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Performance Optimization for Managing Massive 

Numbers of Small Files in Distributed File 

Systems  
Songling Fu, Ligang He, Chenlin Huang, Xiangke Liao, Kenli Li  

Abstract—The processing of massive numbers of small files is a challenge in the design of distributed file systems. Currently, the 

combined-block-storage approach is prevalent. However, the approach employs the traditional file systems such as ExtFS and may cause 

inefficiency when accessing small files randomly located in the disk. This paper focuses on optimizing the performance of data servers in 

accessing massive numbers of small files. We present a Flat Lightweight File System (iFlatLFS) to manage small files, which is based on a 

simple metadata scheme and a flat storage architecture. iFlatLFS is designed to substitute the traditional file system on data servers and can 

be deployed underneath distributed file systems that store massive numbers of small files. iFlatLFS can greatly simplify the original data 

access procedure. The new metadata proposed in this paper occupies only a fraction of the metadata size based on traditional file systems. 

We have implemented iFlatLFS in CentOS 5.5 and integrated it into an open source Distributed File System (DFS), called Taobao 

FileSystem (TFS), which is developed by a top B2C service provider, Alibaba, in China and is managing over 28.6 billion small photos. We 

have conducted extensive experiments to verify the performance of iFlatLFS. The results show that when the file size ranges from 1KB to 

64KB, iFlatLFS is faster than Ext4 by 48% and 54% on average for random read and write in the DFS environment, respectively. Moreover, 

after iFlatLFS is integrated into TFS, iFlatLFS-based TFS is faster than the existing Ext4-based TFS by 45% and 49% on average for random 

read access and hybrid access (the mix of read and write accesses), respectively. 

Index Terms—Distributed File System; Data Server; Small File; Performance Optimization  

——————————      —————————— 

1 INTRODUCTION

ith the extreme popularity of social networks (e.g., Face-

book [22]) and e-commerce sites (e.g., Amazon [23] and 

Taobao [24]), new challenges are raised to efficiently store and 

access massive numbers of small files, such as user messages 

and merchandise photos. The small files in such scenarios have 

their special characteristics. Typically, these small files are sel-

dom modified and their sizes range from several KBs to tens of 

KBs [1-3]. For example, it is shown in [9] that the Taobao File 

System (TFS) used by Taobao, which is the No.1 e-commerce 

site in China, manages about 28.6 billion photos and the aver-

age photo size is 17.45KB. This is different from the case of big 

files. For example, Reference [4] shows that the files processed 

by some Google applications have the size of multiple GBs. 

Distributed File System (DFS) is a method of storing and ac-

cessing files based on a client/server architecture, as shown in 

Fig. 1. In a DFS, all files are replicated and stored in many data 

servers, while the metadata are stored in the metadata server. A 

client (note that a client in this context is not a user, but an appli-

cation server which interacts with DFS and provides the services 

to the users) must look up a file by the metadata server in a DFS, 

not by a file path, which is a typical way of looking up a file in 

traditional file systems. As shown in Fig. 1, a client accesses a 

file stored in a DFS by two phases: 1) querying the metadata 

server to get the IP address of the data server which stores the 

target file; 2) connecting the data server to fetch the file data. 

In traditional DFS, such as GFS [4] and HDFS [5], the di-

vided-block-storage approach is designed to handle big files, 

each of which is divided into multiple fixed-size (typically 

64MB) data blocks. Each data block is stored as a regular file in 

multiple data servers. There is at least one metadata object in 

the metadata server and one regular file on the data server for 

each file. When the files in the systems are mainly small files, 

the number of stored files increases sharply, resulting in a huge 

amount of metadata on the metadata server and the low perfor-

mance in accessing files on data servers [6], [7], [8]. Therefore, 

it is a popular research topic in the design of DFS to improve 

the performance of processing massive small files. 

Currently, combined-block-storage is a prevalent approach 

to processing massive small files and has been implemented in 

both Haystack [3] by Facebook and TFS [9] by the Alibaba 

Group. The fundamental idea of combined-block-storage is to 

combine small files into large data blocks to reduce the magni-

tude of metadata on the metadata server. The Combined-block-

storage approach adopts traditional file systems, such as Ext4 

[10] and XFS [18], to store data blocks as regular files on the 

data servers. However, traditional file systems often have very 

low performance when handling massive small files [11], [12]. 

Since the accesses to the hotspot data are commonly filtered 

by the multi-level cache techniques in commercial systems, 

such as CDN [14], the data requests arriving at the actual data 

servers situated behind multiple levels of caches are most likely 

to access the non-hotspot data that are randomly distributed in 

the disk. Therefore, there is no need to cache the accessed data 

into the memory on data servers. This is why improving I/O 
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performance of data servers becomes a critical issue. 

The steps involved in a data access can be broadly divided 

into the steps of determining the location of the data through the 

metadata and the steps of accessing the physical data. The for-

mer can be regarded as the I/O overhead. It makes accessing big 

files very different from accessing small files, because when 

accessing small files, the time associated with the I/O overhead 

outweighs the time spent in accessing physical data. Therefore, 

when optimizing the performance of accessing small files, the 

major efforts often focus on reducing the I/O overhead. 

Previous research work has presented the approaches to im-

proving the performance of DFS by optimizing data manage-

ment on data servers. Haystack [3], which is a HTTP-based 

photo server developed by Facebook, presents an index cache 

technique to eliminate the disk I/O operations when locating 

small photo files. It also adopts XFS to speed up accessing pho-

tos. In TFS [9], Alibaba proposes a naming technique and a 

disk-pre-allocating technique to simplify metadata management 

and decrease the number of I/O requests during file accesses. 

However, there is still room to further improve the perfor-

mance of these existing DFSes. For example, XFS can only 

deliver about 85% of the raw throughput on data servers in-

stalling Haystack [3], while the Ext4 file system delivers about 

50% in TFS as shown in Section 5. 

This paper focuses on optimizing the performance of data 

servers in accessing massive numbers of small files. We devel-

oped a Flat Lightweight File System called iFlatLFS. iFlatLFS 

is able to access raw disks directly, optimize the metadata man-

agement and accelerate the data-accessing procedure on data 

servers. iFlatLFS is designed as an efficient alternative to the 

underlying traditional file systems, as shown in Fig. 1. 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 1 The relation between iFlatLFS and DFS. 

The traditional file systems can offer many benefits in gen-

eral. However, in the systems we are targeting, there are mas-

sive numbers of rarely-modified small files. Under this circum-

stance, some operations and functionalities in traditional file 

systems are unnecessary or cause excessive overheads. The 

design of iFlatLFS carefully weighs the efficiency and the gen-

erality of the measures adopted in traditional file systems. The 

efficiency of iFlatLFS is achieved by removing or re-designing 

the measures that are not suitable in our targeted systems from 

the performance perspective, although these measures are 

adopted in traditional files systems for sake of generality in 

application. For example, namespace management is re-

designed in iFlatLFS, so that iFlatLFS performs little more than 

space management, relying on the upper distributed file system 

(In this paper, the DFS components sitting above the local file 

system, such as Request handler and Metadata server in Fig. 1, 

are called the upper DFS) to handle all naming issues. 

Although iFlatLFS can substitute the traditional file systems, 

the process for a DFS client to access a file remains unchanged. 

The main difference between iFlatLFS and traditional file sys-

tems is that iFlatLFS accesses the data directly from disks while 

traditional file systems access the data through the hierarchical 

file tree. In iFlatLFS, a simple metadata scheme is designed, in 

which the metadata occupies much smaller space. As a result, 

the metadata can be entirely cached in memory and consequent-

ly the operation of fetching the metadata from the disks is elim-

inated during the file access. Moreover, a flat storage architec-

ture is developed in iFlatLFS to store small files in raw disks. 

With this new flat storage architecture and the simple metadata 

scheme, the original complex process of accessing files in tradi-

tional file systems is greatly simplified and the amount of 

metadata is significantly reduced. Performance evaluation has 

been carried out to verify effectiveness and advantages of 

iFlatLFS. The evaluation results show that an iFlatLFS-based 

data server can achieve near optimal performance. 

The rest of this paper is organized as follows. Section 2 dis-

cusses related. Section 3 analyzes the file access model on data 

servers. Section 4 presents the design details of iFlatLFS, in-

cluding fundamental ideas, data management, file access, 

metadata consistency, and the implementation. Section 5 evalu-

ates the performance of the developed file system and analyzes 

experimental results. Section 6 proposes a hybrid storage sys-

tem. Finally, Section 7 concludes this paper. 

2 RELATED WORK 

DFS has been widely studied in recent years [4], [5], [25], [26-

28]. GPFS [25] and PVFS [26] are designed for managing the 

files in clusters. TokuFS [27] is implemented using Fractal Tree 

indexes, which are primarily used in databases. BlueSky [28] 

acts as a proxy of multiple cloud storage providers to offer stor-

age service for enterprise users. GFS [4] and HDFS [5], are 

designed mainly for streaming access of large files.  

Some studies [1], [3], [9], [32], [33] show that small files 

occupy a big fraction of the entile files in current distributed 

systems.  For example, Reference [3] shows that the photos in 

facebook have the average size of 64+KB. 

Three main optimization approaches have been developed to 

support small files in DFSes: 1) reducing data block sizes; 2) 

combining small files into bigger ones; 3) storing small files by 

groups, not by data blocks. 

Google’s next generation of DFS, GFS2 [15], is an example 

of taking the first optimization approach. Zhang et al. [30] also 

proposed an approach which changes the block size and adopts 

an efficient indexing mechanism. GFS2 improves the ability of 

handling small files mainly by reducing the data block size 

from 64MB to 1MB. In order to meet the requirements of Inter-

net applications, the data blocks must be reduced further to the 

size of the KB order. In this type of DFS systems, there will be 

over 1G data block files and 150GB inode data on a data server 

of 10TB storage capacity. Although the existing proposals in 

[29] and [31] can be used to impove the performance of the 

metadata server, it is difficult for data servers to handle such 

massive numbers of data block files.  

The second approach, i.e., the approach of combining small 

files into bigger ones, falls into two categories: i) developing 
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dedicated tools, such as Hadoop Archive [16], Sequence File 

[17], for handling small files based on existing DFSes, and ii) 

designing new DFSes, such as Haystack [3] and TFS [9], with 

special optimization considerations for small files. Hadoop Ar-

chives, Haystack and TFS are discussed below in more detail. 

Hadoop Archives (HAR) builds a layered file system on top 

of HDFS, and packs the small files into relatively big HDFS 

files to alleviate the pressure caused by too many files on the 

metadata server’s memory. Sequence File is similar to HAR. It 

uses the file name as the key, and the file content as the value. 

