
http://wrap.warwick.ac.uk

Original citation:
Murawski, Andrzej S. and Tzevelekos, Nikos (2014) Game semantics for nominal
exceptions. In: Muscholl, Anca, (ed.) Foundations of Software Science and Computation
Structures : 17th International Conference, FOSSACS 2014, Held as Part of the
European Joint Conferences on Theory and Practice of Software, ETAPS 2014,
Grenoble, France, April 5-13, 2014, Proceedings. Lecture Notes in Computer Science,
Volume 8412 . Springer Berlin Heidelberg, pp. 164-179. ISBN 9783642548291

Permanent WRAP url:
http://wrap.warwick.ac.uk/65245

Copyright and reuse:
The Warwick Research Archive Portal (WRAP) makes this work by researchers of the
University of Warwick available open access under the following conditions. Copyright ©
and all moral rights to the version of the paper presented here belong to the individual
author(s) and/or other copyright owners. To the extent reasonable and practicable the
material made available in WRAP has been checked for eligibility before being made
available.

Copies of full items can be used for personal research or study, educational, or not-for
profit purposes without prior permission or charge. Provided that the authors, title and
full bibliographic details are credited, a hyperlink and/or URL is given for the original
metadata page and the content is not changed in any way.

Publisher’s statement:
"The final publication is available at Springer via http://dx.doi.org/10.1007/978-3-642-
54830-7_11 "

A note on versions:
The version presented here may differ from the published version or, version of record, if
you wish to cite this item you are advised to consult the publisher’s version. Please see
the ‘permanent WRAP url’ above for details on accessing the published version and note
that access may require a subscription.

For more information, please contact the WRAP Team at: publications@warwick.ac.uk

CORE Metadata, citation and similar papers at core.ac.uk

Provided by Warwick Research Archives Portal Repository

https://core.ac.uk/display/29192334?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://wrap.warwick.ac.uk/
http://wrap.warwick.ac.uk/65245
http://dx.doi.org/10.1007/978-3-642-54830-7_11
http://dx.doi.org/10.1007/978-3-642-54830-7_11
mailto:publications@warwick.ac.uk

Game Semantics for Nominal Exceptions⋆

Andrzej S. Murawski1 and Nikos Tzevelekos2

1 DIMAP and Department of Computer Science, University of Warwick
2 School of Electronic Engineering and Computer Science, Queen Mary University of London

Abstract. We present a fully abstract denotational model for a higher-order pro-

gramming language combining call-by-value evaluation and local exceptions.

The model is built using nominal game semantics and is the first one to achieve

both effective presentability and freedom from “bad exception” constructs.

1 Introduction

Exceptions are a standard programming effect for raising and handling eccentric pro-

gram behaviour, and more generally for manipulating the flow of control. They are a

key feature, for example, of ML, Java and C++. The raising of an exception forces a

program to escape out of its context and to the nearest applicable exception-handler.

Thus, exceptions provide a means of overriding nested behaviour of pure functional

programs. The mechanism that allows handlers to recognise the exceptions to be han-

dled usually relies on the use of names. In the paper we shall focus on modelling such

nominal exceptions.

The difficulties in modelling (even soundly) nominal exceptions stem from the com-

bination of name-locality and name-mobility with non-local control flow. In particular,

traditional approaches do not cope with locality and examine global exceptions only via

the exception monad [9]. On the other hand, existing game models [5] rely on Reynolds’

principle of modelling references as objects with read/write methods [13], extended to

the modelling of exceptions as objects with raise/handle methods. The main defect of

this principle is that, in order to achieve full abstraction, “bad” constructors have to

be included in the syntax, which means that the language examined will include “bad

exceptions”, which are terms of exception type that do not correspond to genuine ex-

ceptions, but rather to couplings of arbitrary raise/handle methods. These constructs,

while solving the full-abstraction problem, distance the languages from the program-

ming features they were set out to capture; in particular, term-equivalence is not conser-

vative with respect to bad constructors. For example, “handle x in (raise x) with skip”

is not equivalent to “skip”.

