
http://wrap.warwick.ac.uk

Original citation:
Fu, Songling, He, Ligang, Huang, Chenlin, Liao, Xiangke and Li, Kenli. (2014)
Performance optimization for managing massive numbers of small files in distributed file
systems. IEEE Transactions on Parallel and Distributed Systems . ISSN 1045-9219

Permanent WRAP url:
http://wrap.warwick.ac.uk/65275

Copyright and reuse:
The Warwick Research Archive Portal (WRAP) makes this work by researchers of the
University of Warwick available open access under the following conditions. Copyright ©
and all moral rights to the version of the paper presented here belong to the individual
author(s) and/or other copyright owners. To the extent reasonable and practicable the
material made available in WRAP has been checked for eligibility before being made
available.

Copies of full items can be used for personal research or study, educational, or not-for
profit purposes without prior permission or charge. Provided that the authors, title and
full bibliographic details are credited, a hyperlink and/or URL is given for the original
metadata page and the content is not changed in any way.

Publisher’s statement:
“© 2014 IEEE. Personal use of this material is permitted. Permission from IEEE must be
obtained for all other uses, in any current or future media, including reprinting
/republishing this material for advertising or promotional purposes, creating new
collective works, for resale or redistribution to servers or lists, or reuse of any
copyrighted component of this work in other works.”

A note on versions:
The version presented here may differ from the published version or, version of record, if
you wish to cite this item you are advised to consult the publisher’s version. Please see
the ‘permanent WRAP url’ above for details on accessing the published version and note
that access may require a subscription.

For more information, please contact the WRAP Team at: publications@warwick.ac.uk

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Warwick Research Archives Portal Repository

https://core.ac.uk/display/29192363?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://wrap.warwick.ac.uk/
http://wrap.warwick.ac.uk/65275
mailto:publications@warwick.ac.uk

IEEE TRANSACTIONS ON JOURNAL NAME, MANUSCRIPT ID 1

Performance Optimization for Managing Massive

Numbers of Small Files in Distributed File

Systems
Songling Fu, Ligang He, Chenlin Huang, Xiangke Liao, Kenli Li

Abstract—The processing of massive numbers of small files is a challenge in the design of distributed file systems. Currently, the

combined-block-storage approach is prevalent. However, the approach employs the traditional file systems such as ExtFS and may cause

inefficiency when accessing small files randomly located in the disk. This paper focuses on optimizing the performance of data servers in

accessing massive numbers of small files. We present a Flat Lightweight File System (iFlatLFS) to manage small files, which is based on a

simple metadata scheme and a flat storage architecture. iFlatLFS is designed to substitute the traditional file system on data servers and can

be deployed underneath distributed file systems that store massive numbers of small files. iFlatLFS can greatly simplify the original data

access procedure. The new metadata proposed in this paper occupies only a fraction of the metadata size based on traditional file systems.

We have implemented iFlatLFS in CentOS 5.5 and integrated it into an open source Distributed File System (DFS), called Taobao

FileSystem (TFS), which is developed by a top B2C service provider, Alibaba, in China and is managing over 28.6 billion small photos. We

have conducted extensive experiments to verify the performance of iFlatLFS. The results show that when the file size ranges from 1KB to

64KB, iFlatLFS is faster than Ext4 by 48% and 54% on average for random read and write in the DFS environment, respectively. Moreover,

after iFlatLFS is integrated into TFS, iFlatLFS-based TFS is faster than the existing Ext4-based TFS by 45% and 49% on average for random

read access and hybrid access (the mix of read and write accesses), respectively.

Index Terms—Distributed File System; Data Server; Small File; Performance Optimization

——————————  ——————————

1 INTRODUCTION

ith the extreme popularity of social networks (e.g., Face-

book [22]) and e-commerce sites (e.g., Amazon [23] and

Taobao [24]), new challenges are raised to efficiently store and

access massive numbers of small files, such as user messages

and merchandise photos. The small files in such scenarios have

their special characteristics. Typically, these small files are sel-

dom modified and their sizes range from several KBs to tens of

KBs [1-3]. For example, it is shown in [9] that the Taobao File

System (TFS) used by Taobao, which is the No.1 e-commerce

site in China, manages about 28.6 billion photos and the aver-

age photo size is 17.45KB. This is different from the case of big

files. For example, Reference [4] shows that the files processed

by some Google applications have the size of multiple GBs.

Distributed File System (DFS) is a method of storing and ac-

cessing files based on a client/server architecture, as shown in

Fig. 1. In a DFS, all files are replicated and stored in many data

servers, while the metadata are stored in the metadata server. A

client (note that a client in this context is not a user, but an appli-

cation server which interacts with DFS and provides the services

to the users) must look up a file by the metadata server in a DFS,

not by a file path, which is a typical way of looking up a file in

traditional file systems. As shown in Fig. 1, a client accesses a

file stored in a DFS by two phases: 1) querying the metadata

server to get the IP address of the data server which stores the

target file; 2) connecting the data server to fetch the file data.

In traditional DFS, such as GFS [4] and HDFS [5], the di-

vided-block-storage approach is designed to handle big files,

each of which is divided into multiple fixed-size (typically

64MB) data blocks. Each data block is stored as a regular file in

multiple data servers. There is at least one metadata object in

the metadata server and one regular file on the data server for

each file. When the files in the systems are mainly small files,

the number of stored files increases sharply, resulting in a huge

amount of metadata on the metadata server and the low perfor-

mance in accessing files on data servers [6], [7], [8]. Therefore,

it is a popular research topic in the design of DFS to improve

the performance of processing massive small files.

Currently, combined-block-storage is a prevalent approach

to processing massive small files and has been implemented in

both Haystack [3] by Facebook and TFS [9] by the Alibaba

Group. The fundamental idea of combined-block-storage is to

combine small files into large data blocks to reduce the magni-

tude of metadata on the metadata server. The Combined-block-

storage approach adopts traditional file systems, such as Ext4

[10] and XFS [18], to store data blocks as regular files on the

data servers. However, traditional file systems often have very

low performance when handling massive small files [11], [12].

Since the accesses to the hotspot data are commonly filtered

by the multi-level cache techniques in commercial systems,

such as CDN [14], the data requests arriving at the actual data

servers situated behind multiple levels of caches are most likely

to access the non-hotspot data that are randomly distributed in

the disk. Therefore, there is no need to cache the accessed data

into the memory on data servers. This is why improving I/O

xxxx-xxxx/0x/$xx.00 © 200x IEEE Published by the IEEE Computer Society

————————————————
 Songling Fu is with the School of Computer Science, National University of

Defense Technology, Changsha, China. E-mail: slfu@nudt.edu.cn.
 Ligang He is with the Department of Computer Science, University of

Warwick, Coventry, UK, E-mail: liganghe@dcs.warwick.ac.uk.
 Chenlin Huang is with the School of Computer Science, National University

of Defense Technology, Changsha, China. E-mail: clhuang@nudt.edu.cn.
 Xiangke Liao is with the School of Computer Science, National University

of Defense Technology, Changsha, China. E-mail: xkliao@nudt.edu.cn .
 Kenli Li is with the School of Information Science and Engineering, Hunan

University, Changsha, China. E-mail: lkl@hnu.edu.cn

W

mailto:slfu@nudt.edu.cn
mailto:clhuang@nudt.edu.cn
mailto:xkliao@nudt.edu.cn
mailto:lkl@hnu.edu.cn

2 IEEE TRANSACTIONS ON JOURNAL NAME, MANUSCRIPT ID

performance of data servers becomes a critical issue.

The steps involved in a data access can be broadly divided

into the steps of determining the location of the data through the

metadata and the steps of accessing the physical data. The for-

mer can be regarded as the I/O overhead. It makes accessing big

files very different from accessing small files, because when

accessing small files, the time associated with the I/O overhead

outweighs the time spent in accessing physical data. Therefore,

when optimizing the performance of accessing small files, the

major efforts often focus on reducing the I/O overhead.

Previous research work has presented the approaches to im-

proving the performance of DFS by optimizing data manage-

ment on data servers. Haystack [3], which is a HTTP-based

photo server developed by Facebook, presents an index cache

technique to eliminate the disk I/O operations when locating

small photo files. It also adopts XFS to speed up accessing pho-

tos. In TFS [9], Alibaba proposes a naming technique and a

disk-pre-allocating technique to simplify metadata management

and decrease the number of I/O requests during file accesses.

However, there is still room to further improve the perfor-

mance of these existing DFSes. For example, XFS can only

deliver about 85% of the raw throughput on data servers in-

stalling Haystack [3], while the Ext4 file system delivers about

50% in TFS as shown in Section 5.

This paper focuses on optimizing the performance of data

servers in accessing massive numbers of small files. We devel-

oped a Flat Lightweight File System called iFlatLFS. iFlatLFS

is able to access raw disks directly, optimize the metadata man-

agement and accelerate the data-accessing procedure on data

servers. iFlatLFS is designed as an efficient alternative to the

underlying traditional file systems, as shown in Fig. 1.

Fig. 1 The relation between iFlatLFS and DFS.

The traditional file systems can offer many benefits in gen-

eral. However, in the systems we are targeting, there are mas-

sive numbers of rarely-modified small files. Under this circum-

stance, some operations and functionalities in traditional file

systems are unnecessary or cause excessive overheads. The

design of iFlatLFS carefully weighs the efficiency and the gen-

erality of the measures adopted in traditional file systems. The

efficiency of iFlatLFS is achieved by removing or re-designing

the measures that are not suitable in our targeted systems from

the performance perspective, although these measures are

adopted in traditional files systems for sake of generality in

application. For example, namespace management is re-

designed in iFlatLFS, so that iFlatLFS performs little more than

space management, relying on the upper distributed file system

(In this paper, the DFS components sitting above the local file

system, such as Request handler and Metadata server in Fig. 1,

are called the upper DFS) to handle all naming issues.

Although iFlatLFS can substitute the traditional file systems,

the process for a DFS client to access a file remains unchanged.

The main difference between iFlatLFS and traditional file sys-

tems is that iFlatLFS accesses the data directly from disks while

traditional file systems access the data through the hierarchical

file tree. In iFlatLFS, a simple metadata scheme is designed, in

which the metadata occupies much smaller space. As a result,

the metadata can be entirely cached in memory and consequent-

ly the operation of fetching the metadata from the disks is elim-

inated during the file access. Moreover, a flat storage architec-

ture is developed in iFlatLFS to store small files in raw disks.

With this new flat storage architecture and the simple metadata

scheme, the original complex process of accessing files in tradi-

tional file systems is greatly simplified and the amount of

metadata is significantly reduced. Performance evaluation has

been carried out to verify effectiveness and advantages of

iFlatLFS. The evaluation results show that an iFlatLFS-based

data server can achieve near optimal performance.

The rest of this paper is organized as follows. Section 2 dis-

cusses related. Section 3 analyzes the file access model on data

servers. Section 4 presents the design details of iFlatLFS, in-

cluding fundamental ideas, data management, file access,

metadata consistency, and the implementation. Section 5 evalu-

ates the performance of the developed file system and analyzes

experimental results. Section 6 proposes a hybrid storage sys-

tem. Finally, Section 7 concludes this paper.

2 RELATED WORK

DFS has been widely studied in recent years [4], [5], [25], [26-

28]. GPFS [25] and PVFS [26] are designed for managing the

files in clusters. TokuFS [27] is implemented using Fractal Tree

indexes, which are primarily used in databases. BlueSky [28]

acts as a proxy of multiple cloud storage providers to offer stor-

age service for enterprise users. GFS [4] and HDFS [5], are

designed mainly for streaming access of large files.

Some studies [1], [3], [9], [32], [33] show that small files

occupy a big fraction of the entile files in current distributed

systems. For example, Reference [3] shows that the photos in

facebook have the average size of 64+KB.

Three main optimization approaches have been developed to

support small files in DFSes: 1) reducing data block sizes; 2)

combining small files into bigger ones; 3) storing small files by

groups, not by data blocks.

Google’s next generation of DFS, GFS2 [15], is an example

of taking the first optimization approach. Zhang et al. [30] also

proposed an approach which changes the block size and adopts

an efficient indexing mechanism. GFS2 improves the ability of

handling small files mainly by reducing the data block size

from 64MB to 1MB. In order to meet the requirements of Inter-

net applications, the data blocks must be reduced further to the

size of the KB order. In this type of DFS systems, there will be

over 1G data block files and 150GB inode data on a data server

of 10TB storage capacity. Although the existing proposals in

[29] and [31] can be used to impove the performance of the

metadata server, it is difficult for data servers to handle such

massive numbers of data block files.