Reading files in a HAR or Sequence File is slower than reading 

files in HDFS because of additional index operations. 

Haystack and TFS are the same type of DFS, which are de-

signed for the storage of massive small photos in their own 

companies: Facebook and Alibaba. They employ the combined-

block-storage technique, which combines small photos with 

different sizes into data block files with a fixed size, and builds 

an index file for each data block file. The index file stores the 

logical addresses of all photos. In order to further improve per-

formance of data servers, some other measures have also been 

taken. Haystack caches all index data into the memory and 

adopts XFS [18] on data servers, which can perform random 

seeks quickly within a large file. TFS codes a file's logical ad-

dress into its file name to decrease one lookup operation. All 

these approaches can simplify the metadata lookup process and 

reduce the number of disk operations to some degree. However, 

both Haystack and TFS employ traditional file systems on data 

servers. The additional data locating operations are needed to 

lookup photos’ physical address in disks before the actual file 

access can start, which can cause low performance of data serv-

ers. According to Facebook’s benchmarking performance [3], 

Haystack can deliver only 85% of the raw throughput of the 

device while incurring 17% higher latency. 

FastDFS [19] is an exemplar DFS which adopts the third ap-

proach, i.e., storing small files by groups. It is an open source 

high performance DFS, and can meet the requirements of photo 

sharing sites and video sharing sites. In FastDFS, files are orga-

nized in groups, and each file exists in only one group (i.e., 

there are no common files between different groups). For each 

file, the file name exposed to clients is composed of its corre-

sponding group name, relative path and its actual file name on 

the data server. The shortcoming of FastDFS is that it is diffi-

cult to handle massive numbers of KB-sized small files because 

the number of files is too large. 

Additionally, some other techniques have also been devel-

oped recently to improve the performance of traditional file 

systems on a single server. For example, both Ext4 [10] and 

XFS [18] introduce the concept of extent in order to reduce 

metadata. This approach is only effective for big files. ReiserFS 

[35] employs EOTTL (extents on the twig level) and Ligquid 

items. The former is a fully balanced storage tree, which guar-

antees that all paths to the objects are of equal length, while the 

latter is a special format of records in the storage tree and can 

solve the problem of internal fragmentation. ReiserFS can op-

timize the performance of handling small files. 

As discussed above, designing new DFSes (e.g., Haystack 

and TFS) is a category of the second optimization approach to 

support small files. These DFSes develop the combined-block-

storage technique on top of traditional file systems. Our work 

aims to further optimize such DFSes. A lightweight file system, 

called iFlatLFS, is developed in this paper to substitute the tra-

ditional file system in the DFS (to differentiate with iFlatLFS, 

the DFS is called the upper DFS in the rest of this paper).  

3 ANALYSING DATA ACCESS FOR SMALL FILES 

3.1 Data accessing in DFS 

As discussed in the introduction section, a client accesses a file 

stored in a DFS by the following two phases.  

1) Querying the metadata server to get the IP address of the 

data server that stores the file. This phase has 3 steps: 

1. 𝑇𝐶𝑙𝑖𝑒𝑛𝑡𝑄𝑢𝑒𝑟𝑦𝑀𝐷𝑆 : The client sends a message to the 

metadata server to query the ID of the data block 

which store the file data, and the IP addresses of the 

data servers which store the data block; 

2. 𝑇𝑀𝐷𝑆𝑄𝑢𝑒𝑟𝑦𝑀𝐷: The metadata server queries locally the 

ID of the data block and the IP addresses of the data 

servers. In the case where the client writes a new file, 

the metadata server will allocate an old data block 

which has free space or create a new data block; 

3. 𝑇𝑀𝐷𝑆𝑅𝑒𝑡𝑢𝑟𝑛𝑀𝐷 : The metadata server returns the ID of 

the data block and the corresponding IP addresses of 

the data servers to the client. 

2) Selecting and connecting a data server to fetch the file data. 

This phase also includes 3 steps: 

4. 𝑇𝐶𝑙𝑖𝑒𝑛𝑡𝐴𝑐𝑐𝑒𝑠𝑠𝐷𝑆: The client sends a message to the data 

server. In the case where the client writes a new file in-

to the DFS, the message contains the file data; 

5. 𝑇𝐷𝑆𝐴𝑐𝑐𝑒𝑠𝑠𝐷𝑎𝑡𝑎: The data server reads (or writes) the file 

data from (or into) the data block in the local disks; 

6. 𝑇𝐷𝑆𝑅𝑒𝑡𝑢𝑟𝑛𝑅𝑒𝑠𝑢𝑙𝑡: The data server returns the result to the 

client. In the case where the client reads a file from the 

DFS, the result contains the file data. 

Therefore, the total time of accessing a file from a DFS can 

be expressed as in (1). 

𝑇𝐷𝐹𝑆 = 𝑇𝐶𝑙𝑖𝑒𝑛𝑡𝑄𝑢𝑒𝑟𝑦𝑀𝐷𝑆 + 𝑇𝑀𝐷𝑆𝑄𝑢𝑒𝑟𝑦𝑀𝐷 + 𝑇𝑀𝐷𝑆𝑅𝑒𝑡𝑢𝑟𝑛𝑀𝐷

+ 𝑇𝐶𝑙𝑖𝑒𝑛𝑡𝐴𝑐𝑐𝑒𝑠𝑠𝐷𝑆 + 𝑇𝐷𝑆𝐴𝑐𝑐𝑒𝑠𝑠𝐷𝑎𝑡𝑎

+ 𝑇𝐷𝑆𝑅𝑒𝑡𝑢𝑟𝑛𝑅𝑒𝑠𝑢𝑙𝑡                                            (1) 

We observe the following three key points from (1). 

1) In a DFS, the metadata server manages the namespace 

of all files, which is usually organized into a hierar-

chical tree. The namespace is stored as a regular file, 

and will be loaded into the memory entirely when the 

server boots. The metadata server can obtain the re-

quired metadata by in-memory operations. So Step 2 

(𝑇𝑀𝐷𝑆𝑄𝑢𝑒𝑟𝑦𝑀𝐷) only takes little time, which can be ne-

glected comparing with over-network or I/O operations. 

2) On the contrary, the file data are stored as regular files 

in a data server. As the discussed in Section 1, when the 

data requests arrive at the actual data servers, which are 

situated behind multiple levels of caches in DFS, it is 

most likely that these requests are accessing the non-

hotspot data. Therefore, the file data to be accessed are 

typically not in the memory, but in the disk. The data 

server has to retrieve the file data by one or more disk 

I/O operations. Therefore, Step 5 (𝑇𝐷𝑆𝐴𝑐𝑐𝑒𝑠𝑠𝐷𝑎𝑡𝑎) typi-

cally takes much more time than Step 2. 

3) The time of steps 1, 3, 4 and 6 mainly depends on the 

network bandwidth. In the current mainstream hardware 

environments, the bandwidth of networks, such as In-

finiband, is usually much bigger than the bandwidth of 
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disk I/Os, such as SATA disks and SAS disks. For ex-

ample, the TianHe-2 supercomputer [43, 44, 45], which 

is developed by the National University of Defense 

Technology in China and is ranked No. 1 in the latest 

Top500 Supercomputer list, is equipped with one of the 

two interconnecting networks: Infiniband network or 

the high-speed NIC-based (network interface chip) net-

work. The bandwidth delivered by the former in the su-

percomputer is about 7GB/s, while that delivered by the 

latter is about 20GB/s. But the tested bandwidths of 

SATA disk and SAS disk in the supercomputer are 

about 70MB/s and 100MB/s, respectively. Therefore, 

compared with Steps 1, 3, 4 and 6, it is far more likely 

that Step 5 becomes the bottleneck in the workflow of 

steps for accessing the file data in DFS. 

The above analysis shows that reducing the time spent by 

Step 5, i.e., the local data accessing in data servers, is critical in 

order to optimize the performance of accessing the file data in 

the DFS. This motivates our work to optimize the accessing of 

small files in data servers. Next, we will analyze the steps and 

the performance of local data accessing in a data server.  

3.2 Analytical model of read operations in a data server 

The traditional file systems, which access files through a hierar-

chical file tree, are commonly adopted on data servers to man-

age file data and metadata in disks. Small files are combined 

into data blocks of fixed size. Each data block is stored as a 

regular file, called a data block file. For each data block file, an 

index file is built to store the logical offset addresses of all small 

files in this data block file. 

In traditional file systems such as ExtFS, all files are orga-

nized into a hierarchical tree. A file is divided into disk blocks, 

which may not be stored in the continous physical locations in 

the disk. A file has an inode, which uses the address pointers to 

link the scattered disk blocks of a file together, so that the file 

has a continous logical address in the file system. Each disk 

block of a file has a typical size of 1KB. In ExtFS, therefore, 

every 1KB data needs an address pointer, whose size is 8 Bytes. 

In all address pointers of the disk blocks, the first 12 pointers 

are stored in the file inode structure, and others are stored in 

disk blocks called address blocks. In ExtFS, an application ac-

cesses the file data by their logical addresses, not by their phys-

ical addresses (i.e., the pointers of the disk blocks). Thus during 

the file access, there is an extra data lookup operation of retriev-

ing physical addresses, which may be located in the inode or in 

some address block depending on the logical address. 

In DFS environments, read operations dominate, compared 

with writes [3], [9]. In this section, we analyze the performance 

of reading small files on a data server (the write performance 

will be discussed in Section 4.3 when we discuss data con-

sistency).  Section 3.2.1 and Section 3.2.2 present the analytical 

models without and with considering the effects of memory 

caches, respectively. 

3.2.1 Models without considering cache effects 

As shown in Fig. 2, the process of file read on data servers in-

cludes 7 steps, which can be organized into 2 phases as follows. 

Phase 1: Reading local metadata to retrieve the logical ad-

dress of the target file data in the corresponding data block file. 

This phase includes 3 steps: 

1. 𝑇1:𝑅𝑒𝑎𝑑𝐼𝐹𝐼𝑛𝑜𝑑𝑒: Reading the inode of index file; 

2. 𝑇2:𝑅𝑒𝑎𝑑𝐼𝐹𝐷𝑎𝑡𝑎: Reading index data from the index file; 

3. 𝑇𝑄𝑢𝑒𝑟𝑦𝐿𝐴: Querying the corresponding index item from 

the index data to get the logical address of the file. 

