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Abstract—The practicality of the stochastic network calculus
(SNC) is often questioned on grounds of potential looseness of
its performance bounds. In this paper, it is uncovered that for
bursty arrival processes (specifically Markov-Modulated On-Off
(MMOO)), whose amenability to per-flow analysis is typically
proclaimed as a highlight of SNC, the bounds can unfortunately
be very loose (e.g., by several orders of magnitude off). In
response to this uncovered weakness of SNC, the (Standard)
per-flow bounds are herein improved by deriving a general
sample-path bound, using martingale based techniques, which
accommodates FIFO, SP, and EDF scheduling. The obtained
(Martingale) bounds capture an extra exponential decay factor
of O

(

e
−αn

)

in the number of flows n. Moreover, numerical
comparisons against simulations show that the Martingale bounds
are not only remarkably accurate, but they also improve the
Standard SNC bounds by factors as large as 100 or even 1000.

I. INTRODUCTION

Several approaches to the classical queueing theory have
emerged over the past decades. For instance, matrix analytic
methods (MAM) not only provide a unified treatment for a
large class of queueing systems, but they also lend themselves
to practical numerical solutions; two key ideas are the proper
accounting of the repetitive structure of underlying Markov
processes, and the use of linear algebra rather than classic
methods based on real analysis (see Neuts [31] and Lip-
sky [27]). Another unified approach targeting broad classes of
queueing problems is the stochastic network calculus (SNC)
(see Chang [7] and Jiang and Liu [20]), which can be re-
garded as a mixture between the deterministic network calculus
conceived by Cruz [15] (see Le Boudec and Thiran [4]) and
the effective bandwidth theory (see Kelly [22]). Because SNC
solves queueing problems in terms of bounds, it is often
regarded as an unconventional approach, especially by the
queueing theory community.

MAM and SNC could be (slightly) compared by the way
they apply to queues with fluid arrivals. In their simplest form,
fluid arrival models were defined as Markov-Modulated On-
Off (MMOO) processes by Anick, Mitra, and Sondhi [1],
and were significantly extended thereafter, especially for the
purpose of modelling the increasingly prevalent voice and
video traffic in the Internet. By relating fluid models and
Quasi-Birth-Death (QBD) processes, Ramaswami has argued
that MAM can lend themselves to numerically more accurate
solutions than spectral analysis methods [34]. In turn, SNC
can produce alternative solutions with negligible numerical
complexity, but these are arguably less relevant than exact
solutions (simply because they are expressed as bounds). What
does, therefore, justify more than two decades of research in
SNC?

The answer lies in two key features of SNC: scheduling
abstraction and convolution-form networks (see Ciucu and
Schmitt [13]). The former expresses the ability of SNC to com-
pute per-flow (or per-class) queueing metrics for a large class
of scheduling algorithms, in a unified manner, by decoupling
scheduling from queueing analysis. Concretely, given a flow A
sharing a queueing system with other flows, the characteristics
of the scheduling algorithm are first abstracted away in the so-
called service process; thereafter, the derivation of queueing
metrics for the flow A is scheduling independent. Furthermore,
the per-flow results can be extended in a straightforward man-
ner from a single queue to a large class of queueing networks
(typically feed-forward), using convolution representations in
a (min,+) algebra.

By relying on these two features, SNC could tackle sev-
eral open queueing networks problems. The typical scenario
involves the computation of end-to-end (e2e) non-asymptotic
performance (e.g., delay) bounds of a single flow crossing a
tandem network and sharing the single queues with some other
flows. Such scenarios were solved for a large class of arrival
processes (see, e.g., Ciucu et al. [10], [6] and Fidler [19]
for MMOO processes, and Liebeherr et al. [25] for heavy-
tailed and self-similar processes). Another important solution
was given for the e2e delay distribution in a tandem (packet)
network with Poisson arrival and exponential packet sizes, by
circumventing the so-called Kleinrock’s independence assump-
tion (see Burchard et al. [5]). Other fundamentally difficult
problems include the performance analysis of stochastic net-
works implementing network coding (see Yuan et al. [41]),
the delay analysis of wireless channels under Markovian
assumptions (see Zheng et al. [42]), the delay analysis of multi-
hop fading channels (see Al-Zubaidy et al. [43]), bridging
information theory and queueing theory by accounting for
the stochastic nature and delay-sensitivity of real sources (see
Lübben and Fidler [29]), or the computation of non-asymptotic
per-flow capacity in ad-hoc networks (see Ciucu et al. [11]).

Based on its ability to solve some fundamentally hard
queueing problems (in terms of bounds), SNC is justifiably
proclaimed as a valuable alternative to the classical queueing
theory (see Ciucu and Schmitt [13]). At the same time, SNC
is also justifiably questioned on the tightness of its bounds.
While the asymptotic tightness generally holds (see Chang [7],
p. 291, and Ciucu et al. [10]), doubts on the bounds’ numerical
tightness shed skepticism on the practical relevance of SNC.
This skepticism is supported by the fact that SNC largely em-
ploys the same probability methods as the effective bandwidth
theory, which was argued to produce largely inaccurate results
for non-Poisson arrival processes (see Choudhury et al. [8]).



In this paper, we reveal what is perhaps ‘feared’ by SNC
proponents and expected by others: the bounds are very loose
for the class of MMOO processes, which is very relevant as
these can be tuned for various degrees of burstiness. In addition
to providing numerical evidence for this fact (the bounds can
be off by arbitrary orders of magnitude, e.g., by factors as
large as 100 or even 1000), we also prove that the bounds
are asymptotically loose in multiplexing regimes. Concretely,
we (analytically) prove that the bounds are ‘missing’ an
exponential decay factor of O (e−αn) in the number of flows
n, where α > 0; this missing factor was conjectured through
numerical experiments in Choudhury et al. [8] in the context
of effective bandwidth results (which scale identically as the
SNC bounds).