The second approach, i.e., the approach of combining small

files into bigger ones, falls into two categories: i) developing

DFS

Data Server

Traditional File
System

Step1:

QueryDataServerAddress

Step 2: AccessFile

iFlatLFS

RequestHandler

MetaData Server

local metadata

data
data

disks

client

AUTHOR ET AL.: TITLE 3

dedicated tools, such as Hadoop Archive [16], Sequence File

[17], for handling small files based on existing DFSes, and ii)

designing new DFSes, such as Haystack [3] and TFS [9], with

special optimization considerations for small files. Hadoop Ar-

chives, Haystack and TFS are discussed below in more detail.

Hadoop Archives (HAR) builds a layered file system on top

of HDFS, and packs the small files into relatively big HDFS

files to alleviate the pressure caused by too many files on the

metadata server’s memory. Sequence File is similar to HAR. It

uses the file name as the key, and the file content as the value.

Reading files in a HAR or Sequence File is slower than reading

files in HDFS because of additional index operations.

Haystack and TFS are the same type of DFS, which are de-

signed for the storage of massive small photos in their own

companies: Facebook and Alibaba. They employ the combined-

block-storage technique, which combines small photos with

different sizes into data block files with a fixed size, and builds

an index file for each data block file. The index file stores the

logical addresses of all photos. In order to further improve per-

formance of data servers, some other measures have also been

taken. Haystack caches all index data into the memory and

adopts XFS [18] on data servers, which can perform random

seeks quickly within a large file. TFS codes a file's logical ad-

dress into its file name to decrease one lookup operation. All

these approaches can simplify the metadata lookup process and

reduce the number of disk operations to some degree. However,

both Haystack and TFS employ traditional file systems on data

servers. The additional data locating operations are needed to

lookup photos’ physical address in disks before the actual file

access can start, which can cause low performance of data serv-

ers. According to Facebook’s benchmarking performance [3],

Haystack can deliver only 85% of the raw throughput of the

device while incurring 17% higher latency.

FastDFS [19] is an exemplar DFS which adopts the third ap-

proach, i.e., storing small files by groups. It is an open source

high performance DFS, and can meet the requirements of photo

sharing sites and video sharing sites. In FastDFS, files are orga-

nized in groups, and each file exists in only one group (i.e.,

there are no common files between different groups). For each

file, the file name exposed to clients is composed of its corre-

sponding group name, relative path and its actual file name on

the data server. The shortcoming of FastDFS is that it is diffi-

cult to handle massive numbers of KB-sized small files because

the number of files is too large.

Additionally, some other techniques have also been devel-

oped recently to improve the performance of traditional file

systems on a single server. For example, both Ext4 [10] and

XFS [18] introduce the concept of extent in order to reduce

metadata. This approach is only effective for big files. ReiserFS

[35] employs EOTTL (extents on the twig level) and Ligquid

items. The former is a fully balanced storage tree, which guar-

antees that all paths to the objects are of equal length, while the

latter is a special format of records in the storage tree and can

solve the problem of internal fragmentation. ReiserFS can op-

timize the performance of handling small files.

As discussed above, designing new DFSes (e.g., Haystack

and TFS) is a category of the second optimization approach to

support small files. These DFSes develop the combined-block-

storage technique on top of traditional file systems. Our work

aims to further optimize such DFSes. A lightweight file system,

called iFlatLFS, is developed in this paper to substitute the tra-

ditional file system in the DFS (to differentiate with iFlatLFS,

the DFS is called the upper DFS in the rest of this paper).

3 ANALYSING DATA ACCESS FOR SMALL FILES

3.1 Data accessing in DFS

As discussed in the introduction section, a client accesses a file

stored in a DFS by the following two phases.

1) Querying the metadata server to get the IP address of the

data server that stores the file. This phase has 3 steps:

1. 𝑇𝐶𝑙𝑖𝑒𝑛𝑡𝑄𝑢𝑒𝑟𝑦𝑀𝐷𝑆 : The client sends a message to the

metadata server to query the ID of the data block

which store the file data, and the IP addresses of the

data servers which store the data block;

2. 𝑇𝑀𝐷𝑆𝑄𝑢𝑒𝑟𝑦𝑀𝐷: The metadata server queries locally the

ID of the data block and the IP addresses of the data

servers. In the case where the client writes a new file,

the metadata server will allocate an old data block

which has free space or create a new data block;

3. 𝑇𝑀𝐷𝑆𝑅𝑒𝑡𝑢𝑟𝑛𝑀𝐷 : The metadata server returns the ID of

the data block and the corresponding IP addresses of

the data servers to the client.

2) Selecting and connecting a data server to fetch the file data.

This phase also includes 3 steps:

4. 𝑇𝐶𝑙𝑖𝑒𝑛𝑡𝐴𝑐𝑐𝑒𝑠𝑠𝐷𝑆: The client sends a message to the data

server. In the case where the client writes a new file in-

to the DFS, the message contains the file data;

5. 𝑇𝐷𝑆𝐴𝑐𝑐𝑒𝑠𝑠𝐷𝑎𝑡𝑎: The data server reads (or writes) the file

data from (or into) the data block in the local disks;

6. 𝑇𝐷𝑆𝑅𝑒𝑡𝑢𝑟𝑛𝑅𝑒𝑠𝑢𝑙𝑡: The data server returns the result to the

client. In the case where the client reads a file from the

DFS, the result contains the file data.

Therefore, the total time of accessing a file from a DFS can

be expressed as in (1).

𝑇𝐷𝐹𝑆 = 𝑇𝐶𝑙𝑖𝑒𝑛𝑡𝑄𝑢𝑒𝑟𝑦𝑀𝐷𝑆 + 𝑇𝑀𝐷𝑆𝑄𝑢𝑒𝑟𝑦𝑀𝐷 + 𝑇𝑀𝐷𝑆𝑅𝑒𝑡𝑢𝑟𝑛𝑀𝐷

+ 𝑇𝐶𝑙𝑖𝑒𝑛𝑡𝐴𝑐𝑐𝑒𝑠𝑠𝐷𝑆 + 𝑇𝐷𝑆𝐴𝑐𝑐𝑒𝑠𝑠𝐷𝑎𝑡𝑎

+ 𝑇𝐷𝑆𝑅𝑒𝑡𝑢𝑟𝑛𝑅𝑒𝑠𝑢𝑙𝑡 (1)

We observe the following three key points from (1).

1) In a DFS, the metadata server manages the namespace

of all files, which is usually organized into a hierar-

chical tree. The namespace is stored as a regular file,

and will be loaded into the memory entirely when the

server boots. The metadata server can obtain the re-

quired metadata by in-memory operations. So Step 2

(𝑇𝑀𝐷𝑆𝑄𝑢𝑒𝑟𝑦𝑀𝐷) only takes little time, which can be ne-

glected comparing with over-network or I/O operations.

2) On the contrary, the file data are stored as regular files

in a data server. As the discussed in Section 1, when the

data requests arrive at the actual data servers, which are

situated behind multiple levels of caches in DFS, it is

most likely that these requests are accessing the non-

hotspot data. Therefore, the file data to be accessed are

typically not in the memory, but in the disk. The data

server has to retrieve the file data by one or more disk

I/O operations. Therefore, Step 5 (𝑇𝐷𝑆𝐴𝑐𝑐𝑒𝑠𝑠𝐷𝑎𝑡𝑎) typi-

cally takes much more time than Step 2.

3) The time of steps 1, 3, 4 and 6 mainly depends on the

network bandwidth. In the current mainstream hardware

environments, the bandwidth of networks, such as In-

finiband, is usually much bigger than the bandwidth of

4 IEEE TRANSACTIONS ON JOURNAL NAME, MANUSCRIPT ID

disk I/Os, such as SATA disks and SAS disks. For ex-

ample, the TianHe-2 supercomputer [43, 44, 45], which

is developed by the National University of Defense

Technology in China and is ranked No. 1 in the latest

Top500 Supercomputer list, is equipped with one of the

two interconnecting networks: Infiniband network or

the high-speed NIC-based (network interface chip) net-

work. The bandwidth delivered by the former in the su-

percomputer is about 7GB/s, while that delivered by the

latter is about 20GB/s. But the tested bandwidths of

SATA disk and SAS disk in the supercomputer are

about 70MB/s and 100MB/s, respectively. Therefore,

compared with Steps 1, 3, 4 and 6, it is far more likely

that Step 5 becomes the bottleneck in the workflow of

steps for accessing the file data in DFS.

The above analysis shows that reducing the time spent by

Step 5, i.e., the local data accessing in data servers, is critical in

order to optimize the performance of accessing the file data in

the DFS. This motivates our work to optimize the accessing of

small files in data servers. Next, we will analyze the steps and

the performance of local data accessing in a data server.

3.2 Analytical model of read operations in a data server

The traditional file systems, which access files through a hierar-

chical file tree, are commonly adopted on data servers to man-

age file data and metadata in disks. Small files are combined

into data blocks of fixed size. Each data block is stored as a

regular file, called a data block file. For each data block file, an

index file is built to store the logical offset addresses of all small

files in this data block file.

In traditional file systems such as ExtFS, all files are orga-

nized into a hierarchical tree. A file is divided into disk blocks,

which may not be stored in the continous physical locations in

the disk. A file has an inode, which uses the address pointers to

link the scattered disk blocks of a file together, so that the file

has a continous logical address in the file system. Each disk

block of a file has a typical size of 1KB. In ExtFS, therefore,

every 1KB data needs an address pointer, whose size is 8 Bytes.

In all address pointers of the disk blocks, the first 12 pointers

are stored in the file inode structure, and others are stored in

disk blocks called address blocks. In ExtFS, an application ac-

cesses the file data by their logical addresses, not by their phys-

ical addresses (i.e., the pointers of the disk blocks). Thus during

the file access, there is an extra data lookup operation of retriev-

ing physical addresses, which may be located in the inode or in

some address block depending on the logical address.

In DFS environments, read operations dominate, compared

with writes [3], [9]. In this section, we analyze the performance

of reading small files on a data server (the write performance

will be discussed in Section 4.3 when we discuss data con-

sistency). Section 3.2.1 and Section 3.2.2 present the analytical

models without and with considering the effects of memory

caches, respectively.

3.2.1 Models without considering cache effects

As shown in Fig. 2, the process of file read on data servers in-

cludes 7 steps, which can be organized into 2 phases as follows.

Phase 1: Reading local metadata to retrieve the logical ad-

dress of the target file data in the corresponding data block file.

This phase includes 3 steps:

1. 𝑇1:𝑅𝑒𝑎𝑑𝐼𝐹𝐼𝑛𝑜𝑑𝑒: Reading the inode of index file;

2. 𝑇2:𝑅𝑒𝑎𝑑𝐼𝐹𝐷𝑎𝑡𝑎: Reading index data from the index file;

3. 𝑇𝑄𝑢𝑒𝑟𝑦𝐿𝐴: Querying the corresponding index item from

the index data to get the logical address of the file.

Phase 2: Reading file data. This phase includes 4 steps:

4. 𝑇3:𝑅𝑒𝑎𝑑𝐷𝐵𝐹𝐼𝑛𝑜𝑑𝑒:Reading the inode of the data block file;

5. 𝑇4:𝑅𝑒𝑎𝑑𝐴𝑑𝑑𝑟𝑒𝑠𝑠𝐵𝑙𝑜𝑐𝑘: Reading the corresponding address

block from the disk if the logical address is beyond the

size of 12 disk blocks;

6. 𝑇𝑄𝑢𝑒𝑟𝑦𝑃𝐴 : Querying the physical address of the target

file data from the inode or the address block;
7. 𝑇5:𝐴𝑐𝑐𝑒𝑠𝑠𝐷𝑎𝑡𝑎: Accessing file data using a disk operation.

Fig. 2 File access model in DFS based on traditional file systems

It can be seen from above that the data management model

in traditional file systems is very complex. The metadata need-

ed for file access on data servers include the inodes of index

files, the inodes of data block files, the index data and all ad-

dress blocks of data block files. Consequently, the metadata can

be huge. For example, when Ext4 is used, 92.8GB of metadata

is needed to store 10TB data with the average file size of 16KB.

The total time of reading a file on a data server can be ex-

pressed in (2).

𝑇𝑜𝑟𝑖𝑔𝑖𝑛𝑎𝑙 = 𝑇1:𝑅𝑒𝑎𝑑𝐼𝐹𝐼𝑛𝑜𝑑𝑒 + 𝑇2:𝑅𝑒𝑎𝑑𝐼𝐹𝐷𝑎𝑡𝑎 + 𝑇𝑄𝑢𝑒𝑟𝑦𝐿𝐴

+ 𝑇3:𝑅𝑒𝑎𝑑𝐷𝐵𝐹𝐼𝑛𝑜𝑑𝑒 + 𝑇4:𝑅𝑒𝑎𝑑𝐴𝑑𝑑𝑟𝑒𝑠𝑠𝐵𝑙𝑜𝑐𝑘

+ 𝑇𝑄𝑢𝑒𝑟𝑦𝑃𝐴 + 𝑇5:𝐴𝑐𝑐𝑒𝑠𝑠𝐷𝑎𝑡𝑎 (2)

Each variable 𝑇𝑖 in the right side of (2), except 𝑇𝑄𝑢𝑒𝑟𝑦𝐿𝐴 and

𝑇𝑄𝑢𝑒𝑟𝑦𝑃𝐴, represents the time of a disk operation. There are total

5 disk operations during a file read, although only 𝑇5:𝐴𝑐𝑐𝑒𝑠𝑠𝐷𝑎𝑡𝑎

is the time which is used to read the actual data being requested.

