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Abstract. In the Proper Interval Completion problem we are given
a graph G and an integer k, and the task is to turn G using at most k
edge additions into a proper interval graph, i.e., a graph admitting an in-
tersection model of equal-length intervals on a line. The study of Proper
Interval Completion from the viewpoint of parameterized complexity
has been initiated by Kaplan, Shamir and Tarjan [FOCS 1994; SIAM
J. Comput. 1999], who showed an algorithm for the problem working in
O(16k · (n+m)) time. In this paper we present an algorithm with run-

ning time kO(k2/3) +O(nm(kn + m)), which is the first subexponential
parameterized algorithm for Proper Interval Completion.

1 Introduction

A graph G is an interval graph if it admits a model of the following form: each
vertex is associated with an interval on the real line, and two vertices are adja-
cent if and only if the associated intervals overlap. If moreover the intervals can
be assumed to be of equal length, then G is a proper interval graph; equivalently,
one may require that no associated interval is contained in another. Interval and
proper interval graphs appear naturally in molecular biology in the problem of
physical mapping, where one is given a graph with vertices modeling contiguous
intervals (called clones) in a DNA sequence, and the edges indicate which inter-
vals overlap. Based on this information one would like to reconstruct the layout
of the clones. We refer to [12] for further discussion on biological applications of
(proper) interval graphs.

The biological motivation was the starting point of the work of Kaplan et
al. [12], who initiated the study of (proper) interval graphs from the point of
view of parameterized complexity. It is namely natural to expect that some in-
formation about overlaps will be lost, and hence the model will be missing a
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small number of edges. Thus we arrive at the problems of Interval Comple-
tion (IC) and Proper Interval Completion (PIC): given a graph G and an
integer k, one is asked to add at most k edges to G to obtain a (proper) interval
graph. Both problems are NP-hard [17], and hence it is natural to ask for an
FPT algorithm parameterized by the number of additions. For PIC Kaplan et
al. [12] presented an algorithm with running time O(16k · (n+m)), while fixed-
parameterized tractability of IC was proved much later by Villanger et al. [16].
Recently, Liu et al. [14] obtained an O(4k+nm(n+m))-time algorithm for PIC.

The approach of Kaplan et al. [12] is based on a characterization by forbidden
induced subgraphs, also studied by Cai [5]: proper interval graphs are exactly
graphs that are chordal (do not contain any induced cycle C` for ` ≥ 4) and
additionally exclude three small graphs as induced subgraphs: a claw, a tent,
and a net (see e.g. [2]). Thus, in PIC we may apply a basic branching strategy:
Whenever a forbidden induced subgraph is encountered, we branch into several
possibilities of how it is going to be destroyed in the optimal solution. A cycle
C` can be destroyed only by adding `− 3 edges to triangulate it, and there are
roughly 4`−3 different ways to do so. Since there is only a constant number of
ways of destroying a small subgraph, the whole branching procedure runs in
cknO(1) time, for some constant c.

The approach via forbidden induced subgraphs has driven the research on the
parameterized complexity of graph modification problems ever since the work
of Cai [5]. Of particular importance was the work on polynomial kernelization;
recall that a polynomial kernel for a parameterized problem is a polynomial-time
preprocessing routine that reduces the size of the instance at hand to polynomial
in the parameter. While many natural completion problems admit polynomial
kernels, there are also examples where no such kernel exists under plausible
complexity assumptions [13]. In particular, PIC admits a kernel with O(k3)
vertices which is computable in O(nm(kn+m)) time [2], while the kernelization
status of IC remains a notorious open problem.

The turning point came recently, when Fomin and Villanger [9] proposed
an algorithm for Chordal Completion (aka Fill-in), that runs in subexpo-
nential parameterized time, more precisely kO(

√
k)nO(1). As observed by Kaplan

et al. [12], the approach via forbidden induced subgraphs leads to an FPT al-
gorithm for Fill-in with running time 16knO(1). However, in order to achieve
a subexponential running time one needs to completely abandon this route, as
even branching on obstacles as small as, say, induced C4-s, leads to running
time 2knO(1). To circumvent this, Fomin and Villanger proposed the approach
of gradually building the structure of a chordal graph in a dynamic program-
ming manner. The crucial observation was that the number of ‘building blocks’
(in their case, potential maximal cliques) is subexponential in a YES-instance,
and thus the dynamic program operates on a subexponential space of states.

