 and 33 employees. In our dataset there are significantly
more which have 30 employees than any of the other values we are considering. This is
because of the rounding that has occurred. If we assume that any workplace which in
reality (if this was able to be counted reliably and no rounding was applied) has below
27 or above 33 employees will not be rounded to 30, then by binning the counts for 27 to
33 in our dataset, then this will give the exact same figure as if we were to bin the true
figures.

We now introduce notation similar to that used by Virkar and Clauset [2012], we have
k bin boundaries denoted by the set B = {by,bs,...b;} and k — 1 counts of occurrences,
H = {hy,ha,...hx_1}. We denote by h; the count of the number of times that workplaces
have b; to b;jy1 — 1 employees. There are obviously many different binnings that we can
choose to use to examine this distribution. We impose the the constraint that the distance
between consecutive bin boundaries is monotonically increasing in an attempt to reflect
the actual method at which the rounded values are arrived at. We try to choose bin
boundaries so that there is only one relatively highly rounded to value between consecutive
bin boundaries. For example, we would not want to include 100 and 200 in the same count
as they are both frequently rounded to.
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Along with fitting to the entire distribution, we are interested in how the tail of the
distribution can alter the expected number of infections, which means that we wish to
investigate how fitting only to a portion of the distribution can change the quality of the
fit, along with the number of infected individuals. We denote by z,;, the value at which
we wish to consider our fitting of the data to begin at, so if we wish to concentrate on
fitting to our dataset from 10 onwards, then we would set x,;, = 10.

As previously mentioned, there are numerous sensible binnings that could be chosen to
investigate the data. To limit the number of calculations and figures required to describe
the attempted fittings to the data, we choose to consider two very different binnings,
which we expect to bound the results of binning in general. Figure 4.5 shows the two
binnings that have been chosen to investigate the possible distribution of the Blue Sheep
data. Binning 1 is derived by taking each consecutive bin to end on a number that is
preferentially rounded to, so we have bins such as 6-10 and 51-100. Binning 2 on the other
hand always begins with a preferentially rounded to number, so has bins such as 10-19
and 50-99. Binning 1 therefore has a cumulative distribution function (cdf) which point to
point appears greater than binning 2, which means that when we fit to these different bins,
we will potentially end up with a distribution which results in having a greater number of
large values in case 2 than in case 1. This is expected to result in the final size of epidemics
being larger in the second case than the first, as the larger workplaces act as magnifiers of
the disease.
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Figure 4.5: The two different binnings used. Binning 1 is always higher than binning 2,
meaning that there are more workplaces with fewer employees in them in this scenario. In
blue is the raw Blue Sheep data.

Next, limitations of this data source are discussed.

4.3.2 Limitation of Blue Sheep data

A large limitation of this data is that it is a private data source, and so there is little
opportunity to assess the accuracy of the data that is provided. As previously stated this
combines data from 20 separate sources increasing the uncertainty in the accuracy of the
data. If a company name was provided for each record, then some checking could be done,
but as this is not included, there is no way of easily verifying the data.

As a comparison, we can consider an open source dataset from the Office for National
Statistics (ONS) which provides the number of workplaces by district from VAT and
PAYE records. This is called the UK Business: Activity, size and location, and can be
freely downloaded from the ONS website [UK Business]. This dataset is at district level, of
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which there are 545 in this dataset and is a higher level than CAS ward. Therefore, there
is therefore far less spatial resolution in this dataset than the Blue Sheep data, which is
at post code level. Additionally, rather than the sizes of workplaces, the ONS data simply
gives the number of workplaces in these districts, meaning that this data is not suitable
for the purposes we are using the Blue Sheep data for here. We can however use this
data to assess how accurate the Blue Sheep data is, at least by the measure of number of
workplaces.

In figure 4.6 we see the comparison between these two datasets at a district level for the
number of workplaces. It can be seen that the number of workplaces given in the Blue
Sheep data is generally greater than for the UK Business dataset. One explanation for
this could be duplication of workplaces in the Blue Sheep data, as this is compiled from
many different sources. It is difficult to assess these differences in much detail due to the
lack of transparency in the Blue Sheep data, along with the fact that simply reporting the
number of workplaces, as is the case for the UK Business data, is relatively uninformative.
For example it is impossible to tell if there is a regular underreporting of small workplaces
here when compared with the Blue Sheep data. Overall, the difference in the number
of workplaces is not so large as to cast overwhelming doubt on the accuracy of the Blue
Sheep data, and if we are interested in considering the workplace size distribution, then
there is little option but to use the available data.

1 1.5 2 2.5
Blue Sheep to ONS ratio

Figure 4.6: A histogram showing the count of districts which have a given ratio for the
number of workplaces in the Blue Sheep data, compared with the ONS UK Business
dataset.

4.3.3 Calculating the final size of epidemic in workplaces

Figure 4.7 shows how the change in € could alter the progression of the epidemic in the
different wards using the Blue Sheep data. For these maps, we use values for 8 and  such
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that if we were in the ¢ = 0 case, the values of Ry would be 1. This means that we will
scale 8 such that § = N for each population size N in the data set. To get the final
sizes of the epidemics in the workplaces, we decide on a value for ¢ and then for each of
the workplaces in the data set we will calculate the value of Ry decided by N, e, 8 and ~
and then find Ry by using (4.2) and then multiply this value by N to get the expected
number of people who would be infected in the workplace.

As we can see in figure 4.7, there is a great difference in the size of the epidemic for
e = 0.01 and ¢ = 0.1, as in the first case, the majority of wards have very few infecteds
in the workplaces, whereas in the latter case, infection is widespread and there are many
wards which have over 5,000 infecteds. Note that these maps are for illustrative purposes
only, as there has been no attempt to model the spatial spread of a hypothetical epidemic
in the UK here, simply the spread throughout workplaces has been considered.

We also wish to generate workplace sizes using different distributions, such as the power
law, log-normal and Zipf-like distribution taken from Ferguson et al. [2006]. We will
truncate so that we will not allow any of these distributions to select a sample which
is higher than the maximum contained in the Blue Sheep data, which is 7,500. This is
complicated by the fact that when we sample from these distributions we wish to sample
(approximately) the same total number of people as are contained in the Blue Sheep data.
This will require us to generate different numbers of samples, based on the distribution
we are considering, as the mean of the numbers generated will vary from distribution to
distribution.

To do this we will calculate what the mean of the distribution in question is given the
parameters, and then generate as many workplaces as would be needed to give the same
number of total employees in the dataset if each workplace had the mean number of
employees. We then consider the cumulative sum of these generated workplaces, and only
include workplaces until the point at which the cumulative sum is greater than the total
number of employees in the dataset. If the sum of our generated distribution is smaller,
we generate more sizes until the sum is greater than the Blue Sheep dataset.

4.4 Model selection

4.4.1 Description of methods and distributions considered

There are many methods which can be used to select models, which vary wildly in their
statistical sophistication. The crudest methods such as the Kolmogorov-Smirnov test and
the mean-squared error simply consider the distance between two distributions in order
to select one model over another. There are many more sophisticated techniques, such
as the Akaike Information Criterion [Akaike, 1974] which aims to estimate the Kullback-
Leibler divergence [Kullback and Leibler, 1951] between the proposed distribution and the
actual distribution in question, by calculating the likelihood of the data given the proposed
distribution. Here we compare the fit provided by simple distance-based techniques such
as the average absolute deviance between the cdf of the proposed distribution and the true
distribution, alongside likelihood-based techniques in order to see which gives us a better
fit to the Blue Sheep data measured using the estimated final size of the outbreak in the
workplaces.

It is anticipated that with the problem we are considering, simply calculating the model
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Figure 4.7: Summed final sizes in workplaces for different values of ¢ by ward. Workplace
size distribution is the Blue Sheep data.
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with the highest value of the likelihood may not give us the most informative result. This
is because we are interested in how the change in transmission rates will affect the size
of the epidemics in the workplaces. The way that this change in transmission rates will
take effect will be in the increase in the number of infecteds from workplaces with a high
number of employees. Therefore one of the major factors that we must consider is the
probability of selecting a ‘high’ number of employees. The fact that there are relatively
few of these in the Blue Sheep data (=~ 84% are 1-10, ~ 98.75% are 1-100), means that
the likelihood calculations will be weighted heavily by accuracy in the bulk part of the
distribution, which will therefore mean that we can achieve the greatest likelihood with a
very inaccurate approximation of the tail of the distribution.

As mentioned above, along with calculating likelihoods, another simple test would be to
simply sum the absolute error in the cdf of the distribution in question to the cdf of
our empirical data and to then choose the set of parameters which minimised this. This
approach will enable us to choose the distribution which is most accurate to the Blue
Sheep data over the whole range of the data necessarily meaning that the quality of the
fit must be, in at least a relative sense, good in all regimes of the data, but biased to the
tail due to the use of the cdf rather than the probability mass function (pmf).

If we wish to fit the data to this distribution where we use a value for zyi, # 1, then we
must adjust the above method to do this. To do this, we firstly work out the cdf of the
whole dataset. Then to fit to the data for any distance-based method, using for example
least absolute error of cdf, we then only take into account the differences in the cdf’s from
ZTmin and up. This results in us choosing parameters which line up closely with the data
from the value of zyi, onwards but without the constraint of minimising the error for
lower values.

To adapt likelihood methods, we could weight the likelihood provided from the larger
workplaces more heavily than for lower values. However we have chosen to simply calculate
the likelihood from the data which is greater than or equal to Ty, as there is no way of
incorporating the information contained in the data below x i, without explicitly including
it in our calculations. When we then take the parameters which have the greatest likelihood
in this regime, and try to produce the whole of the workplace distribution, it is possible
for the resulting distribution to differ greatly from the Blue Sheep data. This is due to
that fact that the majority of the distribution can be entirely ignored if xpi, > 1.

We are interested in fitting the workplace data to a distribution, in order to investigate
how the assumption of different distributions for the workplace sizes can affect the way
an epidemic will spread throughout the workplaces. As mentioned previously we use
methodology from Virkar and Clauset [2012] to do this. Code for these calculations is also
provided [Clauset and Virkar, 2012]. However this paper, deals with real valued data and
allows us to fit a distribution to any dataset, without the use of a maximum value. As we
wish to fit discrete data and have also imposed a maximum value onto the distribution,
we develop our own techniques to do this.

In various situations to get the ‘best’ fit for a power law, or another distribution to a
dataset, often some portion of the data that we are trying to fit is ignored in favour
of fitting the tail of the data to a distribution [Clementi and Gallegati, 2005; Willinger
and Paxson, 1998; Redner, 1998], which is discussed, along with the appropriateness of
these fits by Clauset et al. [2009]. In general we are interested in characterising the whole
of the distribution as well as just to the epidemiologically important tail, though will
consider fitting only a portion of the data, as noted above, denoted by choosing a value of
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Tmin > 1.

Note that due to the use of bins, it causes problems when z,;, > 1. This is because if we
set our value for zn, to be inside a bin, it is unclear what the best course of action is,
as we will be unable to split the number of occurrences within the bin to ones below i,
and those above. The course of action taken is described with the following example: if
we have a bin which groups readings from, 51 to 100 and zpi, = 100, we define this to
mean that we include the readings in this bin in our calculation. Now when we are trying
to fit our distribution using distance-based methods, we normalise for values from 51 to

Lmax-

The distributions we have considered for the workplace size distribution are: 1) ‘offset
truncated power law’ distributions (which are put forward as a good candidate for work-
place sizes by Ferguson et al. [2006] based on a model from Riley and Ferguson [2006]), 2)
discrete power laws and 3) log-normal distributions. There are of course many different
distributions which we have not considered which could be as good or better candidates for
modelling this dataset. However, the distributions above are often cited as candidates for
modelling heavy-tailed distributions [Crovella et al., 1998; Mitzenmacher, 2004; Clauset
et al., 2009] and so are also considered likely candidates here.

In each of the three following subsections of the thesis, one the distributions which we
are attempting to fit to the data (offset truncated power law, discrete power law and
log-normal) is first described. This leads into the calculation of the likelihood of the
distribution in question, which is followed by the fitting of this distribution to the Blue
Sheep data using the likelihood method, along with the minimum total absolute error in
the cdf. The number of predicted infections from the best fitting distributions is then
calculated and compared to the predicted infections for the Blue Sheep data for various
forms of the transmission rates, defined by the selection of €. To do this we introduce a
single infected individual into each workplace, and then calculate the expected final size
using (4.2) for the comparative value of Ry defined by €, which is again constrained by
requiring Rgp = 1 in the ¢ = 0 case.

Therefore each of the following subsections contains methods and results, which is done
to allow for full understanding of the fitting of each distribution in turn. Following these
three subsections will be a summary of the results and a discussion of the relative success
and failures of these distributions in the fitting to the Blue Sheep data.

4.4.2 Offset truncated power law

Workplace sizes from the USA has been fitted, using likelihood-based methods, to a ‘Zipf-
like’ distribution previously [Ferguson et al., 2006]. More descriptively, this has also been
called an offset truncated power law distribution. This was assumed to be representative
for the UK by Ferguson et al. [2006], though data was not available to determine param-
eters. As we have this data we can examine how the assumed parameters in this study
would affect the spread of the infection and also what parameters we can determine from
the data to be the best fit.

The form of the cdf for this distribution is,

(M) -1

PX<z)=1- (1 + Zmae/a)C — 1
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where xy.x is the largest value we will allow the distribution to take and ¢ and a are
parameters dictating the shape of the distribution. In Ferguson et al. [2006] the values
used are a = 5.36, ¢ = 1.34 and zpax = 5,920. We note that the maximum value in the
Blue Sheep data is 7,500, so we will use zymax = 7,500, but a and ¢ are both values we
wish to fit using likelihood methods.

We use (4.9) to calculate the probability of seeing a specific value, which is given by the
following expression,

1+517max/a c 1+zmax/a c
(1+(xfl)/a) o ( 1+z/a )

PX=2)=PX<z)-PX<z-1)= (14 Zmax/a)¢ —

(4.10)

where (4.9) gives the right hand side of this equation.

If we are taking a value of x,;, > 1, which implies we fit the power law from x i, t0 Tmax,
then we also need to calculate a normalising constant, which we denote ¢(a, ¢, Zmin, Tmax)-
This is given by evaluating the following;:

Tmax
¢(a, C, Tmin, wmax) =¢ = Z P(X = x)
T=ZTmin
(M)C 1 (4.11)
_ 1+(zmin—1)/a

(14 Tmax/a)c—1
as all terms other than the first and the last are cancelled out in the sum. It is simple to
show that this is equal to 1 if zyi, = 1.

As we are attempting to fit this distribution to binned data, it is required to calculate the
probability of seeing a value within a certain region, defined by the choice of bins. This
is achieved by taking the difference of the two values of the cdf at the end points of each
bin. For example to calculate the probability of seeing a value in the bin which includes
values from b;_1 to b; — 1, this is done as follows,

1+Zmax/a c 1+Zmax/a \C
(1+(+1 1— 1)/(1) B (l—l——i_(bi—l)/a) (412)

1
5 (14 Zmax/a)* — 1)

P(bz‘_l <X < bz)

This means that the likelihood of this distribution is calculated as follows,

Tmax/a@ c Tmax/a \C\ hi
i < 1+1(: - {)/a) _(11++(bi1)//a)>

P(H|Ba @, Cy Tmin, xmax H 1 g /a)c (413)
max -

=1

The log-likelihood is then given by,

L(H|B,a, ¢, Tmin, Tmax) = — nln ((1 + Tmax/a)C — 1) —nln¢
14+ Zmax/a 1+ Tmax/a \© (4.14)
Z’” << i) - () )

We cannot maximise this analytically, so in practice, we use a brute force gridding method
by selecting a range of different values for a and ¢ and choosing the maximum numerically.
This method is repeated for all other distributions that we wish to investigate.
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When comparing log-likelihoods of two different models, it is often useful to refer to the
relative log-likelihood between the two models to demonstrate the loss in terms of likeli-
hood that choosing the model with the lower log-likelihood has. This is given simply the
difference in the value of the log-likelihood for the two models.

Figure 4.8 shows the fits from likelihood analysis and the minimum absolute error in cdf
for binning 1 along with the parameters which are taken from Ferguson et al. [2006]. To
generate this figure we plot the cdf of the raw data along with the binning in question. We
then generate 108 samples for each set of parameter values, and then the cdf was calculated
at the corresponding points from the bins from these samples.

We can see that the distributions that we have fitted are a much better fit for the cdf of
the Blue Sheep data in the bulk of the distribution than the values which are taken from
Ferguson et al. [2006], which as previously discussed, we would expect. We also note that
from workplace size of 20, both the likelihood and min cdf error fits have larger values
of cdf than the binning to which they were fitted, meaning that proportionately more
workplaces have been allocated at each point in these fittings than in the dataset. As
the numbers of employees in the workplaces increases past 20 the parameters taken from
Ferguson et al. [2006] begin to more closely match the data, and from about workplace size
200 fit more closely than the newly fitted parameters. This is due to the differences in the
distribution of workplace sizes in the US as opposed to the UK. The fit of these parameters
suggests that in the USA there are proportionately fewer workplaces with fewer than 20
employees and more of a larger size.

Figure 4.9 shows similar distributions as 4.8, but the fitting is done for binning 2. Again
the two fitted distributions are closer to the data than the parameters from Ferguson et al.
[2006] in the bulk of the data. In the tail of the distribution, the fit to the raw Blue Sheep
data in figure 4.9 is closer than that seen in figure 4.8. The parameters from Ferguson et al.
[2006] again approach the data as we reach the tail (as neither of them have changed) but
this time the newly produced fit using the minimum error in the cdf is as close or closer
to the data at all times.
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Figure 4.8: Cdf’s for the distribution of number of employees in a workplace, taken from
Blue Sheep data source and compared to fitted offset truncated power laws (labelled as
Zipf-like in figures). Old parameters are a = 5.36, ¢ = 1.34 and are taken from Fergu-
son et al. [2006], whilst fitted parameters are a = 4.40, ¢ = 1.47 with a log-likelihood
of -4,457,400 for likelihood fitted parameters and a = 3.8, ¢ = 1.36 with a relative log-
likelihood of -2117, when compared to maximum likelihood, for minimum absolute differ-
ence between the cdf of the binned Blue Sheep data and the fitted cdf.
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Figure 4.9: Cdf’s for the distribution of number of employees in a workplace. Old param-
eters are a = 5.36, ¢ = 1.34 whilst fitted parameters are a = 3.94, ¢ = 1.34 for likelihood
fitted parameters with a log-likelihood value of -4,839,900 and ¢ = 3.10, ¢ = 1.20 and
relative log-likelihood value of -5,542 for minimum absolute difference between the cdf of
the binned Blue Sheep data and the fitted cdf.
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Figure 4.10: (a) Binning 1. Parameters as given in figure 4.8. (b) Binning 2. Parameters
as given in figure 4.9.
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In figure 4.10 we can see the total number of infecteds in the population for various
different values of ¢ when we perform calculations as described at the end of § 4.4.1. We
perform this for the raw Blue Sheep data which gives the actual distribution of workplace
sizes, along with several offset truncated power law distributions. Figure 4.10a shows this
for the raw Blue Sheep data along with the offset truncated power law distribution with
parameters taken from fitting to binning 1 and the set of parameters taken from Ferguson
et al. [2006]. We can see that as e is increased the total infecteds for the parameters taken
from Ferguson et al. [2006] is a better approximation to the number of infecteds given by
examining the Blue Sheep data, whilst at low values of ¢ the agreement is closer for the
other sets of parameters. This implies that as € increases, the agreement in the tail of the
distributions becomes more important than the fit for the bulk, as it is in this regime of
the cdf for which the non-fitted parameters have a better agreement to the data.