Because the time of a disk I/O operation is far heavier than that

of a memory operation, Equation (2) can be simplified as (3).

𝑇𝑜𝑟𝑖𝑔𝑖𝑛𝑎𝑙 ≈ 𝑇1:𝑅𝑒𝑎𝑑𝐼𝐹𝐼𝑛𝑜𝑑𝑒 + 𝑇2:𝑅𝑒𝑎𝑑𝐼𝐹𝐷𝑎𝑡𝑎 + 𝑇3:𝑅𝑒𝑎𝑑𝐷𝐵𝐹𝐼𝑛𝑜𝑑𝑒

+ 𝑇4:𝑅𝑒𝑎𝑑𝐴𝑑𝑑𝑟𝑒𝑠𝑠𝐵𝑙𝑜𝑐𝑘 + 𝑇5:𝐴𝑐𝑐𝑒𝑠𝑠𝐷𝑎𝑡𝑎 (3)

It can be seen from the above analysis that although data

servers only store data for the upper DFS, its complex hierar-

chical file management model incurs heavy overhead.

3.2.2 Models with the cache effect

The effects of the memory cache are not considered in the anal-

ysis model presented in Section 3.2.1. In fact, the memory

cache acts as an important role while designing the performance

optimization approaches.

If any performance optimization approaches used in Hay-

stack and TFS (as discussed in the related work section) are

applied, Equation (3) can be further simplified. For example, in

TFS, the index files are accessed using the mmap operation

while the direct I/O operation is used for accessing data block

files. In the mmap operation, the index file is mapped to

memory, and the index data are transparently loaded from disk

into memory. An application can then access the index file in

the same way as it accesses the memory. Further, the direct I/O

operation can bypass the cache of the Ext4 file system, there-

fore greatly saving the main memory. The saved main memory

can be used to cache the inodes and the index data. Thus the

Phase 1:

RetrieveLogicAddress

1:ReadIFInode

2:ReadIFData

3:QueryLA

4:ReadDBFInode

5:ReadAddressBlock

6:QueryPA

7:AccessData

DFS

Index File
DataBlockFileDataBlockFile

Phase 2:

AccessData

DataBlockFile

Disk

AUTHOR ET AL.: TITLE 5

data access time in TFS can be further simplified as (4), where

T2:ReadIFData can be regarded as zero if the required index data

have been in memory cache.

𝑇𝑜𝑟𝑖𝑔𝑖𝑛𝑎𝑙_𝑇𝐹𝑆 ≈ 𝑇2:𝑅𝑒𝑎𝑑𝐼𝐹𝐷𝑎𝑡𝑎 + 𝑇4:𝑅𝑒𝑎𝑑𝐴𝑑𝑑𝑟𝑒𝑠𝑠𝐵𝑙𝑜𝑐𝑘

+ 𝑇5:𝐴𝑐𝑐𝑒𝑠𝑠𝐷𝑎𝑡𝑎 (4)

3.3 Performance benchmarking in a data server

We tested the performances of random read and write for small

files with different sizes on CentOS 5.5 (the kernel is 2.6.18).

10GB data are stored into 160 files, each with the size of

64MB. In the test, a file is selected randomly, and a logical ad-

dress is selected randomly from this file. The test then begins to

read or write data ranging from 1 KB to 64 KB in size at the

selected logical address. For each size, the same test is per-

formed 1000 times. The results are shown in Fig. 3, where the

y-axis is the time of the data access (i.e., overhead).

The result shows that for the same disk operation (read or

write), the overhead of accessing small files of different sizes is

almost the same, and that the response time is almost independ-

ent of file size. This is because the disk seek time is far longer

than data transferring time for small files. These results indicate

that if the number of disk operations can be reduced when ac-

cessing small files, the data accessing performance can be im-

proved. Ideally, each file access needs only one disk operation

if all data locating operations are performed in memory.

Based on the above models and the benchmarking results,

this paper aims to develop a flat file system (called iFlatLFS) to

reduce I/O overhead for accessing small files.

Fig. 3 Random read and write performance in Ext4

4 IFLATLFS

The design of iFlatLFS is mainly oriented towards optimizing

performance of accessing massive small files which are seldom

modified. We assume that all files are stored using the com-

bined-block-storage approach in DFSes, that is, small files will

not be broken into pieces, but are combined into huge data

blocks and stored into data servers. We also assume that there is

no need to cache the accessed data into the main memory of the

data server. This assumption is reasonable because the data

requests are filtered by multiple levels of caches, as discussed

in the introduction section. Therefore, the data requests that

finally arrive at the data server are most likely to access the

non-hotspot data that are randomly distributed in the disk space.

iFlatLFS aims to substitute the traditional files systems on data

servers in the our targeted systems, namely, the systems in

which there are massive numbers of rarely-modified small files.

4.1 The design of data management

4.1.1 The fundamental idea

The fundamental idea of iFlatLFS is to improve the perfor-

mance of file access on data servers by optimizing local

metadata management and accelerating the data-accessing pro-

cedure. Instead of using the file-based local metadata manage-

ment as in traditional file systems, a simple metadata manage-

ment mechanism (discussed in Fig. 5) is designed in iFlatLFS.

It combines file metadata, such as file ID, file type, creation

time, checksum etc., into the file header and stores it together

with the file data. As a result, the size of the metadata for a sin-

gle file is cut down to 12 Bytes, and it is possible to load the

entire metadata into the memory when the data server boots.

For example, using the metadata management mechanism de-

veloped in this work, 10TB data will only need about 7.5GB of

metadata when the average file size is 16KB. By doing so, all

metadata operations can be performed in memory. Consequent-

ly, the overhead involved in locating the file data can be greatly

reduced without the need of performing disk I/O operations.

There are many fasincating functionalities in traditional file

systems. However, many of these funcationalities are not neces-

sary or even hurt the performance of the file system deployed in

the data servers in the DFS context. These unnecessary funca-

tionalities mainly include:

1) Hierarchical file structure: Data server is to DFS what

hard disk is to operating system. Since DFS manages the

namespace of the data in the metadata server, data servers can

simply act as the storage facility for DFS and there is no need

for the file system in a data server to include complicated data

management model. Therefore, in order to speed up data ac-

cessing, the complex file management designs in traditional file

systems, such as hierarchical file structure and inode, are abol-

ished in iFlatFLS. Instead, one disk partition is used to store all

small files and their metadata for each data block. The files are

directly accessed from the disk partitions in a flat fashion by

means of physical address and data size in metadata.

2) Data prefetching: Since iFlatLFS handles small files, data

prefetching in the traditional file systems has a negligible posi-

tive impact on the performance. So this function is unnecessary.

3) Data caching: As discussed in Section 1, the accesses to

the hotspot data are commonly filtered by the multi-level cache

techniques in DFS, the data requests arriving at the data servers

are most likely to access the non-hotspot data. Therefore, data

caching is unnecessary.

4.1.2 The flat storage architecture

In order to optimize the management of massive numbers of

small files, a flat storage architecture is designed in iFlatLFS.

The data management is also greatly simplified with smaller

metadata and fewer data blocks.

In iFlatLFS, each disk partition consists of a header followed

by a series of storage areas, each of which contains a header, a

metadata area and a data area. The layout of a disk partition is

shown in Fig. 4. For each data block, all files and their metadata

are stored directly into a fix-sized super big disk partition,

whose size is typically set as the greatest common divisor of all

disk sizes, but can be as big as possible in theory.

Fig. 5 shows the flat storage architecture developed in this

work. Each data area holds a vast amount of small files, which

are stored in sequence. Each file consists of a header and its

data. Each metadata area consists of a sequence of index slots.

Each slot represents a small file stored in the corresponding

data area. When a small file is created a corresponding index

item is built and stored into an index slot. To reduce the metada-

0

5000

10000

15000

20000

1K 2K 4K 8K 16K 32K 64K

ti
m

e
(u

s)

block size (Byte)

random_read random_write

6 IEEE TRANSACTIONS ON JOURNAL NAME, MANUSCRIPT ID

ta as much as possible, each index item includes only 2 fields:

the file size (4 Bytes) and the file physical address (8 Bytes) in

disk. Other metadata, such as file identifier, file type, file size,

checksum of file data, are stored in the file header. The index

slot id will be coded into the file identifier as the file’s logical

address and returned to the upper DFS.

The disk space of the metadata area and the data area should

be determined dynamically according to the DFS parameters

such as data block size and average file size. The data block

size can be determined by the hardware configuration of data

servers, and the average file size can be derived through the

statistical means or historical data [4], [9]. The metadata area

cannot be changed after the disk space has been allocated. Once

the metadata area runs out of its disk space, the free space of the

data area will be automatically re-allocated as a new storage

area and linked to the last storage area.

Fig. 4 The Format of a disk partition in iFlatLFS

Fig. 5 The flat storage architecture in iFlatLFS

4.1.3 Managing reserved space

The physical damage of disk sections will reduce the storage

space. Also, if there are too many fragments in disk partitions,

then the effective storage space is also shrinked. In order to

handle the shrinking of storage space, iFlatLFS introduces re-

served space for each disk partition. The size of reserved space

can be set by administrators, typically 1~10% of the whole par-

tition space. In principle, new files will not be stored in the disk

partition after its data areas run out of their disk space. Howev-

er, if the files are generated because of upgrading the old files to

bigger sizes or recovering the lost files due to physical disk

failure, they are allowed to be stored in the reserved space.

When the total faulty disk space is bigger than the reserved

space, the disk partition will be abandoned and the correspond-

ing data block be stored in another disk partition.

4.1.4 Fragmentation management

Fragments may be generated in each disk partition when delet-

ing or modifying files. iFlatLFS designed a strategy for frag-

mentation management, which is illustrated in Fig. 6. A special

flag and the fragment size are stored in the fragment header. All

fragments form a list of unused disk space, whose head (i.e.,

FirstFrag in Fig. 6) is stored in the metadata header. Normally,

when a new file is generated, it is appended to the correspond-

ing disk partition, and the partition pointer, which points to the

first physical address of the available disk space, moves for-

ward by the size of the file accordingly. After the partition

pointer reaches the end of the disk partition, iFlatLFS must find

a fragment available to store the target file. Although the con-

cept of reserved space is introduced in iFlatLFS, there is no disk

space physically allocated for the reserved space. iFlatLFS

views all fragments as a part of the reserved space. Thus, the

fragments are not used unless the total disk space of all frag-

ments is bigger than the pre-set size of the reserved space. If

there are too many fragments in a disk partition, iFlatLFS can

copy these scattered files into another new disk partition, and

the original partition will be assigned to another data block. The

benefit of this fragment management strategy is to simplify the

complexity of disk space management.

Fig. 6 The fragment management in iFlatLFS

4.2 File access

We now present how to access the small files. The file access

model in a DFS with iFlatLFS is shown in Fig. 7.

Fig. 7 The file access model of DFS with iFlatLFS

iFlatLFS is transparent for the clients of upper DFSes. Com-

pared with the original file access model, the only difference is

the process of the file access on the local data server. All

metadata (i.e., the MetadataArea as shown in Fig. 5) are loaded

and cached in memory from disk when the data server boots, so

that all metadata operations can be performed in memory.

The whole process of file access includes 2 phases.

Phase 1: Querying the physical disk address of the target
file from the metadata cache (i.e., the metadata
loaded into the main memory). No disk operation
is needed. The time overhead of this phase is de-
noted as 𝑇′𝑄𝑢𝑒𝑟𝑦𝑃ℎ𝑦𝑠𝑖𝑐𝑎𝑙𝐴𝑑𝑑𝑟𝑒𝑠𝑠 .

Phase 2: Accessing the file data directly from the corre-
sponding disk partition by one disk operation. Its
time is denoted as 𝑇′1:𝐴𝑐𝑐𝑒𝑠𝑠𝐷𝑎𝑡𝑎.

(5) shows the total time for file access in iFlatLFS.