This research direction was continued by Ghosh et al. [10] and by Drange et
al. [7], who identified several more graph classes for which completion problems
have subexponential parameterized complexity: threshold graphs, split graphs,
pseudo-split graphs, and trivially perfect graphs. Let us remark here that prob-
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lems admitting subexponential parameterized algorithms are very scarce, since
for most natural parameterized problems existence of such algorithms can be re-
futed under the Exponential Time Hypothesis (ETH) [11]. Up to very recently,
the only natural positive examples were problems on specifically constrained in-
puts, like H-minor free graphs [6] or tournaments [1]. Thus, completion problems
admitting subexponential parameterized algorithms can be regarded as ‘singu-
lar points on the complexity landscape’. Indeed, Drange et al. [7] complemented
their work with a number of lower bounds excluding (under ETH) subexponen-
tial parameterized algorithms for completion problems to many related graphs
classes, e.g. cographs.

Interestingly, threshold, trivially perfect and chordal graphs, which are cur-
rently our main examples, correspond to graph parameters vertex cover, treedepth,
and treewidth in the following sense: the parameter is equal to the minimum pos-
sible maximum clique size in a completion to the graph class (±1). It is therefore
natural to ask if Interval Completion and Proper Interval Completion,
which likewise correspond to pathwidth and bandwidth, also admit subexponen-
tial parameterized algorithms.

ChordalInterval

Trivially perfect

Proper interval

Threshold ⊂
⊂

⊂

⊂
TreewidthPathwidth

Treedepth

Bandwidth

Vertex cover ≥
≥

≥

≥

Fig. 1. Graph classes and corresponding graph parameters. Inequalities on the right
side are with ±1 slackness.

Our Results. In this paper we answer the question about Proper Interval
Completion in affirmative by proving the following theorem:

Theorem 1. Proper Interval Completion is solvable in time
kO(k2/3) +O(nm(kn+m)).

In a companion paper [3] we also present an algorithm for Interval Com-

pletion with running time kO(
√
k)nO(1), which means that the completion prob-

lems for all the classes depicted on Fig. 1 in fact do admit subexponential param-
eterized algorithms. We now describe briefly our techniques employed to prove
Theorem 1, and main differences with the work on interval graphs [3].

From a space-level perspective, both the approach of this paper and of [3]
follows the route laid out by Fomin and Villanger in [9]. That is, we enumerate a
subexponential family of potentially interesting building blocks, and then try to
arrange them into a (proper) interval model with a small number of missing edges
using dynamic programming (DP for short). In both cases, a natural candidate
for this building block is the concept of a cut: given an interval model of a
graph, imagine a vertical line placed at some position x that pins down intervals
containing x. A potential cut is then a subset of vertices that becomes a cut in
some minimal completion to a (proper) interval graph of cost at most k. The
starting point of both this work and of [3] is enumeration of potential cuts.
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Using different structural insights into the classes of interval and proper interval
graphs, one can show that in both cases the number of potential cuts is at
most nO(

√
k), and they can be enumerated efficiently. Since in the case of proper

interval graphs we can start with a cubic kernel given by Bessy and Perez [2],
this immediately gives kO(

√
k) potential cuts for the PIC problem. In the interval

case the question of existence of a polynomial kernel is widely open, and the need
of circumventing this obstacle causes severe complications in [3].

Afterwards the approaches diverge completely, as it turns out that in both
cases the potential cuts are insufficient building blocks to perform dynamic pro-
gramming, however for very different reasons. For Interval Completion the
problem is that the cut itself does not define what lies on the left and on the right
of it. Even worse, there can be an exponential number of possible left/right align-
ments when the graph contains many modules that neighbor the same clique.
To cope with this problem, the approach taken in [3] remodels the dynamic
programming routine so that, in some sense, the choice of left/right alignment
is taken care of inside the dynamic program. However, this leads to extremely
complicated definition of a DP state and its relations.