Phase 2: Reading file data. This phase includes 4 steps: 

4. 𝑇3:𝑅𝑒𝑎𝑑𝐷𝐵𝐹𝐼𝑛𝑜𝑑𝑒:Reading the inode of the data block file; 

5. 𝑇4:𝑅𝑒𝑎𝑑𝐴𝑑𝑑𝑟𝑒𝑠𝑠𝐵𝑙𝑜𝑐𝑘: Reading the corresponding address 

block from the disk if the logical address is beyond the 

size of 12 disk blocks; 

6. 𝑇𝑄𝑢𝑒𝑟𝑦𝑃𝐴 : Querying the physical address of the target 

file data from the inode or the address block; 
7. 𝑇5:𝐴𝑐𝑐𝑒𝑠𝑠𝐷𝑎𝑡𝑎: Accessing file data using a disk operation. 

 

 

 

 

 

 

 

 

Fig. 2  File access model in DFS based on traditional file systems 

It can be seen from above that the data management model 

in traditional file systems is very complex. The metadata need-

ed for file access on data servers include the inodes of index 

files, the inodes of data block files, the index data and all ad-

dress blocks of data block files. Consequently, the metadata can 

be huge. For example, when Ext4 is used, 92.8GB of metadata 

is needed to store 10TB data with the average file size of 16KB. 

The total time of reading a file on a data server can be ex-

pressed in (2). 

𝑇𝑜𝑟𝑖𝑔𝑖𝑛𝑎𝑙 = 𝑇1:𝑅𝑒𝑎𝑑𝐼𝐹𝐼𝑛𝑜𝑑𝑒 + 𝑇2:𝑅𝑒𝑎𝑑𝐼𝐹𝐷𝑎𝑡𝑎 +  𝑇𝑄𝑢𝑒𝑟𝑦𝐿𝐴

+ 𝑇3:𝑅𝑒𝑎𝑑𝐷𝐵𝐹𝐼𝑛𝑜𝑑𝑒 + 𝑇4:𝑅𝑒𝑎𝑑𝐴𝑑𝑑𝑟𝑒𝑠𝑠𝐵𝑙𝑜𝑐𝑘

+ 𝑇𝑄𝑢𝑒𝑟𝑦𝑃𝐴  + 𝑇5:𝐴𝑐𝑐𝑒𝑠𝑠𝐷𝑎𝑡𝑎                           (2) 

Each variable 𝑇𝑖  in the right side of (2), except 𝑇𝑄𝑢𝑒𝑟𝑦𝐿𝐴 and 

𝑇𝑄𝑢𝑒𝑟𝑦𝑃𝐴, represents the time of a disk operation. There are total 

5 disk operations during a file read, although only 𝑇5:𝐴𝑐𝑐𝑒𝑠𝑠𝐷𝑎𝑡𝑎 

is the time which is used to read the actual data being requested. 

Because the time of a disk I/O operation is far heavier than that 

of a memory operation, Equation (2) can be simplified as (3). 

𝑇𝑜𝑟𝑖𝑔𝑖𝑛𝑎𝑙 ≈ 𝑇1:𝑅𝑒𝑎𝑑𝐼𝐹𝐼𝑛𝑜𝑑𝑒 + 𝑇2:𝑅𝑒𝑎𝑑𝐼𝐹𝐷𝑎𝑡𝑎 + 𝑇3:𝑅𝑒𝑎𝑑𝐷𝐵𝐹𝐼𝑛𝑜𝑑𝑒

+ 𝑇4:𝑅𝑒𝑎𝑑𝐴𝑑𝑑𝑟𝑒𝑠𝑠𝐵𝑙𝑜𝑐𝑘  + 𝑇5:𝐴𝑐𝑐𝑒𝑠𝑠𝐷𝑎𝑡𝑎          (3) 

It can be seen from the above analysis that although data 

servers only store data for the upper DFS, its complex hierar-

chical file management model incurs heavy overhead. 

3.2.2 Models with the cache effect  

The effects of the memory cache are not considered in the anal-

ysis model presented in Section 3.2.1. In fact, the memory 

cache acts as an important role while designing the performance 

optimization approaches. 

If any performance optimization approaches used in Hay-

stack and TFS (as discussed in the related work section) are 

applied, Equation (3) can be further simplified. For example, in 

TFS, the index files are accessed using the mmap operation 

while the direct I/O operation is used for accessing data block 

files. In the mmap operation, the index file is mapped to 

memory, and the index data are transparently loaded from disk 

into memory. An application can then access the index file in 

the same way as it accesses the memory. Further, the direct I/O 

operation can bypass the cache of the Ext4 file system, there-

fore greatly saving the main memory. The saved main memory 

can be used to cache the inodes and the index data. Thus the 
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data access time in TFS can be further simplified as (4), where 

T2:ReadIFData can be regarded as zero if the required index data 

have been in memory cache. 

𝑇𝑜𝑟𝑖𝑔𝑖𝑛𝑎𝑙_𝑇𝐹𝑆 ≈ 𝑇2:𝑅𝑒𝑎𝑑𝐼𝐹𝐷𝑎𝑡𝑎 + 𝑇4:𝑅𝑒𝑎𝑑𝐴𝑑𝑑𝑟𝑒𝑠𝑠𝐵𝑙𝑜𝑐𝑘  

+ 𝑇5:𝐴𝑐𝑐𝑒𝑠𝑠𝐷𝑎𝑡𝑎                                                  (4) 

3.3 Performance benchmarking in a data server 

We tested the performances of random read and write for small 

files with different sizes on CentOS 5.5 (the kernel is 2.6.18). 

10GB data are stored into 160 files, each with the size of 

64MB. In the test, a file is selected randomly, and a logical ad-

dress is selected randomly from this file. The test then begins to 

read or write data ranging from 1 KB to 64 KB in size at the 

selected logical address. For each size, the same test is per-

formed 1000 times. The results are shown in Fig. 3, where the 

y-axis is the time of the data access (i.e., overhead). 

The result shows that for the same disk operation (read or 

write), the overhead of accessing small files of different sizes is 

almost the same, and that the response time is almost independ-

ent of file size. This is because the disk seek time is far longer 

than data transferring time for small files. These results indicate 

that if the number of disk operations can be reduced when ac-

cessing small files, the data accessing performance can be im-

proved. Ideally, each file access needs only one disk operation 

if all data locating operations are performed in memory. 

Based on the above models and the benchmarking results, 

this paper aims to develop a flat file system (called iFlatLFS) to 

reduce I/O overhead for accessing small files. 

 

 

 

 

 

 

 

 

Fig. 3  Random read and write performance in Ext4 

4 IFLATLFS 

The design of iFlatLFS is mainly oriented towards optimizing 

performance of accessing massive small files which are seldom 

modified. We assume that all files are stored using the com-

bined-block-storage approach in DFSes, that is, small files will 

not be broken into pieces, but are combined into huge data 

blocks and stored into data servers. We also assume that there is 

no need to cache the accessed data into the main memory of the 

data server. This assumption is reasonable because the data 

requests are filtered by multiple levels of caches, as discussed 

in the introduction section. Therefore, the data requests that 

finally arrive at the data server are most likely to access the 

non-hotspot data that are randomly distributed in the disk space. 

iFlatLFS aims to substitute the traditional files systems on data 

servers in the our targeted systems, namely, the systems in 

which there are massive numbers of rarely-modified small files. 

4.1 The design of data management 

4.1.1 The fundamental idea 

The fundamental idea of iFlatLFS is to improve the perfor-

mance of file access on data servers by optimizing local 

metadata management and accelerating the data-accessing pro-

cedure. Instead of using the file-based local metadata manage-

ment as in traditional file systems, a simple metadata manage-

ment mechanism (discussed in Fig. 5) is designed in iFlatLFS. 

It combines file metadata, such as file ID, file type, creation 

time, checksum etc., into the file header and stores it together 

with the file data. As a result, the size of the metadata for a sin-

gle file is cut down to 12 Bytes, and it is possible to load the 

entire metadata into the memory when the data server boots. 

For example, using the metadata management mechanism de-

veloped in this work, 10TB data will only need about 7.5GB of 

metadata when the average file size is 16KB. By doing so, all 

metadata operations can be performed in memory. Consequent-

ly, the overhead involved in locating the file data can be greatly 

reduced without the need of performing disk I/O operations. 

There are many fasincating functionalities in traditional file 

systems. However, many of these funcationalities are not neces-

sary or even hurt the performance of the file system deployed in 

the data servers in the DFS context. These unnecessary funca-

tionalities mainly include:  

1) Hierarchical file structure: Data server is to DFS what 

hard disk is to operating system. Since DFS manages the 

namespace of the data in the metadata server, data servers can 

simply act as the storage facility for DFS and there is no need 

for the file system in a data server to include complicated data 

management model. Therefore, in order to speed up data ac-

cessing, the complex file management designs in traditional file 

systems, such as hierarchical file structure and inode, are abol-

ished in iFlatFLS. Instead, one disk partition is used to store all 

small files and their metadata for each data block. The files are 

directly accessed from the disk partitions in a flat fashion by 

means of physical address and data size in metadata. 

2) Data prefetching: Since iFlatLFS handles small files, data 

prefetching in the traditional file systems has a negligible posi-

tive impact on the performance. So this function is unnecessary. 

3) Data caching: As discussed in Section 1, the accesses to 

the hotspot data are commonly filtered by the multi-level cache 

techniques in DFS, the data requests arriving at the data servers 

are most likely to access the non-hotspot data. Therefore, data 

caching is unnecessary.  

4.1.2 The flat storage architecture 

In order to optimize the management of massive numbers of 

small files, a flat storage architecture is designed in iFlatLFS. 

The data management is also greatly simplified with smaller 

metadata and fewer data blocks. 

In iFlatLFS, each disk partition consists of a header followed 

by a series of storage areas, each of which contains a header, a 

metadata area and a data area. The layout of a disk partition is 

shown in Fig. 4. For each data block, all files and their metadata 

are stored directly into a fix-sized super big disk partition, 

whose size is typically set as the greatest common divisor of all 

disk sizes, but can be as big as possible in theory.  

Fig. 5 shows the flat storage architecture developed in this 

work. Each data area holds a vast amount of small files, which 

are stored in sequence. Each file consists of a header and its 

data. Each metadata area consists of a sequence of index slots. 

Each slot represents a small file stored in the corresponding 

data area. When a small file is created a corresponding index 

item is built and stored into an index slot. To reduce the metada-

0

5000

10000

15000

20000

1K 2K 4K 8K 16K 32K 64K

ti
m

e 
(u

s)
 

block size (Byte) 

random_read random_write



6 IEEE TRANSACTIONS ON JOURNAL NAME,  MANUSCRIPT ID 

 

ta as much as possible, each index item includes only 2 fields: 

the file size (4 Bytes) and the file physical address (8 Bytes) in 

disk. Other metadata, such as file identifier, file type, file size, 

checksum of file data, are stored in the file header. The index 

slot id will be coded into the file identifier as the file’s logical 

address and returned to the upper DFS. 