Nominal game semantics advocates a departure from Reynolds’ modelling rule and

stipulates that “nameful” types be modelled by names rather than objects. Nominal

games were introduced in [1] and [6] in order to provide the first fully abstract models

of the ν-calculus and its extension with pointers (i.e. storable names) respectively. They

constitute a ‘nominalised’ version of game semantics, in which names may appear in

⋆ Research funded by the Engineering and Physical Sciences Research Council (EP/J019577/1)

and a Royal Academy of Engineering Research Fellowship (Tzevelekos).

class MyExn extends Exception {}

public class Trap {

public static void main(String [] argv)
throws Exception {

Exception e1 = new MyExn();

Exception e2 = new MyExn();
try { foo(e1); }

catch (Exception x) {
System.out.printf("%b, %b",

x==e1, x==e2);

}
}

static void foo(Exception e)
throws Exception {

throw(e);
}

}

exception MyExn

let e1 = MyExn
let e2 = MyExn
let foo(x) = raise x;;

try foo(e1) with x -> (x==e1, x==e2)

fun new_exn() =
let exception MyExn

fun eq(x) = case x of
MyExn => true

| _ => false
in (MyExn, eq) end

val e1 = new_exn()

val e2 = new_exn()
fun foo(x) = raise x;

foo(#1 e1) handle x => (#2 e1 x, #2 e2 x)

Fig. 1. Code samples. Clockwise, from upper-left corner: Java, OCaML and SML. In the Java

example, the catch clause in method main is able to trap the exception e1 raised by foo, extract

its name and pass it to x. As a result, the program prints true, false. In OCaML, the same

effect is achieved by pattern matching the handled expression. We instigate analogous behaviour

in SML, using the generativity of the exception constructor to produce local exceptions.

plays as atomic moves. Put differently, they are ordinary games constructed within the

universe of nominal sets [2]. A first attempt to model exceptions using nominal games

was made in [15]. However, the close reliance on the monadic approach led to a model

which was too intensional to yield an explicit characterisation of contextual equiva-

lence and the full abstraction result had to be obtained through the intrinsic quotient

construction ([15, Proposition 5.23]). The development of a direct model was left as a

major challenge for future work in [15]. In the present paper, we meet that challenge

by producing two fully abstract and effectively presentable models for higher-order

languages with references and exceptions. The fact that our models are not quotiented

yields a direct approach to proving program equivalences, with scope for future automa-

tion (cf. [11]). In particular, we prove new non-trivial equivalences (cf. Example 28).

We consider two kinds of exception-handling mechanisms, in Sections 2-4 and 5-6

respectively. In the first one, illustrated by the code samples in Figure 1, the handler is

given explicit access to the exception names that it encounters. Another, less invasive

approach, is to require the handler to specify which exception is to be intercepted, under

the assumption that all the others will be propagated by default. This approach respects

privacy of exceptions in that no handler may react to a freshly generated exception. The

latter kind of exceptions turns out to lead to a slightly more complicated game model.3

At the technical level our full abstraction results are obtained by modelling the ex-

ception type by an arena whose moves belong to a countable set of names. Additionally,

players are allowed use moves of the form e! (where e is an exception name) as answers

to arbitrary questions. Uses of e! can be taken to correspond to raising an exception.

These two relatively simple enrichments, along with standard game semantic conditions

such as alternation and well-bracketing, already give rise to a fully abstract model of the

3 This is a common pattern in game semantics: fewer conditions are needed to describe models

of richer languages, because the corresponding interactions are less constrained.