Curiously, in the proper interval setting the left/right choice can be easily
guessed along with a potential cut at basically no extra cost. Hence, the issue
causing the most severe problems in the interval case is non-existent. The prob-
lem, however, is in the ordering of intervals in the cut: while performing a natural
left-to-right DP that builds the model, we need to ensure that intervals partici-
pating in a cut begin in the same order as they end. Therefore, apart from the
cut itself and a partition of the other vertices into left and right, a state would
also need to include the ordering of the vertices of the cut; as the cut may be
large, we cannot afford constructing a state for every possible ordering.

Instead we remodel the dynamic program, this time by introducing two lay-
ers. We first observe that the troublesome ordering may be guessed expeditiously
providing that the cut in question has only a sublinear in k number of incident
edge additions. Hence, in the first layer of dynamic programming we aim at chop-
ping the optimally completed model using such cheap cuts, and to conclude the
algorithm we just need to be able to compute the best possible completed model
between two border cuts that are cheap, assuming that all the intermediate cuts
are expensive. This task is performed by the layer-two dynamic program. The
main observation is that since all the intermediate cuts are expensive, there can-
not be many disjoint such cuts and, consequently, the space between the border
cuts is in some sense ‘short’. As the border cuts can be large, it is natural to
start partitioning the space in between ‘horizontally’ instead of ‘vertically’ —
shortness of this space guarantees that the number of sensible ‘horizontal’ sep-
arations is subexponential. The horizontal partitioning method that we employ
resembles the classic O?(10n)-time exact algorithm for bandwidth of Feige [8].

2 Preliminaries

In most cases, we follow standard graph notation.
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For integers a, b, we denote [a, b] = {a, a+1, . . . , b}. An ordering σ of a subset
X ⊆ V (G) is an injective function σ : X → [1, |V (G)|], and an ordering of G
is simply an ordering of V (G). Note that an ordering of G is a bijection. We
sometimes treat an ordering σ of X ⊆ V (G) as an ordering of G[X] as well,
implicitly identifying σ(X) with [1, |X|] in the monotonous way.

We use n and m to denote the number of vertices and edges of the input
graph, respectively. Moreover, for an input graph G we fix some arbitrary order
� of V (G) and with every ordering σ of X = {x1 ≺ x2 ≺ . . . ≺ x|X|} ⊆ V (G) we
associate a sequence (σ(x1), σ(x2), . . . , σ(x|X|)). The lexicographically minimum
ordering from some family of orderings of a fixed set X is the ordering with
lexicographically minimum associated sequence.

A graph G is a proper interval graph if it admits an intersection model, where
each vertex is assigned a closed interval on a line such that no interval is a proper
subset of another one. In our work it is more convenient to use an equivalent
combinatorial object, called an umbrella ordering.

Definition 2 (umbrella ordering). Let G be a graph and σ : V (G) → [1, n]
be an ordering. We say that σ satisfies the umbrella property for a triple a, b, c ∈
V (G) if ac ∈ E(G) and σ(a) < σ(b) < σ(c) implies ab, bc ∈ E(G). Furthermore,
σ is an umbrella ordering if it fulfills the umbrella property for all a, b, c ∈ V (G).

It is known that a graph is a proper interval graph if and only if it admits
an umbrella ordering [15]. Observe that we may equivalently define an umbrella
ordering σ as such an ordering that for every ab ∈ E(G) with σ(a) < σ(b), the
vertices in [σ(a), σ(b)] in σ form a clique in G, or, alternatively, if and only if
for every a, a′, b′, b ∈ V (G) such that σ(a) ≤ σ(a′) < σ(b′) ≤ σ(b), if ab ∈ E(G),
then also a′b′ ∈ E(G).