The disk space of the metadata area and the data area should 

be determined dynamically according to the DFS parameters 

such as data block size and average file size. The data block 

size can be determined by the hardware configuration of data 

servers, and the average file size can be derived through the 

statistical means or historical data [4], [9]. The metadata area 

cannot be changed after the disk space has been allocated. Once 

the metadata area runs out of its disk space, the free space of the 

data area will be automatically re-allocated as a new storage 

area and linked to the last storage area. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 4  The Format of a disk partition in iFlatLFS 

 

 

 

 

 

 

 

 

 

 

 

Fig. 5  The flat storage architecture in iFlatLFS 

4.1.3 Managing reserved space 

The physical damage of disk sections will reduce the storage 

space. Also, if there are too many fragments in disk partitions, 

then the effective storage space is also shrinked. In order to 

handle the shrinking of storage space, iFlatLFS introduces re-

served space for each disk partition. The size of reserved space 

can be set by administrators, typically 1~10% of the whole par-

tition space. In principle, new files will not be stored in the disk 

partition after its data areas run out of their disk space. Howev-

er, if the files are generated because of upgrading the old files to 

bigger sizes or recovering the lost files due to physical disk 

failure, they are allowed to be stored in the reserved space. 

When the total faulty disk space is bigger than the reserved 

space, the disk partition will be abandoned and the correspond-

ing data block be stored in another disk partition. 

4.1.4 Fragmentation management 

Fragments may be generated in each disk partition when delet-

ing or modifying files. iFlatLFS designed a strategy for frag-

mentation management, which is illustrated in Fig. 6. A special 

flag and the fragment size are stored in the fragment header. All 

fragments form a list of unused disk space, whose head (i.e., 

FirstFrag in Fig. 6) is stored in the metadata header. Normally, 

when a new file is generated, it is appended to the correspond-

ing disk partition, and the partition pointer, which points to the 

first physical address of the available disk space, moves for-

ward by the size of the file accordingly. After the partition 

pointer reaches the end of the disk partition, iFlatLFS must find 

a fragment available to store the target file. Although the con-

cept of reserved space is introduced in iFlatLFS, there is no disk 

space physically allocated for the reserved space. iFlatLFS 

views all fragments as a part of the reserved space. Thus, the 

fragments are not used unless the total disk space of all frag-

ments is bigger than the pre-set size of the reserved space. If 

there are too many fragments in a disk partition, iFlatLFS can 

copy these scattered files into another new disk partition, and 

the original partition will be assigned to another data block. The 

benefit of this fragment management strategy is to simplify the 

complexity of disk space management. 

 

 

 

 

 

Fig. 6  The fragment management in iFlatLFS 

4.2 File access 

We now present how to access the small files. The file access 

model in a DFS with iFlatLFS is shown in Fig. 7. 

 

 

 

 

 

Fig. 7  The file access model of DFS with iFlatLFS 

iFlatLFS is transparent for the clients of upper DFSes. Com-

pared with the original file access model, the only difference is 

the process of the file access on the local data server. All 

metadata (i.e., the MetadataArea as shown in Fig. 5) are loaded 

and cached in memory from disk when the data server boots, so 

that all metadata operations can be performed in memory. 

The whole process of file access includes 2 phases. 

Phase 1: Querying the physical disk address of the target 
file from the metadata cache (i.e., the metadata 
loaded into the main memory). No disk operation 
is needed. The time overhead of this phase is de-
noted as 𝑇′𝑄𝑢𝑒𝑟𝑦𝑃ℎ𝑦𝑠𝑖𝑐𝑎𝑙𝐴𝑑𝑑𝑟𝑒𝑠𝑠 . 

Phase 2: Accessing the file data directly from the corre-
sponding disk partition by one disk operation. Its 
time is denoted as 𝑇′1:𝐴𝑐𝑐𝑒𝑠𝑠𝐷𝑎𝑡𝑎. 

(5) shows the total time for file access in iFlatLFS. 

𝑇𝑖𝐹𝑙𝑎𝑡𝐿𝐹𝑆 = 𝑇′𝑄𝑢𝑒𝑟𝑦𝑃ℎ𝑦𝑠𝑖𝑐𝑎𝑙𝐴𝑑𝑑𝑟𝑒𝑠𝑠 + 𝑇′1:𝐴𝑐𝑐𝑒𝑠𝑠𝐷𝑎𝑡𝑎       (5) 

Based on the same reason of simplifying (2), Equation (5) 

can be simplified as (6). 

HeaderofDiskPartition

HeaderofStorageArea

MetadataArea

DataArea

S
to

ra
ge

A
re

a

ID of data block

Size of data block

Size of reserved space

The number of storage area 

…… 

Size of metadata area

Size of data area

The number of index slot

Physical address of first fragment 

…… 

Size of disk partition

Physical address of next storage 

area 

S
to

ra
ge

A
re

a

FileID

CheckSumOfFile

…… 

FileType

FileSize

FileSize PhysicalAddressOfFile

…… 

DiskPartition/DataBlock

FileHeader
FileData

F
ile 1

F
ile 

Cache

StorageArea

S
lot m

…… 

FileSize

…… 

S
lot 1 …

H
eader_sa

BlockID,BlockSize,...
PhysicalAddressOfFile

PhysicalAddressOfFile

… …

F
ile m

Slot 1

FileSizeSlot m

MetadataArea DataArea

File 1

File m

H
eader_dp

Memory

Disk

F
rag 1

DataAreaIndexArea

…… 

F
irstF

rag

F
rag 2

F
rag 3

Phase 1:

RetrievePhysicalAddress

Phase 2:

AccessData

Metadata Cache

DFS

Disk



AUTHOR ET AL.:  TITLE 7 

 

𝑇𝑖𝐹𝑙𝑎𝑡𝐿𝐹𝑆 ≈ 𝑇′1:𝐴𝑐𝑐𝑒𝑠𝑠𝐷𝑎𝑡𝑎                             (6) 

The time of data access from disks with iFlatLFS is equal to 

that in a traditional file system, (7) holds. 

𝑇′1:𝐴𝑐𝑐𝑒𝑠𝑠𝐷𝑎𝑡𝑎 ≈ 𝑇5:𝐴𝑐𝑐𝑒𝑠𝑠𝐷𝑎𝑡𝑎                               (7) 

Thus, Inequality (8) holds. 

𝑇𝑖𝐹𝑙𝑎𝑡𝐿𝐹𝑆 ≈ 𝑇′1:𝐴𝑐𝑐𝑒𝑠𝑠𝐷𝑎𝑡𝑎 ≈ 𝑇5:𝐴𝑐𝑐𝑒𝑠𝑠𝐷𝑎𝑡𝑎 

< 𝑇1:𝑅𝑒𝑎𝑑𝐼𝐹𝐼𝑛𝑜𝑑𝑒 + 𝑇2:𝑅𝑒𝑎𝑑𝐼𝐹𝐷𝑎𝑡𝑎 + 𝑇3:𝑅𝑒𝑎𝑑𝐷𝐵𝐹𝐼𝑛𝑜𝑑𝑒          
+𝑇4:𝑅𝑒𝑎𝑑𝐴𝑑𝑑𝑟𝑒𝑠𝑠𝐵𝑙𝑜𝑐𝑘  + 𝑇5:𝐴𝑐𝑐𝑒𝑠𝑠𝐷𝑎𝑡𝑎 

= 𝑇𝑜𝑟𝑖𝑔𝑖𝑛𝑎𝑙                                                                         (8) 

Inequality (8) shows that the performance of DFSes based 

on iFlatLFS is higher than that based on traditional file systems. 

Additionally, by comparing (4) and (7), we can draw the same 

conclusion that 𝑇𝑖𝐹𝑙𝑎𝑡𝐿𝐹𝑆  is smaller than 𝑇𝑜𝑟𝑖𝑔𝑖𝑛𝑎𝑙_𝑇𝐹𝑆  with the 

cache effect considered. 

In summary, any file can be accessed once its physical ad-

dress is found from the metadata cache on a data server in-

stalling iFlatLFS. iFlatLFS needs only one disk operation to 

access each small file. However, when a small file is accessed 

with a traditional file system, the following steps need to be 

performed. Firstly, an index file must be read, and the corre-

sponding index item must be found. Then the physical address 

of the file is retrieved from the disk. Finally, the disk operation 

is performed to access the file. Therefore, in a traditional file 

system, 5 operations are typically required to access a file. 

4.3 Metadata consistency 

After all metadata in disks are cached into the memory, there 

will be two copies of metadata in the system: one is in the disks 

and the other in the memory. Usually, the applications only 

access the memory to retrieve the metadata. It is a technical 

challenge to maintain the consistency of the two copies of 

metadata, especially when the unexpected server failures occur. 

All current major traditional file systems are either jour-

naling file systems (such as Ext4, XFS, ReiserFS) or Copy-on-

Write file systems (such as ZFS, Btrfs). Metadata or data con-

sistency is protected in these file systems. However, many good 

functionalities in the traditional file systems for maintaining 

consistency are far beyond what the DFSes need. Only the 

Write through and write back policies are sufficient for a DFS. 

In iFlatLFS, two metadata consistency policies have been 

implemented: 1) Strong Consistency (write through) policy and 

2) Weak Consistency (write back) policy. In the strong con-

sistency policy, a write operation is atomic. After receiving new 

data from applications, iFlatLFS first writes these data and their 

metadata into disks, then updates the metadata into memory, 

and lastly returns a value to the application. All read operations 

on metadata are still executed in memory. In weak consistency, 

the new data and the corresponding metadata are both stored in 

memory temporarily, and a value is returned to the application. 

iFlatLFS only periodically writes the dirty data and metadata 

back into the disks to prevent data loss caused by the unex-

pected server failures. In case of the server failures, those dirty 

data which have not been written into the disks are lost. 

When there are only read operations, no metadata consisten-

cy operations are required. Consistency has to be considered 

only when writes are performed. We established the analytical 

model in the above three scenarios to compare the performance 

of the DFS based on traditional file systems, iFlatLFS under the 

strong consistency policy and iFlatLFS under weak consistency. 