𝑇𝑖𝐹𝑙𝑎𝑡𝐿𝐹𝑆 = 𝑇′𝑄𝑢𝑒𝑟𝑦𝑃ℎ𝑦𝑠𝑖𝑐𝑎𝑙𝐴𝑑𝑑𝑟𝑒𝑠𝑠 + 𝑇′1:𝐴𝑐𝑐𝑒𝑠𝑠𝐷𝑎𝑡𝑎 (5)

Based on the same reason of simplifying (2), Equation (5)

can be simplified as (6).

HeaderofDiskPartition

HeaderofStorageArea

MetadataArea

DataArea

S
to

ra
ge

A
re

a

ID of data block

Size of data block

Size of reserved space

The number of storage area

……

Size of metadata area

Size of data area

The number of index slot

Physical address of first fragment

……

Size of disk partition

Physical address of next storage

area

S
to

ra
ge

A
re

a

FileID

CheckSumOfFile

……

FileType

FileSize

FileSize PhysicalAddressOfFile

……

DiskPartition/DataBlock

FileHeader
FileData

F
ile 1

F
ile

Cache

StorageArea

S
lot m

……

FileSize

……

S
lot 1 …

H
eader_sa

BlockID,BlockSize,...
PhysicalAddressOfFile

PhysicalAddressOfFile

… …

F
ile m

Slot 1

FileSizeSlot m

MetadataArea DataArea

File 1

File m

H
eader_dp

Memory

Disk

F
rag 1

DataAreaIndexArea

……

F
irstF

rag

F
rag 2

F
rag 3

Phase 1:

RetrievePhysicalAddress

Phase 2:

AccessData

Metadata Cache

DFS

Disk

AUTHOR ET AL.: TITLE 7

𝑇𝑖𝐹𝑙𝑎𝑡𝐿𝐹𝑆 ≈ 𝑇′1:𝐴𝑐𝑐𝑒𝑠𝑠𝐷𝑎𝑡𝑎 (6)

The time of data access from disks with iFlatLFS is equal to

that in a traditional file system, (7) holds.

𝑇′1:𝐴𝑐𝑐𝑒𝑠𝑠𝐷𝑎𝑡𝑎 ≈ 𝑇5:𝐴𝑐𝑐𝑒𝑠𝑠𝐷𝑎𝑡𝑎 (7)

Thus, Inequality (8) holds.

𝑇𝑖𝐹𝑙𝑎𝑡𝐿𝐹𝑆 ≈ 𝑇′1:𝐴𝑐𝑐𝑒𝑠𝑠𝐷𝑎𝑡𝑎 ≈ 𝑇5:𝐴𝑐𝑐𝑒𝑠𝑠𝐷𝑎𝑡𝑎

< 𝑇1:𝑅𝑒𝑎𝑑𝐼𝐹𝐼𝑛𝑜𝑑𝑒 + 𝑇2:𝑅𝑒𝑎𝑑𝐼𝐹𝐷𝑎𝑡𝑎 + 𝑇3:𝑅𝑒𝑎𝑑𝐷𝐵𝐹𝐼𝑛𝑜𝑑𝑒
+𝑇4:𝑅𝑒𝑎𝑑𝐴𝑑𝑑𝑟𝑒𝑠𝑠𝐵𝑙𝑜𝑐𝑘 + 𝑇5:𝐴𝑐𝑐𝑒𝑠𝑠𝐷𝑎𝑡𝑎

= 𝑇𝑜𝑟𝑖𝑔𝑖𝑛𝑎𝑙 (8)

Inequality (8) shows that the performance of DFSes based

on iFlatLFS is higher than that based on traditional file systems.

Additionally, by comparing (4) and (7), we can draw the same

conclusion that 𝑇𝑖𝐹𝑙𝑎𝑡𝐿𝐹𝑆 is smaller than 𝑇𝑜𝑟𝑖𝑔𝑖𝑛𝑎𝑙_𝑇𝐹𝑆 with the

cache effect considered.

In summary, any file can be accessed once its physical ad-

dress is found from the metadata cache on a data server in-

stalling iFlatLFS. iFlatLFS needs only one disk operation to

access each small file. However, when a small file is accessed

with a traditional file system, the following steps need to be

performed. Firstly, an index file must be read, and the corre-

sponding index item must be found. Then the physical address

of the file is retrieved from the disk. Finally, the disk operation

is performed to access the file. Therefore, in a traditional file

system, 5 operations are typically required to access a file.

4.3 Metadata consistency

After all metadata in disks are cached into the memory, there

will be two copies of metadata in the system: one is in the disks

and the other in the memory. Usually, the applications only

access the memory to retrieve the metadata. It is a technical

challenge to maintain the consistency of the two copies of

metadata, especially when the unexpected server failures occur.

All current major traditional file systems are either jour-

naling file systems (such as Ext4, XFS, ReiserFS) or Copy-on-

Write file systems (such as ZFS, Btrfs). Metadata or data con-

sistency is protected in these file systems. However, many good

functionalities in the traditional file systems for maintaining

consistency are far beyond what the DFSes need. Only the

Write through and write back policies are sufficient for a DFS.

In iFlatLFS, two metadata consistency policies have been

implemented: 1) Strong Consistency (write through) policy and

2) Weak Consistency (write back) policy. In the strong con-

sistency policy, a write operation is atomic. After receiving new

data from applications, iFlatLFS first writes these data and their

metadata into disks, then updates the metadata into memory,

and lastly returns a value to the application. All read operations

on metadata are still executed in memory. In weak consistency,

the new data and the corresponding metadata are both stored in

memory temporarily, and a value is returned to the application.

iFlatLFS only periodically writes the dirty data and metadata

back into the disks to prevent data loss caused by the unex-

pected server failures. In case of the server failures, those dirty

data which have not been written into the disks are lost.

When there are only read operations, no metadata consisten-

cy operations are required. Consistency has to be considered

only when writes are performed. We established the analytical

model in the above three scenarios to compare the performance

of the DFS based on traditional file systems, iFlatLFS under the

strong consistency policy and iFlatLFS under weak consistency.

4.3.1 Modeling write operations for traditional file systems

Journaling functionality has a marked negative impact on the

write efficiency in traditional file systems. For example, by

default, Ext4 first writes the data to the disk, then writes its

related metadata to the journal, and finally checkpoints the

metadata to the disk. Therefore, in the following modeling pro-

cess, we do not consider the journaling effect. If the journaling

functionality is considered, the worse performance is expected.

𝑇𝑜𝑤 denotes the time of a write operation in a DFS based on

the traditional file systems. The analytical model of 𝑇𝑜𝑤can be

represented in (9).

𝑇𝑜𝑤 = 𝑇1:𝑅𝑒𝑎𝑑𝐼𝐹𝐼𝑛𝑜𝑑𝑒 + 𝑇2:𝑊𝑟𝑖𝑡𝑒𝐼𝐹𝐼𝑛𝑜𝑑𝑒 + 𝑇3:𝑅𝑒𝑎𝑑𝐷𝐵𝐹𝐼𝑛𝑜𝑑𝑒

+ 𝑇4:𝑊𝑟𝑖𝑡𝑒𝐴𝑑𝑑𝑟𝑒𝑠𝑠𝐵𝑙𝑜𝑐𝑘 + 𝑇5:𝑊𝑟𝑖𝑡𝑒𝐷𝑖𝑠𝑘𝐵𝑙𝑜𝑐𝑘(9)

In (9), 𝑇1:𝑅𝑒𝑎𝑑𝐼𝐹𝐼𝑛𝑜𝑑𝑒 is the time spent in reading the inode of

the index file, 𝑇2:𝑊𝑟𝑖𝑡𝑒𝐼𝐹𝐼𝑛𝑜𝑑𝑒 is the time in writing the corre-

sponding metadata into the index file, 𝑇3:𝑅𝑒𝑎𝑑𝐷𝐵𝐹𝐼𝑛𝑜𝑑𝑒 is the

time in reading the inode of the data block file,

𝑇4:𝑊𝑟𝑖𝑡𝑒𝐴𝑑𝑑𝑟𝑒𝑠𝑠𝐵𝑙𝑜𝑐𝑘 is the time in writing the file address into

the address block of the disk, 𝑇5:𝑊𝑟𝑖𝑡𝑒𝐷𝑖𝑠𝑘𝐵𝑙𝑜𝑐𝑘 is the time in

writing the file data into the disk.

Equation (9) does not consider the memory cache effect. If

the cache effect is taken into account, Equation (9) can be fur-

ther simplified. For example, the time of a write operation in

TFS can be modeled using (10).

𝑇𝑜𝑤𝑇𝐹𝑆
≈ 𝑇2:𝑊𝑟𝑖𝑡𝑒𝐼𝐹𝐼𝑛𝑜𝑑𝑒 + 𝑇4:𝑊𝑟𝑖𝑡𝑒𝐴𝑑𝑑𝑟𝑒𝑠𝑠𝐵𝑙𝑜𝑐𝑘

+ 𝑇5:𝑊𝑟𝑖𝑡𝑒𝐷𝑖𝑠𝑘𝐵𝑙𝑜𝑐𝑘 (10)

4.3.2 Modelling write operations for iFlatLFS under the
metadata consistency policy

𝑇𝑖𝑤 denotes the time of a write operation in an iFlatLFS-based

DFS when the strong metadata consistency is applied. Equation

(11) represents the model of 𝑇𝑖𝑤, where 𝑇′1:𝑊𝑟𝑖𝑡𝑒𝑀𝑒𝑡𝑎𝑑𝑎𝑡𝑎 is the

time spent in writing the file metadata into the disk, and

𝑇′2:𝑊𝑟𝑖𝑡𝑒𝐷𝑎𝑡𝑎 is the time in writing the file data into the disk.

𝑇𝑖𝑤 = 𝑇′1:𝑊𝑟𝑖𝑡𝑒𝑀𝑒𝑡𝑎𝑑𝑎𝑡𝑎 + 𝑇′2:𝑊𝑟𝑖𝑡𝑒𝐷𝑎𝑡𝑎 (11)

By comparing 𝑇𝑜𝑤 and 𝑇𝑖𝑤, Inequality (12) holds, which in-

dicates that a write operation in an iFlatLFS-based DFS with

the strong metadata consistency policy is faster than that in a

traditional file system without considering the cache effect.

Even if the cache effect is taken into account, we can draw the

same conclusion. For example, In TFS, by comparing 𝑇𝑜𝑤_𝑇𝐹𝑆

and 𝑇𝑖𝑤, Inequality (13) holds.

𝑇𝑖𝑤 = 𝑇′
1:𝑊𝑟𝑖𝑡𝑒𝑀𝑒𝑡𝑎𝑑𝑎𝑡𝑎 + 𝑇′

2:𝑊𝑟𝑖𝑡𝑒𝐷𝑎𝑡𝑎

 ≈ 𝑇4:𝑊𝑟𝑖𝑡𝑒𝐴𝑑𝑑𝑟𝑒𝑠𝑠𝐵𝑙𝑜𝑐𝑘 + 𝑇5:𝑊𝑟𝑖𝑡𝑒𝐷𝑖𝑠𝑘𝐵𝑙𝑜𝑐𝑘
 < 𝑇1:𝑅𝑒𝑎𝑑𝐼𝐹𝐼𝑛𝑜𝑑𝑒 + 𝑇2:𝑊𝑟𝑖𝑡𝑒𝐼𝐹𝐼𝑛𝑜𝑑𝑒 + 𝑇3:𝑅𝑒𝑎𝑑𝐷𝐵𝐹𝐼𝑛𝑜𝑑𝑒

 +𝑇4:𝑊𝑟𝑖𝑡𝑒𝐴𝑑𝑑𝑟𝑒𝑠𝑠𝐵𝑙𝑜𝑐𝑘 + 𝑇5:𝑊𝑟𝑖𝑡𝑒𝐷𝑖𝑠𝑘𝐵𝑙𝑜𝑐𝑘

= 𝑇𝑜𝑤 (12)

𝑇𝑖𝑤 = 𝑇′
1:𝑊𝑟𝑖𝑡𝑒𝑀𝑒𝑡𝑎𝑑𝑎𝑡𝑎 + 𝑇′

2:𝑊𝑟𝑖𝑡𝑒𝐷𝑎𝑡𝑎

 ≈ 𝑇4:𝑊𝑟𝑖𝑡𝑒𝐴𝑑𝑑𝑟𝑒𝑠𝑠𝐵𝑙𝑜𝑐𝑘 + 𝑇5:𝑊𝑟𝑖𝑡𝑒𝐷𝑖𝑠𝑘𝐵𝑙𝑜𝑐𝑘

 < 𝑇2:𝑊𝑟𝑖𝑡𝑒𝐼𝐹𝐼𝑛𝑜𝑑𝑒 + 𝑇4:𝑊𝑟𝑖𝑡𝑒𝐴𝑑𝑑𝑟𝑒𝑠𝑠𝐵𝑙𝑜𝑐𝑘 + 𝑇5:𝑊𝑟𝑖𝑡𝑒𝐷𝑖𝑠𝑘𝐵𝑙𝑜𝑐𝑘

= 𝑇𝑜𝑤_𝑇𝐹𝑆 (13)

When the iFlatLFS-based DFS deploys the weak consisten-

cy policy, the metadata consistency operation also needs to be

performed for new files that are written. In this aspect, the weak

policy is the same as the strong policy. However, the metadata

consistency operation is performed periodically in the weak

policy, which gives the system the opportunities to optimize the

I/O performance. First, if the same data are written several

times before next consistency operation, the system only needs

to write the data into the disk once. Second, in a consistency

8 IEEE TRANSACTIONS ON JOURNAL NAME, MANUSCRIPT ID

operation, much metadata are written together which may give

the system the opportunity to combine small I/O writes into a

bigger write and therefore reduce I/O overhead. From the above

discussions, we can conclude that the weak consistency policy

incurs less overhead than the strong policy.