Figure 4.10b is similar but the analysis is performed for the fitted distributions using bin-
ning 2. Again the old parameters do better than the parameters obtained by maximising
the likelihood as € increases, whilst the set of parameters which are obtained from min-
imising the absolute error in cdf do better than these old parameters for all values of € as
we would expect as they are consistently closer to the cdf of the Blue Sheep data than all
other parameter sets.
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Figure 4.11: (a) Adjusted cdf for Blue Sheep compared to likelihood fitting of offset
truncated power law for z,;, = 100 for binning 1. The parameter values are a = 1.00,
¢ =1.10. (b) Adjusted cdf for Blue Sheep compared to likelihood fitting of offset truncated
power law for zp, = 100 for binning 2. The parameter values are ¢ = 1.00, ¢ = 1.13.

We are interested in finding the most useful fit to the Blue Sheep data when we consider
this in terms of the final size of the epidemic as dictated by (4.2) when we allow € to be
non-zero. As has been shown for the offset truncated power law, the parameters taken
from Ferguson et al. [2006] give a good agreement to the total number of infecteds in the
population despite having a far larger error in the part of the cdf corresponding to small
workplaces. Therefore it is arguably more important to get a good fit to the cdf in the tail
of the distribution, as it is here that the increase the numbers of infecteds produced due
to the increase in € becomes more important. One way of fitting to the tail of the data is
include a value of zyin, > 1. We can then fit to the data using likelihood methods or any
distance-based technique.
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As briefly described in § 4.4 to fit for the likelihood, we simply calculate the likelihood for
the data > . In figure 4.11a we display the adjusted cdf for the first bin along with
the best likelihood offset truncated power law distribution for this region. By the adjusted
cdf we mean that we remove all data below the value of x,;, and then work out the cdf
for the remaining data. For this example, we have used Ty, = 100. To calculate this
adjusted cdf we remove all data below 51, as there is a bin from 51-100 and then work
out the cdf, meaning that at 50 the cdf is 0. We also use this remaining data to fit the
distribution with the best likelihood. As can be seen in the figure, the agreement between
these two distributions is strong. Figure 4.11b shows the same for binning 2.

When we then generate the total distribution of workplace sizes using the parameters from
this fit due to the fact that the likelihood method must necessarily ignore the data beneath
Tmin, We are not guaranteed a good fit to the cdf of the data at any point, even in the
region greater than xpyi,. This is due to the fact that we are fitting to the adjusted cdf,
all we can be sure of is that what remains of the cdf from z.,;, up will have the correct
proportion assigned to each bin.
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Figure 4.12: (a) Cdf of likelihood and minimum cdf error fitting of offset truncated power
law for xyi, = 100 for binning 1. The parameter values are a = 1.00, ¢ = 1.10 for the
likelihood fit and a = 1.57, ¢ = 1.05 for the minimum cdf error fit. This figure shows the
whole distribution. (b) From zp,;, = 100 to tail.

As can be seen in 4.12 we see the comparison of the cdf for the likelihood fits for binning
1 along with the min cdf error fit with the Blue Sheep data along with binning 1. We can
see in both 4.12a and 4.12b the difference in these for the whole cdf and in more detail the
region in greater than xpn,. The cdf for the best likelihood fit assigns too many workplaces
a low number of employees, whilst the minimum cdf error is consistently closer to the cdf
of the data than the likelihood fit and is an extremely good fit to the data from the value
of iy up. Figure 4.13 shows the same for binning 2.

Due to the fact that we have a poor fit to the empirical cdf for the best likelihood param-
eters, especially in the tail of the distribution where compared to the Blue Sheep data,
there are too few workplaces, we expect the total number of infecteds in the population to
be lower than the total given by the data by a significant amount. Figure 4.14 shows this
to be the case, for both binnings, and also shows that the total number of infecteds for the
min cdf error fits have a good agreement with the number of infecteds. On the evidence
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of this analysis, when considering a non-zero value of x,;;, we will not perform fits to the
data using likelihood methods in future, as this lends nothing to the analysis.
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Figure 4.13: (a) Cdf of likelihood and minimum cdf error fitting for i, = 100 for
binning 2. The parameter values are a = 1.00, ¢ = 1.13 for the likelihood fit and a = 2.36,
¢ = 1.10 for the minimum cdf error fit. This figure shows the whole distribution. (b) From

Tmin = 100 to tail.
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Figure 4.14: Total infecteds for different values of € for different offset truncated power
law distribution fits for xyi, = 100. Parameter values are as given in figs 4.12 and 4.13.

The next distribution that we wish to consider is the discrete power law, which is seen as
a good candidate for fitting to many empirical datasets, and discussed next.
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4.4.3 Discrete power law

As is described by Virkar and Clauset [2012], the pdf for a discrete power law, with
exponent o and minimum possible value xyiy, is given by the following,
x*CM

POX =)= (o (4.15)

where (o, Tmin) = > o=, 7%, is the normalising constant, which in this case is the
Hurwitz zeta function. However as we wish to limit our distribution by the maximum
of the Blue Sheep data, we must redefine this distribution (4.15). We firstly no longer
use the Hurwitz zeta function, but alter this to take a third argument, Ty, such that

C(a, Trmin, Tmax) = ¢ = Y rmax =@ The pdf is now given by,

T=Tmin

—Q

X
, it zmin <2 < Thpax dzeN
PX =z =] ¢ if x T < Tmax and x (4.16)

0, otherwise.

To calculate the probability of selecting a value between two values b; and b;41, we simply
add up all the probabilities in between these two values,

P(bl <X < bi+1) = Z P(X = (1}) . (4.17)

If we assume that the recorded observations in the Blue Sheep data are taken from a
discrete power law, then with k& bin boundaries the set of which are denoted by B and
k — 1 observation counts collected in the set H, the likelihood of observing said counts is
given by,

k—1 JJ:bl‘ :L'ia hi
P(H|Baoé7l’minal’max) = H < Z C) R (418)
=1 r=b; _1+1

where we assume that by = i, — 1. Like for the offset truncated power law, log-likelihood
is used in favour of likelihood, which is obtained simply by taking the logarithm of (4.18).
When this is done we get the following expression for the log-likelihood,

k—1 b;
L(H|B, &, Tumin, Tmax) Z ( hin(¢) + hi ln( ))
1+1

i=1 r=b;_
- b (4.19)
=-nln(¢) + > hiln ( Y oz >
=1 r=b;_1+1

where n is the sample size.

Again as we cannot maximise this analytically, we choose a range of values of a and select
the one which gives us the largest value for the likelihood.

When we fit to this distribution, we get a different profile than the fit we got for the offset
truncated power law distribution. Figures 4.15 and 4.16 demonstrate this. Again we fit
these distributions for the largest value of the likelihood and also minimising the error in
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the cdf. From workplace sizes of about 10 until the end, the cdfs for all the discrete power
law distributions have smaller lower values than that for the empirical cdf. This means
that we will have more workplaces with a large number of people working there resulting
in the expectation of larger final sizes for the epidemics in comparison to the Blue Sheep

data.
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Figure 4.15: Cdf’s for the number of employees in a workplace from Blue Sheep data
and fitted discrete power law distributions for binning 1. The likelihood fit has parameter
o = 1.54 with log likelihood L = —4,735,319 and for the min cdf error fit « = 1.63 with
relative log likelihood L = —22,499.
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Figure 4.16: Cdf’s for the number of employees in a workplace from Blue Sheep data
and fitted discrete power law distributions for binning 2. The likelihood fit has parameter
«a = 1.53 with log likelihood L = —5,091, 888 and for the min cdf error fit = 1.58 with
relative log likelihood L = —7,524 when compared to the maximum.
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Figure 4.17: Total number of infecteds in workplaces for various values of € when consid-
ering the fits to the discrete power law from 4.15 and 4.16.

We see that this is the case in figure 4.17, with all of the discrete power law distributions
predicting significantly more infecteds than the Blue Sheep data for all values of ¢ >
0.01.

We repeat this fitting for the minimum cdf error for values of xmin > 1. We choose Tpin
which lie at bin boundaries for each set of bins, and choose values up to 1,500. The result
of these fits can be seen in figures 4.18 and 4.19. As we would expect, as Ty, is increased
we get a stronger agreement between the fitted distribution’s cdf’s and the empirical cdf
at larger values of the workplace size with the fits getting better with increasing iy, in
exchange for poorer fits in the bulk of the distribution. This translates into a far better
approximation of the Blue Sheep data in terms of the size of the epidemic we would expect
to see in the population as xpyi, is increased, which can be seen in figure 4.20.
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Figure 4.18: Cdf’s for the number of employees in a workplace from Blue Sheep data and
fitted discrete power law distributions for various values of zin. For T = 1, a = 1.63,
Tmin = 4 has a = 1.70, min = 50 has @ = 1.87, i = 500 has a = 1.91 and i, = 1,500
has o = 1.93.
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Figure 4.19: Cdf’s for the number of employees in a workplace from Blue Sheep data and
fitted discrete power law distributions for various values of zy,in. For i = 1, a = 1.58,
Tmin = 4 has a = 1.59, zmin = 49 has a = 1.84, xmimm = 499 has a = 1.89 and x;, = 1,499
has o = 1.90.
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Figure 4.20: (a) Comparison of total infected in population for discrete power law dis-
tributions, for various values of z,;,. Parameters are selected by minimising the absolute
error in the cdf of the power law distribution in comparison to binning 1. (b) Here the
fitting takes place in comparison to binning 2.
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Finally we consider the log-normal distribution, which is often proposed as an alternative
distribution to the power law distribution for heavy-tailed empirical distributions.

4.4.4 Log-normal distribution

The log-normal distribution is a continuous probability distribution which exhibits a heavy
tail, which has two parameters, a mean p and a standard deviation o. The pdf for this
distributions is,

1 (Inz — M)2)
P(X =z|p,0) = exp| ———— | . 4.20
(X =aluo) = e (- (4.20
However as we previously noted we wish to consider a discrete distribution and only allow
values up to max. We therefore define a normalising constant &(u, 0, Tmin, Tmax) = § =

Sogmax Lexp (- M) The pdf for the discrete log-normal is given by,

T=Tmin T 202

1 (Inz — u)?
pixma= e (-5

0, otherwise.

), if Zmin <2 < ZTpax and x € N (4.21)

Again the probability of seeing a value between two bin boundaries is simply a sum of
the discrete probabilities for that range. This gives us the following expression for the
likelihood of observing our set of observation counts H given our chosen binning B,

pm (Inz — u)? "
P(H’B; M? 07 xmin; wmax) — H - Z ; eXp < - M) 9 (422)

=1 r=b;_1+1

where we define by = zin — 1. The log-likelihood is given by the following,

k—1 b;
: (Ina — p)?
L(H‘Bnua g, xminyxmax) = nln(&) + Zl hiIln ( bz+1 exp ( — T)
= T=0i—1

(4.23)

_kzh1< 5 o).

r=b;_1+1

The fits provided by this distribution are seen in figures 4.21 and 4.22. We see very close
fits to the Blue Sheep data in the bulk of the distribution, but as we move into the tail, the
log-normal distributions cdf’s are much higher than the actual data. This implies that we
will observe smaller epidemics than for the Blue Sheep data, which is confirmed by figure
4.23.

As for the discrete power law, we could fit these distributions using values of xpmy > 1,
which would give a better fit to the tail of the Blue Sheep distribution. For the sake of
brevity however, these have been omitted.
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Figure 4.21: Cdf’s for the number of employees in a workplace where we attempt to fit a
log-normal distribution to the Blue Sheep data. The distribution with the best likelihood
has parameters y = 0.92 and ¢ = 1.45 and a log-likelihood value of -5,830,900, whilst the
set of parameters which give the minimum error in the cdf of the distribution are p = 0.79

and o = 1.49 and a relative log-likelihood value of -2,372 compared with the maximum
likelihood.
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Figure 4.22: Cdf’s for the number of employees in a workplace where we attempt to fit a
log-normal distribution to the Blue Sheep data. The distribution with the best likelihood
has parameters y = 0.82 and ¢ = 1.57 and a log-likelihood value of -5,923,000, whilst the
set of parameters which give the minimum error in the cdf of the distribution are p = 0.93
and ¢ = 1.33 and a relative log-likelihood value of -23,471.
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Figure 4.23: Total infecteds for the population for fitted log-normal distributions in com-
parison to raw Blue Sheep data.

4.5 Discussion

When we consider the best fit in terms of likelihood value, the offset truncated power
law distribution gives us the best fit to the data. The set of parameters which have the
greatest likelihood are found when we fit to the data using likelihood methods for the first
set of bins. This gives a log-likelihood value of -4,457,400. For the discrete power law,
the best log-likelihood is -4,735,419 and for log-normal it is -5,833,272. This means that
simply considering likelihoods, the offset truncated power law is the best fit to the data
by a substantial margin with values of the parameters for this distribution being a = 4.40
and ¢ = 1.47.

However as we want to be able to say something about the seriousness of a potential
epidemic in the population, it may be more useful to consider which set of parameters
will give us the closest agreement with the Blue Sheep data in terms of the final epidemic
size.

To make this comparison, we take sum the absolute values of the difference from the Blue
Sheep prediction to our fitted prediction at 15 different values of €, spread evenly from
0.00001 to 0.1. We can then choose the set of parameters that minimise this for each
distribution and then compare these values to each other to find the ‘best’ fit by these
criteria.

When we perform this analysis for xn;, = 1 we find that the offset truncated power law
distribution is again by far and away the best choice. However the set of parameters
which give us the closest agreement to the Blue Sheep data are gained by minimising the
difference in the cdf’s between the Blue Sheep data and the distribution for binning 2, and
the parameter values are a = 3.10 and ¢ = 1.20. The minimum cumulative difference we
find over the 15 points is around 1,300,000 on average for these parameters. In fact using
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the parameters which give the best likelihood give the greatest discrepancy in the number
of infections when considering only the offset truncated power law and the difference in
the final sizes is 17,300,000 on average.

Despite this large leap between the best and worst fits, the set of parameters which per-
forms worst from the offset truncated power law distribution still beats all parameter fits
for the log-normal and discrete power law distributions. For the log-normal, the best fit
is for the likelihood fit of binning 2 and the difference is 23,200,000 whilst for the dis-
crete power law, our best fit is from the minimum cdf error to binning 1 and the error
is 43,500,000. This shows how poor the log-normal and discrete power law are when it
comes to this measure, which tells us that the offset truncated power law distribution is
definitely more descriptive of the data.

To achieve a more predictive fit to the amount of infection in the population for the discrete
power law, we increased xmi, and then attempt to minimise the absolute error in the cdf
between the distribution in question and the Blue Sheep data. Doing this, we can get a
set of parameters which is far more accurate in terms of the number of infecteds as can
be seen best in figure 4.20a. Here using xnmiyy = 1,500 for the discrete power law, the
cumulative error is 3,500,000 which is far better than using lower values of zpi, but the
best offset truncated power law distribution is still more than twice as good.

We have seen that these chosen distributions fit the cdf of the data with varying degrees of
success, well for the offset truncated power law to poorly for the discrete power law. This
translated into a strong or poor agreement with the Blue Sheep data for the final sizes of
an epidemic in a population for various values of €. It was shown that the strength of the
agreement here was highly dependent on the tail rather than the bulk of the distribution.
In terms of fitting the data as closely as possible, we therefore have to decide what measure
is best to measure the success of the fit by. If we were simply interested in fitting the data
to a certain distribution, so that we could say that the data followed this distribution, then
we could simply choose the distribution and set of parameters which gave us the largest
value for the likelihood.

We can therefore conclude that the offset truncated power law distribution fits the data
more satisfactorily than the discrete power law or log-normal distribution as it outperforms
both by a considerable margin in terms of likelihood and predictive power.

However we note that the set of parameters that we would report as fitting the data best
depends on what we are interested in doing with the distribution. If we simply wish to
report the most probable set of parameters in terms of the ability to describe the cdf of
the data, we would report that a = 4.40 and ¢ = 1.47. However if we were interested in
studying what the effect of the parameters is in terms of final size of an epidemic, we would
report that ¢ = 3.10 and ¢ = 1.20. Therefore what is to be done with the information is
therefore an important consideration to keep in mind when attempting to fit a distribution
to data.

To increase the agreement between the worst performing distribution, the discrete power
law, and the Blue Sheep data, in terms of the predicted number of infecteds, we have also
fitted to the cdf for different values of z,,. For a value of xyi, = 1,500, we achieved a
good agreement between the power law and the actual data for the predicted number of
infecteds. This was much improved when compared to any set of parameters we get from
using Tmin = 1. This tells us that the tail of the distribution is of great importance in
order to characterise the possible spread of the infection through the workplace population,
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and it is not instructive to simply find a parameter set which fits well in the bulk of the
distribution and be confident that this is describing the data well in a way which you are
interested in.

In general, it is interesting to see how the profile of the different distributions affects
not only the fit of the distributions to the cdf, but also changes the way in which the
total number of infections predicted differs from that of the Blue Sheep data. For the
discrete power law the large workplace sizes are over sampled when we choose parameters
to match the empirical cdf. On the other hand, the log-normal and offset truncated power
law distributions have select more small workplace sizes. This means that the number of
infecteds that these distributions predict can be greater than the data suggests (discrete
power law, 4.17) or fewer (offset truncated power law, 4.10 and log-normal, 4.23).

If we are interested in including workplaces in the spread of epidemics in countries for which
we have no data on the workplace size distribution and no idea what the distribution may
be, then it is plausible that we may select a discrete power law as this will in all likelihood,
not underestimate the severity of a potential epidemic, though this may produce a worst
case scenario which is difficult to believe. However as it has been shown that for the UK
the offset truncated power law gives us the best fit (of distributions considered), and this
was the distribution produced for the US in Ferguson et al. [2006], it is likely that, for
economically developed Western countries at least, this is a fair choice of workplace size
distribution.