For a graph G, a completion of G is a set F ⊆
(
V (G)

2

)
\ E(G) such that

G+ F := (V (G), E(G) ∪ F ) is a proper interval graph. The Proper Interval
Completion problem asks for a completion of G of size not exceeding a given
budget k. For a completion F of G and v ∈ V (G), we denote by F (v) the set of
edges of F incident with v and for X ⊆ V (G), we define F (X) =

⋃
v∈X F (v).

However, for our purposes it is more convenient to work with orderings rather
than completions. Consider an ordering σ and define Fσ to be the set of these
pairs uv /∈ E(G) such that there exists an edge u′v′ ∈ E(G) with σ(u′) ≤ σ(u) <
σ(v) ≤ σ(v′). It is straightforward to verify the following.

Lemma 3. The graph Gσ := G+Fσ is a proper interval graph, and σ is its um-
brella ordering. Moreover, Fσ is the unique inclusion-wise minimal completion
of G among completions F for which σ is an umbrella ordering of G+ F .

The canonical ordering of a graph G is the lexicographically minimum or-
dering among orderings σ with minimum possible |Fσ|. For a canonical ordering
σ, the set Fσ is called the canonical completion. If additionally |Fσ| ≤ k, the
canonical ordering σ is also called the canonical solution.

Our starting point for the proof of Theorem 1 is the polynomial kernel for
Proper Interval Completion due to Bessy and Perez.
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Theorem 4 ([2]). Proper Interval Completion admits a kernel with O(k3)
vertices computable in time O(nm(kn+m)).

The algorithm of Theorem 1 starts with applying the kernelization algo-
rithm of Theorem 4; all further computation will take kO(k2/3) time, yielding the
promised time bound. Hence, in the rest of the paper we assume that we are
given a PIC instance (G, k) with n = |V (G)| = O(k3), and we are looking for
the canonical solution of G provided that (G, k) is a YES-instance. Moreover,
by standard arguments we may assume that G is connected.

3 Expensive vertices

We first deal with vertices that are incident with many edges of Fσ. Formally,
we set a threshold τ := (2k)1/3 and say that a vertex v is expensive with respect
to σ if it is incident with more than τ edges of Fσ, and cheap otherwise. As
there are at most (2k)2/3 = τ2 expensive vertices, we may afford guessing a lot
of information about expensive vertices within the promised time bound.

More formally, we branch into kO(k/τ) = kO(k2/3) subcases corresponding to
the guesses about the expensive vertices in the canonical solution σ. We consider
all possible

– sets V$ ⊆ V (G) of size at most τ2 of expensive vertices w.r.t. σ, and
– for each V$, all possible quadruples (v, pv, pLv , p

R
v ), where v ∈ V$, and pv, pLv ,

pRv are integers such that pv = σ(v), pLv = min{σ(w) : w ∈ NGσ [v]} and
pRv = max{σ(w) : w ∈ NGσ [v]}.

In each branch, we look for the canonical solution to the instance (G, k), assum-
ing that the aforementioned guess is the correct one. The correct branch is the
one where this assumption is indeed true.

In each branch, some consistency checks are in place. For instance, the map-
ping v 7→ pv should be injective, pv1 < pv2 should imply pLv1 ≤ p

L
v2 and pRv1 ≤ p

R
v2 ,

etc. We omit the full description of these checks in this extended abstract.
Observe that, in the correct branch, a vertex v ∈ V$ has degree exactly pRv −pLv

in the graph Gσ, with its closed neighborhood placed on positions [pLv , p
R
v ]. This

motivates us to define the following

F$ = {v1v2 : v1, v2 ∈ V$ ∧ v1 6= v2 ∧ v1v2 6∈ E(G) ∧ v1 ∈ [pLv2 , p
R
v2 ]},

c$ = −|F$|+
∑
v∈V$

(
(pRv − pLv )− degG(v)

)
.

Let us observe that F$ is the set comprising edges of Fσ with both endpoints in
V$, i.e. F$ = Fσ ∩

(
V$
2

)
, and that c$ is the number of edges of Fσ incident with

V$, i.e. c$ = |Fσ(V$)|. Both notions are meaningful for every branch.