4.3.1 Modeling write operations for traditional file systems 

Journaling functionality has a marked negative impact on the 

write efficiency in traditional file systems. For example, by 

default, Ext4 first writes the data to the disk, then writes its 

related metadata to the journal, and finally checkpoints the 

metadata to the disk. Therefore, in the following modeling pro-

cess, we do not consider the journaling effect. If the journaling 

functionality is considered, the worse performance is expected. 

𝑇𝑜𝑤 denotes the time of a write operation in a DFS based on 

the traditional file systems. The analytical model of 𝑇𝑜𝑤can be 

represented in (9). 

𝑇𝑜𝑤 = 𝑇1:𝑅𝑒𝑎𝑑𝐼𝐹𝐼𝑛𝑜𝑑𝑒 + 𝑇2:𝑊𝑟𝑖𝑡𝑒𝐼𝐹𝐼𝑛𝑜𝑑𝑒 + 𝑇3:𝑅𝑒𝑎𝑑𝐷𝐵𝐹𝐼𝑛𝑜𝑑𝑒

+ 𝑇4:𝑊𝑟𝑖𝑡𝑒𝐴𝑑𝑑𝑟𝑒𝑠𝑠𝐵𝑙𝑜𝑐𝑘 + 𝑇5:𝑊𝑟𝑖𝑡𝑒𝐷𝑖𝑠𝑘𝐵𝑙𝑜𝑐𝑘(9) 

In (9), 𝑇1:𝑅𝑒𝑎𝑑𝐼𝐹𝐼𝑛𝑜𝑑𝑒 is the time spent in reading the inode of 

the index file, 𝑇2:𝑊𝑟𝑖𝑡𝑒𝐼𝐹𝐼𝑛𝑜𝑑𝑒  is the time in writing the corre-

sponding metadata into the index file, 𝑇3:𝑅𝑒𝑎𝑑𝐷𝐵𝐹𝐼𝑛𝑜𝑑𝑒  is the 

time in reading the inode of the data block file, 

𝑇4:𝑊𝑟𝑖𝑡𝑒𝐴𝑑𝑑𝑟𝑒𝑠𝑠𝐵𝑙𝑜𝑐𝑘  is the time in writing the file address into 

the address block of the disk, 𝑇5:𝑊𝑟𝑖𝑡𝑒𝐷𝑖𝑠𝑘𝐵𝑙𝑜𝑐𝑘  is the time in 

writing the file data into the disk. 

Equation (9) does not consider the memory cache effect. If 

the cache effect is taken into account, Equation (9) can be fur-

ther simplified. For example, the time of a write operation in 

TFS can be modeled using (10). 

𝑇𝑜𝑤𝑇𝐹𝑆
≈ 𝑇2:𝑊𝑟𝑖𝑡𝑒𝐼𝐹𝐼𝑛𝑜𝑑𝑒 + 𝑇4:𝑊𝑟𝑖𝑡𝑒𝐴𝑑𝑑𝑟𝑒𝑠𝑠𝐵𝑙𝑜𝑐𝑘

+ 𝑇5:𝑊𝑟𝑖𝑡𝑒𝐷𝑖𝑠𝑘𝐵𝑙𝑜𝑐𝑘                                      (10) 

4.3.2 Modelling write operations for iFlatLFS under the 
metadata consistency policy 

𝑇𝑖𝑤 denotes the time of a write operation in an iFlatLFS-based 

DFS when the strong metadata consistency is applied. Equation 

(11) represents the model of 𝑇𝑖𝑤, where 𝑇′1:𝑊𝑟𝑖𝑡𝑒𝑀𝑒𝑡𝑎𝑑𝑎𝑡𝑎 is the 

time spent in writing the file metadata into the disk, and 

𝑇′2:𝑊𝑟𝑖𝑡𝑒𝐷𝑎𝑡𝑎 is the time in writing the file data into the disk. 

𝑇𝑖𝑤 = 𝑇′1:𝑊𝑟𝑖𝑡𝑒𝑀𝑒𝑡𝑎𝑑𝑎𝑡𝑎 + 𝑇′2:𝑊𝑟𝑖𝑡𝑒𝐷𝑎𝑡𝑎         (11) 

By comparing 𝑇𝑜𝑤 and 𝑇𝑖𝑤, Inequality (12) holds, which in-

dicates that a write operation in an iFlatLFS-based DFS with 

the strong metadata consistency policy is faster than that in a 

traditional file system without considering the cache effect. 

Even if the cache effect is taken into account, we can draw the 

same conclusion. For example, In TFS, by comparing 𝑇𝑜𝑤_𝑇𝐹𝑆 

and 𝑇𝑖𝑤, Inequality (13) holds. 

𝑇𝑖𝑤 = 𝑇′
1:𝑊𝑟𝑖𝑡𝑒𝑀𝑒𝑡𝑎𝑑𝑎𝑡𝑎 + 𝑇′

2:𝑊𝑟𝑖𝑡𝑒𝐷𝑎𝑡𝑎 

       ≈ 𝑇4:𝑊𝑟𝑖𝑡𝑒𝐴𝑑𝑑𝑟𝑒𝑠𝑠𝐵𝑙𝑜𝑐𝑘 + 𝑇5:𝑊𝑟𝑖𝑡𝑒𝐷𝑖𝑠𝑘𝐵𝑙𝑜𝑐𝑘    
       < 𝑇1:𝑅𝑒𝑎𝑑𝐼𝐹𝐼𝑛𝑜𝑑𝑒 + 𝑇2:𝑊𝑟𝑖𝑡𝑒𝐼𝐹𝐼𝑛𝑜𝑑𝑒 + 𝑇3:𝑅𝑒𝑎𝑑𝐷𝐵𝐹𝐼𝑛𝑜𝑑𝑒 

                    +𝑇4:𝑊𝑟𝑖𝑡𝑒𝐴𝑑𝑑𝑟𝑒𝑠𝑠𝐵𝑙𝑜𝑐𝑘 + 𝑇5:𝑊𝑟𝑖𝑡𝑒𝐷𝑖𝑠𝑘𝐵𝑙𝑜𝑐𝑘 

= 𝑇𝑜𝑤                                                                                         (12) 

 

𝑇𝑖𝑤 = 𝑇′
1:𝑊𝑟𝑖𝑡𝑒𝑀𝑒𝑡𝑎𝑑𝑎𝑡𝑎 + 𝑇′

2:𝑊𝑟𝑖𝑡𝑒𝐷𝑎𝑡𝑎 

       ≈ 𝑇4:𝑊𝑟𝑖𝑡𝑒𝐴𝑑𝑑𝑟𝑒𝑠𝑠𝐵𝑙𝑜𝑐𝑘 + 𝑇5:𝑊𝑟𝑖𝑡𝑒𝐷𝑖𝑠𝑘𝐵𝑙𝑜𝑐𝑘 

      < 𝑇2:𝑊𝑟𝑖𝑡𝑒𝐼𝐹𝐼𝑛𝑜𝑑𝑒 + 𝑇4:𝑊𝑟𝑖𝑡𝑒𝐴𝑑𝑑𝑟𝑒𝑠𝑠𝐵𝑙𝑜𝑐𝑘 + 𝑇5:𝑊𝑟𝑖𝑡𝑒𝐷𝑖𝑠𝑘𝐵𝑙𝑜𝑐𝑘 

= 𝑇𝑜𝑤_𝑇𝐹𝑆                                                                                   (13) 

When the iFlatLFS-based DFS deploys the weak consisten-

cy policy, the metadata consistency operation also needs to be 

performed for new files that are written. In this aspect, the weak 

policy is the same as the strong policy. However, the metadata 

consistency operation is performed periodically in the weak 

policy, which gives the system the opportunities to optimize the 

I/O performance. First, if the same data are written several 

times before next consistency operation, the system only needs 

to write the data into the disk once. Second, in a consistency 
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operation, much metadata are written together which may give 

the system the opportunity to combine small I/O writes into a 

bigger write and therefore reduce I/O overhead. From the above 

discussions, we can conclude that the weak consistency policy 

incurs less overhead than the strong policy. 

In summary, according to (8), (12), (13) and the analysis 

about the overhead of weak consistency, we can conclude that 

no matter which consistency policy is used, the iFlatLFS-based 

DFS can always deliver better performance than the DFS based 

on traditional file systems for both read and write. 

4.4 Size of metadata 

In the Ext4-based TFS, the size of a data block file is 64 MB. A 

data block file has a index file, which stores the index data of 

all small files in the data block. The index data of each small 

file occupy 20 Bytes. In Ext4, both the index file and the data 

block file have an inode of 256 Bytes, and an address pointer of 

8 Bytes is required for each 1KB data in the data block files. 

Suppose the total file size is x TB and the average file size is y 

KB. Then the total number of small files is (x/y) G. 

Based on the above discussions, we can use (14), (15) (16) 

and (17) to calculate the total number of the data block files 

(denoted by 𝑁𝑢𝑚𝑑𝑏𝑓) and the total number of the index files 

(𝑁𝑢𝑚𝑖𝑓), the size of total inodes (𝑆𝑖𝑧𝑒𝑖𝑛𝑜𝑑𝑒), the size of total 

index data (𝑆𝑖𝑧𝑒𝑖𝑓), and the size of total address data in the data 

block files (𝑆𝑖𝑧𝑒𝑎𝑑𝑑𝑟𝑒𝑠𝑠). 

𝑁𝑢𝑚𝑑𝑏𝑓 = 𝑁𝑢𝑚𝑖𝑓 = 𝑥𝑇𝐵/64𝑀𝐵 = 16𝐾 × 𝑥                  (14) 

𝑆𝑖𝑧𝑒𝑖𝑛𝑜𝑑𝑒 = 256𝐵 × (𝑁𝑢𝑚𝑖𝑓 + 𝑁𝑢𝑚𝑑𝑏𝑓) = 8𝑀𝐵 × 𝑥   (15) 

𝑆𝑖𝑧𝑒𝑖𝑓 = 𝑁𝑢𝑚𝑖𝑓 × ((64𝑀𝐵/𝑦𝐾𝐵) × 20𝐵)                            

= 20𝐺𝐵 × 𝑥/𝑦                                                              (16) 

𝑆𝑖𝑧𝑒𝑎𝑑𝑑𝑟𝑒𝑠𝑠 = 𝑁𝑢𝑚𝑑𝑏𝑓 × ((64𝑀𝐵/1𝐾𝐵) × 8𝐵)                  

= 8𝐺𝐵 × 𝑥                                                           (17) 

Consequently, the total metadata size 

(denoted by 𝑆𝑖𝑧𝑒𝑚𝑒𝑡𝑎𝑑𝑎𝑡𝑎𝑜𝑓𝑒𝑥𝑡4) can be calculated by (18). 