In summary, according to (8), (12), (13) and the analysis

about the overhead of weak consistency, we can conclude that

no matter which consistency policy is used, the iFlatLFS-based

DFS can always deliver better performance than the DFS based

on traditional file systems for both read and write.

4.4 Size of metadata

In the Ext4-based TFS, the size of a data block file is 64 MB. A

data block file has a index file, which stores the index data of

all small files in the data block. The index data of each small

file occupy 20 Bytes. In Ext4, both the index file and the data

block file have an inode of 256 Bytes, and an address pointer of

8 Bytes is required for each 1KB data in the data block files.

Suppose the total file size is x TB and the average file size is y

KB. Then the total number of small files is (x/y) G.

Based on the above discussions, we can use (14), (15) (16)

and (17) to calculate the total number of the data block files

(denoted by 𝑁𝑢𝑚𝑑𝑏𝑓) and the total number of the index files

(𝑁𝑢𝑚𝑖𝑓), the size of total inodes (𝑆𝑖𝑧𝑒𝑖𝑛𝑜𝑑𝑒), the size of total

index data (𝑆𝑖𝑧𝑒𝑖𝑓), and the size of total address data in the data

block files (𝑆𝑖𝑧𝑒𝑎𝑑𝑑𝑟𝑒𝑠𝑠).

𝑁𝑢𝑚𝑑𝑏𝑓 = 𝑁𝑢𝑚𝑖𝑓 = 𝑥𝑇𝐵/64𝑀𝐵 = 16𝐾 × 𝑥 (14)

𝑆𝑖𝑧𝑒𝑖𝑛𝑜𝑑𝑒 = 256𝐵 × (𝑁𝑢𝑚𝑖𝑓 + 𝑁𝑢𝑚𝑑𝑏𝑓) = 8𝑀𝐵 × 𝑥 (15)

𝑆𝑖𝑧𝑒𝑖𝑓 = 𝑁𝑢𝑚𝑖𝑓 × ((64𝑀𝐵/𝑦𝐾𝐵) × 20𝐵)

= 20𝐺𝐵 × 𝑥/𝑦 (16)

𝑆𝑖𝑧𝑒𝑎𝑑𝑑𝑟𝑒𝑠𝑠 = 𝑁𝑢𝑚𝑑𝑏𝑓 × ((64𝑀𝐵/1𝐾𝐵) × 8𝐵)

= 8𝐺𝐵 × 𝑥 (17)

Consequently, the total metadata size

(denoted by 𝑆𝑖𝑧𝑒𝑚𝑒𝑡𝑎𝑑𝑎𝑡𝑎𝑜𝑓𝑒𝑥𝑡4) can be calculated by (18).

𝑆𝑖𝑧𝑒𝑚𝑒𝑡𝑎𝑑𝑎𝑡𝑎𝑜𝑓𝑒𝑥𝑡4 = 𝑆𝑖𝑧𝑒𝑖𝑛𝑜𝑑𝑒 + 𝑆𝑖𝑧𝑒𝑖𝑓 + 𝑆𝑖𝑧𝑒𝑎𝑑𝑑𝑟𝑒𝑠𝑠

= 8𝑀𝐵 × 𝑥 + 20𝐺𝐵 × 𝑥/𝑦 + 8𝐺𝐵 × 𝑥 (18)

As we have presented in Section 4.1.2, an index item in

iFlatLFS occupies 12 Bytes. Then, the total metadata size in the

iFlatLFS-based TFS can be calculated by (19).

𝑆𝑖𝑧𝑒𝑚𝑒𝑡𝑎𝑑𝑎𝑡𝑎𝑜𝑓𝑖𝐹𝑙𝑎𝑡𝐿𝐹𝑆 = (𝑥𝑇𝐵/𝑦𝐾𝐵) × 12𝐵

≈ 12𝐺𝐵 × 𝑥/𝑦 (19)

As can be seen from (18) and (19), the total metadata size in

the Ext4-based TFS mainly depends on the total file size and

the total number of files, while the total metadata size in the

iFlatLFS-based TFS only depends on the total number of files.

Moreover, from (18) and (19), we can calculate the ratio of

the size of metadata in iFlatLFS to that in Ext4, i.e.,

𝑆𝑖𝑧𝑒𝑚𝑒𝑡𝑎𝑑𝑎𝑡𝑎𝑜𝑓𝑖𝐹𝑙𝑎𝑡𝐿𝐹𝑆/𝑆𝑖𝑧𝑒𝑚𝑒𝑡𝑎𝑑𝑎𝑡𝑎𝑜𝑓𝑒𝑥𝑡4

≈ 12/(20 + 8 × 𝑦) (20)

Equation (20) shows that the metadata size in iFlatLFS is a

fraction of that in Ext4. For example, when the average file size

is 16KB, 𝑆𝑖𝑧𝑒𝑚𝑒𝑡𝑎𝑑𝑎𝑡𝑎𝑜𝑓𝑖𝐹𝑙𝑎𝑡𝐿𝐹𝑆/𝑆𝑖𝑧𝑒𝑚𝑒𝑡𝑎𝑑𝑎𝑡𝑎𝑜𝑓𝑒𝑥𝑡4 ≈ 8%.

Because the ratio of the metadata size to the file data size is

so small in iFlatLFS, iFlatLFS is able to support storing a large

volume of data. For example, in a data server with 10TB, the

same as that of Haystack deployed by Facebook [3], only

7.5GB main memory are needed for caching the metadata.

4.5 Implementation

A prototype of iFlatLFS has been implemented in CentOS re-

lease 5.5 (kernel is 2.6.18-308.8.1.el5.plusxen x86-64). Because

Haystack is not open source, we selected the open source pro-

ject TFS [9] designed by the Alibaba Group [20] as the upper

DFS. The Alibaba Group is a top e-business service provider in

China. According to Alibaba’s report in 2010, TFS has managed

about 28.6 billion photos, whose average size is 17.45KB [9].

In this implementation, the disks must be partitioned manu-

ally and several configuration parameters must be determined in

advance, such as data block size, the involved disk partitions

and their sizes, average file size. The average file size can be

derived by statistical means or historical data, while others pa-

rameters can be determined by the hardware configuration of

the data server. The average file size relates to the application

scenarios, while the data block size can be determined using

(21), where 𝑆𝑖𝑧𝑒𝐷𝑖𝑠𝑘𝑃𝑎𝑟𝑡𝑖𝑡𝑖𝑜𝑛 is the size of disk partition, which

can be determined in the way discussed in Section 4.1.2;

𝑆𝑖𝑧𝑒𝑀𝑒𝑡𝑎𝐷𝑎𝑡𝑎 is the size of the total metadata of this data block;

SizeMetaData is calculated by (19); 𝑆𝑖𝑧𝑒𝑅𝑒𝑠𝑒𝑟𝑣𝑒𝑑𝑆𝑝𝑎𝑐𝑒 is the size of

reserved space, which is set by the administrators empirically

(typically 5% of 𝑆𝑖𝑧𝑒𝐷𝑖𝑠𝑘𝑃𝑎𝑟𝑡𝑖𝑡𝑖𝑜𝑛).

𝑆𝑖𝑧𝑒𝐷𝑎𝑡𝑎𝐵𝑙𝑜𝑐𝑘 = 𝑆𝑖𝑧𝑒𝐷𝑖𝑠𝑘𝑃𝑎𝑟𝑡𝑖𝑡𝑖𝑜𝑛 − 𝑆𝑖𝑧𝑒𝑅𝑒𝑠𝑒𝑟𝑣𝑒𝑑𝑆𝑝𝑎𝑐𝑒

−𝑆𝑖𝑧𝑒𝑀𝑒𝑡𝑎𝐷𝑎𝑡𝑎 (21)

The principle of setting 𝑆𝑖𝑧𝑒𝑅𝑒𝑠𝑒𝑟𝑣𝑒𝑑𝑆𝑝𝑎𝑐𝑒 is to gain the expe-

rience about the level of fragmentation (i.e., total size of the

fragmented disk spaces) in the disk partition. If the level of

fragmentation is greater than the size of reserved space, it will

cause the data to be written into the fragmented disk space

when other spaces including the reserved space are full, which

will hurt the disk accessing performance. On the contrary, if the

reserved space is bigger than the fragmented disk space, the

data accessing performance will not be negatively affected, but

the disk utilization will become lower. Therefore, setting

𝑆𝑖𝑧𝑒𝑅𝑒𝑠𝑒𝑟𝑣𝑒𝑑𝑆𝑝𝑎𝑐𝑒 needs to strike the balance between disk ac-

cessing performance and disk utilization.

We extended an existing dedicated formatting tool, named

stfs, to allocate the disk space for the metadata area and the data

area according to these parameters. Finally, the disk partition

headers and storage area headers are written into the disk.

The size of the disk partition header is 1 KB, so is the stor-

age area header. Additionally, we use a bitmap to represent the

states of all index slots in the metadata area. Each bit in the

bitmap represents the state of one index slot. If a bit is “1”, then

the index slot is occupied by a file. If the bit is “0”, the index

slot is free. In order to prevent the data failure, iFlatLFS gener-

ates a copy of these headers and bitmap, and stores them into

the disk. iFlatLFS verifies mutual integrity automatically when

the data are loaded into cache.

 As shown in Section 4.2, the file access in iFlatLFS consists

of two phases: querying physical address and accessing data.

Due to space limitation, the detailed outlines of the two phases

are included in the supplementary file of this paper.

5 PERFORMANCE EVALUATION

We have evaluated the performance of iFlatLFS and several

existing file systems, including Ext4, XFS [18] and ReiserFS

[35]. XFS is the file system used in Haystack [3], which is a

DFS developed by Facebook to improve the performance of

handling photos (relatively small files), while ReiserFS is a file

system that can achieve good performance in accessing small

AUTHOR ET AL.: TITLE 9

files in local machines.

We have implemented iFlatLFS into TFS [9] because Hay-

stack is not open source. We compared the performance be-

tween the iFlatLFS-based TFS and the original implementation

of TFS, which is based on Ext4.

In the experiments, we used the production workload traces

observed in Facebook [3]. The testing cases in this paper in-

clude random read and mix random access. As discussed in [3],

[9], the production workload in the real world is typically dom-

inated by read. The experiments used the same ratios of random

read to write as set in [3] and the file size to be read or written

ranges from 1 KB to 64 KB with the average of 16KB.

5.1 Performance of iFlatLFS

Firstly, we evaluate the performance of iFlatLFS in a typical

DFS environment on a Dell PC, which has a 2.33GHz Intel

Q8200 processor with 4 cores and 4MB L2 cache, 4GB of

memory and a 500GB SATA disk. The partition size in all file

systems is 128GB. The CentOS release 5.5 with kernel 2.6.18-

308.8.1.el5.plusxen for x86-64 was installed. To support Ext4,

XFS and ReiserFS, we also installed the e4fsprogs package of

version 1.41.12-2.el5, the xfsprogs package of version 2.9.4-

1.el5 and the reiserfs-utils package of version 3.6.19-2.4.1.

Based on the above platform, we used the open source mul-

tithreaded disk I/O program named Randomio [21] to establish

a baseline for the maximum read/write performance (regarded

as the optimal performance that a file system can achieve),

which is also how the baseline performance is established in

reference [3]. We then tested and compared the performance

achieved by Randomio, iFlatLFS, Ext4, XFS and ReiserFS. In

the experiments, the file size ranged from 1 KB to 64 KB.

Since the objective of the experiments is to evaluate how

well the file systems (i.e., iFlatLFS, ext, xfs and ReiserFS)

work in the context of DFS, the data storage layout in the data

servers and the accessing patterns to these stored data were

generated in the experiments to mimic the real DFS context. In

Ext4 and ReiserFS, 2048 data block files, each with the size of

64 MB, were, while in the iFlatLFS and XFS, a total of 8 data

partitions with the size of 16G, each of which corresponds to a

data block, were created. Therefore, the entire system has the

storage of 128GB. Note that XFS is used in Haystack devel-

oped by Facebook for handling photos. Haystack is not re-

leased. So we configure XFS to mimic the DFS context only

according to the information available in the literature [3].