Lemma 5. Let σ′ be an ordering of V (G) and F be a completion of G such
that (i) σ′ is an umbrella ordering of G+ F , and (ii) for every v ∈ V$, we have
σ′(v) = pv and σ′(NG+F [v]) = [pLv , p

R
v ]. Then F ∩

(
V$
2

)
= F$ and |F (V$)| = c$.
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We infer that the guesses made so far impose a fixed cost of c$ edges and it is
tempting to consider the remaining instance (G\V$, k−c$). However, the guessed
values impose some constraints on this remaining instance. First, if uv ∈ E(G)
for some expensive v and cheap u, we need to have σ(u) ∈ [pLv , p

R
v ]. Second, due

to the umbrella property, for any expensive v, all vertices placed on positions
[pLv , pv] become a clique, whereas no edge of G connects a vertex placed before
position pLv and a vertex placed on or after position pv; similar constraints are
imposed for positions pv and pRv .

Luckily, all these constraints can be modelled as (i) prescribing for each
cheap u a set Σu ⊆ [1, n] of allowed positions, and (ii) prescribing some pairs of
positions to be necessarily adjacent or necessarily nonadjacent in the ordering σ.
It turns out that the aforementioned additional constraints only slightly increase
the technical level of further reasonings, and none of them adds any significant
difficulty. Hence, in this extended abstract we ignore them, and assume that in
the canonical ordering σ there are no expensive vertices.

4 Sections

For any position p in the canonical ordering σ we define a section Ap = {v ∈
V (G) : σ(v) < p}, and additionally A∞ = V (G). We are now going to show
the vital combinatorial result: in the absence of expensive vertices, there is only
subexponential number of candidates for sections of σ.

Theorem 6. In kO(τ) time one can enumerate a family S of kO(τ) subsets of
V (G) such that every section of the canonical solution σ is in S.

The main idea in the proof of Theorem 6 is to investigate twin classes in
graph Gσ. Recall that two vertices x and y are true twins if N [x] = N [y]; in
particular, this implies that they are adjacent. The relation of being true twins
is an equivalence relation, and equivalence classes of this relation are called twin
classes. Observe that by the definition of the umbrella ordering, in σ the vertices
of each twin class of Gσ occupy consecutive positions. We show the following
bound on the number of candidates for twin classes.3

Theorem 7. In kO(τ) time one can enumerate a family T of kO(τ) triples
(L,Λ, σΛ), where L,Λ ⊆ V (G) and σΛ is an ordering of Λ, with the follow-
ing property. For every twin class Λ of Gσ, if L is the set of vertices of G
placed before Λ in the ordering σ, and σ|Λ is the ordering σ restricted to Λ, then
(L,Λ, σ|Λ) ∈ T .

We remark that it is easy to derive Theorem 6 from Theorem 7: We first output
the section V (G) and then, for each (L,Λ, σΛ) ∈ T and p ∈ [1, n], we output
L∪{u ∈ Λ : σΛ(u) < p}. Observe that if a section Ap 6= V (G) is consistent with

3 We care about the order inside twin classes because inside a single twin class we
may have different restrictions imposed by the guesses on expensive vertices made
in the previous section.
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. . . . . .
a

b1 b2c1 c2
Λ

Fig. 2. The guessed vertices a, b1, b2, c1 and c2 with respect to a twin class Λ. The
gray area denotes NGσ [Λ].

σ, then Ap is output for the position p and the triple (L,Λ, σ|Λ) ∈ T where Λ is
the twin class of vertex σ−1(p).

To prove Theorem 7, we describe a branching algorithm that produces kO(τ)

subcases and, in each subcase, produces one triple (L,Λ, σΛ). We fix one twin
class Λ of Gσ and argue that the algorithm in one of the branches produces
(L,Λ, σ|Λ), where L is defined as in Theorem 7.

The algorithm first guesses the following five vertices, see also Fig. 2.