While this paper convincingly uncovers a major weakness
in the SNC literature, it also shows that the looseness of
the bounds is generally not inherent in SNC but it is due
to the ‘temptatious’ but ‘poisonous’ elementary tools from
probability theory leveraged in its application. We point out
that such methods have also been employed in the effective
bandwidth literature dealing with scheduling; see Courcou-
betis and Weber [14] for FIFO, Berger and Whitt [2] and
Wischik [40] for SP, and Sivaraman and Chiussi [38] for
EDF. Unlike the SNC results, which are given in terms of
non-asymptotic bounds, the corresponding effective bandwidth
results are typically given in large buffer asymptotics regimes;
while exactly capturing the asymptotic decay rate, they fail
to capture the extra O (e−αn) decay factor pointed out by
Choudhury et al. [8] or by Botvich and Duffield [3].

To fix the weakness of existing SNC bounds, and also of
existing effective bandwidth asymptotic results in scheduling
scenarios, this paper leverages more advanced tools (i.e.,
martingale based techniques) and derives new (Martingale)
bounds improving dramatically to the point of almost matching
simulation results. We show the improvements for per-flow
delay bounds in FIFO, SP, and EDF scheduling scenarios
with MMOO flows, and in addition we prove the existence
of the conjectured O (e−αn) decay factor. We point out that
extensions to more general Markovian arrivals are immediate
(see Appendix.A in the associated technical report [12]); due to
their increased complexity, however, the generalized results do
not easily lend themselves to visualizing the O (e−αn) decay
factor uncovered herein for MMOO flows.

The sharp bounds obtained in this paper are the first in
the conventional stochastic network calculus literature, i.e.,
involving service processes which decouple scheduling from
the analysis. Their significance, relative to existing sharp
bounds in the effective bandwidth literature (e.g., Duffield [17]
and Chang [7], pp. 339-343, using martingale inequalities, or
Liu et al. [28] by extending an approach of Kingman involving
integral inequalities [23]), is that they apply at the per-flow
level for various scheduling disciplines; in turn, existing sharp
bounds only apply at the aggregate level. In other words, our
sharp bounds generalize existing ones by accounting for FIFO,
SP, and EDF scheduling.

The rest of the paper is structured as follows. In Section II,
we identify, at an intuitive level, the elementary tool from
probability theory which is ‘responsible’ for the very loose
(Standard) bounds in SNC. In Section III, we describe the
queueing model and provide some necessary SNC formalisms.

The core of the paper is Section IV, which derives the new
(Martingale) and reviews the existing (Standard) SNC per-flow
delay bounds in multiplexing scenarios with MMOO flows;
both analytical and numerical comparisons of the bounds
(including uncovering the O (e−αn) decay factor) are further
explored. Concluding remarks are presented in Section VI.

II. THREE BOUNDING STEPS IN SNC AND ONE PITFALL

This section overviews the SNC bounding approach to
derive per-flow bounds for broad classes of arrivals and
scheduling. In addition to highlighting the underlying bounding
steps, an elementary example proves that careless bounding
can lend itself to impractical results. For the sake of simplicity,
the discussion is formulated in a discrete-time setting.

We consider a simplified queueing system in which a
(cumulative) arrival process A(t) shares a server with capacity
C and infinite queue length with some other flows. We are
particularly interested in the complementary distribution of
A(t)’s backlog process B(t) := A(t) − D(t) (where D(t)
is A(t)’s corresponding departure process), which is bounded
in SNC for some t, σ ≥ 0 according to

P (B(t) > σ) ≤ P

(
sup

0≤s≤t

{A(s, t)− S(s, t)} > σ

)
. (1)

Here, A(s, t) := A(t) − A(s) is the bivariate extension of
A(t), whereas S(s, t) is another bivariate process, called a
service process, encoding the information about the server,
the scheduling, and the other arrival processes with which
A(t) shares the server. In the simplest setting with no other
arrivals, S(s, t) = C(t−s) and Eq. (1) (with equality) recovers
Reich’s equation. In another setting in which A(t) receives the
lowest priority, should the server implement a static priority
(SP) scheduler, then S(s, t) = C(t − s) − Ac(s, t), where
Ac(s, t) denotes the other (cross) arrivals at the server.

SNC typically continues with Eq. (1) by invoking the
Union Bound, i.e.,

Eq. (1) . . . ≤

t∑

s=0

P (A(s, t)− S(s, t) > σ) . (2)

The probability events can be further computed either by 1)
convolving the distribution functions of A(s, t) and S(s, t),
when available, and under appropriate independence assump-
tions, or by following a more elegant procedure using the
Chernoff bound, i.e.,

Eq. (2) . . . ≤

t∑

s=0

E
[
eθ(A(s,t)−S(s,t))

]
e−θσ , (3)

for some θ > 0. The expectation can be split into a product of
expectations, according to the statistical independence proper-
ties of A(s, t) and S(s, t), and the sum can be further reduced
to some canonical form.

Eqs. (1)-(3) outline three major bounding steps. The first is
‘proprietary’ to SNC, in the sense that it involves the specific
construction of a ‘proprietary’ service process S(s, t) which
decouples scheduling from analysis. The next two follow
general purpose methods in probability theory, which are
applied in the same form in the effective bandwidth theory,



except that S(s, t) is now a random process rather than a
constant-rate function.