7



4.6 Attack Rates

In the previous sections of this chapter we have used the deterministic mean-field ap-
proximations to calculate the total expected final size in the workplaces when we con-
sider different possible distributions of workplace size along with non-frequency dependent
transmission rates. The use of non-frequency dependent transmission rates implies that for
distributions which contain greater numbers of large workplaces, the mean transmission
rate will be larger than for others distributions.

The implication of this is as follows. If we consider all of the workplaces to form a popula-
tion, then if we select an individual chosen at random from this population and calculate
the average number of people they will infect, then this will be higher in the distribu-
tion which has more large workplaces. This is essentially the definition of Rg. Therefore
consideringtwo different workplace distributions is equivalent to considering spread of two
diseases with different values of Ry. Though this is caused by the increased average work-
place size, this increase in the average transmission rate means that we are not exploring
the impact of this increase of average workplace size in a fair way.

A fairer way to compare the impact of the distribution of workplaces on the spread of
the epidemic is to keep the mean transmission rate constant across distributions. One
way of achieving this the same is to use frequency-dependent transmission. However,
this will not allow us to investigate the difference between small and large workplaces,
as they will be homogeneous in the spread of the infection from person to person. If we
keep the mean transmission rate constant in different distributions by scaling all of the
transmission rates in a consistent way, then this will allow us to investigate the dependence
on the distribution in terms of how large workplaces behave differently to small workplaces
if average behaviour is the same. To do this we can consider the overall attack rate
or secondary attack rate in a single workplace from a single introduced infection, and
then see how this scales up to population level when we keep the mean transmission rate
constant.

The overall attack rate gives us the proportion of individuals who are infected in a popu-
lation by an initial infected individual, and gives us information on the potential impact
of an epidemic in the population. When referring to the secondary attack rate, which has
been defined in multiple ways, we mean the proportion of people who are directly infected
by the initial individual.

A discussion of how to scale the transmission rates precedes a discussion of attack rates,
and follows here.

4.6.1 Scaling transmission rates

As mentioned above, we wish to scale transmission rates so that the mean over all work-
places is the same, but we still have variation for each individual workplace size. To
do this we begin by defining ;. to be the transmission rate for workplace size k£ and a
given value of €. As in the previous sections, we still want the transmission rate to be
approximately inversely proportional to k€. As we are concerned with the spread within
individual workplaces of a given size k, the number of contacts in the workplace will be at
most k — 1. The average number of contacts over the whole population of workplaces is
therefore given by >, d;(k —1). Therefore assuming a rate of contact proportion inversely
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proportional to the number of possible contacts with these individuals as in the above
sections, we have that the average contacts made by members of the population is given

by S di(k—1)/(k— 1)t =3, di(k — 1)<

As we still wish the transmission rates to be proportional to the inverse of the number of
contacts in the workplace, we define

IBk,e =p, € = 0
0. P
Bre = ,e>0
© (k=) () di(k — 1))
where p can be changed in order to increase or decrease the amount of transmission
we introduce to the population and 6. is used to appropriately scale the values of the
transmission rates when necessary.

(4.24)

When we have frequency dependent transmission € = 0 this gives that 8,0 = p/(k — 1).
It is worth noting that when € = 0, p is equal to the value of Ry, as the expected number
of cases produced by this initial infected will be S o(k —1) = (k—1)p/(k —1) = p.

When € > 0 we then use 6 to scale all of the values of 3y, for any particular value of
€ so that N ), difke is equal to the value of N ), djf0, resulting in the same mean
transmission rate.

4.6.2 Overall attack rate

The overall attack rate is defined as the proportion of at risk individuals in a population
who are infected during an epidemic. Here we assume that the whole population, and
specifically all members of a workplace excluding the initial infectious individual, is at
risk. To calculate the overall attack rate we consider the final size of an epidemic in a
workplace if we introduce a single infectious person into it.

In a workplace of any size k, we can use Bailey’s method [Bailey, 1957] to calculate at
machine precision, without use of Monte Carlo simulation, the probability that the final
size will be z, i.e.

p=(kle) := lim Pr((S(t),1(t)) = (k = 2,0)|(5(0), 1(0)) = (k = 1,1); Br.;7]»  (4.25)

for z between 0 and k — 1, where 3 . is the transmission rate in a workplace of size k for
the value of € in question, and ~ is the recovery rate. Then to calculate the overall attack
rate (OAR), we evaluate the following,

OAR. = SES T (4.26)

where d}, is the proportion of workplaces of size k£ and z ranges from 0 to k — 1.

Figure 4.24a shows the results gained from calculating the overall attack rate for different
workplace distributions. To do this we calculate the 8's as in (4.24), and input the ap-
propriate values of (. into (4.25). Finally we use (4.26) to get the values of the overall
attack rate. We do this using the Blue Sheep data, and for comparison, the best fitting
discrete power law distribution for zy;, = 1 from 4.4.3.
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This can be explained by considering figure 4.24b, which shows the expected overall attack
rate by population size, which is calculated in the same way as stated previously. For a low
value of p, 0.5 here, the OAR begins at about 33% for a population size of 2, and by the
time the population size is 10 this is down to 8%, and quickly tends towards 0. The ratio
between the OAR at population size 2 and 10 is approximately 4.2. Between 2 and 100,
it is 34.79. As the power law distribution contains more large workplaces when compared
to the workplace data this results in the Blue Sheep data having a higher OAR.

Making the same comparison between population size 2 and 10 when p = 2, only gives
a ratio of 1.51 between the two OAR’s, and even comparing 2 with 100, the ratio is still
only 1.74. Therefore the different distributions are not dissimilar enough to cause a large
difference in the overall attack rate considering the whole distribution.

As € increases, the attack rate for the discrete power law is larger than that for the Blue
Sheep data, again the reason for this can be seen in figure 4.24b. Taking the extreme case
of ¢ = 1 we see that as the population size increases, so does the value of the OAR. This
is as we would expect as for € = 1 the transmission rate per neighbour stays constant as
the size of the population increases, meaning that the force of infection is greater. This
increase in OAR for larger workplaces is large enough that where the OAR for the power
law when € = 0.5 is very close to values for the ¢ = 1 case in the Blue Sheep data set.
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Figure 4.24: Comparison of attack rates for different datasets produced by use of Bailey’s
method and simulation using Gillespie’s algorithm. (a) shows the overall attack rate for
the workplace data and the best fitting power law distribution from §4.4.3. (b) shows the
changes in the overall attack rate in a single location whose population size is given by the
x-axis for two different values of p, when we consider frequency dependent transmission
compared with density dependent transmission. For frequency dependent transmission, as
population size increases, O AR decreases, whilst for density dependent transmission, the
OAR increases with population size. (¢) compares the value of the expected SAR for Blue
Sheep data in blue, against the power law distribution in red. The four different lines for
each distribution show the different values of SAR for e = 0, 0.1, 0.25 and 0.5 from lowest
to highest in each colour. (d) shows the value of the SAR for the Blue Sheep data, power
law distribution and household distribution for the UK.

4.6.3 Secondary attack rate

The secondary attack rate is the often defined as the proportion of cases among susceptible
contacts of the primary infected individual [CDC]. However as we are assuming that into
each workplace a primary infected is introduced, and that all people in the workplaces
are connected to each other, using this definition is equivalent to the overall attack rate.
Therefore instead of this definition, we define the secondary attack rate (SAR) to be the
proportion of at risk individuals that are directly infected by the initial infected. Again
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we are assuming that the whole of the population is at risk. Note that the average number
of people directly infected by the initial infected person is equal to the value of Ry, which
we are keeping constant across populations and values of € here.

There is no deterministic calculation for this definition, as Bailey’s method is for the final
size, so to calculate this, simulation is required.

This can be achieved by using the Gillespie algorithm [Gillespie, 1977], whilst keeping
track of who infected whom. This is easily achieved in a fully connected workplace of size
k by defining, I;; to be the number of people infected by node ¢ in workplace j. As the
workplace is fully connected, we can always make the initial infected node 1, and then
make the n-th infection be on the (n+1)th node, e.g. the first infection (if it occurs before
the initial infected recovers) will always be on node 2. This implies that the index for the
I;; variable will only have to go up to £ — 1, as the k-th node will never have anyone left
to infect.

Defining N to be the number of workplaces in our dataset, or in a dataset generated
from a given approximating distribution, we also define n; to be the number of people in
workplace j. The secondary attack rate is then given by,

GAR - >l _ Sl
S - 1) Sl D

(4.27)

This is however not an ideal method for calculating the SAR across all possible distribu-
tions, as it requires us to run this calculation many times for each specific dataset to get an
average across the entire dataset. Instead we run the Gillespie algorithm until the initial
node is recovered 1,000 times for all values of k from 2 to the maximum value of the Blue
Sheep data which is 7,500. This then gives us an expected value for the secondary attack
rate in any workplace of size k, given the value of € which we can call SARj .. The value
of the SAR for any dataset given € is then,

SAR. =) dSARy . (4.28)
k

This is an interesting value to look at, as along with the overall attack rate, this will tell
us what level of infection can be prevented by acting quickly and intervening at the first
sign of infection in an individual. For example if the overall attack rate is 50%, and the
secondary attack rate is 45%, then the benefit of intervention may be different than it
would be if the secondary attack rate is only 20%.

Figure 4.24c shows the values of the secondary attack rate for the Blue Sheep data for
various values of € and p in blue, and the same for the power law distribution in red. We
can see that the SAR for the Blue Sheep data is larger than for the power law distribution,
despite the fact that the reverse is often true for the overall attack rate by figure 4.24a.
This is due to the same fact that gives the power law distribution a larger O AR, the greater
number of large workplaces. Even though, for non-zero values of ¢, the transmission rates
are increased in large workplaces, the fact that there are a greater number of people in
them implies that more time is needed to infect all of them. As was shown in § 4.6.2, this
increase in transmission rates increases the overall attack rate for values of € > 0.1, the
implication is that more transmission is done by secondarily infected individuals.

In addition to calculating the secondary attack rate in workplaces, we can look at the SAR
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in other places. One obvious distribution worth considering is that of households, as along
with workplaces, households have a large impact on the spread of an epidemic. The UK
census collects information about the size distribution of households [2001 census], so we
use this distribution to consider the SAR in households. In figure 4.24d this is calculated
for the ¢ = 0 case and is given by the grey line. This was then compared with the value
of SAR for Blue Sheep data in blue and the power law distribution in red, also for the
e = 0 case. We can see that the secondary attack rate is far greater for households than
either the Blue Sheep of power law distribution. This demonstrates the point above that
an increase in the number of contacts will decrease the value of the SAR. This is due
to the fact that the size of households necessarily have a much lower upper limit than
workplaces, along with many more small households. For example, if the mean household
size is a third the size of the mean workplace size, then for the same value of Ry, we would
expect to observe a value of the secondary attack rate in the households which is triple
that of workplaces.

4.6.4 Discussion & Limitations

In this section of the chapter we have investigated the change in overall and secondary
attack rates which is brought on by a change in workplace size distribution, when Ry is
kept constant. This differs from the first part of the chapter where the average value of
Ry throughout all workplaces was allowed to increase as the proportion of the population
who worked in large workplaces increased.

We have shown that the attack rates throughout a set of workplaces are keenly dependent
on the distribution of the sizes of the workplaces. For low values of € (< 0.1) the overall
attack rates seen in large workplaces are smaller than for smaller workplaces, but this is
reversed when ¢ increases.

For the secondary attack rate, in general the larger a workplace is the smaller the attack
rate will be, due to the sheer weight of numbers in the large workplaces. Even in the
situation where we have fully density dependent transmission, € = 1, the increase in the
force of infection for large workplaces is insufficient to make the value for the power law
distribution larger than for the Blue Sheep data.

We have seen that the overall attack rate, which can be thought of as defining a worst
case scenario may be worse in a country where there are a lot of workplaces with many
people interacting with each other. However due to the decrease in secondary attack rates
in these same places if equally effective controls can be put in place at the first sign of
infection, the worst case scenario can be successfully avoided. In fact the impact may be
smaller than in countries with improved worse case scenarios, due to the inability of the
initial infected case to infect a large proportion of individuals.

There are several limitations with this approach. Firstly, it is currently unknown how
people actually mix in the workplace, which results in us being unable to properly charac-
terise the interactions which take place in the workplace. Assuming that the population is
well mixed is a gross simplification of the problem, but can be seen as providing us with a
worst case scenario. If an infection is extremely transmissible, this may even effectively be
the case, therefore the results that we obtain from assuming this can be informative.

The interaction with how infections are spread in households and through contacting
people at random is also of key importance, and we have ignored this. It is clear that
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people do not spend all of their time in a workplace. However, we can also think of this
analysis as comparing the spread of an infection on different contact networks, where the
numbers of contacts that people have is the same as a specific workplace distribution.
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Chapter 5

Modelling of large human
populations

5.1 Introduction

In the modelling of large human populations, there is much heterogeneity in contact pat-
terns which we wish to capture in a systematic and descriptive way. Attempting to capture
these contact patterns is extremely difficult as there are many complicating heterogeneous
factors in the behaviour of humans which need to be considered. For example, this hetero-
geneity can come from the fact that contacts are made within different sub-populations of
the population.

The workplaces examined in the previous chapter form a set of sub-populations within
which people mix and form contacts, separated from the rest of the population or their
own home or social contacts. This therefore suggests the idea that splitting the population
into distinct areas and allowing the epidemic to spread in these populations may capture
an interesting aspect of disease spread amongst humans. FEach person can be assigned
to multiple sub-populations, each one describing a different context in which contacts are
made. When this is done, the resulting population can be referred to as an individual-based
model (IBM).

What follows in this chapter is a review of models that are used in an attempt to describe
the spread of epidemics in realistic human populations and ways in which attempts have
been made to collect data which is relevant to these models. I then describe the construc-
tion of a large data-derived synthetic population of England and Wales, which was a large
part of the work done during my PhD.

5.1.1 Meta-population models

In ecology one of the first uses of meta-population models was developed to study the
migration of birds from a mainland to islands in the ocean [MacArthur and Wilson, 1967;
Hanski, 2001], where the proportion of islands colonised is tracked, and the rates at which
species become extinct and colonise islands are taken to be constants.

Rather than considering the number of areas colonised, the populations of different sub-
populations can be tracked [Fulford et al., 2002], leading to STR like equations for the
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population sizes.

Migration in terms of human populations has minor effects on the spread of infection,
as it is a relatively rare phenomenon. Therefore for humans the use of meta-populations
is usually used to describe the mixing of people in different environments (home, work,
school . ..), to describe the mixing of different sub-populations (such as towns or villages)
areas with different characteristics in terms of disease susceptibility (such as prevalence of
vaccination or immunity to infection).

In Sattenspiel and Dietz [1995] a population is divided into n separate regions with rates of
moving from region to region defining a set of differential equations for each region. This
can be thought of as an expression of how commuting takes place in a population, and can
incorporate migration, by having different total rates in and out of regions. This approach
is described as a ‘mobility process’ in the paper, as it simply describes the movement of
people between regions. A disease model can easily be constructed from this mobility
process, as the rates of movements between regions can carry an infection between regions
at a rate dependent on the number of infective individuals in each region. A measles model
is constructed using these techniques, and the impact of connecting two cities, one of which
has a value of Ry above the epidemic threshold and another below this threshold when
they are disconnected, can have on these values of Ry is studied by Arino and van den
Driessche [2003].

Along with a local epidemic threshold, Ry, which indicates the extent spread of the epi-
demic in each region of the population, Colizza and Vespignani [2008] calculate the global
invasion threshold R,, which must be greater than 1 if the epidemic is going to spread into
an increasing number of regions in the global population, and is dependent on the disease
dynamics, along with the amount of movement between regions.

The use of meta-populations also allows the investigation of heterogeneity in the population
in ways that affect the spread of a disease. In Metcalf et al. [2013] (along with many earlier
sources such as Gotelli [1991], Ostfeld and Keesing [2000] and Gilbert et al. [2001]), the
re-introduction of diseases into sub-populations is termed “rescue effects”, which was first
used by Brown and Kodric-Brown [1997] to describe the effect that immigration has on
the extinction of species living on islands. For four childhood diseases; measles, mumps,
rubella and whooping cough, it was shown that the probability of extinction of the disease
was roughly twice as high on island nations than non-islands, due to the decrease in
global connectivity associated with being on an island, hence leading to a decrease in the
regularity of rescue effects.

Additionally meta-populations can model the spread between different species, such as
between rodents and humans for the spread of bubonic plague by Keeling and Gilligan
[2000]. Here it was shown that the spread among the rodent population, without imports
from outside the population in question can explain the intermittent spread among hu-
mans. Another obvious candidate for such analysis is that of the spread of vector-borne
(mosquito spread) diseases such as malaria, chikungunya or dengue fever. It has been
shown that the spread of these diseases can be explained by the movement of humans
amongst static mosquito populations [Adams and Kapan, 2009]. Along with this, the
movement of humans, which is taken from mobile phone probes [Gonzalez et al., 2008],
combined with changing the distance that mosquitos travel, can drastically increase the
epidemic height and decrease the time to peak in a vector borne disease epidemic [Moulay
and Pigné, 2013].
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A drawback of using differential equation models for meta-populations is that the number
of equations needed increases with the number of regions or species included. This can
become unwieldy if there are a large number of regions. However direct simulation of these
populations is possible with the use of stochastic simulation techniques as described in §2
and is fast for this type of model.

A step up from meta-population models in terms of complexity is that of individual based
models, which track each member of the population individually. These are becoming
more relevant to the study of epidemics, as the increase in available data means that
rather than assigning an average behaviour to a group of people, we can instead select
behaviour from data-derived distributions which will describe the spread of the infection
more accurately.

Next I describe data which is typically collected in order to inform models of disease spread
such as individual based models. Following that is a discussion of individual based models
which have been used previously.

5.1.2 Attempts to characterise contact structure

The main difficulty in using network models, in terms of attempting to represent reality,
is that it is difficult to know the exact network on which an epidemic is spreading. The
difficulty of this varies from disease to disease, as the nature of the contact required to
spread the infection influences the difficulty of creating a representative network. For
sexually transmitted diseases or those which are spread by needle sharing in injecting
drug users, respondent driven sampling [Heckathorn, 1997; Mills et al., 2012] can aid in
the construction of realistic networks, though whether the biases inherent in these samples
can be overcome is not clear [McCreesh et al., 2012].