1. a is a vertex of Λ,
2. b1 is the rightmost vertex outside NGσ [Λ] in σ that lies before Λ, or b1 = ⊥

if no such vertex exists;
3. c1 is the leftmost vertex of NGσ [Λ] in σ;
4. c2 is the rightmost vertex of NGσ [Λ] in σ;
5. b2 is the leftmost vertex outside NGσ [Λ] in σ that lies after Λ, or b2 = ⊥ if

no such vertex exists.

Moreover, for each u ∈ {a, b1, b2, c1, c2} \ {⊥} the algorithm guesses Fσ(u).
This leads us to kO(τ) subcases, as all vertices of G are cheap. The crucial step
in deducing the triple (L,Λ, σΛ) is the following lemma (we take NGσ [⊥] = ∅).

Lemma 8. In the branch where the guesses are correct, for every u ∈ NGσ [a]
the following holds

1. If u ∈ NGσ [b1] or u /∈ NGσ [c2], then u /∈ Λ and u lies before Λ in σ;
2. If u ∈ NGσ [b2] or u /∈ NGσ [c1], then u /∈ Λ and u lies after Λ in σ;
3. If none of the above happens, then u ∈ Λ.

Proof. By the definition of b1, b2, c1 and c2, we have that every vertex u ∈ Λ
is in NGσ [c1] and NGσ [c2], but does not belong to NGσ [b1] and to NGσ [b2].
Consequently, all vertices of Λ fall into the third category of the statement.

We now show that every vertex of NGσ [a] \ Λ falls into one of the first two
categories, depending on its position in the ordering σ. By symmetry, we may
only consider a vertex u ∈ NGσ [a] \ Λ that lies before Λ in σ. The umbrella
property together with a /∈ NGσ [b2] imply that u /∈ NGσ [b2], and because ac1 ∈
E(Gσ), we have that uc1 ∈ E(Gσ). Consequently, u does not fall into the second
category in the statement of the lemma.

As u /∈ Λ and u ∈ NGσ [a], either NGσ (u) \NGσ [a] is not empty or NGσ (a) \
NGσ [u] is not empty. In the first case, let uw ∈ E(Gσ) but aw /∈ E(Gσ). Since
also ua ∈ E(Gσ), by the umbrella property it easily follows that w lies before u
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in the ordering σ, so in particular before Λ. By the definition of b1, b1 exists and
σ(b1) ≥ σ(w). By the umbrella property, b1u ∈ E(Gσ) and hence u ∈ NGσ [b1].

In the second case, assume uw /∈ E(Gσ) but aw ∈ E(Gσ). Again, since
ua ∈ E(Gσ), by the umbrella property it easily follows that w lies after Λ in
the ordering σ, so in particular after u. By the definition of c2 and the existence
of w, c2 /∈ Λ and σ(c2) ≥ σ(w). By the umbrella property, c2u /∈ E(Gσ) and
u /∈ NGσ [c2]. Hence, u falls into the first category and the lemma is proven. ut

The knowledge of a and Fσ(a) allows us to compute NGσ [Λ] = NGσ [a].
Lemma 8 allows us further to partition NGσ [Λ] into Λ, the vertices of NGσ (Λ)
that lie before Λ in the ordering σ, and the ones that lie after Λ.

We are left with the vertices outsideNGσ [Λ]. Let C be a connected component
of G\NGσ [Λ]. As no vertex of C is incident with Λ in Gσ, by the properties of an
umbrella ordering we infer that all vertices of NG[C] lie before Λ in the ordering
σ or all vertices of NG[C] lie after Λ. As G is assumed to be connected, NG(C)
contains a vertex of NGσ (Λ), and we can deduce whether C ⊆ L or L ∩ C = ∅.

Finally, as Λ is a twin class in Gσ, the ordering σ sorts Λ according to �.
Thus, σ|Λ depends only on the position p = minσ(Λ), which we simply guess.