In particular, the second step reveals a convenient contin-
uation of Eq. (1). The reason for this ‘temptatious’ step to
be consistently invoked in SNC stems from the ‘freedom’ of
seeking for bounds rather than exact results. As we will show
over the rest of this section, and of the paper, this ‘temptatious’
step is also ‘poisonous’ in the sense that it can lead to very
loose bounds.

As a simple and yet illustrative example, let us consider
the stationary but non-ergodic process

A(s, t) = (t− s)X ∀0 ≤ s ≤ t , (4)

where X is a Bernoulli random variable taking values in {0, 2},
each with probabilities 1−ε > .5 and ε > 0. Assume also that
S(s, t) = t− s. Clearly, for σ > 0 and for sufficiently large t,
the backlog process satisfies

P (B(t) > σ) = ε .

In turn, the application of the bound from Eq. (2) lends itself
to a bogus bound, i.e.,

P (B(t) > σ) ≤ εt ,

for σ < 1 (for σ ≥ 1, the bound diverges as well). The
underlying reason behind this bogus result is that the Union
Bound from Eq. (2) is agnostic to the statistical poperties of
the increments of the arrival process A(s, t).

The construction of A(s, t) from Eq. (4) illustrates thus
the poor performance of the Union Bound for arrivals with
correlated increments, such as MMOO processes. Within the
same class, another relevant arrival process is the fractional
Brownian motion (fBM) which has long-range correlations;
fBM was analyzed either by relying on approximations (e.g.,
Norros [32]) or by using the Union Bound (e.g., Rizk and
Fidler [35]). The rest of the paper will unequivocally reveal
that the Union Bound leads to very loose per-flow bounds in
scheduled queueing scenarios with MMOO processes.

As a side remark, we point out that the Union Bound ren-
ders reasonably tight bounds when Xs := A(s, t)’s are rather
uncorrelated (see Talagrand [39]). Shroff and Schwartz [37]
argued that the effective bandwidth theory yields reasonable
bounds only for Poisson processes. Along the same lines,
Ciucu [9] provided numerical evidence that SNC itself renders
reasonably tight bounds for Poisson arrivals.

III. QUEUEING MODEL

This section introduces the queueing model and necessary
SNC formalisms. For the rest of the paper, the time model
is continuous. Consider a stationary (bivariate) arrival process
A(s, t) defined as

A(s, t) :=

∫ t

u=s

a(u)du ∀0 ≤ s ≤ t , A(t) := A(0, t) ,

where a(s) ∀s ≥ 0 is the increment process.

According to Kolmogorov’s extension theorem, the one-
side (stationary) process {a(s) : 0 ≤ s <∞} can be extended
to a two-side process {a(s) : −∞ < s <∞} with the same

n
2

n1

2
A (t)

n1

n
2

n
D (t)

1

2
D (t)

C=nc
1

A (t)

Fig. 1. A queueing system with two arrival processes A1(t) and A2(t), each
containing n1 and n2 sub-flows. The server has a capacity C = nc, where
n = n1 + n2. We are interested in the delay distribution of A1(t).

distribution. For convenience, we often work with the reversed
cumulative arrival process Ar(s, t) defined as

Ar(s, t) =

∫ t

u=s

a(−u)du ∀0 ≤ s ≤ t , Ar(t) := Ar(0, t) .

This definition is identical with that of A(s, t), except that the
time direction is reversed.

Working with time reversed processes is particularly con-
venient in that the steady-state queueing process (say in a
queueing system with constant-rate capacity C fed by the one-
side increment process a(s)) can be represented by Reich’s
equation

Q = sup
t≥0
{Ar(t)− Ct} .

The evaluation of Q needs an additional stability condition,

e.g., lim supt→∞
Ar(t)

t
< C a.s. (see Chang [7], pp. 293-294);

this condition is fulfilled by the (stronger) Loynes’ condition,

i.e., a(s) is also ergodic and limt→∞
A(t)
t

= E [a(1)] < C a.s.

In this paper, we mostly consider the queueing system
depicted in Figure 1. Two cumulative arrival processes A1(t)
and A2(t), each containing n1 and n2 sub-flows, are served
by a server with constant-rate C = nc, where n = n1 + n2.
The parameter c is referred to as the per-(sub)flow capacity,
and will be needed in the context of asymptotic analysis. For
clarity, A1(t) and A2(t) are suggestively referred to as the
through and cross (aggregate) flows, respectively. The data
units are infinitesimally small and are referred to as bits. The
queue has an infinite size capacity, and is assumed to be stable.

The performance measure of interest is the virtual delay
process for the (through) flow A1(t), defined as

W1(t) := inf {d ≥ 0 : A1(t− d) ≤ D1(t)} ∀t ≥ 0 ,

where D1(t) is the corresponding departure process of A1(t)
(see Figure 1). The attribute virtual expresses the fact that
W1(t) models the delay experienced by a virtual bit departing
at time t. Note that W1(t) is the horizontal distance between
the curves A1(t) and D1(t), starting backwards from the point
(t,D1(t)) in the Euclidean space.

In SNC, queueing performance metrics (e.g., bounds on
the distribution of the delay process W1(t)) are derived by
constructing service processes, which relate the departure and
arrival processes by a (min,+) convolution. For instance, in
the case of A1(t) and D1(t), the corresponding service process
is a stochastic process S1(s, t) satisfying

D1(t) ≥ A1 ∗ S1(t) ∀t ≥ 0 , (5)

where ‘∗’ is the (min,+) convolution operator defined for all
sample-paths as A1 ∗ S1(t) := inf0≤s≤t {A1(s) + S1(s, t)}.