Surveys of the population are also widely used to understand the network of sexual con-
tacts that exist in the population. For example the National Health and Social Life Survey
conducted in 1992 sampled 1,511 men and 1,921 women in the USA and was used to exam-
ine the apparent over representation of STDs amongst the African American community,
estimated to be more than 10 times more prevalent, when compared to other ethnic groups
in the US [Laumann and Youm, 1999]. It was shown that the concentration of STDs in
this community was in part due to the fact that the choices of partner are more likely
to stay within the same community than for other communities. Along with this, the
network defined by the sexual contacts formed by African Americans was found to be far
more degree disassortative than for others. This implies that people who have small num-
bers of partners are likely to make contacts in the “core group”. This group is defined by
Hethcote and Yorke [1984] to be the group who are extremely sexually active and efficient
transmitters of STDs. The degree disassortative mixing observed allows infections to spill
over into the entire African American population more easily. This core group has been
seen to exist in many networks of sexual interactions [McKusick et al., 1985; Handsfield
et al., 1989; Wadsworth et al., 1993; Liljeros et al., 2001; Erens et al., 2001]. The number
of partners of this group is characterised by a large variance and has been shown to follow
a power-law distribution [Schneeberger et al., 2004], and to have an important impact
on the spread of diseases [Anderson and May, 1988; Gémez-Gardenes et al., 2008]. The
impact of these degree heterogeneities have been studied extensively [Eames and Keeling,
2002; Gémez-Gardeties et al., 2008].
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For diseases which are not sexually transmitted, influenza for example, it is unknown
exactly what type of contact is enough to spread the infection on. This is obviously a
major obstacle to obtaining accurate networks for these types of diseases, and can lead to
having an average degree which is higher or lower than the true value. A commonly used
method to attempt to capture these networks is again to survey people. Here people are
asked to self-report numbers of people they meet each day that fit a given definition of a
contact, or are asked to keep diary type data for extended periods of time. There have
been several such studies of this form.

The POLYMOD study [Mossong et al., 2008] surveyed 7,290 participants who recorded
characteristics of 97,904 different contacts, including demographic information such as age
about the people with whom they contacted. A contact was defined as physical contact
or a two-way conversation with our without physical contact. In Danon et al. [2012] over
5,000 people in the UK were again asked to give information on the number of people
with whom they had had a face to face conversation with, whether there was any physical
contact and how long these interactions took place for. There was also the possibility to
enter groups of people at once, to allow people to record instances where there were a lot
of interactions occurring simultaneously, and information was also given on which of an
individuals contacts also met each other, allowing a measurement of the clustering of the
network to be made.

In Read et al. [2008], 49 people, who were all staff or students of the University of Warwick,
were asked to fill in a survey for 14 non-consecutive days with intervals of 10 days. 47 of
these people completed this task for at least 9 days and 8,661 individual contacts involving
3,528 unique individuals were recorded along with the situation type of the interaction,
with ‘Home’, ‘Work’, ‘Shopping’, ‘Travel’ and ‘Social’ being the categories for the inter-
actions and whether the interactions were one-off or repeated. Again a contact implied a
face to face conversation, and incidence of physical contact was also recorded.

The impact of the number of repetitions of a given contact, along with the situation in
which the contact took place were investigated by Read et al. [2008] and Eames et al.
[2009]. Contacts which were repeated were seen as more important to the spread of the
epidemic and were therefore given more weight in the network. To consider this, weighted
and unweighted networks were constructed and compared to weighted and unweighted
mean field models. The predicted final size of the epidemic, along with the impact of
different vaccination strategies was compared and it was seen that the addition of weights
to the network for a given transmission rate could lead to a smaller predicted epidemic
size, whilst also making targeted vaccination strategies difficult to manage.

An urban and rural population of 1,821 participants from 856 households, across 40 com-
munities near Guangzhou China was surveyed with 12,147 total contact events, including
33,789 people in 4,803 different locations [Read et al., 2014]. Duration of contact, along
with distance from home was also recorded, allowing the impact of location along with
duration on number of contacts and clustering of links to be investigated. The results of
this survey broadly agree with findings of the POLYMOD contact survey [Mossong et al.,
2008] and was in agreement with [Danon et al., 2012] in that the level of clustering between
contacts increases with distance from home.

These are obviously very worthwhile studies of the network on which a disease such as
influenza is spread on, and the fact that there is qualitative agreement between many
studies in different countries and types of population is encouraging. However it was also
shown from the survey performed in China, that the contact structure was not sufficient to
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describe the levels of immunity to influenza A viruses [Lessler et al., 2011], meaning that
even if we can characterise the interactions that people have on a day-to-day basis, there
are still factors that determine the extent of disease spread that are not captured.

Along with this, the accuracy of self-reported contacts is also an issue to consider, whether
people misremember or miscount the amount of contact that they had on a given day and
whether the type of contact needed to spread a specific infection differs from what is asked
for in the survey. For an infection such as measles it is likely that speaking with someone
for any period of time is enough to transfer the infection to them [Paunio et al., 1998], but
for diseases which are less transmissible it is less clear what contact is sufficient to cause
an infection to pass from one person to another [Killingley et al., 2012].

5.1.3 Individual based models

Along with the increase in available data, the availability of computing memory and speed
has greatly increased, which allows large, memory-intensive simulations to be run quickly
enough to be realistically implemented.

One way in which the data has improved is in the use of Radio Frequency Identification
(RFID) devices. These are used to track the locations of the wearers and to generate
person-to-person interaction networks via proximity between subjects [Cattuto et al., 2010;
Machens et al., 2013]. Once these networks are formed, it is then possible to simulate an
epidemic on them.

Along with this the ubiquity of mobile phones has lead to some large data sets [Gonzalez
et al., 2008], which gives information regarding the movements that people make.

The idea of using many different datasets to model real world populations is a well es-
tablished method in an attempt to characterise the spread of epidemics seen in Ferguson
et al. [2005, 2006]. These papers used datasets related to household size, age structure,
school and workplace size data along with commuting data to generate individually based
simulations where the spatial density of people is in agreement with reality. The focus here
relates to the prevention of serious flu epidemics, through investigating the effectiveness
of various interventions and combinations of intervention strategies.

These have also been used to create synthetic populations, which is an established method
in the use of networks to model disease spread [Eubank et al., 2004]. To construct a
synthetic population, data sources including census data, diary based activity surveys and
workplace data are all combined in an attempt to construct a realistic contact network for
a given area, which has the same number of individuals as the true population in that area.
Once this is completed the spread of epidemics on the population can be investigated and
different control strategies can be tested. An outbreak of smallpox in Portland Oregon
was the first hypothetical outbreak considered on a synthetic population constructed using
this method [Barrett et al., 2005; Eubank et al., 2004], but since multiple different areas
have been considered, for example Boston [Lewis et al., 2013] and Washington DC [Parikh
et al., 2013b]. The synthetic populations generated have even been used to investigate
the impact of human behaviour on the size of disaster which follows a nuclear explosion
[Parikh et al., 2013a].

To simulate on such large networks, the creation of efficient algorithms has been required
[Barrett et al., 2008]. Using these methods allows many simulations to be run in order to
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generate useful statistics relating to the use of intervention and surveillance strategies to
combat epidemics [Lewis et al., 2013].

A similar approach has been used to construct the Little Italy model [lozzi et al., 2010].
This makes us of survey detailing how the Italian public spend their time, which was
performed by the Istituto Nazionale di Statistica (ISTAT) [ISTAT homepage] of 55,773
individuals from 21,075 households to construct a synthetic population. This survey con-
sists of 144, 10 minute intervals over a 24 hour day, in which the type of activity being
performed and the type of location that the person was in is given. This was then com-
bined with a ‘“minimally” complex set of rules’ [lozzi et al., 2010] to generate a synthetic
population. This set of rules involved including individuals who filled in the form for a
weekday, therefore limiting the number of responses to 18,085 and rather than trying to
scale up to a population level simply constructing a population with this number of people
in it. The survey data was combined with data about household size and composition,
school class size and workplace size for towns of a similar size to Little Italy.

To generate the contact matrix people are placed in households as defined by the household
data, and are then assigned to workplaces/schools throughout the day, with contacts made
in each of these places to give an adjacency matrix for the population. Three different
methods are then used to give the final contact matrix: Type 1 weights contacts by time
together, Type 2 weights contacts by number of times they meet each other in a day and
Type 3 is unweighted.

The benefit of constructing a population in this manner, is that population size is small
meaning that simulation is relatively quick in comparison to large populations. However
the small population is also a large limitation as this means that the investigation of
realistic control strategies is not possible. Comparison to actual epidemics is possible and is
done by lozzi et al. [2010]. The Little Italy population is compared with contact structures
derived from POLYMOD [Mossong et al., 2008], along with ‘Big Italy’, a contact structure
which gives the average number of contacts between all possible ages in the household,
workplace and general community contexts. This was generated to match data regarding
household composition family structures, school, university and workplace structure along
with homogeneous mixing for the community level interactions.

Which method produces the most accurate results to observed epidemics is then consid-
ered. However this is not answered satisfactorily, as the spread of two epidemics through
Italy are considered, Varicella and ParvoVirus, and different methods give the best fit

(as measured by AIC) in each case (POLYMOD for Varicella and Little Italy Type 2 for
ParvoVirus).

This demonstrates clearly the fact that contact structure can have a large impact on the
spread of an epidemics, and also the difficulty of choosing what the best assumptions are
to make for a given disease. POLYMOD for example gives information regarding the
age, sex, location, duration, frequency, and occurrence of physical contact between people,
which seems to be a sensible list of variables to collect, but is a worse fit for the ParvoVirus
outbreak than all of the Little Italy models, along with Big Italy, so is obviously not a
perfect method for constructing contact networks. In the paper it is suggested that the high
level of assortativity present in the Little Italy models allows for a good fit for ParvoVirus,
but also prevents it from fitting the Varicella well. This implies that assortativity is an
important measure for achieving a realistic model, but also one which is difficult to get
right and must be fine tuned in order to fit to data satisfactorily.
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As mentioned previously, a large portion of my PhD was dedicated to the construction of
a synthetic population for England and Wales which was done in collaboration with the
Network Dynamics and Simulation Science Laboratory at Virginia Tech (NDSSL). The
process for this construction is described next.

5.2 Description of synthetic population construction

In order to represent England and Wales, we assign a set of activities to individuals
according to some data-derived distributions, all of which will have some location in the
simulation. People in the population who share the same physical location at the same
time are then defined as being contacts of each other.

To do this, we first assign the number of people in the population that we are modelling to
households, which they share with certain other individuals in the population. Households
are given locations again according to a data-derived distribution. People will then be
assigned a programme of activities throughout a 24 hour period, which will define the
contact network on which the spread of epidemics can then be simulated on. The activities
given to people fall into categories such as ‘Work’, ‘Retail’ and ‘Other’ and are based on
diary data for the UK. Note that this assignment of activities is done only once, and
then the same network will be used for each day of the simulation. This process produces
a weighted network, as the time that people spend in the same place is tracked in the
construction of the network and is then used to model the likelihood of one person infecting
another more accurately than using an unweighted network.

The construction of households was undertaken entirely by the author, whilst assigning
activities to the population was completed by collaborators at NDSSL.

5.2.1 Datasets

This section gives a brief explanation about what datasets are used to construct the syn-
thetic population, along with descriptions about how they are used in the population
construction.

The construction of the synthetic population for England and Wales takes place on the
level of Census Area Statistics (CAS) wards, which were created for 2001 Census outputs
[Office for National Statistics, b]. There are 8,850 of these wards in England and Wales
and this is the level of the aggregate data which is supplied from the 2001 census. In
making the population our first step is to construct households of people, which match
certain statistics from census or other data sources, such as the age distribution of people
in wards, or the number of households containing 2 adults and 2 children.

The household distribution data set (HHD) gives us details about how many households
of different compositions there are by CAS ward. This is a table that was commissioned
from the Office for National Statistics [Office for National Statistics, a] and is discussed
in House and Keeling [2009]. This dataset gives the number of households in each ward,
which have 1-8+ occupants and 0-84 dependent children in these households. We follow
the information given in this dataset to choose the number of houses with the possible
household types in our synthetic version of the population. We can also calculate the
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number of adults and children in the population from this. When we do this we get
11,665,495 children in England and 39,407,463 adults.

We note that as we are only given information about houses with 8+ inhabitants and
8+ children, the information here is incomplete in terms of these large households. More
information related to these large households can be found in the 1% household sample of
the population from the census which we discuss this dataset next.

The 1% household sample of anonymous records (HSAR) [Office for National Statistics, c]
gives us data direct from the census on 1% of the households in the UK population. This
is an anonymized data set which gives complete census records from households in the UK.
This is not an open data source and to access it, registration along with confirmation from
UK Data Service [UKDS] is required. A large limitation with this dataset is location data
is not included, which decreases the amount of information in this data in a significant
way.

For each household, the person who filled out the census form for the household is called the
household representative person (HRP) and the HHD dataset includes complete households
worth of data, in that records of all the people who share a household are included in the
dataset. We note that HRPs can be any age from 16 up. There are 60 separate variables
in this dataset, but we are not interested in all of them. As previously mentioned, to
construct the contact network for the UK we must assign people activities throughout the
day. Therefore we are mainly interested in variables which give us the best information
to choose the activities that people perform during the day. For example, the number of
hours someone works per week tells us whether someone is unemployed or in work part or
full time, and therefore when they are likely to be in work. The variables that are used
are described in Table 5.1.

Variable Possible Values

Household number 1-total households in dataset.

Person number within the 1-number of people in household.
household

Relationship status from HRP; Spouse; partner; child; step-child; sibling; par-
person to HRP ent; step-parent; grandchild; grandparent; other re-
lated; unrelated; unknown.

What type of accommoda- Detached; semi-detached; terraced house or bungalow;

tion the household is purpose built flats; converted flat or shared house; flat
or maisonette in converted building; mobile or tempo-
rary structure.

Age of person 0,2,4...;80+.

Description of family Lone parent male; lone parent female; married cou-
ple no children; married couple children all belong to
both parents; married couple children do not all be-
long to both members; cohabiting couple no children;
cohabiting couple children all belong to both parents;
cohabiting couple children do not all belong to both
parents; ungrouped individual (not in a family).
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Is this person the HRP? Yes; no.
Hours worked per week No work; number of hours worked in integers.
What gender the person is Male; female.

Tenure of accommodation  Owns with or without a mortgage; rents from council
or housing authority; private rental.

Transport to work method Not in work; work at home; Underground, metro, light
rail, tram or tube; train; bus, minibus, coach; Motor
cycle, scooter or moped; Driving a car or van; Passen-
ger in a car or van; Taxi or minicab; Bicycle; on foot;
other; Car or van pool.

Number of people who No job record; 1-9 people; 10-24 people; 25-499 peo-
work in same place as the ple; 500 or more people.
person

Age of the HRP 0,2,4...;80+.

Table 5.1: Variables, and their possible values, that we use from the 1% H-SAR sample.

From this dataset, we can also extract the size of each house and the number of adults and
children in the house. This will be used later on in the process of population construction,
as we are interested in the difference in the types of people who live in houses of the
different sizes, e.g. a young adult who lives with several other young adults is likely to
behave differently to a middle aged adult who lives with another middle aged adult and
3 children. Also as mentioned above, we consider the construction of houses of the 8+
type from the HHD dataset. When we consider the houses with 8+ children, we find
that roughly 20% of these houses have 1 adult in them, 70% have 2 adults and 10% have
3 adults. When houses of this type are populated, we will pick the number of adults
randomly according to these percentages.

The distribution of numbers of people by age differs from ward to ward. We use a dataset
which gives the number of people of each age in every CAS ward, and refer to this as the
for population by age and location dataset (PBAL) . An example of this can be seen in
figure 5.1d for an anonymous ward. This dataset simply gives us the number of people
of each age group in the given CAS ward. We note that the elder statistics are grouped
together in the following groups; 75 to 79, 80 to 84, 85 to 89, 90 to 94, 95 to 99, 100
years and over. As we create the population, we will select the ages of people in order to
approximate the distribution of ages given by this dataset, as the age of a person can have
a large impact on their likelihood of being part of the epidemic.

This dataset is aggregate data derived from the UK census in 2001. This is downloaded
from the Office for National Statistics using the InFuse tool [InFuse]. To download this
data, the 2001 census data option was selected from the main InFuse page. The filter
‘Age’ can then be selected followed by the age ranges desired along with the geography
level (e.g. selecting the populations by CAS ward for this study). At the time of population
construction, the data from 2011 was unavailable, though this data has now been made
available.

We can also use this dataset to calculate the number of adults and children in the popu-
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lation. If we take an adult to be 16 or over and dependent children to be 15 or younger
then we get 10,482,326 children and 41,514,706 adults. Note that this is fewer children
and a greater number of adults than the HHD dataset, which suggests that by dependent
child in the HHD dataset, they do not mean only people under 16, but people under 18. If
instead we count the number of people under 18 as children in the PBAL data set then we
get 11,788,034 children and 40,208,998 adults, which is closer to the numbers from HHD.
We will therefore label anyone under 18 as a child.

To assign people to households we use another dataset from the census, which gives the
number of occupied households at each post code location in the census. This is obtained
from the Office for National Statistics and can downloaded from the NOMIS website
[NOMIS].

Postcodes are also assigned a geographical location, and a dataset containing these is
available from the Ordnance Survey (OS) and is called Code-Point Open. This can be
downloaded from the OS website [Code-Point Open]. As described on the support website
for this data, the location of each post code is obtained by taking the average of the
coordinates of all the individual addresses in a postcode, and then reporting the location
of the nearest building to this point. Postcodes can be linked with wards using another
dataset from the Office for National Statistics geoportal site [Geoportal] called the National
Statistics Postcode Directory. As we have the number of people living in each ward from
the PBAL dataset we can then place our households according to the NOMIS dataset at
the location given by the Code-Point Open dataset.

Locations and sizes of workplaces are given in the previously detailed Blue Sheep data.
Locations and numbers of students at schools are taken from the National Pupil Database
[NPD]. This is not an open data source and to be used an application for access must first
be made. This dataset provides the home postcode and school post code for over 7 million
school students in the UK, and from this the size and location of schools can be derived
by summing the the numbers of pupils attending school in given postcodes.

In general, limitations with these datasets is that there is data that is missing that would
be helpful to have. For example, there is no attempt made to include data giving spatial
information relating to employment, as this is something which can be highly correlated
and also impacts the contact structures that people will develop. Along with this, data on
income of households and the location of different households in the HSAR dat set would
be informative for choosing activities for individuals.

These are the datasets which are used in the construction of the synthetic population. In
the next section, the methods used to construct this population are described.

5.2.2 Population construction

The process of constructing the population is essentially the following:
1. Select a HRP from a data derived distribution.

2. Select a relationship to another adult in the house by choosing from a data derived
distribution.

3. Choose the age of this adult.

4. Repeat for remainder of adults.
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5. Repeat equivalently for each child in the household.
6. Go to 1.

As is to be expected, there are few houses that are very large in the HSAR dataset e.g.
there are only 41 examples of houses which have greater that 7 children in them. Therefore
we combine the data for houses that we class as being large, where the cut off for a large
house is chosen to be any house with more than 5 children in them. The process we go
through to construct the households differs between the large and non-large households.
We will describe the process for the non-large households first.