We then wrote 80GB of small-size data (ranging from 1KB

to 64KB) into these data block files in Ext4 and ReiserFS, and

also into the data partitions in iFlatLFS and XFS. The experi-

ments were then conducted for both the existing file systems

and iFlatLFS in the following 3 steps: 1) selecting a data block

randomly, and also selecting a random offset on the data block;

2) reading or writing the data from the offset of the selected

data block; 3) repeating step 1 and step 2 for 1000 times. As in

TFS [9], the number of I/O operations performed per second

(iops) is used as the metric to measure I/O performance, which

can be regarded as the throughput of a file system.

Fig. 8a shows the performance in terms of iops when there

are only read operations. As can be seen from Fig. 8a, iFlatLFS

can significantly outperform other file systems in all cases (by

48% on average in case of Ext4), and the performance achieved

by iFlatLFS is very close to the baseline performance obtained

by randomio. These results suggest that iFlatLFS is able to

achieve near-optimal I/O performance. A closer observation

from Fig. 8a also shows that as the file size increases, the per-

formance advantage of iFlatLFS over other file systems de-

creases. This is because iFlatLFS optimizes I/O performance by

reducing the I/O overhead such as the overhead of looking up

metadata and data addresses. When the file size increases, the

proportion of overhead in the whole duration of an I/O opera-

tion decreases, and consequently the advantage of iFlatLFS

becomes less prominent.

(a) random read (b) mix random access

Fig. 8 Performance of Randomio, iFlatLFS, Ext4, XFS, ReiserFS

Another interesting observation is that Reiserfs obtains the

worst performance, even worse than Ext4. The reason for this is

explained as follows. Reiserfs can indeed optimize the perfor-

mance of accessing small files in local computers. However,

when Reiserfs is used as the file system on the data servers of a

DFS, the files that Reiserfs receives from the upper DFS are the

data blocks formed by the combined-block approach. Such a

data block is relatively big (e.g., it is 64MB in TFS), which

means that the files received and stored by Reiserfs are actually

big. ReiserFS is engineered so that it can handle small files

efficiently, but does not have good performance when handling

big files. This is why Reiserf exihibits poor performance in the

figure. This result suggests that although Reiserfs can optimize

the performance in accessing small files in local computers, it

does not show good performance in the context of DFS. This

result once again shows the necessity of our work.

It can be seen from Fig. 10a that XFS used in Haystack de-

livers the higher performance than Ex4 and ReiserFS. This re-

sult is expected because XFS is configured in the experiments

in the similar way as it is used in Haystack. However, the per-

formance of XFS is still worse than that of iFlatLFS, which can

deliver the near-optimal performance. This is because XFS is

still designed following the principles of the traditional file

systems, for example, using the hierarchical data management

model. However, iFlatLFS is completely re-designed (e.g., us-

ing the flat data storage structure) to minimize the overhead for

accessing massive small files in DFS. Consequently, the data

addressing overhead in XFS is higher.

Fig. 8b shows the performance of iops when there is a mix-

ture of reads and writes. In the legend of Fig. 8b, the suffix of

98:2 represents the random access mixing 98% reads and 2%

writes, while the suffix of 96:4 represents the mix of 96% reads

and 4% writes. It can be seen from Fig. 8b that in all cases,

iFlatLFS can achieve near-optimal performance and significant-

ly outperforms other file systems (by 54% on average in case of

Ext4). These results are consistent with those observed in Fig.

0

20

40

60

80

100

120

140

1
k

2
K

4
K

8
K

1
6

K

3
2

K

6
4

K

io
p

s
file size (Byte)

randomio iFlatLFS

ext xfs

reiserfs

0

20

40

60

80

100

120

140

1
k

2
K

4
K

8
K

1
6

K

3
2

K

6
4

K

io
p

s

file size (Byte)

randomio-98:2 randomio-96:4
iFlatLFS-98:2 iFlatLFS-96:4
ext-98:2 ext-96:4
xfs-98:2 xfs-96:4
reiserfs-98:2 reiserfs-96:4

10 IEEE TRANSACTIONS ON JOURNAL NAME, MANUSCRIPT ID

8a. Again, similar to the results in Fig. 8a, in Fig. 8b the per-

formance improvement of iFlatLFS over other file systems

diminishes as the file size increases.

5.2 Performance of iFlatLFS-based TFS

The performance of TFS based on iFlatLFS and Ext4 file sys-

tem is evaluated in a cluster with 4 nodes and a Cisco SR2024

24 ports 10/100/1000 gigabit switch. Each node has two 2.13

GHz Intel Xeon E5506 Quad processors, 4GB of memory,

2.5TB of SATA disks, and installs CentOS release 5.5 with the

kernel 2.6.18-308.8.1.el5.plusxen for x86-64. In the total 2.5TB

of disk space, 0.5TB is used by the operating system, 1TB by

the Ext4 file system and 1TB by iFlatLFS.

The experiment was conducted in 3 steps: 1) writing a total

512GB of small files with different sizes; 2) randomly reading

1000 files from these small files written in the first step; 3) mix-

ing read and write operations with the same ratio as in the ex-

periments presented in Section 5.1.

The results are shown in Fig. 9a and 11b. iFlatLFS-based

TFS significantly outperforms Ext4-based TFS in both read

only case (by about 45% on average) and the read-write case

(by about 49% on average). These results once again indicate

that iFlatFLS is able to optimize I/O performance.

By comparing with the results in Fig. 8, the performance of

iFlatLFS-based (or Ext4-based) TFS is poorer than that of

iFlatLFS (or Ext4). This is because accessing data in TFS incurs

additional overhead, such as transferring data in the network

and accessing metadata server. If a faster network product is

used, the additional overhead is expected to be smaller.

(a) random read (b) mix random access

Fig. 9 Performance of TFS based on iFlatLFS and Ext4

5.3 The impact of metadata consistency policy

In Section 5.1 and 5.2, the strong metadata consistency policy is

applied. In this subsection, we present the experiment results

for the weak consistency policy and show the impact of the

consistency policy on performance.

Fig. 10 plots the performance of iFlatLFS-based TFS with

different metadata consistency policies as the ratio of write

requests to the total requests increases. In Fig. 10, in the weak

consistency policy, the performance of the iFlatLFS-based TFS

increases as the proportion of write requests increases. This

result can be explained as follows. Under the weak consistency

policy, a write operation returns after the data has been written

into the system buffer. The file system periodically writes the

new data into the disk, which is conducted in the background

and may overlap with other file access operations. However, a

read operation most likely involves a disk operation, because

they are random reads in the experiments and the cache effect

has little positive impact. Therefore, a write operation typically

spends less time than a read under the weak consistency policy.

Moreover, when the file system write the data into disks period-

ically, many data are written together, which gives the underly-

ing I/O system the opportunity to improve performance.

It can also be observed that under strong consistency, the

performance of the iFlatLFS-based TFS decreases as the pro-

portion of the write operations increases. This is because the

new data are written into the disk synchronously under strong

consistency. A write operation now needs two disk operations,

while a read operation needs only one disk operation.

Fig. 10 also plots the performance of the Ext4-based TFS. It

shows that the performance increases slowly as the proportion

of writes increases. This can be explained by comparing (3) and

(9). 𝑇2:𝑊𝑟𝑖𝑡𝑒𝐼𝐹𝐷𝑎𝑡𝑎 in (9) is always smaller than 𝑇2:𝑅𝑒𝑎𝑑𝐼𝐹𝐷𝑎𝑡𝑎 in

(3) because a mmap write operation returns when the data is put

into the memory cache while a mmap read will cause a disk I/O

operation, if the required index data are not in memory.

Fig.10 also shows that under both policies, the performance

of iFlatLFS-based DFS is better than that of traditional DFS in

all write-to-read ratios. In the experiments, the performance of

traditional DFS has counted in the effect of the cache. This re-

sult suggests that iFlatLFS-based DFS can always deliver better

performance than traditional DFS. These experimental results

are also consistent with the analysis by comparing (9) and (10).

Fig. 10 Performance of TFS based on
Ext4 and iFlatLFS with different con-

sistency policies

Fig. 11 The size of metadata in
iFlatLFS and Ext 4 under different

total file sizes

5.4 Metadata size

Fig. 11 plots the size of metadata in iFlatLFS and in the Ext4

file system as the total file size increases. In the experiments,

the file sizes range from 1K to 64K with the average size of

16KB. The data block size in Ext4 is 64MB. In Fig. 11, the

metadata size increases at a very modest rate in iFlatLFS, while

the metadata size in Ext4 increases much more sharply as the

total file size increases. This is because the metadata in

iFlatLFS only contain index items, each of which is of fairly

small size, while the metadata in Ext4 contain inode data, index

data and address data, which have to consume much bigger disk

space. Metadata can be seen as the storage overhead of a file

system. Therefore, this result indicates that iFlatLFS incurs

much less storage overhead than Ext4. In fact, since the size of

metadata in iFlatLFS is so small, it enables the entire metadata

to be loaded into the main memory, and therefore effectively

eliminates the I/O operations involved in retrieving metadata.

Fig.12 plots the size of metadata in iFlatLFS and in the Ext4

file system as the average file size increases from 4KB to 64

0

20

40

60

80

100

1
k

2
K

4
K

8
K

1
6

K

3
2

K

6
4

K

io
p

s

file size (Byte)

TFS-iFlatLFS

TFS-ext

0

50

100

1
k

2
K

4
K

8
K

1
6

K

3
2

K

6
4

K

io
p

s

file size (Byte)

TFS-iFlatLFS-98:2

TFS-iFlatLFS-96:4

TFS-ext-98:2

TFS-ext-96:4

0

50

100

150

0 10 20 40 60 80 100

io
p

s

ratio of write requests to
total requests (%)

TFS_iFlatLFS_weak
TFS_iFlatLFS_strong
TFS_Ext4

0

20

40

60

80

1T 2T 4T 8Tto
ta

l
m

e
ta

d
a

ta
 s

iz
e
 (

G
B

)

total file size (Byte)

Ext4 iFlatLFS

AUTHOR ET AL.: TITLE 11

KB. In these experiments, the total file size is fixed to be 1 TB.

As can be seen from this figure, the total metadata size decreas-

es as the average file size increases in both iFlatLFS and Ext4.

This can be explained as follows. When the average file size

increases and the total file size is fixed (1TB), the total number

of files decreases. Consequently, the total number of index

items decreases, since each small file has an index item (which

is stored in the index files in Ext4, and stored in the metadata

area in iFlatLFS). Thus the total metadata size decreases.

It can also been seen from Fig. 12 that as the average file

size increases, the metadata size in Ext4 and iFlatLFS gradually

approaches to different figures. The curve of Ext4 approaches

to about 8GB, while the curve of iFlatLFS to about 0. This can

be explained as follows. In iFlatLFS, the index items are the

only metadata. Each file has an index item of 12 Bytes. In theo-

ry, when the file size is so big that the whole 1TB space has

only one file, the total metadata size is then 12 Bytes, which

should be the theoretical lower bound of the total metadata size.

In Ext4, however, the metadata includes inode data, index data

and address data. An address pointer of 8 Bytes is needed for

each 1KB data. Then 1TB data will have 8GB address data,

which is fixed no matter the number of files in the disk. On the

other hand, the size of index data decreases as the number of

files decreases. This is why the metadata size of Ext4 gradually

approaches to 8GB in the figure.

Fig. 12 The size of metadata in

iFlatLFS and Ext4 under different
average file sizes

Fig. 13 Critical point of file size for
iFlatLFS

5.5 Critical point of file size

As shown in Fig. 8, the performance advantage of iFlatLFS

over Ext4 diminishes as the file size increases. We have also

conducted the experiments to identify the critical point of file

size, i.e., the file size beyond which iFlatLFS does not outper-

form Ext4 any more. The experimental results are presented in

Fig. 13. The experimental settings are the same as those in Sec-

tion 5.1. It can be seen that As can be seen from this figure, the

performance advantage of iFlatLFS over Ext4 decreases as the

file size increases from 64KB to 2MB. iFlatLFS becomes infe-

rior to Ext4 when the file size is 4MB. Besides the reasons dis-

cussed in Section 5.1, another reason why the iFlatLFS ad-

vantage decreases may be because that the predictive prefetch-

ing and caching techniques in the Ext4 file system can lead to

substantial performance improvement as the file size increases.

5.6 Comparing different data storage systems

The experiments presented so far compare iFlatLFS with other

file systems in accessing small files. This section compares

TFS-iFlatLFS with other types of distributed storage systems.