The service process S1(s, t) encodes the information about
the cross flow A2(t) and the scheduling algorithm; other
information such as the packet size distribution is omitted
herein in accordance to the infinitesimal data units assumption.
Conceptually, the service process representation from Eq. (5)
encodes A1(t)’s own service view, as if it was alone at the net-
work node (i.e., not competing for the service capacity C with
other flows). Although the representation is not exact due to the
inequality from Eq. (5), it suffices for the purpose of deriving
upper bounds on the distribution of W1(t). The driving key
property is that Eq. (5) holds for all arrival processes A1(t).
Due to this property, the service representation in SNC is
somewhat analogous with the impulse-response representation
of signals in linear and time invariant (LTI) systems (see Ciucu
and Schmitt [13] for a recent discussion on this analogy).

In this paper, we will compute the distribution of the
through flow’s delay process W1(t) for three scheduling al-
gorithms: First-In-First-Out (FIFO), Static Priority (SP), and
Earliest-Deadline-First (EDF). The corresponding service pro-
cesses S1(s, t), enabling the derivations of the delay bounds,
will be presented in Section IV-A.

IV. SNC BOUNDS FOR MMOO PROCESSES

Consider the queueing scenario from Figure 1, in which
all the sub-flows comprising A1(t) and A2(t) are Markov-
Modulated On-Off (MMOO) processes. Being tunable for
various degrees of burstiness, they are particularly relevant for
testing the tightness of related delay bounds. Moreover, due
to their apparent simplicity, the MMOO processes allow the
explicit derivation of the conjectured O (e−αn) decay factor
mentioned in the Introduction.

After defining the MMOO processes, we derive Martingale
bounds for the distribution of W1(t) for FIFO, SP, and EDF
scheduling. Then we overview the corresponding Standard
bounds in SNC. Lastly, we compare these bounds both asymp-
totically, as well as against simulations.

Each MMOO sub-flow is modulated by a continuous time
Markov process Z(t) with two states denoted by 0 and 1, and
transition rates µ and λ as depicted in Figure 2 with n = 1.
The cumulative arrival process for each sub-flow is defined as

A′(s, t) :=

∫ t

u=s

Z(u)Pdu ∀0 ≤ s ≤ t , A′(t) := A′(0, t) ,

(6)
where P > 0 is the peak rate. In other words, A′(t) models
a data source transmitting with rates 0 and P while Z(t)
delves in the 0 and 1 states, respectively. The steady-state ‘On’
probability is p := µ

λ+µ
and the average rate is pP .

When n such statistically independent sources are mul-
tiplexed together then the corresponding modulating Markov
process, denoted with abuse of notation as Z(t) as well, has
the states {0, 1, . . . , n} and the transition rates as depicted in
Figure 2. The cumulative arrival process for the aggregate flow
is defined identically as for each sub-flow, i.e.,

A(s, t) :=

∫ t

u=s

Z(u)Pdu ∀0 ≤ s ≤ t , A(t) := A(0, t) .

Note that, by definition, A(s, t) is continuous.

µn

n

nλ2λ

0

λ

1 ...
µ

2

µ

λ3

P 2P nP

µ(n−1) (n−2)

Fig. 2. A Markov-modulated process for the aggregation of n homogeneous
MMOOs.

A. Martingale Bounds

Recall our main goal of deriving bounds on the distribution
of the through flow’s delay process W1(t) for the FIFO, SP,
and EDF scheduling scenarios in the network model from
Figure 1. We start this section with a technically abstract but
instrumental result which will enable the analysis of all three
scheduling scenarios.

Theorem 1: (MARTINGALE SAMPLE-PATH BOUND) Con-
sider the single-node queueing scenario from Figure 1, in
which n sub-flows are statistically independent MMOO pro-
cesses with transition rates µ and λ, peak rate P , and all
starting in the steady-state. The arrival processes (flows) are
A1(t) and A2(t), each being modulated by the (stationary)
Markov processes Z1(t) and Z2(t) with n1 and n2 states,
respectively, with n1 + n2 = n. Assume that the utilization

factor ρ := pP
c

satisfies ρ < 1 for stability, where p is the
steady-state ‘On’ probability; assume also that P > c to avoid
a trivial scenario with zero delay. Then the following sample-
path bound holds for all 0 ≤ u ≤ t and σ

P

(
sup

0≤s<t−u

{A1(s, t− u) +A2(s, t)− C(t− s)} > σ

)

≤ Kne−γ(C1u+σ) , (7)

where C1 = n1c, K = ρ
(

ρ−p
1−p

) p
ρ
−1

, and γ = (λ+µ)(1−ρ)
P−c

.

While K and γ correspond to the multiplicative factor
and the exponential decay rate, respectively, we point out that
the crucial element in the sample-path bound from Eq. (7)
is the parameter u, which can be explicitly tuned depending
on the scheduling algorithm for the bits of A1(t) and A2(t).
From a conceptual point of view, the parameter u encodes
the information about the underlying scheduling, whereas the
theorem further enables the per-flow delay analysis for several
common scheduling algorithms: FIFO, SP, and EDF (see
Subsections IV-A1–IV-A3).

The delay bounds obtained from Theorem 1 generalize
the delay bounds obtained by Palmowski and Rolski [33],
by further accounting for several scheduling algorithms1. The
bounds from [33] can be recovered by applying Theorem 1
with A2(t) := 0 (i.e., no cross traffic and thus no scheduling
being considered) and u := 0. The key to the proof of
Theorem 1 is a subtle martingale construction, accounting
for the time shifting parameter u, followed by a standard
application of the Optional Sampling theorem. For relevant
martingale notions and results we refer to [12] (Appendix.B).
Also, for the generalization of Theorem 1 to general Markov
fluid processes we refer to [12] (Appendix.A); as mentioned in

1More exactly, [33] gives backlog bounds at the aggregate level which can
be immediately translated into delay bounds, given the fixed server capacity.



the Introduction, the generalized result does not lend itself to
visualizing the conjectured O (e−αn) decay factor, for which
reason this paper deliberately focuses on MMOO processes.