The process of deriving the distributions to choose from is mainly done through looking
at the HSAR dataset. The task is first split into household types. We begin by identifying
which households have a given type, e.g. find all households which have 3 people 2 of which
are children. We then go through this set of data person by person. If we encounter a HRP,
then we simply record their age. We will later create a cumulative density function (cdf)
for the ages of HRP’s in each household, an example of which can be seen in figure 5.1a,
where the data has been perturbed while maintaining the qualitative properties which
differentiate the different scenarios.
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Figure 5.1: Visualisation of data sources used in construction of the synthetic population.
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If we consider the shape of these cdf’s it gives us some intuitive and interesting information.
The 3 different curves are for the same household size, 6, but different number of children.
Looking at the curve for 0 children, we see that there are about half of these households
have HRP’s who for young adults, from age 16 to about 30. There is then a period of
about 20 years when there are very few households of this type, presumably as most people
at the age of 30 will move out of large house shares with other adults and into more family
orientated houses. For 4 children, the vast majority of these houses have a HRP between
30 and 50 whilst for 2 children, there are more houses with HRP’s between the ages of 40
and 60.

For non-HRP’s, we note several of their attributes. We note the relationship type to
the HRP along with the difference in age from the HRP. We then construct cdf’s for
relationship type which is indexed by HRP age and house type along with cdf’s for age
gap from HRP to other person by household type, HRP age and relationship type. This
is done similarly for adults and children. Along with this, we also construct cdf’s for
relationship type for adults if we do not include partners or spouses. This is because these
make up a large proportion of the relationships in the population, and there will be only
one of them per household. Therefore when we choose the population, we will choose from
this if we have already selected a partner or spouse from the other cdf.

Examples of these cdf’s can be seen in Figures 5.1b, where again the figure shows data
which has been perturbed.

There are 99,991 men who are HRP’s and 46,993 women who are HRP’s. Therefore we
pick more HRP men in accordance with this ratio. When we are constructing the synthetic
population we choose from these cdf’s to populate households in the wards. Initially we
choose the HRP from the cdf for HRP age by household type, and then we choose the
required number of adults needed for the household, first choosing their relationship type
by HRP age and household type and then choosing the age gap between them and the
HRP by relationship, HRP age and household type. Once this has been completed for the
adults in the household we do the same for the children.

Note, that when we select a person of a given age to be a member of the synthetic pop-
ulation, a HRP say, we choose an individual record from the HSAR, who matches the
characteristics that we are looking for, in terms of age and sex. We therefore select each
record multiple times. This is due to the fact that we do not have any other detailed
information about the people who make up the true population.

For large households, adults are chosen in the same way, but children are selected differ-
ently. This is because we want to construct realistic households, and if we simply choose
several children from the cdf for age distribution, we may get an over representation in
the number of households with multiple children of the same age living in them. This may
also have an impact on the dynamics of the epidemics as, for example, it is possible that
children who are under 5, will have different numbers of contacts and contact patterns
than older children.

The process for selecting the children is as follows:
1. Choose the eldest child in the household from a data derived distribution.
2. Select all other children in the household from another data derived distribution

To choose the age of the eldest child we use order statistics from which we can calculate the
distribution of the k-th smallest sample from a given distribution. We begin by considering
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the distribution of all the ages of children in the 1% sample, who live in large households.
If we know all the ages of children associated with large households, we can construct the
pdf (f) and cdf (F') of this distribution. We then wish to consider the distribution of the
kth smallest value, which we will denote as X(j), from n values selected from the pdf.
This is obviously the same as working out the probability that there are (n — k) samples
larger. We use order statistics to derive the probability that X ;) = x, which is given by
the following formula:

n—k n . . . .
P(Xg=1)=)_ ( ) ((1—F(96))]F(x)"]—(1—F(x)—f(w))](F(x)—f(ﬂf))"]) - (5.1)

=0 N

We wish to use this to constrain the selection of the eldest child, therefore we just require
the distribution of X(,), which is given by the following:

P(Xm) =) = F(z)" — (F(z) - f(x))" (5.2)

This can be seen for households with different numbers of children in figure 5.1c. This
shows that the more children in the household, the older the eldest child is likely to be.
This obviously is what we would expect as for example it is unlikely that there will be 6
children in a house, the eldest of whom is 4 years old.

Once we have chosen the eldest child, we then choose the rest of the children by selecting
their ages from the cdf detailing the distribution of age differences amongst children in the
large households. The reason that we have chosen to do this in this circumstance is to try
and limit the number of children of the same age that we select for the population, as we
do not observe that many twins/triplets etc. in the true population.

We note that the fact that we use the cdf’s to select the population, and then deplete
from the population by age and location dataset means that we can select a person with a
certain age, when according to this dataset, we have already chosen enough people of that
age for that location. To try and minimise this, if we find that we have selected someone
of an age which has already been fully depleted, we will look either side of this age to try
and find someone of a similar age, which has not yet been fully depleted. We do not look
further than 10 years either side from this initially selected age for adults and 7 either side
for children, as we wish to use the datasets fully, rather than randomising the selection of
the synthetic population too much. This means that the resulting age distributions may
not match the PBAL distributions exactly.

Once this is done we can then compare how alike our two populations are, i.e. the synthetic
one and the one from the data, at least in terms of the population by age. An example of
this can be seen in Figure 5.1d. We see that though there is not an exact match between
the two, the synthetic populations are a good match for the population from the data by
this measure.

As mentioned previously we try to not choose a wildly unrealistic number of twins in the
population. Website Twins UK gives details about how many twins are born each year,
and there are roughly 10,000 sets of twins per year. This means that we would expect
roughly 180,000 sets of twins aged between 0 and 17. When we look in our population
we have 433,095 sets of twins, which is slightly less than 2.5 times the expected amount.
We could try to constrain the number of twins, but currently have not done this. The
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question of whether this is an issue that we need to worry about is open. The main goal of
constructing this population is to construct a contact network from it, which we can then
run epidemics on. The actual ages of the population are therefore not the most important
thing to get right, as we expect that having two 14 year old twins in a household, is no
different in terms of the activities assigned and the spread of disease, as having a 12 year
old and a 14 year old in the household.

There are obviously many different ways that this process could be done differently and
other data sources could be used to complement this process. For example, we could use
the proportion of people in full time employment in each ward or proportion of people
who own their own homes but this has not been done here.

Once all of the houses are constructed for each ward, they are randomly assigned postcodes
from that ward, which have an accompanying latitude and longitude, allowing them to
be located on a map of England and Wales. The process for constructing a synthetic
population from this point follows that described by Eubank et al. [2004] and Eubank et al.
[2006] and was carried out by collaborators from the Network Dynamics and Simulation
Science Laboratory at Virginia Tech. This is described briefly below.

Every person is assigned a set of activities and times for these activities that occupy their
day in the synthetic population. The types of activities performed are based on those
included in the United Kingdom Time Use Survey [UK Data Service]. This is a diary
based survey which was filled out by households in the year 2000 and records data such
as age of people in the household, income, household size amongst other information.
Along with this people indicate what activity they were performing for each of the 10
minute intervals in a 24 hour period, along with who they were with and where they were.
For the synthetic population, people were assigned activities from this via the use of a
classification and regression tree (CART) which chooses activities for individuals based
on the demographic information which was selected for them during the construction of
the synthetic household population. People are assigned to the activities ‘home’; ‘work’,
‘school’, ‘shopping’ or “other” during the day.

The previously discussed Blue Sheep data which contains work location and workplace size
is then used to place people who are partaking in the activity work, into a workplace. This
is done via a gravity model where the distance from a persons home and the size of the
workplace define the probability that a person will be placed in each workplace. For people
placed in large workplaces, people are assigned to sublocations of this workplace so that
the number of contacts that these people have for workplace activities is not excessively
large. The size of these sublocations is arbitrarily set to be 35.

For the shopping activity, the Blue Sheep data is again used to provide the probability of
someone visiting a certain location for shopping. This is done by selecting all workplaces
whose description is related to retail. We investigate the use of this method in the maps
shown in figures 5.2 and 5.3. In the first figure, we can see a map of central London,
with features such as the Thames, Hyde Park on the left of the map and Regent’s Park
directly above, visible due to the lack of workplaces in these locations. The density of
shopping locations, along with workplaces in general is concentrated in several areas, most
noticeably just to the East of the Hyde Park. Figure 5.3 zooms into this region to show
in more detail the concentration of retail locations in this region. This is reassuring as
this area contains Oxford Street, Picadilly Circus and Regent Street, amongst other well
known retail and leisure areas in London, implying that the method used for selecting
shopping locations is picking out areas which line up with our expectation of reality. To
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assign people to each location for shopping a gravity model is again used.

We note that there are postcodes which appear to be inside the Thames. Comparing
these locations with maps of London, it appears that these line up with piers which will
overhang the river, which explains these postcode locations. Additionally, inside the park
there are various buildings including cafes which explains the presence of work and retail
postcodes within the park grounds.

Once this is done, contacts are made during activities, and are given a specific duration
according to the length of time that the people involved in a particular contact are in the
same place for. This defines the contact network on which an epidemic will spread.
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Figure 5.3: Map showing the area of London around Oxford Street, with Blue Sheep workplaces seen as blue dots, and the Blue Sheep

derived retail shops in brown.



5.3 Analysis of Population

Once population construction has been completed, we can investigate the properties that
the network has. As this is a very large network, with ~50 million nodes this is a non-
trivial task, and requires the use of specially constructed data structures and algorithms
[CINET: Cyber-Infrastructure for Network Science].

We are also interested in comparing the contact structure of this population with other
contact structures which exist for the UK. To do this we will compare to POLYMOD
[Mossong et al., 2008] and the UK contact survey [Danon et al., 2012]. These are both
surveys of the UK population. There is a potential for bias here, as the surveys of the
populations have not been completed proportionally by each age group, and therefore some
age groups are under represented (such as the young) and others are over represented (such
as the old), whilst the synthetic population is representative of age. On top of this, the
surveys cover the UK, whilst the synthetic population is only for England and Wales,
which may be another way that bias could be introduced. This hasn’t been adjusted for in
any of the comparisons made here or in the following chapter which discusses comparisons
of these datasets in several different modeling frameworks.

One of the main items of interest when attempting to construct realistic networks is the
age-age mixing in the network, as it is expected that the contact patterns and ages of
contacts made will differ according to many things, the easiest of which to account for
being age. Figure 5.4 shows this information for the synthetic population through the
who-acquires infection from whom matrix (WAIFW), and offers a comparison to the same
data taken from the POLYMOD survey.

Figures 5.4a and 5.4b shows the who acquires infection from whom matrix (WAIFW) which
is defined by the synthetic population. In figure 5.4a we see the numbers of contacts made
between people of different ages in the population. We can see that there is a high number
of contacts amongst children, given by households and schools, and between adults and
children which are given by the household structure. Along with this, there are also a
large number of contacts amongst individuals between the ages of 30 and 45, which are
given by the mixing of people in workplaces.

Figure 5.4b gives a similar WAIFW, but here the contacts are weighted by duration. The
high intensity amongst adults between 30 and 45 is now greatly diminished, whilst those
contacts that are defined by households or schools are maintained. This implies that
transmission between any two individuals is more likely to happen if they are contacts in
homes or school, as the duration of contacts here is greater.

In figures 5.4c and 5.4d we can see the WAIFW for the POLYMOD contact matrices.
Here the diagonal which gives contacts between children of school age is by far the most
prominent feature of the matrix. The difference in the two matrices can be explained
due to the way that activities are assigned in the synthetic population, as the assignment
of people to classrooms is less strict than in reality and allows for more mixing between
children of different ages.

The POLYMOD heatmaps in figures 5.4c and 5.4d show a strong diagonal component,
especially for individuals aged between 0 and 18, indicating that individuals of these ages
have comparatively high amounts of mixing with people of the same age when compared
with others of different ages. This represents mixing within schools, and for older people,
within workplaces. There are also off-diagonals, which indicate mixing of individuals of
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with other individuals who are aged approximately 30 years older. This indicates children
mixing with their parents in households.

Figure 5.5 displays the empirical degree distributions for the synthetic population, POLY-
MOD and UK social contact survey. These are also split by activity type and the survival
function, which is 1 - the cumulative distribution function of the degree distributions, is
also displayed. In figure 5.5a, we see the full degree distributions for values between 0
and 100. The synthetic population displays a secondary peak in degree probability at
around 35, which is caused by the workplaces being split into sublocations. Considering
the plots of the survival function seen in figures 5.5b, 5.5f and 5.5h, we see that the mean
and variance of the degree distribution when all contacts are combined, along with the
work /school contacts and other contacts is much larger for the synthetic population. For
home contacts, the mean and variance are smaller for the synthetic population (figure
5.5d). In general there is much more heterogeneity in the degree of individuals in the
synthetic population than for POLYMOD or the UK contact survey. However, since much
of this heterogeneity in numbers of contacts in the synthetic population are from “other”
activities, which are likely to be of shorter duration than contacts in home or school/work,
how much of an impact these have on the epidemic is unknown.

In figure 5.6 we can see the clustering in the synthetic population as compared to that
from the contact survey performed in the UK [Danon et al., 2012]. Here the clustering
coefficient is weighted to take account of contact time between individuals. To calculate
this for an individual 7, who has contact with individuals j and k, for times t; and t};, we
define (), = 1 if j and k contact each other and 0 otherwise. The weighted clustering
coefficient for individual i, ¢; is then given by,

Zj,k: ;tZCjJC
Zj;ék t;ﬂc

This is done for all individuals and then averaged by degree. Doing this for the synthetic
population and and UK contact survey produces the figures seen in figure 5.6.

i = (5.3)

Figures 5.6b and 5.6d show the clustering evident for individuals with low degree (up to
250 for the synthetic population and up to 200 for the contact survey) and figures 5.6¢
and show this for the full range of degrees. For the contact survey we see that the level
of clustering, as reported by individuals is roughly equal across all degrees. This seems
counter intuitive, as we would expect the level of clustering to decrease as degree increases.
However constant levels of clustering have been shown to exist in other networks, such as
the Internet, once degree-correlation biases are eliminated from the definition of Soffer
and Vézquez [2005]. This is because if a highly connected node has neighbours who have
low degree, then it is impossible for the standard definition of clustering to give a large
value, as without increasing the number of neighbours that these low degrees have, they
cannot all be connected to each other. As in the contact survey, when the degree gets
high, this is reported usually as a group and the question of whether these people met
each other is independent of contacts made in other circumstances, this degree-correlation
bias is also sidestepped. Therefore we can expect clustering to stay constant through all
degrees.

When considering the synthetic population however, the clustering does not stay constant
at all degrees. As seen in figure 5.6a, the level of clustering increases from the lowest
degree until =~ 35, when it then begins to decrease until the degree reaches 100 at which
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point the level of clustering begins to increase again and figure 5.6¢ shows that it continues
to increase until it reaches a maximum level of ~ (.75 and maintains this high level until
it begins to decrease at an approximately linear rate from degree 2000. The increases in
the clustering can be explained due to the process of assigning contacts to people when
they are in the same location. If people are in the same location at the same time then
they are considered contacts of each other [Eubank et al., 2006]. At locations with large
numbers of people there at the same time, such as in the case of busy shopping areas, it
is possible that a large number of people can be linked to all others, meaning that we can
get large degrees and levels of clustering coinciding. It is possible that if we included a
constraint that the contact must be of a certain duration that the level of clustering may
decrease, as the contacts at large shopping areas will be mainly fleeting ones, but this has
not been included in the analysis of the population here.
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Figure 5.4: Different measures of ‘who acquires infection from whom’ (WAIFW) by age.
(A) Count of all contacts in synthetic network; (B) contacts in synthetic network weighted
by duration; (C) count of British contacts in the raw POLYMOD data; (D) processed
mixing matrix from POLYMOD data provided by Mossong et al. [2008]. For (C) and (D),
Age 1 is respondent and Age 2 is contact. Heatmap intensity is proportional to v/value.
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Figure 5.5: Heterogeneity in numbers of contacts by activity for synthetic population,
Social Contact Survey [Danon et al., 2012, 2013] and POLYMOD [Mossong et al., 2008].
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Figure 5.6: Clustering coefficient versus node degree for (A,C) synthetic population versus
(B,D) the Social Contact Survey [Danon et al., 2012, 2013]. Histograms at each number
of contacts (greyscale shading) are shown together with smoothing cubic spline plots (red
lines).

5.4 Summary

In this chapter, the process of constructing a data-derived synthetic population for England
and Wales was described. This involved the use of several data sets, along with statistical
and mechanistic techniques used in the construction of synthetic populations in the USA
[Eubank et al., 2006].

Once constructed, this population was analysed and compared with two survey based
models of the population in the UK [Mossong et al., 2008; Danon et al., 2012]. It was
shown that the level of heterogeneity in terms of the numbers of contacts that individuals
have was much higher in the synthetic population and mixing was less concentrated to
within an individuals own age group than that seen in Mossong et al. [2008]. In terms of
clustering of contacts, we saw that the level of clustering by degree was larger than that
derived from Danon et al. [2012]. The impact of these observations on the spread of an
epidemic is discussed in the following chapter.

107



Chapter 6

Comparison of disease spread on
different data-derived
populations

6.1 Introduction

The use of synthetic model populations to investigate the spread of an epidemic in a popu-
lation is well established, and has been the goal in the creation of the synthetic population
for England and Wales. Despite large increases in computation power, simulations for
populations of the size of our synthetic population (N ~ 5 x 107 with more than 10°
edges) pose a significant challenge, although as previously mentioned, efficient techniques
have been created which allow for simulation on these large networks [Barrett et al., 2008].
Along with this, a web-based tool has been created called Interface to Synthetic Informa-
tion Systems (ISIS), which allows for the parameters of an SEIR or SIR model to be
tuned and interventions to be studied [ISIS VBI]. This is used in order to investigate
which interventions are most likely to decrease the spread of the epidemic effectively in
the network.

It is worth noting that along with the final size of an epidemic, whether with or without
control interventions, the time to the peak of the epidemic, along with the size of the
peak are important aspects of disease control. This is due to the fact that the size of the
peak is related to the burden that will be put on the healthcare systems of the country
in question, for example there may not be enough hospital beds for influenza patients if
the peak in flu infections is very high. The time to the peak is also important, as the
longer that this is, the more time there is to impose potential control strategies, along
with preparing healthcare systems and facilities.

To investigate the utility of constructing such large populations which, even with efficient
algorithms, are difficult to use, we compare the output of this model to simpler models
which are derived from data. We will consider the impact of workplace closure and vac-
cination, when these are possible given the model used, on the final size of the predicted
epidemic.

To begin with we consider the spread of epidemics on the full synthetic population for
several disease parameters. Vaccination and closure of workplaces is considered for the
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synthetic population and these are compared with each other to see which would is pre-
dicted to have the greatest impact on the spread of the epidemic.

We will look at the pairwise approximation ODEs from (3.28) to a network defined by
the degree distribution of the synthetic population along with the degree distributions of
the POLYMOD and UK contact surveys [Mossong et al., 2008; Danon et al., 2012]. We
consider the impact of workplace closure here along with no controls.