𝑆𝑖𝑧𝑒𝑚𝑒𝑡𝑎𝑑𝑎𝑡𝑎𝑜𝑓𝑒𝑥𝑡4 = 𝑆𝑖𝑧𝑒𝑖𝑛𝑜𝑑𝑒 + 𝑆𝑖𝑧𝑒𝑖𝑓 + 𝑆𝑖𝑧𝑒𝑎𝑑𝑑𝑟𝑒𝑠𝑠 

= 8𝑀𝐵 × 𝑥 + 20𝐺𝐵 × 𝑥/𝑦 + 8𝐺𝐵 × 𝑥  (18) 

As we have presented in Section 4.1.2, an index item in 

iFlatLFS occupies 12 Bytes. Then, the total metadata size in the 

iFlatLFS-based TFS can be calculated by (19). 

𝑆𝑖𝑧𝑒𝑚𝑒𝑡𝑎𝑑𝑎𝑡𝑎𝑜𝑓𝑖𝐹𝑙𝑎𝑡𝐿𝐹𝑆 = (𝑥𝑇𝐵/𝑦𝐾𝐵) × 12𝐵

≈  12𝐺𝐵 × 𝑥/𝑦                                            (19) 

As can be seen from (18) and (19), the total metadata size in 

the Ext4-based TFS mainly depends on the total file size and 

the total number of files, while the total metadata size in the 

iFlatLFS-based TFS only depends on the total number of files. 

Moreover, from (18) and (19), we can calculate the ratio of 

the size of metadata in iFlatLFS to that in Ext4, i.e., 

𝑆𝑖𝑧𝑒𝑚𝑒𝑡𝑎𝑑𝑎𝑡𝑎𝑜𝑓𝑖𝐹𝑙𝑎𝑡𝐿𝐹𝑆/𝑆𝑖𝑧𝑒𝑚𝑒𝑡𝑎𝑑𝑎𝑡𝑎𝑜𝑓𝑒𝑥𝑡4 

≈ 12/(20 + 8 × 𝑦)                               (20) 

Equation (20) shows that the metadata size in iFlatLFS is a 

fraction of that in Ext4. For example, when the average file size 

is 16KB, 𝑆𝑖𝑧𝑒𝑚𝑒𝑡𝑎𝑑𝑎𝑡𝑎𝑜𝑓𝑖𝐹𝑙𝑎𝑡𝐿𝐹𝑆/𝑆𝑖𝑧𝑒𝑚𝑒𝑡𝑎𝑑𝑎𝑡𝑎𝑜𝑓𝑒𝑥𝑡4 ≈ 8%. 

Because the ratio of the metadata size to the file data size is 

so small in iFlatLFS, iFlatLFS is able to support storing a large 

volume of data. For example, in a data server with 10TB, the 

same as that of Haystack deployed by Facebook [3], only 

7.5GB main memory are needed for caching the metadata. 

4.5 Implementation 

A prototype of iFlatLFS has been implemented in CentOS re-

lease 5.5 (kernel is 2.6.18-308.8.1.el5.plusxen x86-64). Because 

Haystack is not open source, we selected the open source pro-

ject TFS [9] designed by the Alibaba Group [20] as the upper 

DFS. The Alibaba Group is a top e-business service provider in 

China. According to Alibaba’s report in 2010, TFS has managed 

about 28.6 billion photos, whose average size is 17.45KB [9]. 

In this implementation, the disks must be partitioned manu-

ally and several configuration parameters must be determined in 

advance, such as data block size, the involved disk partitions 

and their sizes, average file size. The average file size can be 

derived by statistical means or historical data, while others pa-

rameters can be determined by the hardware configuration of 

the data server. The average file size relates to the application 

scenarios, while the data block size can be determined using 

(21), where 𝑆𝑖𝑧𝑒𝐷𝑖𝑠𝑘𝑃𝑎𝑟𝑡𝑖𝑡𝑖𝑜𝑛 is the size of disk partition, which 

can be determined in the way discussed in Section 4.1.2; 

𝑆𝑖𝑧𝑒𝑀𝑒𝑡𝑎𝐷𝑎𝑡𝑎 is the size of the total metadata of this data block; 

SizeMetaData is calculated by (19); 𝑆𝑖𝑧𝑒𝑅𝑒𝑠𝑒𝑟𝑣𝑒𝑑𝑆𝑝𝑎𝑐𝑒  is the size of 

reserved space, which is set by the administrators empirically 

(typically 5% of 𝑆𝑖𝑧𝑒𝐷𝑖𝑠𝑘𝑃𝑎𝑟𝑡𝑖𝑡𝑖𝑜𝑛). 

𝑆𝑖𝑧𝑒𝐷𝑎𝑡𝑎𝐵𝑙𝑜𝑐𝑘 = 𝑆𝑖𝑧𝑒𝐷𝑖𝑠𝑘𝑃𝑎𝑟𝑡𝑖𝑡𝑖𝑜𝑛 − 𝑆𝑖𝑧𝑒𝑅𝑒𝑠𝑒𝑟𝑣𝑒𝑑𝑆𝑝𝑎𝑐𝑒  

−𝑆𝑖𝑧𝑒𝑀𝑒𝑡𝑎𝐷𝑎𝑡𝑎                                 (21) 

The principle of setting 𝑆𝑖𝑧𝑒𝑅𝑒𝑠𝑒𝑟𝑣𝑒𝑑𝑆𝑝𝑎𝑐𝑒  is to gain the expe-

rience about the level of fragmentation (i.e., total size of the 

fragmented disk spaces) in the disk partition. If the level of 

fragmentation is greater than the size of reserved space, it will 

cause the data to be written into the fragmented disk space 

when other spaces including the reserved space are full, which 

will hurt the disk accessing performance. On the contrary, if the 

reserved space is bigger than the fragmented disk space, the 

data accessing performance will not be negatively affected, but 

the disk utilization will become lower. Therefore, setting 

𝑆𝑖𝑧𝑒𝑅𝑒𝑠𝑒𝑟𝑣𝑒𝑑𝑆𝑝𝑎𝑐𝑒  needs to strike the balance between disk ac-

cessing performance and disk utilization. 

We extended an existing dedicated formatting tool, named 

stfs, to allocate the disk space for the metadata area and the data 

area according to these parameters. Finally, the disk partition 

headers and storage area headers are written into the disk. 

The size of the disk partition header is 1 KB, so is the stor-

age area header. Additionally, we use a bitmap to represent the 

states of all index slots in the metadata area. Each bit in the 

bitmap represents the state of one index slot. If a bit is “1”, then 

the index slot is occupied by a file. If the bit is “0”, the index 

slot is free. In order to prevent the data failure, iFlatLFS gener-

ates a copy of these headers and bitmap, and stores them into 

the disk. iFlatLFS verifies mutual integrity automatically when 

the data are loaded into cache. 

 As shown in Section 4.2, the file access in iFlatLFS consists 

of two phases: querying physical address and accessing data. 

Due to space limitation, the detailed outlines of the two phases 

are included in the supplementary file of this paper.  

5 PERFORMANCE EVALUATION 

We have evaluated the performance of iFlatLFS and several 

existing file systems, including Ext4, XFS [18] and ReiserFS 

[35]. XFS is the file system used in Haystack [3], which is a 

DFS developed by Facebook to improve the performance of 

handling photos (relatively small files), while ReiserFS is a file 

system that can achieve good performance in accessing small 
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files in local machines.  

We have implemented iFlatLFS into TFS [9] because Hay-

stack is not open source. We compared the performance be-

tween the iFlatLFS-based TFS and the original implementation 

of TFS, which is based on Ext4. 

In the experiments, we used the production workload traces 

observed in Facebook [3]. The testing cases in this paper in-

clude random read and mix random access. As discussed in [3], 

[9], the production workload in the real world is typically dom-

inated by read. The experiments used the same ratios of random 

read to write as set in [3] and the file size to be read or written 

ranges from 1 KB to 64 KB with the average of 16KB. 

5.1 Performance of iFlatLFS 

Firstly, we evaluate the performance of iFlatLFS in a typical 

DFS environment on a Dell PC, which has a 2.33GHz Intel 

Q8200 processor with 4 cores and 4MB L2 cache, 4GB of 

memory and a 500GB SATA disk. The partition size in all file 

systems is 128GB. The CentOS release 5.5 with kernel 2.6.18-

308.8.1.el5.plusxen for x86-64 was installed. To support Ext4, 

XFS and ReiserFS, we also installed the e4fsprogs package of 

version 1.41.12-2.el5, the xfsprogs package of version 2.9.4-

1.el5 and the reiserfs-utils package of version 3.6.19-2.4.1. 

Based on the above platform, we used the open source mul-

tithreaded disk I/O program named Randomio [21] to establish 

a baseline for the maximum read/write performance (regarded 

as the optimal performance that a file system can achieve), 

which is also how the baseline performance is established in 

reference [3]. We then tested and compared the performance 

achieved by Randomio, iFlatLFS, Ext4, XFS and ReiserFS. In 

the experiments, the file size ranged from 1 KB to 64 KB.  

Since the objective of the experiments is to evaluate how 

well the file systems (i.e., iFlatLFS, ext, xfs and ReiserFS) 

work in the context of DFS, the data storage layout in the data 

servers and the accessing patterns to these stored data were 

generated in the experiments to mimic the real DFS context. In 

Ext4 and ReiserFS, 2048 data block files, each with the size of 

64 MB, were, while in the iFlatLFS and XFS, a total of 8 data 

partitions with the size of 16G, each of which corresponds to a 

data block, were created. Therefore, the entire system has the 

storage of 128GB. Note that XFS is used in Haystack devel-

oped by Facebook for handling photos. Haystack is not re-

leased. So we configure XFS to mimic the DFS context only 

according to the information available in the literature [3].  

We then wrote 80GB of small-size data (ranging from 1KB 

to 64KB) into these data block files in Ext4 and ReiserFS, and 

also into the data partitions in iFlatLFS and XFS. The experi-

ments were then conducted for both the existing file systems 

and iFlatLFS in the following 3 steps: 1) selecting a data block 

randomly, and also selecting a random offset on the data block; 

2) reading or writing the data from the offset of the selected 

data block; 3) repeating step 1 and step 2 for 1000 times. As in 

TFS [9], the number of I/O operations performed per second 

(iops) is used as the metric to measure I/O performance, which 

can be regarded as the throughput of a file system. 