Proof: Fix u ≥ 0 and σ. For convenience, let us bound the
probability from Eq. (7) by shifting the time origin and using
the time-reversed representation of arrival processes described
in Section III, i.e.,

P

(
sup
t>u
{Ar

1(u, t) +Ar
2(u, t)− C(t− u)}+Ar

2(u)− C2u

> C1u+ σ
)
, (8)

where C2 = n2c. This representation is possible because
the underlying Markov modulating processes of A1(t) and
A2(t), i.e., Z1(t) and Z2(t), respectively, are time-reversible
processes (see, e.g., Mandjes [30], p. 57); the reversibility is
a consequence of the fact that Z1(t) and Z2(t) are stationary
birth-death processes (see Kelly [21], pp. 10-11). Denote by
Z r
1(t) and Z r

2(t) the time-reversed versions of Z1(t) and Z2(t),
respectively.

Let us define the stopping time

T := inf
{
t > u : Ar

1(u, t) +Ar
2(u, t)− C(t− u)

+Ar
2(u)− C2u > C1u+ σ

}
. (9)

This construction is motivated by the fact that P (T <∞) is
exactly the probability from Eq. (8). The goal of the rest of
the proof is to bound P (T <∞).

Let Pi,j denote the underlying probability measure condi-
tioned on Z r

1(u) = i and Z r
2(0) = j, for 0 ≤ i ≤ n1 and

0 ≤ j ≤ n2. Denote also the stationary probability vectors of
Z r
1(u) and Z r

2(u) by (π1,0, . . . , π1,n1
) and (π2,0, . . . , π2,n2

),
respectively.

Define the following two processes

M1(t) := e−θ(Zr
1(t)−i)eγ

∫

t

u
(PZr

1(s)−C1)ds ∀t ≥ u and

M2(t) := e−θ(Zr
2(t)−j)eγ

∫

t

0
(PZr

2(s)−C2)ds ∀t ≥ 0 ,

where θ := log µ
λ

P−c
c

. Note that θ < 0 due to the stability
condition ρ < 1.

According to Palmowski and Rolski [33], both M1(t) and
M2(t) are martingales with respect to (wrt) Pi,j and the natural
filtration (for the original result see Ethier and Kurtz [18],
p. 175). Moreover, according to Lemmas 1 and 2 from the
Appendix in [12], the following process

Mt :=

{
M2(t) , t ≤ u
M1(t)M2(t) , t > u

is also a martingale (note that M1(u) = 1, by construction).

Because T may be unbounded, we need to construct the
bounded stopping times T ∧k := min{T, k} for all k ∈ N. For
these times, the Optional Sampling theorem (see Theorem 3
in Appendix.B of [12]) yields

Ei,j [M0] = Ei,j [MT∧k] ,

for all k ∈ N , where the expectations are taken wrt Pi,j . Using
Ei,j [M0] = 1 and according to the construction of M2(t) we

further obtain for k > u

1 ≥ Ei,j

[
MT∧kI{T≤k}

]

≥ e−θ(C1+C2
P

−(i+j))eγ(C1u+σ)
Pi,j (T ≤ k) ,

where I{·} denotes the indicator function. The first term in the
product follows from θ < 0 and

(Z r
1(T ) + Z r

2(T ))P ≥ C1 + C2 ,

according to the construction of T from Eq. (9) and the
continuity property of the arrival processes. The second term
follows from γ > 0 and the construction of T .

By deconditioning on i and j (note that Z r
1(u) and Z r

2(0)
are in steady-state by construction) we obtain

P (T ≤ k) ≤
∑

i,j

π1,iπ2,je
θ(C1+C2

P
−(i+j))e−γ(C1u+σ) .

Using the identities

n1∑

i=0

π1,ie
θ(C1

P
−i) = Kn1 and

n2∑

j=0

π2,je
θ(C2

P
−j) = Kn2

(see [33]) and taking k→∞ we finally obtain that

P (T <∞) ≤ Kne−γ(C1u+σ) ,

which completes the proof. �

In the following we fix 0 ≤ d ≤ t and derive bounds
on P (W1(t) > d) for FIFO, SP, and EDF scheduling; the
derivations follow more or less directly by instantiating the
parameters of Theorem 1 for each scheduling case.

1) FIFO: The FIFO server schedules the bits of A1(t) and
A2(t) in the order of their arrival times.

To derive a bound on the distribution of the through flow’s
(virtual) delay process W1(t), we rely on a service process
construction for FIFO scheduling, as mentioned in Section III.
We use the service process from Cruz [16] extended to
bivariate stochastic processes, i.e.,

S1(s, t) = [C(t− s)−A2(s, t− x)]+ I{t−s>x} , (10)

for some fixed parameter x ≥ 0 and independent of s and t
(for a proof, in the slightly simpler case of univariate processes,
see Le Boudec and Thiran [4], pp. 177-178; for a more recent
and general proof see Liebeherr et al. [26]). By notation,
[y]+ := max {y, 0} for some real number y.

Before proceeding further, we ought to point out that read-
ers unfamiliar with network calculus may find the expression
of the service process S1(s, t) rather difficult to grasp. Note
that the meaning of S1(s, t) becomes more intuitive when
setting the parameter x := 0; the resulting service process
holds also in the case of SP scheduling, when the bits of A1

have the lowest priority, but is conceivably weak in the case
of FIFO. The role of the parameter x is simply to strengthen
the SP service process; moreover, x can be optimized (e.g.,
when computing a bound on the delay distribution).