In the following section we use the WAIFW matrix produced by the synthetic population,
along with the one for POLYMOD and uniform mixing. We consider only vaccination
here, as closing workplaces will change these matrices in an unknown way.

Finally we produce a meta-population model which is built using similar principles to
the synthetic population, to produce population models in agreement with the synthetic
population, POLYMOD and UK contact survey. Here we consider the impact of both
workplace closure and vaccination on the final size of the epidemic.

This will allow us to investigate the impact on the spread of a disease that having these
different datasets give us, along with how the different levels of heterogeneity in each of
the populations and each modelling technique interact with each other.

6.2 Synthetic population

We begin by considering simulations which were done using the full synthetic population.
Due to the size and complexity of this network, simulation on it takes a large amount
of time and therefore, while this limits the number of realisations, we gain increased
complexity and realism in the contact structure.

6.2.1 Synthetic population simulations

Figure 6.1 shows the result of simulations on the synthetic population. Here the model
is for a disease with transmission rate 7 = 1.25 x 1074 days™!, and a final size of 66% of
the model population. We compare the impact of closing workplaces to using no control
methods at all. In 6.1, as we would expect, we can see that the closing of workplaces
has a large impact on the amount of infections in the population (the dark grey lines are
individual simulations for the work closure, and the light grey ones are for when no control
methods are used). We can also see that the time to the peak is longer in the case where
there are workplace closures, which is due to the fact that the decrease in the number of
contacts that people have will decrease the speed at which the epidemic is able to spread,
as effectively transmission rate is decreased.

The time until the infection is eradicated from the population is also longer. The reason
for this difference in time is that in the case where there are no controls, the disease infects
more people the population, and therefore the amount of susceptible contacts that people
have is diminished more quickly. This means that once the peak amount of infectivity in
the population has been reached, the drop off is much quicker in terms of the number of
infecteds, as there are less people still susceptible to become infected.
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Figure 6.1: Simulations from the ISIS tool on the synthetic population for the UK. The
red line is the average of the light grey simulations which have no control, where the
transmissibility 7 = 1.25 x 1074 days~!. The blue line is the average of the dark grey sim-
ulations, which have workplace contacts removed and the same level of transmissibility as
the light grey simulations. The yellow line is the average of the simulations in black. These
have no control placed upon them, but the transmissibility is 7 = 6 x 10~ days~!. The
cumulative number of infections for the black and dark grey simulations is approximately
the same.

Figure 6.1 also has simulations from a much less transmissible infection (7 = 6 x 107°
days—!) with no controls placed upon it. These are shown in black with the yellow line
being the average of these simulations. We note that the total number of infections is
approximately equal for these simulations as for the simulations where the workplaces have
been closed in the more infectious simulations (/17,850,000 to ~17,900,000 respectively).
This implies that the decrease in the number of contacts combined with the increase
in the contact rate in the dark grey simulations is sufficient to give the same level of
transmissibility throughout the full network when compared to the simulations in black.
However the peak is lower and the time to reach the peak is greater in the case where the
infectivity is lower and no controls are used. This is in line with the effect of clustering on
the spread of the disease described in §2.2.3, as the network where there is no control will
have a higher level of clustering in it, as the workplaces have a high level of clustering in
them (figure 5.6) and theoretical results dictate that the time to the peak will be longer
and the peak will be smaller if clustering is increased [House and Keeling, 2011a].
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Figure 6.2: Average infection trails of simulations from the ISIS tool on the synthetic
population for the UK. The transmissibility term here is 7 = 6 x 107° days™'. We see
the comparison between closing workplaces and vaccinating 10%, 20% and 30% of the
population and introducing no controls on the population.

In figure 6.2 we can again see the average spread of the epidemic in the population with no
controls alongside the spread when seen when closing workplaces and randomly vaccinating
10, 20 and 30% of the population. The transmissibility of the disease here is 6 x 107>
days™! in all five scenarios. When no controls are introduced, approximately 20,360,000
are infected with the disease. For the two cases where the workplaces are closed and 20%
of the population is vaccinated, the final size is approximately 9,800,000. We can see that
along with the final size being comparable in both control strategies, the trajectory of the
number of infecteds is also comparable. The decrease of the final size of the epidemic to
vaccinating 20% is marginally over 50%.

As the vaccination program considered here is enacted before the epidemic spreads through
the population, it is clear that the number of susceptibles which remain in the population
will be smaller in the case where we vaccinate than when workplaces are closed. The
same number were removed by the epidemic, as the final size is the same, but there is
an additional 20% of removed individuals who were vaccinated at the beginning of the
epidemic. Vaccination would therefore make it more difficult for the same disease to re-
invade the population and cause another epidemic, and if this did occur, the number of
infected individuals would be lower.

Vaccinating 10% and 30% of the population decreases the final size of the epidemic to
approximately 15, 150,000 and 4,900,000, which signify a decrease of approximately 25%
and 75% in these two cases. Combining this with the 50% decrease by vaccinating 20%, we
see that the linear relationship between vaccination percentage and decrease in size of the
epidemic that is seen in Eames et al. [2009] is maintained for this model population.
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Figure 6.3: Average infection trails of simulations from the ISIS tool on the synthetic
population for the UK. The transmissibility term is 7 = 9 x 107° days~!. We see the

comparison between closing workplaces and vaccinating 20% or 30% of the population
and introducing no controls on the population.

Figure 6.3 displays the same epidemic spreads as given in figure 6.2, but for a higher
transmission rate of 9 x 107° days~!. This higher transmission rate results in a quicker
epidemic, which can be seen by comparing the spread in 6.3 to 6.2, along with a larger
overall epidemic. For no control here we get a final size of approximately 28,000,000. For
this transmission rate it can be seen that the closure of workplaces is more successful in
stopping the spread of the disease than vaccinating at 20%, as the final size is approx-
imately 14,200,000 for the workplace closure, compared with 18,050,000 for vaccinating,
which is a 50% decrease in comparison to a 36% decrease. However when compared to
vaccinating 30% of the population, the vaccination is more successful reducing the final

size to approximately 12,700,000.

Figure 6.4 again increases the transmission rate, this time to 1.25 x 104 days—'. Here

we have only considered the difference in the number of infected individuals for closing
workplaces and random vaccination at 20%. It is clear that the impact of closing the work-
places is greater for this infection parameter set, here averting 45% of cases as compared
to 30% for vaccinating.

When we consider the impact of vaccinating 20% of the population generated in Eames
et al. [2009], the reduction in final size is approximately 40%, when the size of the outbreak
in the population with no interventions was 50%. We have shown that when the outbreak
in the synthetic population with no control is 40% (figure 6.2), there is a 50% decrease due
to this level of vaccination, whilst when the outbreak with no controls is 56% (figure 6.3),
the decrease in final size is approximately 36%. This implies that if the outbreak in the
population with no controls was the same as in Eames et al. [2009], then the impact of this
level of vaccination would be in broad agreement in the synthetic population. We have
also seen that (at least for one set of infection parameters), that the increase in efficacy of
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vaccination as a control measure is linear in the proportion of the population vaccinated,
which again agrees with Eames et al. [2009].
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Figure 6.4: Average infection trails of simulations from the ISIS tool on the synthetic
population for the UK. The transmissibility term is 7 = 1.25 x 10™% days™!. We see
the comparison between closing workplaces and vaccinating 20% of the population and
introducing no controls on the population.

6.2.2 Synthetic population simulations - summary & limitations

We have seen that the impact of interventions on the synthetic population is highly depen-
dent on the expected final size of the epidemic in the case where no controls are enforced.
For low values of the final size, it is likely that vaccinating 20% of the population would,
along with averting more infections during the current epidemic, would also reduce the
potential for a future epidemic by a large amount, than closing workplaces. As the final
size increases however, the closure of workplaces begins to become far more successful at
reducing the numbers of infecteds seen.

We also see a potential agreement to work done on clustered networks [Eames et al., 2009]
in terms of the effectiveness of random vaccination.

There are several limitations to this approach. The fact that the synthetic population is
so large and complicated means that the amount of conclusions that we have been able
to draw from it are limited in scope, as we would need to explore many more parameter
values before being able to draw meaningful conclusions, which has not been possible so
far. Additionally, it has been shown that swapping 20% of the edges in the synthetic
population leaving the degree distribution unchanged and then simulating an epidemic
on the original and altered network with the same parameters yields epidemics which are
dissimilar to each other [Bisset and Marathe, 2009]. This is unsurprising, as swapping
edges will disturb the structure in the network in unpredictable ways. However, as much
of the construction is based on seemingly sensible matching criteria, these techniques have

113



not been shown to represent reality accurately and ultimately there is no way to be sure
how accurate the resulting network is.

This leads us to want to consider what other techniques can be used to model this and
similar populations in a way that will allow us to draw more concrete conclusions about
the similarities and differences between different models of contact structure, by allowing
a larger parameter set to be explored. This begins with the pairwise approximation of the
synthetic population and the UK and POLYMOD contact surveys.

6.3 Pairwise approximation of degree distribution model
populations

In this section, we consider the degree distributions which are taken from the synthetic
population, POLYMOD survey for the UK and the UK contact survey. We use the deter-
ministic pairwise approximation ODEs (3.28) to investigate the difference between these
degree distributions when it comes to the spread of an epidemic. This is equivalent to
constructing configuration model type, undirected and unweighted networks correspond-
ing to each degree distribution, and taking the average of a large number of simulations
performed using the Gillespie algorithm.

The datasets all have contacts categorised by contact type, home contacts, work/school
contacts and “other” contacts. To compare directly with the control methods used when
directly simulating on the constructed synthetic population, the control method we will
consider is that of closing workplaces. As the contacts are split by context, this is simple
enough to implement by simply removing any contacts categorised as work.

As the POLYMOD and UK contact surveys have far fewer responses than the population
considered in the synthetic population we draw 1,000,000 times from each degree distri-
bution to construct our model populations. This is an arbitrary choice, as the equations
used are independent of population size, but for the sake of direct comparison between
the expected epidemic trails at a given time it is helpful to have relatable numbers of
infections, rather than fractions of the population infected at a given time.

In figure 6.5 we can see the degree distributions that are used for the configuration net-
works of the synthetic population, POLYMOD and the contact survey. All three of these
populations have contacts categorised by contact type, home contacts, work/school con-
tacts and “other” contacts. Taking this information we work out the distribution of these
contacts by type and then select the degree of each member of the population by choosing
from these three categories.

This leads to a degree distribution similar to the one shown in 6.5a. We can see that the
synthetic population has a greater proportion of nodes with degree greater than 25 than
either the synthetic population or POLYMOD. The maximum degree for the contact survey
and POLYMOD are around 75, whilst for the synthetic population it is around 20,500.
As we see in 5.5 there is a secondary peak in the degree distribution of the synthetic
population at around degree 40. This is a by-product of the population construction,
as during workplace assignment large workplaces are split into sections with a maximum
number of people in them (= 35). Therefore there is this increased number of people who
will have this number of workplace contacts.
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When we extract the workplace contacts, we get the distributions seen in 6.5b. The shape
of the distributions for POLYMOD and contact survey are left relatively unchanged when
compared to the full distribution, whilst the secondary peak in the synthetic population
is removed, greatly altering the shape of the distribution.
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Figure 6.5: Degree distributions for synthetic population, contact survey and POLYMOD.
(a) shows the full degree distributions for the three different populations. (b) has the degree
distribution for the populations when the workplace contacts are ignored.

Figure 6.6 shows the progress of the epidemic through the populations. In each case the
final size of the epidemic is approximately 0.6 times the population size for the full degree
distribution, and the epidemics are also run with the same parameters for the scenario
where there are no workplace contacts. Figures 6.6a, 6.6b and 6.6¢ show the epidemics for
the synthetic, UK contact survey and POLYMOD model populations respectively, whilst
6.6d shows the three next to each other. Note that for the first figure, the x-axis goes
from 0 to 20, whilst for the second and third both go from 0 to 200. We have considered
the impact of closing the workplaces and this is given by the dashed line in each of the
first three figures. In all simulations the transmission rate 7 = 0.03 and the recovery rate
~ is varied in order to give the desired final size. For the synthetic population v = 0.76
and for the contact survey and POLYMOD ~ = 0.15 and 0.21 respectively. The course
of the epidemic is fairly similar for the UK contact survey and POLYMOD, but is very
dissimilar for the model population from the synthetic population.

The most obvious difference between the two model populations derived from the surveys
and the synthetic population, is the speed at which the spread occurs in the early growth
period. The different speeds can be accounted for by the fact that the early growth rate
is dependent on the network, as given in (3.84). Calculating what the early growth rate
is for each of the three different model populations in turn (synthetic population, UK
contact survey and POLYMOD) for the no control and workplace removed scenarios we
get: r =40.23, r = 55.40, r = 0.23, r = 0.11, r = 0.28 and r = 0.11, which explains this
vast difference in the early period.

The fact that the value of r is larger in the situation where workplaces are closed for
the synthetic population degree distribution then when they are open, displays one of
the difficulties with simply using the number of contacts that each person has in each
location type as the degree of the person. In the synthetic population, a large proportion
of the variance in degree distribution as given in §3), which defines the value of r when
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the transmission and recovery rates are kept constant, increases due to the decrease in the
mean degree by closing workplaces. In reality the contacts made in the “other” locations
are likely to be fleeting and much less likely to produce additional infections as contacts
made at home or at work.

In figure 6.7 we can see the impact of closing workplaces in each model population for a
given final size when considering the full degree distribution. Again the two model popu-
lation derived from surveys behave similarly to each other, with the closing of workplaces
being somewhat more effective in the model population derived from the UK contact sur-
vey, but both following a similar pattern to each other. In both cases, the intervention is
completely successful for final sizes below 0.4.

The impact of closing workplaces for the synthetic population degree distribution follows
a much different trajectory, with the intervention increasing in effectiveness more sharply
than for the other two populations as the final size decreases away from 1 in the full
degree distribution. The increase then plateaus and between a final size of 0.5 and 0.6,
the intervention becomes less effective than for the other populations. Unexpectedly by
the time the final size is approaching 0 for the full population, the impact is decreasing
for the synthetic population.

One reason for this is similar to the one which explains the increase in the early growth
of the epidemic when workplaces are closed in 6.6, in that the contacts made in “other”
locations are more important in the early growth period. When the final size is relatively
low, the early growth period makes up a larger fraction of total infections and so the
closure of workplaces has less time in which to make a big difference to the final size of
the epidemic.

Comparing the impact of workplace closures in the ISIS simulations, as seen in 6.2, 6.3 and
6.4, where when the final size in the population is 0.4 and 0.56 of the entire population
when no interventions are seen, we get a decrease of around 50% of cases by closing
workplaces, whilst for final size of approximately 66%, the decrease is approximately 45%.
The decrease seen in figure 6.7 is in agreement with these three figures. Whether there
would be an agreement between these methods for more values of final size is currently
unknown and would require extensive simulation time to test. However we would not
expect to see a similar trajectory of intervention impact in the full synthetic population,
as the contact time between individuals is included in the full model, which would diminish
the impact of contacts made in “other” locations.
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Figure 6.6: Figure showing the number of infected individuals over the course of an
epidemic, as given by the pairwise approximation (3.28), inputting the degree distribution
of the synthetic population model, the UK contact survey [Danon et al., 2012] and the
POLYMOD survey for the UK [Mossong et al., 2008] respectively in (a), (b) and (c). The
final size is always 0.6 of the population when the full degree distribution is considered.
In (d) these are shown side by side where the differences in the spreads are more obvious.
The dashed lines in each figure give the spread if degree distributions where workplace
contacts are ignored is used.
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Figure 6.7: Figure showing the proportion of infections that are averted by closing work-
places in a population, calculated using the pairwise approximation to the degree distri-
butions of the synthetic population, POLYMOD [Mossong et al., 2008] and the UK Social
contact survey [Danon et al., 2012]. The x-axis gives the proportion of individuals infected
in the situation where no controls are applied.

6.3.1 Pairwise approximation to degree distributions - summary & lim-
itations

We have seen that the two degree distributions produced by the POLYMOD and UK con-
tact surveys [Mossong et al., 2008; Danon et al., 2012], give qualitatively similar behaviour
to each other both in the epidemics trails that are predicted using the pairwise approxi-
mation ODEs, but also in the impact of closing workplaces. This implies that these two
contact surveys (not unexpectedly) are capturing the information about numbers of con-
tacts in a way which is consistent with each other, and also that workplaces are captured
in much the same way in each survey.

The behaviour of the epidemic using the degree distribution of the synthetic population is
much removed from that seen in the other two populations. A postulated reason for this is
the impact of the “other” locations on the spread on a configuration model type network
with this degree distribution. The comparison is somewhat unfair, as in the true synthetic
population, the contacts are weighted, which is incompatible with the methods used in
the section. However, the contrast between these survey based model populations and the
synthetic population are stark, and the fact that the predicted impact of workplace closure
is similar using this approximation as in the few cases available to compare with the full
synthetic population is likely coincidental.

An interesting next step from here would be to construct weighted networks in accordance
with those given by the synthetic population, and compare these with results from the

full synthetic population along with weighted networks for the UK contact survey and
POLYMOD.
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The limitations of this approach, include the fact that we are considering unclustered
networks and using unweighted networks as discussed in §3.1.1. The fact that the POLY-
MOD and UK contact survey include biases in terms of the population represented in
them means that there will be a bias in the degree distributions produced. Additionally,
there is no attempt to investigate the knock-on effects of closing workplaces, such as the
altering of the contact structure of these people who will now not be in work, and therefore
altering other peoples contact network through this effect.

6.4 Who acquires infection from whom matrix method

Along with comparing simple configuration networks, we can also compare the spread
predicted by the WAIFW matrices which are visualised in figure 5.4. We consider three
different datasets to construct the WAIFW matrices for this section. The first is the
synthetic population, where the numbers of contacts between people are taken by simply
counting the number of contacts in the synthetic population, seen in 5.4a. The second is
the same as this but weighted by duration of contact, seen in 5.4b, and the third is from
the POLYMOD study displayed in 5.4c.

To model the spread of an epidemic through a population, with contacts following a given
WAIFW matrix W, we follow methods set out in Mossong et al. [2008] with notation
similar to Metcalf et al. [2012]. We use a discrete time SIR model, with automatic
recovery after one day. We use data from 2001 census to define the age distribution of
people in England and Wales. The model used is indexed by age, therefore the state space
of the model, n(t), is given by

n(t) = (So, lo, Ro, 51, ... Rz) (6.1)

where z is the maximum age in the population data. There is no demographic modelling,
meaning that all people who begin in a specific age class will end the epidemic in the same
age class, and there are no deaths or births.