We remark here that there are some slight difficulties if we have some ad-
ditional constraint imposed by the guesses of the previous section. First, for a
connected component C of G \NGσ [Λ] it may happen that NG(C) ⊆ V$. In this
case, however, we may deduce whether C ⊆ L or C ∩ L = ∅ from the guessed
positions of the expensive vertices and the position p of the first vertex of Λ.
Second, the ordering σ|Λ needs to respect the prescribed allowed positions Σu
for u ∈ Λ. Luckily, with this constraint the task of finding σ|Λ boils down to
a task of finding a lexicographically minimum perfect matching in an auxiliary
bipartite graph, which is solvable in polynomial time.

5 Dynamic programming

Layer one: jumps and jump sets. Armed with Theorem 6, we proceed to
design a dynamic programming algorithm that constructs the canonical solution
σ. We first develop a natural left-to-right DP that splits the graphs G and Gσ

‘vertically’. For each position p, we define the jump and jump set Xp as

jump(p) = min{q : q > p ∧ σ−1(p)σ−1(q) /∈ E(Gσ)},
Xp = σ−1([p, jump(p)− 1]) = Ajump(p) \Ap.

See also Fig. 3. The separation property of a jump is provided by the following
direct consequence of the property of the umbrella ordering.

Lemma 9. For each p ∈ [1, n], Xp is a clique in Gσ and no edge of Gσ connects
a vertex of Ap with a vertex of V (G) \Ajump(p).

It is tempting to define a DP state as a ‘jump set with a history’ J := (A,X),
where its value is an ordering σJ := A ∪X → [1, |A ∪X|] that first places the
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p jump(p)Xp

Ap V (G) \ Ajump(p)

Fig. 3. A jump at position p and a corresponding jump set. The jump set Xp, denoted
with gray, induces a clique in Gσ, and no edge of Gσ connects Ap with V (G) \Ajump(p).

vertices of A and then of X, with the intention that X is a jump set after
the remaining vertices are placed (i.e., X is a clique in GσJ [A∪X], but no edge
connects the first vertex of X in σJ with V (G)\(A∪X)). However, this approach
fails for the following reason: the internal ordering of the vertices of X affects
both the ordering of A and the ordering of V (G) \ (A ∪ X), and hence needs
to be stored in the DP state as well. Luckily, the ordering of X can be deduced
from the knowledge of Fσ(X), that is, the completion edges incident with X.

Lemma 10. For each p ∈ [1, n], if u1, u2 ∈ Xp and σ(u1) ≤ σ(u2), then

NGσ (u1) ∩Ap ⊇ NGσ (u2) ∩Ap and NGσ (u1) \Ajump(p) ⊆ NGσ (u2) \Ajump(p).

It is easy to observe that, after satisfying the conditions of Lemma 10, we may
proceed greedily. That is, the ordering σ sorts the vertices of X according to
Lemma 10, breaking ties using order � to preserve lexicographical minimality.

It is not clear (if possible at all) how to provide a subexponential number
of candidate orderings of X but we can do it in the case when Fσ(X) is small.
More precisely, we say that a jump set X is cheap if it is incident to at most
2k/τ edges of Fσ, and expensive otherwise. Consequently, we may enumerate
kO(2k/τ) = kO(k2/3) candidate triples (A,X, σX) for (Ap, Xp, σ|Xp) for each cheap
jump sets Xp. The layer one DP treats such triples as states, and finds for
each such triple (A,X, σX) the optimal ordering (A ∪ X) 7→ [1, |A ∪ X|] that
is consistent with σX . However, now layer one DP needs to perform a big task
in a single step: namely, it needs to find the optimal way to arrange vertices
between two consecutive cheap jumps. We delegate this task to the layer two
DP, described in what follows.
Layer two: chains. Here we assume that we are given two of the layer one
states (A1, X1, σ1

X), (A2, X2, σ2
X), with no cheap jump sets between X1 and X2,

and we are to place the vertices of (A2∪X2)\A1 on positions [|A1|+1, |A2∪X2|]
respecting σ1

X and σ2
X .