Resuming the derivation of the delay bounds, note first the
equivalence of events

W1(t) > d⇔ A1(t− d) > D1(t) .



By using the definition of the service process from Eq. (5), we
can next bound the distribution of W1(t) as follows

P (W1(t) > d)

≤ P (A1(t− d) > A1 ∗ S1(t))

= P

(
sup

0≤s<t−d

{
A1(s, t− d)− [C(t− s)−A2(s, t− x)]+

·I{t−s>x}
}
> 0

)
. (11)

Here we restricted the range of s from [0, t] to [0, t−d), using
the positivity of the ‘[·]+’ operator and the monotonicity of
A1(s, t).

Because x is a free parameter in the FIFO service process
construction from Eq. (10), let us choose now x := d. With
this choice it follows from above that

P (W1(t) > d)

≤ P

(
sup

0≤s<t−d

{A1(s, t− d) +A2(s, t− d)− C(t− s)} > 0

)
.

Finally, by applying Theorem 1 with u := 0 and σ := Cd (re-
call in particular that the parameter u encodes the information
about scheduling), we get the following
Martingale Delay Bound (FIFO):

P

(
W1(t) > d

)
≤ Kne−γCd , (12)

where K and γ are given in Theorem 1. Note that the bound
is invariant to the number of sub-flows n1, which is a property
characteristic to a virtual delay process (for FIFO); such
a dependence will be established by changing the measure
from a virtual delay process to a packet delay process (see
Section V).

2) SP: Here we consider an SP server giving higher priority
to the bits of the cross flow A2(t). We are interested in the
delay distribution of the lower priority flow; the case of the
higher priority flow is a consequence of the previous FIFO
result.

We follow the same procedure of first encoding A1(t)’s
service view in a service process, e.g., (see Fidler [19]),

S1(s, t) = C(t− s)−A2(s, t) . (13)

now in the case of SP scheduling; recall the previous side
remark that S1(s, t) is also a loose service process for FIFO.

To bound the distribution of W1(t) we continue the first
two lines of Eq. (11) as follows

P (W1(t) > d)

≤ P

(
sup

0≤s<t−d

{A1(s, t− d) +A2(s, t)− C(t− s)} > 0

)
.

By applying Theorem 1 with u := d and σ := 0, we get the
following
Martingale Delay Bound (SP):

P

(
W1(t) > d

)
≤ Kne−γC1d , (14)

where K and γ are given in Theorem 1. Note that, as expected,
the SP delay bound recovers the FIFO delay bound from
Eq. (12) when there is no cross flow, i.e., in the case when
C1 = C.

3) EDF: An EDF server associates the relative deadlines
d∗1 and d∗2 with the bits of A1(t) and A2(t), respectively.
Furthermore, all bits are served in the order of their remaining
deadlines, even when they are negative (we do not consider
bit losses).

A service process for A1(t) is for some x > 0

S1(s, t) = [C(t− s)−A2(s, t− x+min{x, y})]+ I{t−s>x} ,
(15)

where y := d∗1 − d∗2 (see Liebeherr et al. [26]). This service
process generalizes the FIFO one from Eq. (10) (which holds
when y = 0, i.e., the associated deadlines to the flows are
equal), and it also generalizes a previous EDF service process
by Li et al. [24] (which is restricted to x = 0).

To derive the delay bound let us first choose x := d, as we
did for FIFO. Next we distinguish two cases depending on the
sign of y.

If y ≥ 0 then the continuation of Eq. (11) is

P (W1(t) > d) ≤ P

(
sup

0≤s<t−d

{
A1(s, t− d)

+A2(s, t− d+min{d, y})− C(t− s)
}
> 0

)
.

By changing the variable t← t+ d−min{d, y} we get

P (W1(t) > d) ≤ P

(
sup

0≤s<t−min{d,y}

{
A1(s, t−min{d, y})

+A2(s, t)− C(t− s+ d−min{d, y})
}
> 0

)
.

(We point out that as we are looking for the steady-state
distribution of W1(t), we can omit the technical details of
writing W1(t + d − min{d, y}) above.) We can now apply
Theorem 1 with u := min{d, y} (note that both d and y are
positive) and σ := C(d−min{d, y}), and get the following
Martingale Delay Bound (EDF) (d∗1 ≥ d∗2 Case):

P

(
W1(t) > d

)
≤ KneγC2 min{d∗

1−d∗

2,d}e−γCd , (16)

where K and γ are given in Theorem 1.

The second case, i.e., y < 0, is slightly more complicated.
The reason is that min{d, y} = y (see Eq. (15)) such that the
continuation of Eq. (11) becomes

P

(
sup

0≤s<t−d

{
A1(s, t− d)− [C(t− s)−A2(s, t− d+ y)]+

·I{t−s>d}
}
> 0

)
. (17)

Note that when s ∈ [t− d+ y, t− d), then one must consider
A2(s, t− d+ y) := 0 according to the conventions from [26].
Therefore, one can perform the splitting [0, t − d) = [0, t −
d+ y)∪ [t− d+ y, t− d); thereafter, by changing the variable
t← t+ d, the continuation of Eq. (17) is

≤ P

(
max

{
sup

0≤s<t+y

{A2(s, t+ y) +A1(s, t)− C(t− s)}

, sup
t+y≤s<t

{A1(s, t)− C(t− s)}
}
> Cd

)

≤ P

(
sup

0≤s<t+y

{A2(s, t+ y) +A1(s, t)− C(t− s)} > Cd

)

+P

(
sup

0≤s<t

{A1(s, t)− C(t− s)} > Cd

)



In the third line we applied the Union Bound [sic], which is
conceivably tight because the two elements in the ‘max’ are
rather uncorrelated. Moreover, we extended the left margin
in the last supremum (in the fourth line), as we are looking
for upper bounds, whereas the Martingale argument from
Theorem 1 is insensitive to where the left margin starts.