We define the WAIFW matrix we are considering, W, as follows:

wo,0 wWo,1 - WO,z
wip Wi v Wi

W=W.141=1] . R . , (6.2)
Wz Wg1 - Wz

)

where wj; ; is the average number of people age j that a person of age ¢ will meet in a
day. Along with this matrix and the population age distribution we define 8 to be the
transmission rate between two contacts.

To calculate the value of 8 required for a given value of Ry the following method is followed.
One definition of Ry is the average number of infections which will be caused by introducing
a single ‘typical’ infected individual into a fully susceptible population. Therefore, for each
age ¢ up to the maximum age in the population we introduce a single infected of that age
and calculate the number of people who this person will meet on an average day. This is
given by the sum column of W corresponding to age ¢ and denoted by m; say. To satisfy
the fact that this must be a ‘typical’ individual, we weight the mean number of individuals
infected by a person of a given age by the proportion of the population who is that age.
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Therefore the mean number of infecteds, denoted by 7, is given by n = 3. N;m; /N where
N; is the number of people aged ¢ and N is the total population. Once we have calculated
this we set 5 = Ro/n.

We denote the probability of infection of an individual of age a in a given time step by
¢(t), which is given by

Ljwja
ba(t) =B Z ot (6.3)
J
where N, is the number of individuals of age a and the term I;w;, gives the number of
contacts of age a that infecteds of age j make in a day.

To calculate the probability of infection across all ages we take the row sums of the matrix
produced by the following expression,

Iy I --- I wo,0/No wio/No -+ ws0/No
In I - I wo /N1 wii /N1 - w.1 /Ny

ot)=p1. . . .|O : : . : . (6.4)
Iy L - I wO,z/Nz wl,z/Nz wz,z/Nz

where ©® denotes element-wise multiplication.

To calculate the number of people who move from state to state, for each state in n(t), we
draw from a multinomial distribution, with probabilities dependent on the compartment
in question along with the probability of infection by age. Define Kg, (t) = (Ps,, Pr,, Pr,)
to be the probabilities of moving to and of the three states of the model for susceptible
individuals of age a. These probabilities are given by,

Ksg, (t) = (1 - ¢a(t)a ¢a(t)70) . (6'5)

Infected and removed individuals are assigned to the removed class with probability 1, as
the length of infection is assumed to be 1 day (or whatever length the timestep we choose
is).

In figure 6.8 we consider the WAIFW matrices from the three populations mentioned
above, along with uniform mixing, where the number of contacts in each age group is
proportional to its population. Figure 6.8a shows the age specific Ry for each age in
the different populations in question. To generate this figure, a transmission rate was
calculated that gave a value of Ry = 1 for a typical individual in the population. By this
we mean that for a randomly selected individual, where the probability of an individual
of age a being selected is proportional to the number of people aged a, the expected value
of Ry is 1. We see that for the uniform mixing population all ages have Ry = 1. For the
other populations there is a large swing in the values of Ry over all ages, with the largest
deviations arriving in the weighted synthetic population and the smallest ones from the
POLYMOD data. This implies that the heterogeneity is larger in the synthetic populations
than is generated by the questionnaires used to inform the POLYMOD data.

To generate figures 6.8b, 6.8c and 6.8d, 1000 stochastic simulations were performed, where
a single infection from an individual with an age chosen according to the number of people
in each age bracket was introduced into an otherwise fully susceptible population. These
were then averaged to give the figures shown.

In figure 6.8b, we can see the average size of an epidemic according to each of these
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WAIFW’s for values of Ry from 0 to 3. We see that the mean final size is 0 across all
populations for Ry < 1 and at Rg = 1 it becomes non-zero for the WAIFW defined by the
weighted synthetic population along with the POLYMOD dataset. For values of Ry below
1.5, going from smallest to largest in terms of final size in the four populations we have
the uniform population, un-weighted synthetic population, POLYMOD and then weighted
synthetic population. At Ry = 1.5, this order becomes less clear, but by Ry = 2.2, the
order of final size has reversed. The mechanism for this behaviour is discussed below.

In 6.8c we see the probability that the outbreak ‘took off’ in the population for a given
value of Ry. To be classified as taking off, there must have been at least 1,000 infections
in the population. As the population is approximately 52,000,000, this constitutes a small
proportion of the population becoming infected, but means that we do not include any
times that the epidemic died out immediately. We see a similar pattern here in that for
low values of Ry, in this case until Ry = 0.9, the values are all 0. Once the values are
non-zero, the order is initially synthetic weighted, POLYMOD, synthetic non-weighted
and then uniform mixing. Again the order changes at around Ry = 1.5 and at the end the
order is uniform mixing, POLYMOD, synthetic non-weighted and then synthetic weighted.
Again, we discuss the reasons for this below.

Finally 6.8d shows the expected final size if the epidemic takes off for each population.
The weighted synthetic population and POLYMOD again have non-zero values of this
for lower values than uniform or non-weighted synthetic population, and again for large
values of Ry the uniform population has the largest expected size, with the non-weighted
synthetic population being very close, followed by the weighted synthetic population and
then POLYMOD.

To explain the observed probability that the epidemic will take off, given in figure 6.8d,
we refer to the age-specific Ry given in figure 6.8a. The fact that the weighted synthetic
population and the POLYMOD are always the first two populations to have non-zero
values can be explained by the fact that it is these two populations which have the greatest
maximum values for the age-specific values of Ry. This implies that when the epidemic
reaches anyone in these age brackets, the average number of people who are infected by
them increases, making it more likely that the epidemic will take off. For large values of
Ry, the fact that the minimum values of age-specific Ry are smaller for both synthetic
populations implies that there is a larger probability that there will be a small or no
outbreak at all, as if the ages with very low values of Ry are initially infected, then it is
more likely that the epidemic will not take off, or only a handful of people will become
infected.

For figures relating to the expected final size of the epidemic (figures 6.8b and 6.8d) when
Ry is low, we again only need to consider the age-specific Ry, as the magnitude of the
largest age-specific Ry’s in each population implies the order in the final sizes. As Ry
gets larger however it is not simply a case that we can explain the order in final sizes by
considering figure 6.8a. For example, the fact that the expected final size, given that the
epidemic has take off, for POLYMOD is well below the other populations for high values
of Ry is not explainable by the age-specific Ry.

To explain this, we need to also consider the the age-age mixing for each population,
which is shown in figure 5.4. When we look at this figure, we can see that the amount
of mixing between ages for the POLYMOD population is extremely heterogeneous, with
the mixing between people of different ages being very small in comparison with the
mixing between people of the same age, especially for individuals between the ages of 5
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and 20. Note that these are the same individuals who have increased age-specific values
of Rg. As the population value of Ry increases and large portions of the population
are becoming infected, the fact that the members of the population who are driving the
epidemic with their high age-specific Ry’s are mainly infecting each other implies that the
effective Ry in these age groups, along with the population as a whole will be decreasing
faster than expected as the available susceptibles are quickly diminishing. We can apply
similar arguments to the age-age mixing for the synthetic populations, which shows that
the mixing is more heterogeneous between ages for the weighted population than for the
non-weighted one, which again implies the rank of these two populations in terms of final
size for an epidemic which has taken off.

Along with the final size of the epidemic, of interest is the time that the epidemic will last,
along with the peak level of infection. This is interesting from a control perspective as if we
have two epidemics with the same final size, one of which ends after 20 days and the other
after 100 days, then the time available to react and put controls in place is significantly
different. To consider this we can simulate an epidemic on each of the populations, all or
which have the same final size and see what the size of the epidemic is at each time point.
This can be seen in figure 6.9.

Figure 6.9a shows the spread using the different mixing estimates in the population for 20
separate simulations, all of which have a final size of 0.42 times the population size. The
pattern of spread seems to indicate that the POLYMOD structure gives the largest peak
along with the quickest time to the end of the epidemic. However, this is not clear due to
the variation in times to reach the peak when we consider the same mixing estimate. To
solve this problem we relabel time 0 to be the point at which 500 infections were made in
the population, and then plot the spread of the epidemic from that point. This can be seen
for the same 20 simulations in figure 6.9b, which confirms the fact that POLYMOD gives
the largest peak and quickest epidemic, followed by the weighted synthetic population, the
non-weighted synthetic population and then uniform mixing. Figure 6.9c shows that this
pattern is also seen at higher values of Ry, as for this figure the final size of the epidemic
is 68% of the population.

The impact of vaccination in the WAIFW scheme is simple to investigate, as this is equiv-
alent to putting a given proportion of the population into the removed class at the point
at which vaccination is applied to the population. We consider the impact of vaccinating
20% of the population at time zero, and compare the spread of the epidemic through time
for the different mixing patterns. Figures 6.9d and 6.9e show the spread in the population
for the case where the final size is 42% and 68% of the population respectively. We can
see that the inclusion of vaccination does not alter the predicted order among the models
in terms of the peak epidemic height or the time to the end of the epidemic, but decreases
the peak height more significantly for the mixing patterns which give a smaller height, and
also increases the length of the epidemic more significantly for these populations (most
obviously for the uniform mixing population in figure 6.9d).

Finally figure 6.9f shows the proportion that the size of the epidemic is reduced by if a
randomly selected 20% of the population is vaccinated.The x-axis gives the final size of
the epidemic in the population when no controls are used. We see that for the majority of
values of final size (and therefore Ry) the population which this impacts most significantly
is the uniform mixing population. This is due to the fact that the spread is driven evenly
by all members of the population here, but in the other cases, the spread will be driven
by a minority of the population, meaning that randomly vaccinating people will not be an
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optimally efficient method for controlling the epidemic. We see that it is more effective in
the POLYMOD population than in the weighted synthetic population, and is again more
effective for the non-weighted synthetic population, which again comes down to the level
of heterogeneity in the age-specific Ry’s for these populations.

We can compare this to the decrease in the spread of infection in the population when we
consider the full synthetic population and vaccinate 20% of the population as is seen in
figures 6.2 and 6.3. For the first figure, the final size is approximately 40% of the population
and when we vaccinate 20%, the number of infections decrease by 52%. For the second
the final size is 56% and 36% of these are prevented with 20% vaccination. For these final
sizes in the non vaccinated population, figure 6.9f gives a decrease of approximately 70%
and 50% respectively for the weighted synthetic population and even larger for the non-
weighted synthetic population. This predicted impact of vaccination is far higher than
that seen in the full synthetic population. An important factor in terms of explaining
this is that to create the WAIFW for the synthetic population we are already averaging
behaviour and therefore missing out on the variability in the population. Therefore a
similar argument can be applied to the true synthetic population when compared to the
population defined by the synthetic WAIFW as was applied to this WAIFW in comparison
to uniform mixing in that the people who are driving the epidemic are in a minority (and
are more extreme than for the WAIFW) and therefore will be less likely to be removed
from the dynamics than people with less extreme behaviour.

When comparing the impact of vaccination on the spread of the epidemic in a population
with heterogeneous levels of mixing, it is possible to consider what changes when we use
targeted vaccination instead. In this scenario we would vaccinate a given percentage of
the population using some statistic of the population to choose which individuals this
percentage includes. Here we would target those individuals who have the highest age-
specific Ry’s, meaning that for the mixing defined by the weighted synthetic population
and POLYMOD we would get the greatest increase in efficacy of vaccination and for the
uniform mixing there would be no difference to random vaccination. This has not been
done here, but the impact of targeted vaccination on populations with weighted contacts
can be seen in Eames et al. [2009].
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Figure 6.8: Characteristics of epidemics on a population whose contact structure is mod-
elled by the WAIFW matrices for the synthetic population, both weighted by contact
duration and non-weighted, POLYMOD and uniform mixing. (a) shows the age specific
value of Ry and its dependence on the population in question when the overall Ry for the
populations is equal to 1. (b) shows the final size of the epidemic for different values of Ry
if we use the method described above to simulate an epidemic. We consider the synthetic
population where the WAIFW is given by counting contacts between age groups and also
when this is weighted by contact duration along with the POLYMOD WAIFW for Great
Britain and uniform mixing. (c) gives the probability that the epidemic will ‘take off’ in
these four population for the same range of Ry’s. Taking off here implies that at least
1,000 infections took place. (d) gives the mean outbreak size if we condition on the fact
that the outbreak took off.
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Figure 6.9: Simulations performed on population whose contact structure is modelled by
the WAIFW matrices for the synthetic population, both weighted by contact duration
and non-weighted, POLYMOD and uniform mixing. (a) shows the trails of 20 epidemic
simulations which all took off and reached a final proportion of 0.42 for each of the four
populations in question. In (b) we see the same 20 epidemics as in (a), but here time 0 is
taken to be the point at which there were 500 infections in the population. (c) is similar
to (b), but the final size is 0.68 in this case. Note that the x-axis goes from 0 - 60 in this
figure, but from 0 - 100 in (a) and (b). (d) shows the outbreaks in the four populations if
20% of the population is vaccinated for the parameters which produce (b), and (e) does
similarly for the parameters of (c). Note the x-axis on (d) is from 0 - 400 instead of 0 -
100 in (b) and for (e) goes from 0 - 100 rather than 0 - 60 in (c). (f) shows the reduction
in final size if the population is 20% vaccinated.

125



6.4.1 WAIFW summary and limitations

We have seen that for epidemics which are spread according to the WAIFW’s produced by
the synthetic population along with the POLYMOD dataset and uniform mixing, we get
epidemics which behave relatively similarly at the aggregate level, that is once we strip
away the epidemic trajectories and focus solely on the probability that an epidemic will
take place, or on the expected final size of an epidemic in these populations. However when
we look at the actual spread through time, we see that there are significant differences
in terms of the timing of the epidemics along with the peak of the epidemic. This has
repercussions for how effective plausible intervention strategies may be predicted to be,
as by the time that control strategies are prepared the stage in which the epidemic is in
can be vastly different. This combines with the fact that the peak of the epidemic has
consequences in terms of how effectively the treatment of potential diseases is, due to the
increased burden on healthcare systems caused by an increase in peak incidence.

In terms of the use of the WAIFW to model the spread of the epidemic, this is in some
ways closer to the actual synthetic population than the previously examined pairwise
approximation model, as this is based entirely on the contact network that is produced
for the synthetic population, and does not model simply one aspect of the population as
the degree distribution does.

We now look at the spread when we include more heterogeneity and clustering in the
population by constructing meta-populations for these model populations, using similar
principles as used to construct the full synthetic population.

The main limitation of this approach is that we remove any heterogeneity from the popu-
lations, as all people of a given age are assumed to be equivalent to each other. Again we
don’t consider the knock-on effects of closing workplaces, which would have a large impact
on the contact structure.

There is also underlying uncertainty in the WAIFW matrices produced by either the syn-
thetic population, due to the use of a large number of assumptions to construct the popula-
tion, or the survey based techniques used to derive POLYMOD and the UK contact survey,
which make assumptions regarding the required contact to spread an infection.

6.5 Meta-population description

To add additional structure in order to compare the synthetic population against POLY-
MOD [Mossong et al., 2008] and the UK contact survey [Danon et al., 2012], we can
consider a meta-population which is constructed using similar principles to the synthetic
population itself. This is done for each of the populations that have been compared to
each other previously, so the following process is used to construct representations of the
synthetic population, POLYMOD and UK contact survey.

We consider population sizes on the order of 10° rather than the size of the synthetic
population (=~ 50 x 10°), as this means that we can consider more parameter values
and compare it with other population models. To do this we begin with the degree
distributions for the home, workplace and other contacts for each of these populations.
Each person is assigned a number of contacts in these three circumstances according to
the distributions in question. Once this is done, people are grouped into households,
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workplaces and other groups by the given size. For example, a person who has household
size 3 is randomly assigned to a household, where the two other household contacts are
chosen at random from the people in the population with household size 3. This is repeated
for workplace and other contacts. In the remainder of this section, when referring to the
synthetic population, POLYMOD or UK contact survey population or model, this refers
to a population constructed using this method.

Once this population is assembled a disease can be spread on it. The model that we
use here is the ‘chain binomial’ model, with non-overlapping generation times. This is a
discrete time model, where each time point describes the spread of the disease through
either houses, workplaces or other locations. At each time point, we first check for any
infected person who has been infected for the given number of time steps needed to recover.
These infecteds are then placed in the recovered compartment.

For the remaining infectious individuals, we then choose from a binomial distribution
the number of people who it infects at this time point, where the transmission rate, and
hence the probability of infecting a given susceptible contact, is dependent on the size
of the location in question. We then move onto the next time point when all infectious
individuals have drawn from a binomial distribution, the number of infections that they
will perform. We continue looping through the three locations in turn until the epidemic
ends.

The parameters used for the binomial are n = number of susceptibles remaining in given
location, and p = 1 — exp(v(k — 1)7%), where the exponential power is the transmission
rate. To construct this transmission rate, v is some constant dependent on Ry and the
location type, k is the location size (so k — 1 is the maximum number of contacts in the
location) and § is a number between 0 and 1, which can be used to tune between frequency
and density dependent transmission (0 is equivalent to 1 — € introduced in § 4.2).

For workplaces and other locations we multiply v by 0.5, to indicate that more time is
spent in the household than in any other location [UK Data Service]. This is a somewhat
arbitrary choice. It can obviously be argued that this value should be lower in all cases
other than households and that it should be higher in workplaces than for other locations,
but the sensitivity of results to this has not been investigated here.

This construction method has traits in common with the construction of the full synthetic
population in that people are assigned activities to take part in each day, and they interact
with different people when doing these different activities. Here however we are considering
all locations to be fully mixed, so this also means that the level of clustering in the
population is likely to be higher than that seen in the synthetic population. Additionally
people are assigned a maximum of one location for each type of contact, which is not
true for the synthetic population, where people can be assigned multiple work and other
locations. As we are interested in comparing the synthetic population with smaller, less
complex models, the population size is also far smaller here, typically between 100,000 and
200,000. People are also limited to workplaces of size 50 in the meta-population and can
only make contacts with up to 100 people in other locations, which is far lower than the
synthetic population.
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6.5.1 Meta-population simulations

Once the populations are constructed, we simulate on them as described above. Figure
6.10a shows the value of Ry given the transmission rate of the epidemic. Also examined
is the impact of altering § to tune between frequency dependent and non-frequency de-
pendent transmission. The values looked at here are 6 = 1 (which is frequency dependent
transmission) and § = 0.85. For § = 1, we see that the population with the largest value of
Ry is the POLYMOD dataset, followed by the synthetic population and then the contact
survey. Altering §, we can see that the values of Ry for POLYMOD and the synthetic
population are virtually identical. The fact that the synthetic population’s reproductive
number has increased so much relative to the other populations shows clearly that there
are more locations with larger numbers of people in them, as it is these locations which
will increase the value of Ry as ¢ is decreased.

In figure 6.10b we consider the final size of the outbreak in the three populations for given
values of Ry. Again we consider § = 1 and § = 0.85. We can see that the final size of
the epidemic in the populations at a given value of Ry is largest in the contact survey,
followed by POLYMOD and finally by the synthetic population. This can be explained by
the level of clustering in the populations. As mentioned previously increasing clustering
decreases the number of total infections, due to the fact that the number of susceptibles
that an individual has contact with is diminished by infections not only caused by itself,
but also by other infected people who they are connected to. This results in a must faster
depletion of susceptibles than is seen in configuration type networks.