TFS-iFlatLFS is the combined-block-storage DFS. The divided-

block-storage DFSes and the NoSQL (Not only SQL) database

systems (a type of key-value storage systems) are other two

popular data storage systems. In this section, TFS-iFlatLFS

(version of 1.4) is compared with HDFS [5] (Hadoop version of

2.4.1, a divided-block-storage DFS) and Cassandra [37] (ver-

sion of 2.0.9, a key-value storage system) in terms of system

throughput (defined as the amount of data that can be accessed

by the system in a time unit) over a wide range of data sizes.

The hardware platform and test steps used in this section are

the same as those in Section 5.2. The experimental results of

random read are plotted in Fig. 14. The results show that

iFlatLFS-based TFS does not always have performance ad-

vantages over Cassandra and HDFS. TFS-iFlatLFS outperforms

Cassandra when the size of the data accessed by each request is

bigger than 9.8KB, while it outperforms HDFS when the data

size is less than 2.1MB. The reasons for these can be explained

as follows. iFlatLFS-based TFS aims to optimize the perfor-

mance for accessing massive number of seldom modified small

files. It does not have the optimization measures present in

HDFS or Cassandra for accessing big files or tiny data. Our

experimental records show that in iFlatLFS-based TFS, when

the data size is small, the iops (IO operations per seconds) value

remains almost unchanged and the performance increases al-

most linearly as the data size increases. But this observation

gradually deviates as the data size becomes bigger. This is be-

cause as the data size increases, the proportion of the data ac-

cessing time in the whole I/O operation duration (i.e., data ac-

cessing time plus disk accessing overhead) increases. The value

of 2.1M shown in Fig. 14a appears to become a threshold data

size, beyond which the data accessing time outweights the disk

accessing overhead and consequently, the iops value decreases

as the data size increases. Therefore, the increasing rate of

throughput slows down as the data size increases. In HDFS,

however, when the data size is bigger, the prefetching and

write-back techniques, which is absent in iFlatLFS, begins to

play an increasingly more important role and counerbalance the

loss due to the disk accessing overhead. As the result, the

throughput achieved by HDFS increases faster than that by

TFS-iFlatLFS. The trend of the throughput curves in Fig. 14b

can be explained by the similar reasons.

(a) iFlatLFS-based TFS vs. HDFS (b) iFlatLFS-based TFS vs. Cassan-

dra

Fig. 14 The random read performance comparation among Cassandra,
iFlatLFS-based TFS and HDFS

The comparison results for mix random access are plotted in

Fig. 15. The results are plotted as columns instead of lines in

this figure, because otherwise some curves would overlap each

other. The results observed from Fig. 15 are consistent with

0

2

4

6

8

10

12

14

4
K

1
2

K

2
0

K

2
8

K

3
6

K

4
4

K

5
2

K

6
0

Kto
ta

l
m

e
ta

d
a

ta
 s

iz
e
 (

G
B

)

average file size (Byte)

Ext4 iFlatLFS

0

20

40

60

80

100

120

6
4

K

1
2

8
K

2
5

6
K

5
1

2
K

1
M

2
M

4
M

8
M

io
p

s

file size (Byte)

Ext4 iFlatLFS

0

20

40

60

80

100

6
4
K

1
2
8K

2
5
6K

5
1
2K 1
M

2
M

4
M

th
ro

u
gh

p
u

t
(M

B
/s

)

data size (Byte)

HDFS

TFS-iFlatLFS

0

0.5

1

1.5

5
1
2B 1
K

2
K

4
K

8
K

1
6
K

th
ro

u
gh

p
u

t
(M

B
/s

)

data size (Byte)

Cassandra

TFS-iFlatLFS

12 IEEE TRANSACTIONS ON JOURNAL NAME, MANUSCRIPT ID

those observed in Fig. 14.

These results show that there is a data size range within

which TFS-iFlatLFS represents a better storage solution com-

pared with other two storage solutions such as Cassandra and

HDFS. These results are reasonable since the divided-block-

storage solution is designed for storing big files, while the key-

value storage solution is designed for storing the data with very

small sizes. These results also suggest that when big files, small

files and tiny data all exist, there may not be a storage system

that can achieve the best performance for the whole spectrum of

data. It would be ideal to integrate these different storage sys-

tems as a hybrid data storage system. The final section of this

paper tries to open the discussions in this aspect and proposes

the possible design of such a hybrid data storage system.

(a) iFlatLFS-based TFS vs. HDFS (b) iFlatLFS-based TFS vs. Cassan-

dra

Fig. 15 The mix random access performance comparation among Cassandra,
iFlatLFS-based TFS and HDFS

6 DISCUSSIONS: INTEGRATING DIFFERENT DATA

STRORAGE SYSTEMS

At present, there are three types of prevalent large-scale dis-

tributed data storage systems: the divided-block-storage DFSes,

the combined-block-storage DFSes and the NoSQL (Not only

SQL) database systems. The divided-block-storage DFSes, such

as GFS and HDFS, are usually used to store big files. But these

DFSes can not deliver the ideal performance when handling

small files. The main aim of designing combined-block-storage

DFSes, such as Haystack and TFS, is to solve the problem of

accessing massive numbers of small files efficiently. Further-

more, the NoSQL database systems, such as Dynamo [36], Cas-

sandra [37], MongoDB [38], HBase [39] and BigTable [40], are

mainly designed for storing the data of tiny size.

The experimental results presented in Section 5.6 are con-

sistent with the above design objectives. iFlatLFS can improve

the performance of accessing massive numbers of small files

with the KB-level size in the combined-block-storage DFSes.

For the files with MB-level or bigger size, HDFS (the divided-

block-storage DFS) can achieve better performance, while for

the tiny data with the byte-level size Cassandra (the NoSQL

database system) is a better solution. Therefore, it is ideal to

integrate different data storage systems that have different rang-

es of “expertise” and use them to handle the data with different

characteristics, such as the size of the data being accessed. We

call this a hybrid data storage system.

There are some existing works in the literature [41, 42] to in-

tegrate the individual storage Clouds. RACS [41] is a proxy that

applies the RAID-like techniques at the cloud storage level.

Namely, RACS stripes user data across multiple providers, and

transparently spreads the storage load over many providers.

DepSky [42] is designed for improving the availability, integri-

ty and confidentiality of the data which are stored on diverse

clouds. DepSky is implemented as a software library in the

clients and offers a uniform store interface. The requests of the

clients are finally sent to the backend clouds by DepSky.

Although there are some similarities in principles between

RACS/DepSky and the hybrid storage system that we want to

achieve. RACS/DepSky cannot be used in our scenario. First,

the backend of RACS/DepSky is individual storage clouds

while the backend of our hybrid storage system is the individual

data storage systems. Their interfaces are different. Second,

RACS/DepSky mainly focus on maintaining the data availabil-

ity at cloud level. Therefore they apply the data replication

techniques, aiming to avoid vendor lock-in and better tolerate

provider outages or failures. Each cloud contains all data set,

but only stores a part of all replicas of a data item. However,

our hybrid storage system mainly aims to achieve good data

accessing performance by making use of the “expertise” of

individual data storage systems. A backend data storage system

will only store a part of all data set in the hybrid storage system,

but store all replicas of a data item.

In this section, a hybrid storage system is proposed to serve

the above purpose. This section only aims to show that it is

possible to integrate iFlatLFS and other storage approaches, i.e.,

the combined-block-storage DFSes and the NoSQL database

systems, in a hybrid storage system. The detailed implementa-

tion of this hybrid storage framework is beyond the focus and

scope of this paper. We plan to carry out the implementation

work in the future. We also hope the proposed hybrid storage

system can open valuable discussions and constitute a basis for

further research work in this topic.

6.1 The architecture of the hybrid storage system

The architecture in the hybrid storage system is illustrated in

Fig. 16. In this figure, the clients are the same as the client in

Fig. 1, i.e., the application server that provide someservices to

the users. Different from Fig. 1, the client does not access the

DFS directly. Instead, a storage proxy sits between the clients

and different backend storage systems (e.g., iFlatLFS-based

TFS, HDFS and Cassandra). The storage proxy is responsible

for classifying the incoming data accessing requests and dis-

patching the requests to the suitable backend storage systems.

Fig. 16 The archituecutre of the hybrid storage systems

The storage proxy not only classifies the client requests, but

also deals with the heterogeneity of the backend data storage

systems. The storage proxy is composed of the storage API, the

classifier and a number of storage modules. Each storage mod-

ule acts as an agent for a backend storage system. The backend

data storage systems are transparent to the clients. Namely, the

storage proxy provides a set of uniform storage APIs that can be

0

50

100

6
4
K

1
2
8K

2
5
6K

5
1
2K 1
M

2
M

4
M

th
ro

u
gh

p
u

t
(M

B
/s

)

data size (Byte)

HDFS-98:2
HDFS-96:4
TFS-iFlatLFS-98:2
TFS-iFlatLFS-96:4

0

1

2

5
1
2B 1
K

2
K

4
K

8
K

1
6
Kth

ro
u

gh
p

u
t

(M
B

/s
)

data size (Byte)

Cassandra-98:2
Cassandra-96:4
TFS-iFlatLFS-98:2
TFS-iFlatLFS-96:4

Client

divided-block-
storage DFS

combined-block-
storage DFS

NoSQL database
system

storage proxy

S
t
o
r
a
g
e

A
P
I

c
l
a
s
s
i
f
i
e
r

dbs storage
module

cbs storage
module

nds storage
module

Client

Client

AUTHOR ET AL.: TITLE 13

invoked by the clients and the clients do not have to be aware of

the heterogeneity of the backend storage systems.

The process of storing the data in the hybrid storage system

is as follows. First, the clients invoke the generic storage APIs

provided by the storage proxy. Then, the classifier classifies the

incoming data and invokes the corresponding storage module to

forward the data to the backend data storage system. Finally, the

data storage system stores the data into its own data servers.

6.2 Storage APIs and the classifying approach

The storage APIs provided by the storage proxy can include

read, write, update, delete and so on. Each storage module im-

plements these APIs for the corresponding backend storage

system in the following way. A storage module encapsulates the

data to be stored into the storage format required by the corre-

sponding backend storage system and then invoke the corre-

sponding interface of the backend data storage system.

Theoretically, the classifier can classify the data using def-

firent attributes, such as data type, data freshness, and client

attributes, and so on. As shown in the experimental results in

Section 5.6, these backend data storage systems manifest better

performance in certain ranges of data size. Therefore, in order

to improve the overall performance of the hybrid storage sys-

tem, the storage proxy can classify the data according to their

sizes. In practice, we can benchmark the ideal range of data size

for each backend storage system deployed in the hybrid storage

system in the similar way as that in the experiments presented

in Section 5.6. The storage proxy can then classify the data to

be stored accordingly.

7 CONCLUSIONS AND FUTURE WORK

When developing efficient distributed file systems (DFS), one

of the challenges is to optimize the storage and access of mas-

sive numbers of small files for Internet-based applications. Pre-

vious work mainly focuses on tackling the problems in tradi-

tional files systems, which generate too much metadata and

cause low file-access performance on data servers. In this paper,

we focus on optimizing the performance of data servers in ac-

cessing massive numbers of small files and present a light-

weight file system called iFlatLFS. iFlatLFS directly accesses

raw disks and adopts a simple metadata scheme and a flat stor-

age architecture to manage massive numbers of small files.

New metadata generated by iFlatLFS consume only a fraction

of total space used by the original metadata based on traditional

file systems. In iFlatLFS, each file access needs only one disk

operation except when updating files, which rarely happens.

Thus the performance of data servers and the whole DFS can be

improved greatly. This paper finally proposes a hybrid storage

system to integrate different storage systems, each of which

represents a better solution for different ranges of data sizes.

The proposal aims to open discussions and constitute a basis for

further research work in this topic. Future work is planned to-

wards the following three directions: 1) redesigning the metada-

ta server to improve its performance because in iFlatLFS the

metadata server now contains much fewer metadata; 2) extend-

ing iFlatLFS so that it has the capability to intelligently cache

hotspot data in applications; 3) implementing the hybrid storage

architecture proposed in this paper.

ACKNOWLEDGMENT

We would like to thank the users and the developer community

for their help with this work. We also thank the anonymous

reviewers for their valuable comments. The work reported in

this paper was supported by the China HGJ Project (No.:

2013ZX01040-002) and the Leverhulme Trust (Grant No.:

RPG-101).

REFERENCES

[1] N. Agrawal, W. Bolosky, J. Douceur and J. Lorch. A five-year study of file-

system metadata. In Proceedings of the 5th USENIX Conference on File and

Storage Technology (FAST’07). , San Jose, CA, USA Feb. 13-16, 2007.