The last two probabilities can be directly evaluated with
Theorem 1. For the first one we set u := −y (note that y
is now negative) and σ := Cd. For the second one we set
u := 0, n2 := 0, σ := Cd, and we properly rescale the per-
flow capacity c and utilization factor ρ (see below). In this
way we get the following
Martingale Delay Bound (EDF) (d∗1 < d∗2 Case):

P

(
W1(t) > d

)
≤ KneγC2(d

∗

1−d∗

2)e−γCd+K ′ne−γ′Cd , (18)

with the same K and γ from Theorem 1, whereas K ′ and γ′

are obtained alike K and γ, but after rescaling c′ := n1+n2

n1
c

and ρ′ := n1

n1+n2
ρ.

Note that the first EDF bound from Eq. (16) recovers the
FIFO bound when the associated deadlines are equal, i.e., when
d∗1 = d∗2. In turn, the second EDF bound from Eq. (18) would
also recover the FIFO bound, but only by dispensing with the
unnecessary splitting of the interval [0, t− d) since y = 0.

B. Standard Bounds

Here we list the standard bounds on A1(t)’s virtual delay
for FIFO, SP, and EDF (for derivations see Section IV.B
in [12]). These bounds will be compared, both analytically
and numerically, against the previous Martingale bounds.

FIFO : . . . ≤ inf
{θ:c>rθ}

Le−θCd (19)

SP : . . . ≤ inf
{θ:c>rθ}

Le−θ(C−n2rθ)d (20)

EDF1 : . . . ≤ inf
{θ:c>rθ}

Leθn2rθ min{d∗

1−d∗

2 ,d}e−θCd (21)

EDF2 : . . . ≤ inf
{θ:c>rθ}

Leθ(C−n1rθ)(d
∗

1−d∗

2)e−θCd

+ inf
{θ:c′>rθ}

L′e−θCd (22)

where L = ce
c−rθ

, rθ = −b+
√
∆

2θ , b = λ + µ − θP , and ∆ =

b2 + 4µθP ; for the expression of L′ see [12].

C. Many-Sources Asymptotics Comparison

Here we prove that, unlike the Standard delay bounds, the
new Martingale bounds capture the conjectured O (e−αn) de-
cay factor. The underlying scaling regime is: the total number
of flows n is scaled up, whereas the rest of the parameters
(the utilization factor ρ, the per-flow rate r0 = pP , and the
per-flow capacity c) remain unchanged.

Let us first observe that the factors K (defined in Theo-
rem 1) and L (defined for the Standard bounds after Eq. (22))
from the two sets of bounds satisfy

K < 1 and L > 1 .

The second property is immediate. In turn, for the factor

K , we first note that the function h(x) := ρ
(

ρ−x
1−x

)x−ρ
ρ

is

decreasing for 0 < x < ρ (this can be shown immediately by
differentiating log h(x) and using the inequality log(1 + x) ≥
x

1+x
∀x > −1. Since limx↓0 h(x) = ρ−1 and K = h(p) it

then follows that K < 1.

Delay Bounds / Scheduling Martingale Standard

FIFO, SP, EDF O
(

e−αne−ηdn
)

O
(

e−ηdn
)

TABLE I. SCALING LAWS FOR THE MARTINGALE AND STANDARD

BOUNDS ON P (W1(t) > d) IN THE TOTAL NUMBER OF FLOWS

n = n1 + n2 ; α AND η ARE INVARIANT TO n

Table I illustrates the scaling laws of the Martingale and
Standard delay bounds for the three scheduling algorithms.
The factors α > 0 and η > 0 are invariant to n and can
be fitted for each individual case; e.g., in the case of FIFO,
α = − logK and η = γc. We remark that all pairs of bounds
have the same asymptotic decay rate η. The critical observation
is that, unlike the Standards bounds, the Martingale bounds
have an additional factor e−αn decaying exponentially with n.
This scaling behavior was conjectured by Choudhury et al. [8]
through numerical evaluations. We point out that [8] further
conjectured an additional factor β > 0, invariant to n, which
is, however not, captured by the Martingale bounds.

V. NUMERICAL EVALUATIONS

In this section, we compare the Martingale and Standard
bounds against simulation results. The parameters of a single
MMOO sub-flow are λ = 0.5, µ = 0.1, and P = 1 (the
average ‘Off’ period is five fold the average ‘On’ period).

We consider two utilization levels (ρ = 0.75 and ρ = 0.9),
and a multiplexing regime with n1 = n2 = 10. The packet
sizes in a packet-level simulator are set to 1; fractional packet
sizes are additionally set when the dwell times in the states
of the Markov process from Figure 2 are not integers. The
simulator measures the delays of the through flow’s first 107

packets, and it discards the first 106. For numerical confidence,
100 independent simulations are being run and the results are
presented as box-plots.

For the soundness of the comparisons against simulations,
it is important to remark that the delay analysis so far con-
cerned the virtual delay process W1(t), which corresponds to
the delay of a through flow’s infinitesimal unit, should it depart,
or equivalently arrive, at time t; more concretely, we note that
the bounds computed with SNC on virtual delays are identical,
should they concern a virtual arrival or departure unit. In
the packet level simulator, however, it is the packet delay
process which is being measured, and which is denoted here

by W̃1(n) (the index ‘n’ corresponds to the packet number
for the through flow). Therefore, one has to properly perform
a suitable change of probability measures in order to provide
meaningful numerical comparisons.