2

u, Γ ⊢ (), Ω : unit
i ∈ Z

u, Γ ⊢ i : int
l ∈ u ∩ Lβ

u, Γ ⊢ l : ref β
e ∈ u ∩ E

u, Γ ⊢ e : exn

u, Γ ⊢ M : int u, Γ ⊢ N0, N1 : θ
u, Γ ⊢ if0M thenN0 elseN1 : θ

u, Γ ⊢ M,N : int
u, Γ ⊢ M ⊕N : int

u, Γ ⊢ M,N : exn, ref β
u, Γ ⊢ M = N : int

(x : θ) ∈ Γ
u, Γ ⊢ x : θ

u, Γ, x : θ ⊢ M : θ′

u, Γ ⊢ λxθ.M : θ → θ′
u, Γ ⊢ M : θ → θ′ u, Γ ⊢ N : θ

u, Γ ⊢ MN : θ′

u, Γ ⊢ M : β
u, Γ ⊢ refβ(M) : ref β

u, Γ ⊢ M : ref β
u, Γ ⊢ !M : β

u, Γ ⊢ M : ref β u, Γ ⊢ N : β
u, Γ ⊢ M :=N : unit

u, Γ ⊢ exn() : exn
u, Γ ⊢ M : exn

u, Γ ⊢ raiseM : θ
u, Γ ⊢ M : θ u, Γ, x : exn ⊢ N : θ

u, Γ ⊢ M handlex =>N : θ

Fig. 2. Syntax of ExnML.

first kind of exceptions, i.e. handlers have direct access to exception names. To model

the other type of handlers, we identify a compositional subclass of strategies that must

propagate any exceptions unless they were revealed to the program by the environment.

In both cases, we obtain an explicit characterisation of contextual equivalence through

the induced sets of complete plays, ones in which all questions are answered. In the

setting where handling of private exceptions is not available, the latter set needs to be

appropriately trimmed, so as to reflect the handling restrictions on environments.

2 A language with local exceptions and ground references

We introduce the language ExnML, which is a fragment of ML with full ground refer-

ences4 augmented with nominal exceptions. Its types θ are generated according to the

following grammar.

θ ::= β | θ → θ β ::= unit | int | exn | ref β

Note that reference types are available for each type of the shape β, including the ex-

ception type (full ground storage). We assume disjoint denumerable sets L and E of

locations and exceptions respectively, such that L =
⊎

β Lβ . We range over location

names by l, l′ and over exception names by e, e′. Terms are typed in contexts (u, Γ),
where u a finite subset of L ∪ E and Γ is a variable context. Moreover, we assume a

fixed set of binary integer operators ranged over by ⊕. The terms of the language are

given by the following grammar (all i ∈ Z), while its typing rules are in Figure 2.

M ::= () | Ω | i | l | e | x | λxθ.M |MM | if0M thenM elseM |M ⊕M

|M = M | refβ(M) | !M |M :=M | exn() | raiseM |M handlex =>M

We shall write Γ ⊢ M : θ iff ∅, Γ ⊢ M : θ can be derived using the rules of Figure 2.

Similarly, ⊢ M : θ is shorthand for ∅, ∅ ⊢ M : θ. In what follows, we write M ;N

4 Elements of all ground types are storable.We omit higher-order references in order not to com-

plicate the exposition. The game model of higher-order references from [10] can be extended

to exceptions by following Section 3.

3

Σ, (λx.M)v −→ Σ,M [v/x] Σ, if0 0 thenN0 elseN1 −→ Σ,N0

Σ, i1 ⊕ i2 −→ Σ, (i1 ⊕ i2) Σ, if0 i thenN0 elseN1 −→ Σ,N1 (i 6= 0)

Σ, !l −→ Σ, s(l) Σ, refγ(v) −→ Σ[l 7→ v], l (l /∈ dom(Σ1))

Σ, l := v −→ Σ[l 7→ v], () Σ, exn() −→ Σ ∪ {e}, e (e /∈ Σ2)

Σ, e = e −→ Σ, 1 Σ, e = e′ −→ Σ, 0 (e 6= e′)

Σ, l = l −→ Σ, 1 Σ, l = l′ −→ Σ, 0 (l 6= l′)