Fig. 8a shows the performance in terms of iops when there 

are only read operations. As can be seen from Fig. 8a, iFlatLFS 

can significantly outperform other file systems in all cases (by 

48% on average in case of Ext4), and the performance achieved 

by iFlatLFS is very close to the baseline performance obtained 

by randomio. These results suggest that iFlatLFS is able to 

achieve near-optimal I/O performance. A closer observation 

from Fig. 8a also shows that as the file size increases, the per-

formance advantage of iFlatLFS over other file systems de-

creases. This is because iFlatLFS optimizes I/O performance by 

reducing the I/O overhead such as the overhead of looking up 

metadata and data addresses. When the file size increases, the 

proportion of overhead in the whole duration of an I/O opera-

tion decreases, and consequently the advantage of iFlatLFS 

becomes less prominent. 

  

(a)  random read (b)  mix random access 

Fig. 8  Performance of Randomio, iFlatLFS, Ext4, XFS, ReiserFS 

Another interesting observation is that Reiserfs obtains the 

worst performance, even worse than Ext4. The reason for this is 

explained as follows. Reiserfs can indeed optimize the perfor-

mance of accessing small files in local computers. However, 

when Reiserfs is used as the file system on the data servers of a 

DFS, the files that Reiserfs receives from the upper DFS are the 

data blocks formed by the combined-block approach. Such a 

data block is relatively big (e.g., it is 64MB in TFS), which 

means that the files received and stored by Reiserfs are actually 

big.  ReiserFS is engineered so that it can handle small files 

efficiently, but does not have good performance when handling 

big files. This is why Reiserf exihibits poor performance in the 

figure. This result suggests that although Reiserfs can optimize 

the performance in accessing small files in local computers, it 

does not show good performance in the context of DFS. This 

result once again shows the necessity of our work.  

It can be seen from Fig. 10a that XFS used in Haystack de-

livers the higher performance than Ex4 and ReiserFS. This re-

sult is expected because XFS is configured in the experiments 

in the similar way as it is used in Haystack. However, the per-

formance of XFS is still worse than that of iFlatLFS, which can 

deliver the near-optimal performance. This is because XFS is 

still designed following the principles of the traditional file 

systems, for example, using the hierarchical data management 

model. However, iFlatLFS is completely re-designed (e.g., us-

ing the flat data storage structure) to minimize the overhead for 

accessing massive small files in DFS.  Consequently, the data 

addressing overhead in XFS is higher. 

Fig. 8b shows the performance of iops when there is a mix-

ture of reads and writes. In the legend of Fig. 8b, the suffix of 

98:2 represents the random access mixing 98% reads and 2% 

writes, while the suffix of 96:4 represents the mix of 96% reads 

and 4% writes. It can be seen from Fig. 8b that in all cases, 

iFlatLFS can achieve near-optimal performance and significant-

ly outperforms other file systems (by 54% on average in case of 

Ext4). These results are consistent with those observed in Fig. 
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8a. Again, similar to the results in Fig. 8a, in Fig. 8b the per-

formance improvement of iFlatLFS over other file systems 

diminishes as the file size increases. 

5.2 Performance of iFlatLFS-based TFS 

The performance of TFS based on iFlatLFS and Ext4 file sys-

tem is evaluated in a cluster with 4 nodes and a Cisco SR2024 

24 ports 10/100/1000 gigabit switch. Each node has two 2.13 

GHz Intel Xeon E5506 Quad processors, 4GB of memory, 

2.5TB of SATA disks, and installs CentOS release 5.5 with the 

kernel 2.6.18-308.8.1.el5.plusxen for x86-64. In the total 2.5TB 

of disk space, 0.5TB is used by the operating system, 1TB by 

the Ext4 file system and 1TB by iFlatLFS. 

The experiment was conducted in 3 steps: 1) writing a total 

512GB of small files with different sizes; 2) randomly reading 

1000 files from these small files written in the first step; 3) mix-

ing read and write operations with the same ratio as in the ex-

periments presented in Section 5.1. 

The results are shown in Fig. 9a and 11b. iFlatLFS-based 

TFS significantly outperforms Ext4-based TFS in both read 

only case (by about 45% on average) and the read-write case 

(by about 49% on average). These results once again indicate 

that iFlatFLS is able to optimize I/O performance.  

By comparing with the results in Fig. 8, the performance of 

iFlatLFS-based (or Ext4-based) TFS is poorer than that of 

iFlatLFS (or Ext4). This is because accessing data in TFS incurs 

additional overhead, such as transferring data in the network 

and accessing metadata server. If a faster network product is 

used, the additional overhead is expected to be smaller. 

  

(a)  random read (b)  mix random access 

Fig. 9  Performance of TFS based on iFlatLFS and Ext4 

5.3 The impact of metadata consistency policy 

In Section 5.1 and 5.2, the strong metadata consistency policy is 

applied. In this subsection, we present the experiment results 

for the weak consistency policy and show the impact of the 

consistency policy on performance. 

Fig. 10 plots the performance of iFlatLFS-based TFS with 

different metadata consistency policies as the ratio of write 

requests to the total requests increases. In Fig. 10, in the weak 

consistency policy, the performance of the iFlatLFS-based TFS 

increases as the proportion of write requests increases. This 

result can be explained as follows. Under the weak consistency 

policy, a write operation returns after the data has been written 

into the system buffer. The file system periodically writes the 

new data into the disk, which is conducted in the background 

and may overlap with other file access operations. However, a 

read operation most likely involves a disk operation, because 

they are random reads in the experiments and the cache effect 

has little positive impact. Therefore, a write operation typically 

spends less time than a read under the weak consistency policy. 

Moreover, when the file system write the data into disks period-

ically, many data are written together, which gives the underly-

ing I/O system the opportunity to improve performance. 

It can also be observed that under strong consistency, the 

performance of the iFlatLFS-based TFS decreases as the pro-

portion of the write operations increases. This is because the 

new data are written into the disk synchronously under strong 

consistency. A write operation now needs two disk operations, 

while a read operation needs only one disk operation. 

Fig. 10 also plots the performance of the Ext4-based TFS. It 

shows that the performance increases slowly as the proportion 

of writes increases. This can be explained by comparing (3) and 

(9). 𝑇2:𝑊𝑟𝑖𝑡𝑒𝐼𝐹𝐷𝑎𝑡𝑎 in (9) is always smaller than 𝑇2:𝑅𝑒𝑎𝑑𝐼𝐹𝐷𝑎𝑡𝑎 in 

(3) because a mmap write operation returns when the data is put 

into the memory cache while a mmap read will cause a disk I/O 

operation, if the required index data are not in memory. 

Fig.10 also shows that under both policies, the performance 

of iFlatLFS-based DFS is better than that of traditional DFS in 

all write-to-read ratios. In the experiments, the performance of 

traditional DFS has counted in the effect of the cache. This re-

sult suggests that iFlatLFS-based DFS can always deliver better 

performance than traditional DFS. These experimental results 

are also consistent with the analysis by comparing (9) and (10). 

  
Fig. 10  Performance of TFS based on 
Ext4 and iFlatLFS with different con-

sistency policies 

Fig. 11 The size of metadata in 
iFlatLFS and Ext 4 under different 

total file sizes 

5.4 Metadata size 

Fig. 11 plots the size of metadata in iFlatLFS and in the Ext4 

file system as the total file size increases. In the experiments, 

the file sizes range from 1K to 64K with the average size of 

16KB. The data block size in Ext4 is 64MB. In Fig. 11, the 

metadata size increases at a very modest rate in iFlatLFS, while 

the metadata size in Ext4 increases much more sharply as the 

total file size increases. This is because the metadata in 

iFlatLFS only contain index items, each of which is of fairly 

small size, while the metadata in Ext4 contain inode data, index 

data and address data, which have to consume much bigger disk 

space. Metadata can be seen as the storage overhead of a file 

system. Therefore, this result indicates that iFlatLFS incurs 

much less storage overhead than Ext4. In fact, since the size of 

metadata in iFlatLFS is so small, it enables the entire metadata 

to be loaded into the main memory, and therefore effectively 

eliminates the I/O operations involved in retrieving metadata. 

Fig.12 plots the size of metadata in iFlatLFS and in the Ext4 

file system as the average file size increases from 4KB to 64 
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KB. In these experiments, the total file size is fixed to be 1 TB. 

As can be seen from this figure, the total metadata size decreas-

es as the average file size increases in both iFlatLFS and Ext4. 

This can be explained as follows. When the average file size 

increases and the total file size is fixed (1TB), the total number 

of files decreases. Consequently, the total number of index 

items decreases, since each small file has an index item (which 

is stored in the index files in Ext4, and stored in the metadata 

area in iFlatLFS). Thus the total metadata size decreases. 

It can also been seen from Fig. 12 that as the average file 

size increases, the metadata size in Ext4 and iFlatLFS gradually 

approaches to different figures. The curve of Ext4 approaches 

to about 8GB, while the curve of iFlatLFS to about 0. This can 

be explained as follows. In iFlatLFS, the index items are the 

only metadata. Each file has an index item of 12 Bytes. In theo-

ry, when the file size is so big that the whole 1TB space has 

only one file, the total metadata size is then 12 Bytes, which 

should be the theoretical lower bound of the total metadata size. 

In Ext4, however, the metadata includes inode data, index data 

and address data. An address pointer of 8 Bytes is needed for 

each 1KB data. Then 1TB data will have 8GB address data, 

which is fixed no matter the number of files in the disk. On the 

other hand, the size of index data decreases as the number of 

files decreases. This is why the metadata size of Ext4 gradually 

approaches to 8GB in the figure. 

  
Fig. 12  The size of metadata in 

iFlatLFS and Ext4 under different 
average file sizes 

Fig. 13  Critical point of file size for 
iFlatLFS 

5.5 Critical point of file size 

As shown in Fig. 8, the performance advantage of iFlatLFS 

over Ext4 diminishes as the file size increases. We have also 

conducted the experiments to identify the critical point of file 

size, i.e., the file size beyond which iFlatLFS does not outper-

form Ext4 any more. The experimental results are presented in 

Fig. 13. The experimental settings are the same as those in Sec-

tion 5.1. It can be seen that As can be seen from this figure, the 

performance advantage of iFlatLFS over Ext4 decreases as the 

file size increases from 64KB to 2MB. iFlatLFS becomes infe-

rior to Ext4 when the file size is 4MB. Besides the reasons dis-

cussed in Section 5.1, another reason why the iFlatLFS ad-

vantage decreases may be because that the predictive prefetch-

ing and caching techniques in the Ext4 file system can lead to 

substantial performance improvement as the file size increases. 

5.6 Comparing different data storage systems 

The experiments presented so far compare iFlatLFS with other 

file systems in accessing small files. This section compares 

TFS-iFlatLFS with other types of distributed storage systems. 