We follow a Palm calculus argument and relate the measure
of the virtual delay process to that of the packet delay process
(see Shakkottai and Srikant [36]). For convenience, we work
in reversed time and focus on time 0 where steady-state is
assumed to be reached. Denoting W1 := W1(0), we can write
by conditioning
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Fig. 3. FIFO delay bounds
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Fig. 4. SP delay bounds

P (W1 > d) = P (W1 > d | a1(0) > 0)P (a1(0) > 0)

+ P (W1 > d | a1(0) = 0)P (a1(0) = 0)

≥ P (W1 > d | a1(0) > 0)P (a1(0) > 0)

= P

(
W̃1 > d

)
P (a1(0) > 0) , (23)

where a1(0) denotes the instantaneous arrivals of the through

flow at time 0, and W̃1 denotes the steady-state packet delay
process of the through flow. Note that for the inequality we
eliminated the second term in the sum above.

Therefore,

P

(
W̃1 > d

)
≤

1

1− (1 − p)n
P (W1 > d) . (24)

(Recall that p is the steady-state ‘On’ probability of the
MMOO process from Figure 2.)

Next we compare the distribution of W̃1 against the one
of the measured (simulated) delay process. All the Martingale
and Standard bounds which we compute for FIFO, SP, and
EDF scheduling are scaled up by the additional prefactor from
Eq. (24) needed for the change of measure. We note that this
scaling is conservative because of the inequality from Eq. (23).

Figure 3 illustrates the comparisons for FIFO scheduling
(recall Eqs. (12) and (19) for the Martingale and Standard
delay bounds, which are scaled as in Eq. (24)); the y-axis
uses a log scale. The irregular tail behavior (including the
presence of many outliers2,3at ρ = 90%) of the box-plots is
due to the restriction of the simulation runs to 107 packets.
Both scenarios, corresponding to two utilization levels, clearly
indicate that the Standard bounds are very loose, as they

2Outliers are depicted in the box-plots with the ‘+’ symbol; on each box,
the central mark is the median, and the edges of the box are the 25th and
75th percentiles.

3The long stretch of the box-plots and the presence of many outliers is
caused by the choice of 107 arrivals, in order to illustrate the need for very
long simulation runs (e.g., 108 arrivals, in which case the box-plots would
significantly shrink and most outliers would disappear).
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Fig. 5. EDF delay bounds (n1 = n2 = 10, ρ = 75% in (a) and (c), and
ρ = 90% in (b) and (d))

overestimate the simulation results by a factor of roughly 102

at 75% utilization (see (a)), and even 103 at 90% utilization
(see (b)). In turn, the Martingale bounds are remarkably
accurate even at a 90% utilization level.

The same observations hold for SP scheduling, as indicated
by Figure 4; recall the Martingale and Standard delay bounds
from Eq. (14) and (20), respectively, which are again scaled
as in Eq. (24).

The tightness of the Martingale bounds, in contrast to the
looseness of Standard bounds, further holds in the case of EDF
scheduling, for both cases (i.e., d∗1 > d∗2 and d∗1 < d∗2), as
illustrated in Figure 5; recall the Martingale and Standard delay
bounds from Eqs. (16)-(18) and Eqs. (21)-(22), respectively.
Note that the bending of the curves, e.g., in (a), is due to the
choice of d∗1 and d∗2: the bounds behave like the SP bounds
for d ≤ d∗1 − d∗2, and asymptotically like the FIFO bounds
thereafter.

The presented numerical results provide thus concrete
evidence on the (quite severe) looseness of existing (Standard)
SNC probabilistic bounds, and, more importantly, that the
new Martingale bounds are remarkably accurate, even in a
deliberately low multiplexing regime with only n1 = 10 flows.

VI. CONCLUSIONS

In this paper, we have put our finger in a wound of
the stochastic network calculus: the lingering issue of the
tightness of the SNC bounds. To some degree, this issue has
been evaded by the SNC literature for some time although
it is a, if not the, crucial one. In fact, we demonstrated that
the typical (Standard SNC) way of calculating performance
bounds results in loose delay bounds for several scheduling
disciplines, i.e., FIFO, SP, and EDF. This becomes particularly
obvious when comparing the (Standard SNC) analytical results
to simulation results, where discrepancies up to many orders of
magnitude can be observed. So, we strongly confirm the often
rumored conjecture about SNC’s looseness; the same looseness
is characteristic to the majority of effective bandwidth results
as well.



Yet, the paper does not stop at these bad news, but in
an attempt to understand the problems of Standard SNC,
which mainly lie in not properly accounting for the correlation
structure of the arrival processes (by coarse usage of the Union
bound), we find a new way to calculate performance bounds
using the SNC framework based on martingale techniques.
Here, SNC still serves as the “master method”, yet the Union
bound is substituted by the usage of martingale inequalities, to
make a long story short. Comparing the new Martingale SNC
bounds to the simulation results shows that they are remarkably
close in most cases, which rehabilitates the SNC as a general
framework for performance analysis. So, the SNC can arguably
still be regarded as a valuable methodology with the caveat that
it has to be used with the right probabilistic techniques in order
not to arrive at practically irrelevant results.

As a final remark, the paper advocates a conceptual shift
in applying the SNC, by 1) coupling it with the mainstream
queueing literature, in particular by “getting a firm grip on
arrivals”, and 2) carefully leveraging the main two features of
SNC (i.e., dealing with scheduling and multi-node) in order
to obtain sharp bounds. The next immediate and fundamental
challenge is to derive sharp end-to-end delay bounds.
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