We now derive a different ‘horizontal’ way of partitioning G and Gσ, based
on the following definition. For any q ∈ [1, n], consider the following sequence:
zq(0) = q and zq(i+ 1) = jump(zq(i)) (taking jump(∞) =∞). Observe that:

Lemma 11. For any q > |A1|, it holds that zq(τ) ≥ |A2|.

Proof. Observe that for each i > 0 with zq(i) < |A2|, the jump set Xzq(i) is ex-
pensive and, moreover, these jump sets are pairwise disjoint for different choices
of i. Hence, there are less than τ such jump sets. ut



11

. . . . . .

Fig. 4. The separation property provided by Lemma 12. The sequences zc(i) and zd(i)
are denoted with rectangular and hexagonal shapes, respectively. The sets Ci and Di
are denoted boxes with dots and lines, respectively.

Moreover, observe that if we pick two positions c, d with c ≤ d ≤ jump(c) we
have zc(i) ≤ zd(i) ≤ zc(i+ 1) for any i ≥ 0.

The next immediate corollary of the definition of the umbrella property and
the jump gives us the crucial separation property for the layer two DP (see
Fig. 4).

Lemma 12. For any positions c, d with c ≤ d ≤ jump(c), let Ci = σ−1([zc(i), zd(i)−
1]) and Di = σ−1([zd(i), zc(i+ 1)− 1]). Then

1. sets Ci, Di form a partition of V (G) \Ac;
2. for every i ≥ 0, both Ci ∪Di and Di ∪ Ci+1 are cliques in Gσ;
3. for every j > i ≥ 0, there is no edge in Gσ between Ci and Dj;
4. for every i > j + 1 > 0, there is no edge in Gσ between Ci and Dj.

Lemma 12 allows us to define a layer two DP state consisting of sequences
zc(i) and zd(i), up to minimum index i that satisfies zc(i) > |A2|, together with
sections Azc(i) and Azd(i), for some choice of starting positions |A1| < c ≤ d ≤
min(jump(c), |A2 ∪X2|). In such a state, we ask for an optimal ordering of the
sets X1 ∪X2 ∪

⋃
i Ci that respects the orderings σ1

X and σ2
X , places the vertices

of each Ci into positions [zc(i), zd(i) − 1] and turns each Ci into a clique. Note
that Theorem 6, together with Lemma 11, gives us a bound kO(τ2) = kO(k2/3)

on the number of such states.
To compute the value of a layer two DP state, we guess the sequence zq(i)

‘sandwiched’ between zc(i) and zd(i) for some c < q < d, with the corresponding
sections Azq(i), and we glue the optimal values for states (c, q) and (q, d). If no
such q exists, there are two special cases. If c = d, then the DP state in fact
asks for σ1

X ∪ σ2
X . Finally, if c + 1 = d, then observe that all vertices of C1 are

adjacent to σ−1(d) and nonadjacent to σ−1(c). Hence, the vertices at positions c
and d do not impose any constraints on the ordering of C1, and, as a value for the
state (c, d), we may use the value of the state (jump(c), jump(d)) = (zc(1), zd(1)),
extended with the placement of the unique vertex of Ad \Ac at position c.

Overall, the described layer two DP allows us to perform a single step of the
layer one DP in time kO(τ2) = kO(k2/3). This concludes the proof of Theorem 1.

6 Conclusions and open problems

We have presented the first subexponential algorithm for Proper Interval

Completion, running in time kO(k2/3)+O(nm(kn+m)). As many algorithms for
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completion problems in similar graph classes [3, 7, 9, 10] run in time O?(kO(
√
k)),

it is tempting to ask for such a running time also in our case. The bottleneck in
our approach is the trade-offs between the two layers of dynamic programming.

Also, observe that every O?(2o(
√
k))-time algorithm for PIC would be in fact

also a 2o(n)-time algorithm. Since existence of such an algorithm seems unlikely,
we would like to ask for a 2Ω(

√
k) lower bound, under the assumption of the

Exponential Time Hypothesis. Note that no such lower bound is known for any
other completion problem for related graph classes.
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