TFS-iFlatLFS is the combined-block-storage DFS. The divided-

block-storage DFSes and the NoSQL (Not only SQL) database 

systems (a type of key-value storage systems) are other two 

popular data storage systems. In this section, TFS-iFlatLFS 

(version of 1.4) is compared with HDFS [5] (Hadoop version of 

2.4.1, a divided-block-storage DFS) and Cassandra [37] (ver-

sion of 2.0.9, a key-value storage system) in terms of system 

throughput (defined as the amount of data that can be accessed 

by the system in a time unit) over a wide range of data sizes.  

The hardware platform and test steps used in this section are 

the same as those in Section 5.2. The experimental results of 

random read are plotted in Fig. 14. The results show that 

iFlatLFS-based TFS does not always have performance ad-

vantages over Cassandra and HDFS. TFS-iFlatLFS outperforms 

Cassandra when the size of the data accessed by each request is 

bigger than 9.8KB, while it outperforms HDFS when the data 

size is less than 2.1MB. The reasons for these can be explained 

as follows. iFlatLFS-based TFS aims to optimize the perfor-

mance for accessing massive number of seldom modified small 

files. It does not have the optimization measures present in 

HDFS or Cassandra for accessing big files or tiny data. Our 

experimental records show that in iFlatLFS-based TFS, when 

the data size is small, the iops (IO operations per seconds) value 

remains almost unchanged and the performance increases al-

most linearly as the data size increases. But this observation 

gradually deviates as the data size becomes bigger. This is be-

cause as the data size increases, the proportion of the data ac-

cessing time in the whole I/O operation duration (i.e., data ac-

cessing time plus disk accessing overhead) increases. The value 

of 2.1M shown in Fig. 14a appears to become a threshold data 

size, beyond which the data accessing time outweights the disk 

accessing overhead and consequently, the iops value decreases 

as the data size increases. Therefore, the increasing rate of 

throughput slows down as the data size increases. In HDFS, 

however, when the data size is bigger, the prefetching and 

write-back techniques, which is absent in iFlatLFS, begins to 

play an increasingly more important role and counerbalance the 

loss due to the disk accessing overhead. As the result,  the 

throughput achieved by HDFS increases faster than that by 

TFS-iFlatLFS. The trend of the throughput curves in Fig. 14b 

can be explained by the similar reasons. 

  
(a) iFlatLFS-based TFS vs. HDFS (b) iFlatLFS-based TFS vs. Cassan-

dra 

Fig. 14  The random read performance comparation among Cassandra, 
iFlatLFS-based TFS and HDFS 

The comparison results for mix random access are plotted in 

Fig. 15. The results are plotted as columns instead of lines in 

this figure, because otherwise some curves would overlap each 

other. The results observed from Fig. 15 are consistent with 
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those observed in Fig. 14.  

These results show that there is a data size range within 

which TFS-iFlatLFS represents a better storage solution com-

pared with other two storage solutions such as Cassandra and 

HDFS. These results are reasonable since the divided-block-

storage solution is designed for storing big files, while the key-

value storage solution is designed for storing the data with very 

small sizes. These results also suggest that when big files, small 

files and tiny data all exist, there may not be a storage system 

that can achieve the best performance for the whole spectrum of 

data. It would be ideal to integrate these different storage sys-

tems as a hybrid data storage system. The final section of this 

paper tries to open the discussions in this aspect and proposes 

the possible design of such a hybrid data storage system.  

  
(a) iFlatLFS-based TFS vs. HDFS (b) iFlatLFS-based TFS vs. Cassan-

dra 

Fig. 15  The mix random access performance comparation among Cassandra, 
iFlatLFS-based TFS and HDFS 

6 DISCUSSIONS: INTEGRATING DIFFERENT DATA 

STRORAGE SYSTEMS  

At present, there are three types of prevalent large-scale dis-

tributed data storage systems: the divided-block-storage DFSes, 

the combined-block-storage DFSes and the NoSQL (Not only 

SQL) database systems. The divided-block-storage DFSes, such 

as GFS and HDFS, are usually used to store big files. But these 

DFSes can not deliver the ideal performance when handling 

small files. The main aim of designing combined-block-storage 

DFSes, such as Haystack and TFS, is to solve the problem of 

accessing massive numbers of small files efficiently. Further-

more, the NoSQL database systems, such as Dynamo [36], Cas-

sandra [37], MongoDB [38], HBase [39] and BigTable [40], are 

mainly designed for storing the data of tiny size. 

The experimental results presented in Section 5.6 are con-

sistent with the above design objectives. iFlatLFS can improve 

the performance of accessing massive numbers of small files 

with the KB-level size in the combined-block-storage DFSes. 

For the files with MB-level or bigger size, HDFS (the divided-

block-storage DFS) can achieve better performance, while for 

the tiny data with the byte-level size Cassandra (the NoSQL 

database system) is a better solution. Therefore, it is ideal to 

integrate different data storage systems that have different rang-

es of “expertise” and use them to handle the data with different 

characteristics, such as the size of the data being accessed. We 

call this a hybrid data storage system.  

There are some existing works in the literature [41, 42] to in-

tegrate the individual storage Clouds. RACS [41] is a proxy that 

applies the RAID-like techniques at the cloud storage level. 

Namely, RACS stripes user data across multiple providers, and 

transparently spreads the storage load over many providers. 

DepSky [42] is designed for improving the availability, integri-

ty and confidentiality of the data which are stored on diverse 

clouds. DepSky is implemented as a software library in the 

clients and offers a uniform store interface.  The requests of the 

clients are finally sent to the backend clouds by DepSky. 

Although there are some similarities in principles between 

RACS/DepSky and the hybrid storage system that we want to 

achieve. RACS/DepSky cannot be used in our scenario. First, 

the backend of RACS/DepSky is individual storage clouds 

while the backend of our hybrid storage system is the individual 

data storage systems. Their interfaces are different. Second, 

RACS/DepSky mainly focus on maintaining the data availabil-

ity at cloud level. Therefore they apply the data replication 

techniques, aiming to avoid vendor lock-in and better tolerate 

provider outages or failures. Each cloud contains all data set, 

but only stores a part of all replicas of a data item. However, 

our hybrid storage system mainly aims to achieve good data 

accessing performance by making use of the “expertise” of 

individual data storage systems. A backend data storage system 

will only store a part of all data set in the hybrid storage system, 

but store all replicas of a data item. 

In this section, a hybrid storage system is proposed to serve 

the above purpose. This section only aims to show that it is 

possible to integrate iFlatLFS and other storage approaches, i.e., 

the combined-block-storage DFSes and the NoSQL database 

systems, in a hybrid storage system. The detailed implementa-

tion of this hybrid storage framework is beyond the focus and 

scope of this paper. We plan to carry out the implementation 

work in the future. We also hope the proposed hybrid storage 

system can open valuable discussions and constitute a basis for 

further research work in this topic. 

6.1 The architecture of the hybrid storage system  

The architecture in the hybrid storage system is illustrated in 

Fig. 16. In this figure, the clients are the same as the client in 

Fig. 1, i.e., the application server that provide someservices to 

the users. Different from Fig. 1, the client does not access the 

DFS directly. Instead, a storage proxy sits between the clients 

and different backend storage systems (e.g., iFlatLFS-based 

TFS, HDFS and Cassandra). The storage proxy is responsible 

for classifying the incoming data accessing requests and dis-

patching the requests to the suitable backend storage systems.  

 

 

 

 

 

 

 

 

Fig. 16  The archituecutre of the hybrid storage systems 

The storage proxy not only classifies the client requests, but 

also deals with the heterogeneity of the backend data storage 

systems. The storage proxy is composed of the storage API, the 

classifier and a number of storage modules. Each storage mod-

ule acts as an agent for a backend storage system. The backend 

data storage systems are transparent to the clients. Namely, the 

storage proxy provides a set of uniform storage APIs that can be 
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invoked by the clients and the clients do not have to be aware of 

the heterogeneity of the backend storage systems.  

The process of storing the data in the hybrid storage system 

is as follows. First, the clients invoke the generic storage APIs 

provided by the storage proxy. Then, the classifier classifies the 

incoming data and invokes the corresponding storage module to 

forward the data to the backend data storage system. Finally, the 

data storage system stores the data into its own data servers. 

6.2 Storage APIs and the classifying approach 

The storage APIs provided by the storage proxy can include 

read, write, update, delete and so on. Each storage module im-

plements these APIs for the corresponding backend storage 

system in the following way. A storage module encapsulates the 

data to be stored into the storage format required by the corre-

sponding backend storage system and then invoke the corre-

sponding interface of the backend data storage system. 

Theoretically, the classifier can classify the data using def-

firent attributes, such as data type, data freshness, and client 

attributes, and so on. As shown in the experimental results in 

Section 5.6, these backend data storage systems manifest better 

performance in certain ranges of data size. Therefore, in order 

to improve the overall performance of the hybrid storage sys-

tem, the storage proxy can classify the data according to their 

sizes. In practice, we can benchmark the ideal range of data size 

for each backend storage system deployed in the hybrid storage 

system in the similar way as that in the experiments presented 

in Section 5.6. The storage proxy can then classify the data to 

be stored accordingly.  

7 CONCLUSIONS AND FUTURE WORK 

When developing efficient distributed file systems (DFS), one 

of the challenges is to optimize the storage and access of mas-

sive numbers of small files for Internet-based applications. Pre-

vious work mainly focuses on tackling the problems in tradi-

tional files systems, which generate too much metadata and 

cause low file-access performance on data servers. In this paper, 

we focus on optimizing the performance of data servers in ac-

cessing massive numbers of small files and present a light-

weight file system called iFlatLFS. iFlatLFS directly accesses 

raw disks and adopts a simple metadata scheme and a flat stor-

age architecture to manage massive numbers of small files. 

New metadata generated by iFlatLFS consume only a fraction 

of total space used by the original metadata based on traditional 

file systems. In iFlatLFS, each file access needs only one disk 

operation except when updating files, which rarely happens. 

Thus the performance of data servers and the whole DFS can be 

improved greatly. This paper finally proposes a hybrid storage 

system to integrate different storage systems, each of which 

represents a better solution for different ranges of data sizes. 

The proposal aims to open discussions and constitute a basis for 

further research work in this topic. Future work is planned to-

wards the following three directions: 1) redesigning the metada-

ta server to improve its performance because in iFlatLFS the 

metadata server now contains much fewer metadata; 2) extend-

ing iFlatLFS so that it has the capability to intelligently cache 

hotspot data in applications; 3) implementing the hybrid storage 

architecture proposed in this paper.  
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