Σ, v handlex =>N −→ Σ, v Σ, (raise e) handlex =>N −→ Σ,N [e/x]

Σ,E¬H [raise e] −→ Σ, raise e
Σ,M −→ Σ′,M ′

Σ,E[M] −→ Σ′, E[M ′]

Fig. 3. Small-step operational semantics of ExnML.

for the term (λzθ.N)M , where z does not occur in N and θ matches the type of M .

letx = M inN will stand for (λxθ.N)M in general. Value terms v, are given by:

v ::= () | i | e | l | λxθ .M

The operational semantics of the language utilises finite stores, which record generated

exceptions and assign to locations atomic values of compatible type:

Sto = {s : L⇀finVal | l ∈ dom(s) ∩ Lβ =⇒ s(l) ∈ Valβ} × Pfin(E),

whereVal = Valunit∪Val int∪Valexn∪
⊎

βVal refβ , Valunit = {∗},Val int = Z,Valexn =
E ,Val refβ = Lβ . We range over Sto by Σ, T (and variants). Given Σ ∈ Sto we write

Σ1, Σ2 to refer to its respective components. Stores must be closed in the following

sense: for all Σ ∈ Sto and l ∈ dom(Σ1),

(Σ1(l) ∈ L =⇒ Σ1(l) ∈ dom(Σ1)) ∧ (Σ1(l) ∈ E =⇒ Σ1(l) ∈ Σ2).

Finally, we let evaluation contexts be given by the syntax:

E ::= [] | EN | (λx.M)E | if0E thenN0 elseN1 | E ⊕N | i⊕ E | refγ(E) | E :=N

| l :=E | !E | E = N | e = E | l = E | E handlex =>N | raiseE.

We write E¬H for contexts E derived from the above grammar applying any of the

rules apart from E handlex =>N . In Figure 3 we give a small-step reduction relation

for terms in contexts from Sto. Given ⊢M : unit we write M ⇓ iff (∅, ∅),M −→−→Σ, ()
for some Σ.

Definition 1. We say that the term-in-context u, Γ ⊢ M1 : θ approximates u, Γ ⊢
M2 : θ (written u, Γ ⊢ M1

<
∼ M2) if C[M1] ⇓ implies C[M2] ⇓ for any context C[−]

such that u, ∅ ⊢ C[M1], C[M2] : unit. Two terms-in-context are equivalent if one ap-

proximates the other (written u, Γ ⊢M1
∼= M2).

4

Example 2. Take the terms ⊢M1,M2 : unit→ unit to be respectively

M1 ≡ let y = exn() inλxunit.raise y and M2 ≡ λxunit.raise (exn()).

Their game semantics will contain the following plays respectively

qΣ0

0 ⋆Σ0

0 qΣ0e1!
Σ1qΣ1e1!

Σ1 · · · qΣ1e1!
Σ1 qΣ0

0 ⋆Σ0

0 qΣ0e1!
Σ1 · · · qΣk−1ek!

Σk

where Σi = (∅, {e1, · · · , ei}). Handlers of ExnML can extract the name of an excep-

tion and remember it for future comparisons. Accordingly, we have ⊢ M1 6∼= M2 (cf.

Example 19).

3 Game semantics

We construct a game model for ExnML by extending the fully abstract model of Ground

ML [11] so as to incorporate nominal exceptional effects. Let A be a countably infinite

collection of names, corresponding to reference and exception names:

A =
⊎

β
Aβ ⊎ Ae where Aβ = Lβ , Ae = E .

We range over names with a, b, etc, and also l, e when we want to be specific about their

kind. The model is constructed using mathematical objects (moves, plays, strategies)

that will feature names drawn from A. Although names underpin various elements of

our model, their precise nature is irrelevant. Hence, all of our definitions preserve name-

invariance, i.e. our objects are (strong) nominal sets [2, 16]. Note that we do not need

the full power of the theory but mainly the basic notion of name-permutation. Here

permutations are bijections π : A → A with finite support which respects the indexing

of name-sets. For an element x belonging to a (nominal) set X , we write ν(x) for its

name-support, i.e. the set of names occurring in x. Moreover, for any x, y ∈ X , we write

x ∼ y if x and y are the same up to a permutation of A. We let [x] = {y ∈ X | x ∼ y}.
Our model is couched in the Honda-Yoshida style of modelling call-by-value com-

putation [3]. Before we define what it means to play our games, let us introduce the

auxiliary concept of an arena.