[2] Dutch T. Meyer, William J. Bolosky. A Study of Practical Deduplication. In

Proceedings of the 9th USENIX Conference on File and Storage Technology

(FAST’11) , San Jose, CA, USA, Feb. 15-17, 2011

[3] D. Beaver, S. Kumar, H. C. Li, J. Sobel, and P. Vajgel. Finding a Needle in

Haystack: Facebook’s Photo Storage. In Proceedings of the 9th USENIX Sym-

posium on Operating Systems Design and Implementation (OSDI’10), Van-

couver, Canada, Oct. 2010

[4] Sanjay Ghemawat, Howard Gobioff, and Shun-Tak Leung. The Google file

system. In 19th Symposium on Operating Systems Principles, Lake George,

New York, 2003

[5] S. Shvachko, H. Kuang, S. Radia, and R. Chansler. The Hadoop Distributed

File System. In Proceedings of the Symposium on Mass Storage Systems and

Technologies (MSST’10), Nevada, May 3-7, 2010

[6] Liu Jiang Bing Li Meina Song. THE optimization of HDFS based on small

files. The 3rd IEEE International Conference on Broadband Network and Mul-

timedia Technology (IC-BNMT), Oct. 2010

[7] Xuhui Liu, Jizhong Han, et al. Implementing WebGIS on Hadoop: A case

study of improving small file I/O performance on HDFS. IEEE Cluster’09,

doi:10.1109/CLUSTR.2009.5289196. New Orleans LA, Sep. 2009

[8] Mackey, G. Sehrish, S. Jun Wang. Improving metadata management for small

files in HDFS. IEEE Cluster’09, doi:10.1109/CLUSTR.2009.5289133. New

Orleans LA, Sep. 2009

[9] Alibaba. TFS Project. http://code.taobao.org/p/tfs/src/

[10] Avantika Mathur, Mingming Cao, Suparna Bhattacharya, Andreas Dilger, Alex

Tomas, Laurent Vivier. The new Ext4 filesystem: current status and future

plans. Proceedings of the Linux Symposium (PDF). Ottawa ON, CA: Red Hat

Jan. 15, 2008

[11] G. R. Ganger and M. F. Kaashoek. Embedded inodes and explicit grouping:

exploiting disk bandwidth for small files. In ATEC ’97: Proceedings of the an-

nual conference on USENIX Annual Technical Conference, pages 1–1, Berke-

ley, CA, USA, 1997.

[12] Borislav Djordjevic, Valentina Timcenko. Ext4 file system performance analy-

sis in linux environment. Proceedings of the 11th WSEAS international confer-

ence on Applied informatics and communications. Wisconsin, USA 2011

[13] Steve D. Pate UNIX Filesystems: Evolution, Design, and Implementation.

Wiley. ISBN 0-471-16483-6. 2003

[14] R. Buyya, M. Pathan and A. Vakali. Content Delivery Networks, ISBN 978-3-

540-77886-8, Springer, Germany, 2008.

[15] Cade Metz, Google File System II: Dawn of the Multiplying Master Nodes,

http://www.theregister.co.uk/2009/08/12/google_file_system_part_deux/, Au-

guest 12, 2009

[16] Hadoop Archive Guide,

http://hadoop.apache.org/mapreduce/docs/r0.21.0/hadoop_archives.html, Aug.

17, 2010

[17] Sequence File, http://wiki.apache.org/hadoop/SequenceFile, Sep. 20, 2009

[18] A. Sweeney, D. Doucette, W. Hu, C. Anderson, M. Nishimoto, and G. Peck.

Scalability in the xfs file system. In ATEC ’96: Proceedings of the 1996 annual

http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=5640191
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=5640191
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=5640191
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=5289196
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=5289196
http://61.187.54.10:8000/rewriter/IEL/http/cw9cnh9nqf/10.1109/CLUSTR.2009.5289196
http://61.187.54.10:8000/rewriter/IEL/http/cw9cnh9nqf/10.1109/CLUSTR.2009.5289133
http://www.citeulike.org/user/shehjart/author/Mathur:A
http://www.citeulike.org/user/shehjart/author/Cao:M
http://www.citeulike.org/user/shehjart/author/Bhattacharya:S
http://www.citeulike.org/user/shehjart/author/Dilger:A
http://www.citeulike.org/user/shehjart/author/Tomas:A
http://www.citeulike.org/user/shehjart/author/Tomas:A
http://www.citeulike.org/user/shehjart/author/Vivier:L
https://ols2006.108.redhat.com/2007/Reprints/mathur-Reprint.pdf
https://ols2006.108.redhat.com/2007/Reprints/mathur-Reprint.pdf
http://zh.wikipedia.org/wiki/PDF
http://dl.acm.org/author_page.cfm?id=81488652660&coll=DL&dl=ACM&trk=0&cfid=91870972&cftoken=93217509
http://dl.acm.org/author_page.cfm?id=81443598236&coll=DL&dl=ACM&trk=0&cfid=91870972&cftoken=93217509
http://www.google.com.hk/url?sa=t&rct=j&q=Ext4+file+system+performance+analysis+in+linux+environment&source=web&cd=3&ved=0CFoQFjAC&url=http%3A%2F%2Fdl.acm.org%2Fcitation.cfm%3Fid%3D2042846&ei=1XfqT5rvKozOrQfYqOzCBQ&usg=AFQjCNGPaw4PvIQ4SyHxqoKtZvLxWtspgg&cad=rjt
http://www.google.com.hk/url?sa=t&rct=j&q=Ext4+file+system+performance+analysis+in+linux+environment&source=web&cd=3&ved=0CFoQFjAC&url=http%3A%2F%2Fdl.acm.org%2Fcitation.cfm%3Fid%3D2042846&ei=1XfqT5rvKozOrQfYqOzCBQ&usg=AFQjCNGPaw4PvIQ4SyHxqoKtZvLxWtspgg&cad=rjt
http://eu.wiley.com/WileyCDA/WileyTitle/productCd-0471164836.html
http://en.wikipedia.org/wiki/John_Wiley_%26_Sons
http://en.wikipedia.org/wiki/International_Standard_Book_Number
http://en.wikipedia.org/wiki/Special:BookSources/0-471-16483-6
http://www.gridbus.org/cdn/book/
http://en.wikipedia.org/wiki/Special:BookSources/9783540778868
http://en.wikipedia.org/wiki/Special:BookSources/9783540778868
http://hadoop.apache.org/mapreduce/docs/r0.21.0/hadoop_archives.html
http://wiki.apache.org/hadoop/SequenceFile

14 IEEE TRANSACTIONS ON JOURNAL NAME, MANUSCRIPT ID

conference on USENIX Annual Technical Conference, pages 1–1, Berkeley,

CA, USA, 1996.

[19] FastDFS, http://code.google.com/p/fastdfs/

[20] Alibaba Group, http://www.alibaba.com

[21] Randomio, http:// www.arctic.org/~dean/randomio

[22] Facebook online social network, http://www.facebook.com

[23] Amazon online shopping, http://www.amazon.com

[24] Taobao online shopping, http://www.taobao.com

[25] F. Schmuck et al., GPFS: A shared-disk file system for large computing clusters,

in Proceedings of the 1st USENIX Conference on File and Storage Technolo-

gies, FAST ’02, 2002.

[26] I. F. Haddad, PVFS: A parallel virtual file system for linux clusters, Linux J., vol.

2000, Nov. 2000.

[27] Esmet J, Bender M A, Farach-Colton M, et al. The TokuFS streaming file

system[C]//Proceedings of the 4th USENIX conference on Hot Topics in Stor-

age and File Systems, HotStorage. 2012, 12: 14-14.

[28] Vrable M, Savage S, Voelker G M. BlueSky: a cloud-backed file system for the

enterprise[C]//Proceedings of the 10th USENIX conference on File and Storage

Technologies (FAST'12). USENIX Association, Berkeley, CA, USA. 2012: 19-

19.

[29] Hendricks J, Sambasivan R R, Sinnamohideen S, et al. Improving small file

performance in object-based storage[R]. CARNEGIE-MELLON UNIV

PITTSBURGH PA PARALLEL DATA LABORATORY, 2006.

[30] Zhang B, Zuo Y Y, Zhang Z C. Research and Improvement of the Hot Small

File Storage Performance under HDFS[J]. Advanced Materials Research, 2013,

756: 1450-1454.

[31] Zhang Q, Feng D, Wang F. Metadata Performance Optimization in Distributed

File System[C]//Computer and Information Science (ICIS), 2012 IEEE/ACIS

11th International Conference on. IEEE, 2012: 476-481.

[32] K. K. Ramakrishnan , Prabuddha Biswas , Ramakrishna Karedla, Analysis of

file I/O traces in commercial computing environments, ACM SIGMETRICS

Performance Evaluation Review, v.20 n.1, p.78-90, June 1992.

[33] Wallace G, Douglis F, Qian H, et al. Characteristics of backup workloads in

production systems[C]//Proceedings of the Tenth USENIX Conference on File

and Storage Technologies (FAST’12). 2012.

[34] Harter T, Dragga C, Vaughn M, et al. A file is not a file: understanding the I/O

behavior of Apple desktop applications[J]. ACM Transactions on Computer

Systems (TOCS), 2012, 30(3): 10.

[35] Mason C. Journaling with reisersfs[J]. Linux Journal, 2001, 2001(82es): 3.

[36] DeCandia G, Hastorun D, Jampani M, et al. Dynamo: amazon's highly availa-

ble key-value store[C]//ACM SIGOPS Operating Systems Review. ACM,

2007, 41(6): 205-220.

[37] Apache Cassandra project. http://cassandra.apache.org/

[38] Chodorow K. MongoDB: the definitive guide[M]. " O'Reilly Media, Inc.",

2013.

[39] George L. HBase: the definitive guide[M]. " O'Reilly Media, Inc.", 2011.

[40] Chang F, Dean J, Ghemawat S, et al. Bigtable: A distributed storage system for

structured data[J]. ACM Transactions on Computer Systems (TOCS), 2008,

26(2): 4.

[41] Abu-Libdeh H, Princehouse L, Weatherspoon H. RACS: a case for cloud

storage diversity[C]//Proceedings of the 1st ACM symposium on Cloud compu-

ting. ACM, 2010: 229-240.

[42] Bessani A, Correia M, Quaresma B, et al. DepSky: dependable and secure

storage in a cloud-of-clouds[J]. ACM Transactions on Storage (TOS), 2013,

9(4): 12.

[43] Yang XJ, Liao XK, Lu K et al. The TianHe-1A supercomputer: Its hardware

and software[J]. JOURNAL OF COMPUTER SCIENCE AND TECHNOL-

OGY 26(3): 344–351 May 2011. DOI 10.1007/s11390-011-1137-4

[44] Liao X, Xiao L, Yang C, et al. Milkyway-2 supercomputer: system and applica-

tion[J]. Frontiers of Computer Science, 2014, 8(3): 345-356.

[45] Pang Z, Xie M, Zhang J, et al. The TH Express high performance interconnect

networks[J]. Frontiers of Computer Science, 2014, 8(3): 357-366

Songling Fu received the BS degree in the de-

partment of electronic science and technology

from Harbin Institute of Technology, Harbin,

China, in 2001, and received the MS and PhD

degree of computer science and technology

from National University of Defense Technolo-

gy, Changsha, China, in 2003 and 2014, respec-

tively. His research interests include parallel

and distributed computing, high-performance

computer systems, operating systems, cloud

computing.

Ligang He received the Bachelors and Masters

degrees from the Huazhong University of Sci-

ence and Technology, Wuhan, China, and re-

ceived the PhD degree in Computer Science

from the University of Warwick, UK. He was a

Post-doctoral researcher at the University of

Cambridge, UK. In 2006, he joined the De-

partment of Computer Science at the University

of Warwick as an Assistant Professor, and then

became an Associate Professor. His areas of

interest are parallel and distributed computing,

high performance Computing.

Chenlin Huang received the BS, MS and PhD

degree of computer science and technology

from National University of Defense Technolo-

gy, Changsha, China, in 1998, 2001 and 2005,

respectively. His research interests include

parallel and distributed computing, high-

performance computer systems, operating sys-

tems, cloud computing.

Xiangke Liao received the BS degree in the

department of computer science and technology

from Tsinghua University, Beijing, China, in

1985, and the MS degree of computer science

and technology from National University of

Defense Technology, Changsha, China, in

1988. He is currently a full professor and the

dean of school of computer science, National

University of Defense Technology. His re-

search interests include parallel and distributed

computing, high-performance computer sys-

tems, operating systems, cloud computing, and

networked embedded systems. He is a member

of the IEEE and the ACM.

Kenli Li received the Ph.D. degree in computer

science from Huazhong University of Science

and Technology, China, in 2003. He is current-

ly a full professor of computer science and

technology at Hunan University and associate

director of National Supercomputing Center in

Changsha. His major research includes parallel

computing, grid and cloud computing, and

DNA computing.