Note that as the workplaces and other locations are fully connected in all of the popula-
tions, this implies that the level of clustering is likely to be larger than in reality in all
cases. For the synthetic population, the level of clustering will be higher than for the
other two populations, as this is a measure of the number of triangles in the population in
comparison to the number of total triples in the population. As there are more places with
a large number of connections in them in the synthetic population, this implies that there
will be proportionally more triangles in the synthetic population than the other two.

This can be explained by considering an example. Consider the two networks shown in
6.11. We take 6.11a to be in the case where there is 1 home contact, 1 other contact and 2
work contacts and 6.11b to be similar but with 3 work contacts. We wish to calculate the
clustering around the central node using the method given in Watts and Strogatz [1998].
To do this, we calculate the size of the neighbourhood of this node in each case, where the
neighbourhood is defined to be the number of nodes which are connected to it. This can
be written as,

Ni:{UjGV:eijGE/\ejiEE}, (66)

where V is the set of vertices and F is the set of edges in the network. For 6.11a this is 4 and
for 6.11b it is 5. The level of clustering is then given by the proportion of the total number
of possible connections between members of the neighbourhood that are actually in the
network. Again as it is an undirected network, all connections are double counted to reflect
the fact that it is equivalent to a directed network where if two nodes are connected in one
direction then they are also connected in the other. The number of unique connections
that are able to exist between k nodes (not allowing multiple connections between nodes)

128



in an undirected network is k(k — 1)/2, and so clustering is given by the following,

C = 2|{6jk e FE: v € N; Nvg € Nz}|
' [ Nil(|Ni| — 1)

(6.7)

Performing this calculation for 6.11a we get C; = 1/3 and for 6.11b, we get C; = 3/5, mean-
ing that it is higher in 6.11b, due to the inflation of the number of work contacts.

As mentioned above, due to the assumption of fully connected workplaces and other loca-
tions, the level of clustering is likely to be higher than in reality. However, as can be seen in
5.6, the level of clustering is larger in the synthetic population than for the contact survey,
and so even though both will be exaggerated, the rank of clustering will be maintained.
Additionally we can see that altering the transmission rates away from being frequency
dependent has no impact in the contact survey and POLYMOD meta-populations and a
relatively small impact in the synthetic population.

Finally 6.10c gives the expected infection profile for outbreaks with a final size of 40% of
the population for all three populations for 6 = 1 and § = 0.85. We see that the synthetic
population has by far the largest peak and the fastest time to the end of the epidemic
whilst the POLYMOD and contact surveys are far more similar to each other, with the
peak being marginally faster and higher in the POLYMOD population. It is interesting to
note that for the pairwise approximation predictions this is also observed (figure 6.6), but
for simulations involving the WAIFW, we get that the peak is higher and time to the peak
is faster for POLYMOD when compared to the synthetic population; especially in the case
of the non-weighted synthetic population, which comparing only degree distributions is
equivalent to (figure 6.9). For the pairwise approximations is due to the large variance in
number of contacts which drives the early growth period of the epidemic. For the meta-
population, this can be explained by the network structure and the level of clustering in
the population.

As seen in 6.10b, the value of Ry needed to give the same value of final size in the synthetic
population is considerably larger than for the other two populations. This implies that
the epidemic will initially spread more quickly through the model population, as everyone
will initially infect more people. This leads to a faster and higher peak in populations with
the same level of clustering, due to the quicker depletion of susceptibles in the population
when the transmission rate is increased. Though the level of clustering is higher in the
synthetic population, this increased value of Ry compensates sufficiently to still have a
higher and faster peak whilst infecting the same number of people. This is similarly why
the peak is higher and faster for the POLYMOD meta-population, but the difference is
far less pronounced here. Again the difference between the epidemic spreads for different
values of § is negligible, hence the impact of altering this will not be considered from here
on.

In 6.12a and 6.12b, we again consider the time to the peak and the size of the peak for
the epidemics on the different populations for a range of values of the final size. It can be
seen that the results discussed relating to the peak from 6.10c¢ are not limited to a specific
value of the final size, and are true in general for these meta-populations. It is again clear
that the POLYMOD and contact survey populations are far more similar to each other
than the synthetic population.

In 6.12¢, we consider the effectiveness of different intervention strategies on the spread of
the epidemic on these meta-populations. We consider the impact of discounting any con-
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tacts from workplaces against vaccinating a randomly selected 20% of the population. For
the synthetic population, closing workplaces is more effective in all cases than vaccinat-
ing 20% of the population, whilst this is not the case for the other two meta-populations
as vaccination becomes more efficacious once the final size is approximately 80% of the
population.

Considering the impact of closing workplaces and vaccinating 20% of the population on
the spread of the epidemic, we see that this method is much more effective in the meta-
population construction of the synthetic population than it is in the full synthetic popula-
tion. Comparing the impact of these interventions in 6.2 and 6.3 for vaccination we get an
impact of 52% and 36% for final sizes of 40% and 56%, whilst for the meta-population the
impact is slightly above 60% in the first final size and slightly below 60% in the second.
For closing of workplaces, in the full synthetic population, the impact is approximately
the same for both final sizes at 53%, but for the meta-population, the impact is 100% for
these final sizes.

Again this shows that removing the heterogeneity of the full synthetic population to model
the populations results in us getting large differences in the behaviour of the epidemics,
especially when we consider the impact of interventions.
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Figure 6.10: Data from simulations performed on meta-populations for a population
modelled according to the synthetic population, POLYMOD and UK Social contact survey.
In (a) we can see the change in Ry which is given by multiplying transmission rates by a
given pre-factor. Transmission rates are given by A(k — 1)_5, where A is the transmission
pre-factor and § is given by either 1 or 0.85 in this figure. In (b) we have the accompanying
value of Ry, for given values of Ry across the three populations that we are considering.
(c) gives the average spread by day of the epidemic in the scenario where the final size is
0.4 in all populations.
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Figure 6.11: Two configurations of neighbours in the home, work and other context.
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Figure 6.12: Data from simulations performed on meta-populations constructed as de-
scribed in 6.5. (a) shows the time to the peak for various values of Ry. In all cases here
0 = 1 and the colour scheme follows that given in 6.10, where orange is synthetic popu-
lation, green is contact survey and blue is POLYMOD. (b) gives the size of the peak for
different values of Ry. (c) shows the proportion of infections that are averted by either
closing workplaces of vaccinating 20% of the population at ¢t = 0.
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6.5.2 Meta-populations summary & limitations

By constructing meta-populations based on the degree distributions of the synthetic pop-
ulation, UK and POLYMOD contact surveys, we have been able to consider the impact
of clustering in the population on the spread of an epidemic. The level of clustering that
this method produced in the synthetic population and POLYMOD in comparison to the
UK contact survey meant that we needed to increase the value of Ry in these population
models considerably to observe a similar final size as that observed for the UK contact
survey. This led to a faster and more highly peaked epidemic for the synthetic population,
and to some extent for the POLYMOD model too.

We also observed that for a given final size, in general the POLYMOD and UK contact
survey derived population models behave similarly to each other, whilst the synthetic
population behaves much differently.

In terms of intervention, it was possible to consider the impact of vaccination and workplace
closure here. For the majority of values of final size, the impact of closing workplaces was
greater than vaccination. For the synthetic population model, this was true for all values
of Ry, whilst for the other two, around a final size of 0.8, vaccination became a better
option. This is unlike what was observed in the full synthetic population, where as the
final size increased, the impact of workplace closure improved in terms of its comparison to
vaccination at 20%. However if we increased the size of the epidemic in the full synthetic
population, at some point, we would definitely see that vaccination was better in terms
of reducing the final size, as this would always reduce infections by 20%, whilst closing
workplaces may ultimately prevent no infections if transmission is great enough. Whether
this occurs at a final size of around 80% is unknown currently.

Limitations of this approach include reliance on the degree distributions to define the meta-
populations, which are base on many assumptions, especially in the synthetic population
case. We assume that the very large degree distributions seen in the synthetic population
are not artefacts, and by assuming that transmission in ‘other’ locations is as strong in
workplaces and half as strong as homes, it is likely that the impact of other locations
is overstated. This will also have an impact on the effectiveness of closing workplaces
as an intervention, as a large proportion of the spread will be produced by the ‘other’
locations.

6.6 Summary of chapter

In this chapter, we have compared the predicted spread in several different models of the
same population, which have been modelled in different ways, which include different levels
of heterogeneity.

Firstly, the full synthetic population, whose construction was described in the previous
chapter was examined. Due to the size and complexity of this population, relatively few
simulations were done, with a relatively small range of parameters investigated. Here
we compared vaccination to closing workplaces and saw that as final size increases, the
difference in effectiveness of the closure of workplaces in comparison to vaccination in-
creased.

Next we considered the pairwise approximation and saw that the degree distribution de-

133



fined by the synthetic population gave huge growth during the early period of the epidemic
when compared to the other UK contact survey and the POLYMOD survey model popu-
lations. The behaviour of the two model populations derived from the surveys was quite
similar to each other, whilst the synthetic population showed much different behaviour,
both in terms of the spread of the epidemic and the efficacy of closing workplaces. We did
not consider vaccination of the population here.

The who-acquires-infection-from-whom (WAIFW) matrices for the synthetic population,
weighted and un-weighted by time were then compared to POLYMOD and uniform mixing.
Here the peak was greater and the time of the peak and length of the epidemic was shorter
for the POLYMOD defined contact structure than for the synthetic population based
models, which was not in agreement with the pairwise approximations.

Finally, meta-populations were considered and again we saw that the UK contact survey
and POLYMOD survey were in much closer agreement to each other than they were with
the synthetic population.

We have seen that the predicted impact of an intervention, along with which intervention
is predicted to be better is keenly dependent on both the assumed contact structure of the
population and the predicted size of the epidemic in the case where no control measures
have been enforced.

We note that the use of full workplace closure as an intervention is unrealistic, as this
would be impossible in reality. There are also knock-on effects, as this will likely in-
crease the number of household contacts and significantly alter the overall dynamics of
the epidemic. This was used purely as a way to get insight on the different models used
and the populations considered, as the interaction of the epidemic with this intervention,
along with the impact of this intervention in comparison to vaccination is a useful way
of seeing the differences caused by modelling technique and the contact structure of the
population.

In conclusion, this divide between what is predicted for the POLYMOD and UK contact
surveys and for the synthetic population is an issue that needs to be addressed. The
surveys conducted are seemingly sensible ways to get at the contact structure, and the
method used to construct the synthetic population is also (arguably) sensible, as several
large datasets are combined in ways which satisfy many marginal statistics, along with the
use of statistical techniques designed to use time use data in an informative way (CART).
By considering the WAIFW matrices, along with the degree distribution, it is clear that
there is much more heterogeneity included in the synthetic population, and whether this
is an artefact of the methods used, or it is something which is in the population, but not
sampled by the contact surveys [Mossong et al., 2008; Danon et al., 2012] is unclear, and
merits additional investigation.
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Chapter 7

Final Discussion

Throughout this thesis, the spread of epidemics on networks and in heterogeneous popu-
lations has been considered. In general, the main investigation has been on the impact of
heterogeneity in a population on the spread of an epidemic, be that in populations that
can be described by a contact network, as in §3, §5, §6.2, §6.3 and §6.5, or in populations
where the spread of the epidemic is similar to that seen using mean-field dynamics, as in
84 and §6.4.

In §3, the focus was on the early exponential growth period of a stochastic epidemic on a
heterogeneous network. The level of variance in the number of infected individuals which
can be seen during this early period was calculated analytically. This has been done for the
SIS model previously [Dangerfield et al., 2009], but has not been considered for the STR
model before. It was shown that the variance was dependent on the first three moments
of the degree distribution, along with the transmission and recovery parameters. This
used a density-dependent diffusion approximation to the pairwise equations describing the
disease dynamics which exploited an assumption about the neighbourhood of susceptible
individuals. In addition an argument was made about how to correctly think of the
neighbourhood of infected individuals in this period, which was shown to be consistent
with two constraints that were enforced by the exact but unclosed differential equations
describing this spread.

Next, in §4, the distribution of workplace sizes for the UK was considered, which included
the analysis of a novel dataset [Bluesheep data source]. The fit of three heavy-tailed dis-
tributions to this dataset was considered using numerous criteria, likelihood and distance-
based, along with the size of predicted epidemics over these distributions when compared
to the true distribution. It was shown that, of these distributions, the one which fit the
best, has previously been put forward as a good fit to workplaces in the US. This implies
that this may be a likely candidate to the distribution of workplace sizes in other countries
too, at least in similarly developed countries. It was also shown that the impact of changing
the workplace size distribution can be to increase the expected number of infected people
considerably, but via consideration of the secondary attack rate in the locations, that the
time to do so was long enough that effective control strategies could be implemented to
limit the spread.

In §6.2, the construction of a synthetic population describing England and Wales was
discussed. This has been done for other countries, such as the USA [Barrett et al., 2005;
Eubank et al., 2004] and Italy [lozzi et al., 2010], but this is the first time that a synthetic
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population for England and Wales base been constructed. Several datasets from the Office
for National Statistics, and data detailing the time use of individuals, were used in an
attempt to approximate the contact network of this large area in a realistic and accurate
way. Once constructed, this model was used to simulate the spread of epidemics on, along
with the impact of vaccination and the closure of workplaces on this spread. The aim here
was to model the spread of an epidemic through a realistic population for England and
Wales, to gain insight into the effectiveness of control methods, as has been done previously
in synthetic populations in the USA and Thailand [Eubank et al., 2004; Ferguson et al.,
2006]. However, the size and complexity of this model meant that it was difficult to truly
understand the results that were seen, and there was no way to check whether our results
were sensible.

We therefore used simpler models to compare existing survey based contact structures for
the UK which were given by POLYMOD and the UK contact surveys [Mossong et al.,
2008; Danon et al., 2012]. The degree distribution and WAIFW matrix which made up
the synthetic population were compared to the POLYMOD and UK contact surveys using
simpler models; pairwise approximation to a network, spread using the WAIFW and a
meta-population type model. This demonstrated the difference resulting from deriving
contact structures by asking people about their interactions, to using available datasets in
order to construct a contact network. In general, we observe that the populations derived
from surveys were much more similar to each other than the synthetic population. This
implies that there is some qualitative difference in the contact structures created by the
synthetic population than for the structures we get from the surveys.

Also of consideration was the necessity of using the extremely large and complicated
synthetic population model in order to model the spread of infection in this population. We
saw that using these simpler models, we produce results which are qualitatively different,
especially in the impact of intervention of the spread of epidemics. This implies that there
is some gain in information from using the full synthetic population (not unexpectedly),
though the use of simpler models allows us to explain results that we observe, whilst for
the synthetic population, the results are less transparent.

Additionally, the POLYMOD and UK contact surveys have never been compared to each
other in terms of the disease dynamics that are implied by their structures, and this thesis
was able to show that they are qualitatively similar to each other. There has also been little
comparison between contact structures of synthetic populations and structures from other
data sources. The Little Italy study included a comparison between the Little Italy model
and POLYMOD, but this synthetic population is very small and non-representative of the
population. Seeing that there is a large difference in these contact structures gives strong
support to further investigation of the differences between these types of contact structures.
Additionally, it implies that more thought and study is needed in order to construct
synthetic populations which are representative of the population that they purport to
represent.

In summation, the level of heterogeneity assumed to be present in the contact structures of
our population, along with the amount of detail included in our model has a great impact
on the predicted spread of an epidemic, and the predicted efficacy of potential control
strategies.

It has been shown that the different models that we consider and the different assumptions
that we make, can have a large impact on the spread of an epidemic through a population.
In addition to this, there are many other factors in the spread of an infectious disease
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which are unknown and haven’t been considered here. These include how different levels
of interaction, such as touching compared with talking face-to-face with someone will have
on the likelihood of spreading a disease, or how likely it is that someone can become
infected from touching a door handle which has previously been used by someone with a
disease.

A significant problem with trying to consider the impact of the contact structure of a
population on the spread of the epidemic, is that there are these unknown factors taking
place continuously and they are very difficult to include in model, let alone parameterise
accurately. However, it may be that the impact of these un-modelled interactions, will
average out over a large enough population, and therefore a stochastic model will be able to
model the overall spread ‘correctly’ when we average the results. Whether this is the case
is unknown, but there is currently little that can be included in a model that can target
these questions, which wouldn’t just be adding arbitrarily derived noise to the model.
Additionally, whether these will have an impact which is as large as the errors contained
in the contact structures used to represent the true contact structure is possible, though
unlikely.

Given this, we can ask the question of what we are gaining by even considering the impact
of the contact structure, and why we don’t use a simple compartment model, with few
divisions between different types of people (such as including ages)? This is compounded
by the difficulty of being sure that what we do include in the model is accurate, as can
be seen by the disparity between the synthetic population and the POLYMOD and UK
contact surveys. The most obvious and potentially motivating answer to this question,
is that these simple compartmental models are not telling us the whole story in terms
of what is occurring during the spread of an infectious disease, as people are treated as
being identical in these models, and it is clear that heterogeneity exists within populations
in many forms. Therefore, we must try to investigate factors that have an impact on
the epidemic, and that we can at least get a handle on, in an attempt to get closer to
the truth. We can also attempt to target intervention strategies more sensibly with the
increase in knowledge that we gain from these type of models, especially as they become
more accurate due to increased attempts to survey populations, which isn’t possible in
standard compartmental models.

Continuing this line of reasoning, one can argue that the use of individual-based models
should be encouraged. However, given our current understanding of the interactions that
people have with each other and the transmission rates between people, this is likely to
cause us to make many explicit and implicit assumptions about our population. We have
seen in this thesis that the interpretation of such models can also be difficult, and that it
is unlikely that we will have agreements between these type of models and those based on
(arguably) more accurate data. Until there is a large increase in the availability of micro-
level data relating to peoples interactions (if access to this type of data ever arrives), along
with computing power which can handle the large amounts of data needed to perform
many simulations on this type of model, then one can argue that there is too much in
these models which is unknown to make them trustworthy enough to be truly useful to
policy makers.

In order to improve our ability to predict and control diseases, the increase in our knowl-
edge relating to the contact structures involved is of key importance. The use of phyloge-
netic data, in order to identify infections pathways [Volz and Frost, 2013], will hopefully
help us to achieve this, though a lot of work is needed in order to make this a realistic
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and helpful tool for modeling [Frost and Volz, 2013]. Along with this, increasing the use
of surveys to assess peoples contact structure, will help to increase the accuracy of these
data-rich models.

This thesis adds to the understanding of heterogeneities in transmission processes and
the subsequent tailoring of intervention methods to combat the spread of infectious dis-
eases.
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