Definition 3. An arena A = 〈MA, IA, λA,⊢A,Me〉 is given by:

– a set MA of ordinary moves, a set IA ⊆MA of initial moves,

– a labelling function λA : MA ∪Me → {O,P} × {Q,A},
– a justification relation ⊢A ⊆MA × (MA \ IA) ∪Me,

– and a fixed set Me = {e!O | e ∈ Ae} ∪ {e!P | e ∈ Ae} of exceptional moves;

such that MA ∩Me = ∅ and, for all m,m′ ∈MA and e ∈ Ae:

– m ∈ IA =⇒ λA(m) = (P,A),

– m ⊢A m′ ∧ λQA
A (m) = A =⇒ λQA

A (m′) = Q,

– m ⊢A m′ =⇒ λOP
A (m) 6= λOP

A (m′),
– λA(e!O) = (O,A) ∧ (λA(m) = (P,Q) =⇒ m ⊢A e!O),
– λA(e!P) = (P,A) ∧ (λA(m) = (O,Q) =⇒ m ⊢A e!P).

We write λOP
A (resp. λQA

A) for λA post-composed with the first (second) projection.

5

MA⊗B = (IA × IB) ⊎ ĪA ⊎ ĪB

IA⊗B = IA × IB

λA⊗B = [(iA, iB) 7→ PA, λA ↾ ĪA, λB ↾ ĪB]

⊢A⊗B = {((iA, iB),m) | iA ⊢A m ∨ iB ⊢B m} ∪ ⊢̄A ∪ ⊢̄B

MA+B = MA⊎MB

IA+B = IA∪IB

λA+B = [λA, λB]

⊢A+B = ⊢A ∪ ⊢B

MA⇒B = {⋆} ⊎MA ⊎MB

IA⇒B = {⋆}

λA⇒B = [⋆ 7→ PA, λA[iA 7→ OQ], λB]

⊢A⇒B = {(⋆, iA), (iA, iB)}∪ ⊢A ∪ ⊢B

MA→B = MA ⊎MB

IA→B = IA

λA→B = [λA[iA 7→ OQ], λB]

⊢A→B = {(iA, iB)}∪ ⊢A ∪ ⊢B

Fig. 4. Basic arena and prearena constructions

Note that, as Me is fixed for all arenas A and so are the parts of λA,⊢A concerning

moves from it, we will not be specifying them explicitly in definitions, We shall refer

to moves from MA∪Me collectively as moves of A, we shall use i to range over initial

moves (which are necessarily ordinary moves), and we shall range over exceptional

moves via e!. Let λA be the OP -complement of λA. We define the basic (flat) arenas:

1 = 〈{⋆}, {⋆}, {(⋆, PA)}, ∅〉 Aβ = 〈Aβ ,Aβ , {(a, PA) | a ∈ Aβ}, ∅〉

Z = 〈Z,Z, {(i, PA) | i ∈ Z}, ∅〉 Ae = 〈Ae,Ae, {(a, PA) | a ∈ Ae}, ∅〉

Given arenas A,B, the arenas A⊗B and A⇒ B are constructed as in Figure 4, where

ĪA = MA \ IA, ⊢̄A = (⊢A↾ ĪA × ĪA) (and similarly for B). For each type θ we can

now define the corresponding arena JθK by setting:

JunitK = 1 Jref βK = Aβ JintK = Z JexnK = Ae Jθ → θ′K = JθK⇒ Jθ′K

Although types are interpreted by arenas, the actual games will be played in prearenas,

which are defined in the same way as arenas with the exception that initial moves are

O-questions. Given arenas A,B we define the prearena A → B as in Figure 4. The

moves will be accompanied by an explicit store component Σ. A move-with-store on a

prearena A is thus a pair mΣ with m ∈MA ∪Me and Σ ∈ Sto.

Definition 4. A justified sequence on a prearena A is a sequence of moves-with-store

s on A such that, apart from the first move, which must be of the form i
Σ with i ∈ IA,

every move nΣ′

in s is equipped with a pointer to an earlier move mΣ such that m ⊢A
n. We then call m the justifier of n and, if λQA

A (n) = A, we also say that n answers m.

Remark 5. Note that, by definition, any exceptional move e! can answer any question

move in a play, as long as the latter has not already be answered. Thus, exceptional

moves will model situations when evaluation of some term leads to raising an exception.

We shall write s ⊑ s′ to mean that s is a prefix of s′. For each S ⊆ A and Σ we

define Σ0(S) = S and Σi+1(S) = Σ1(Σ
i(S)) ∩ A (i ≥ 0). Let Σ∗(S) =

⋃

i Σ
i(S).

The set of available names of a justified sequence is defined inductively by Av(ǫ) = ∅
and Av(smΣ) = Σ∗(Av(s) ∪ ν(m)). The view of a justified sequence s is defined as

follows: view (ǫ) = ǫ, view (mΣ) = mΣ and view (s mΣ t nΣ′

) = view (s)mΣnΣ′

.

6

Definition 6. Let A be a prearena. A justified sequence s on A is called a play, if it

satisfies the conditions below.

– No adjacent moves belong to the same player (Alternation).

– The justifier of each answer is the most recent unanswered question (Bracketing).

– For any s′mΣ ⊑ s with non-empty s′, the justifier of m occurs in view (s′) (Visi-

bility).

– For any s′mΣ ⊑ s, ν(Σ) = Av(s′mΣ) (Frugality).

We write PA for the set of plays on A.

We say that a name a is a P-name of a play s if there is s′mΣ ⊑ s such that

a ∈ ν(mΣ) \ ν(s′) and m is a P-move. We write P (s) for the set of all P-names of

s. The set O(s) is defined dually. We moreover define a partial function on alternating

justified sequences which imposes the frugality condition by restricting the stores in

moves to available names. More precisely, we define γ(s) inductively by γ(ǫ) = ǫ and:

γ(smΣ) = γ(s)mΣ↾Av(smΣ) if m an O-move

γ(smΣ) = γ(s)mΣ↾Av(smΣ) if m a P-move, Av(smΣ) ∩ ν(s) ⊆ Av(s)

and ∀a ∈ dom(Σ) \ Av(smΣ). Σ(a) = Σ′(a)

where, in the last clause above, the last move of s has store Σ′ and, for each store Σ
and set S ⊆ A, Σ ↾ S = ({(a, v) ∈ Σ1 | a ∈ S}, Σ2 ∩ S). Note that partiality arises

from sequences breaking the conditions of the last clause.

Definition 7. A strategy σ on a prearenaA is a set of even-length plays of A satisfying:

– If soΣpΣ
′

∈ σ then s ∈ σ (Even-prefix closure).

– If s ∈ σ and s ∼ t then t ∈ σ (Equivariance).

– If s1p
Σ1

1 , s2p
Σ2

2 ∈ σ and s1 ∼ s2 then s1p
Σ1

1 ∼ s2p
Σ2

2 (Nominal determinacy).

We write σ : A for σ being a strategy on A.

Example 8. For each arena A, the strategy idA : A→ A, is defined by

idA = { s ∈ P even

A→A | ∀s
′ ⊑even s. s′ ↾ Al = s′ ↾ Ar },

where the indices l, r distinguish the two copies of A, and s′ ↾ Ax is the subsequence of

s′ containing only moves from the x-copy, along with any exceptional moves justified

from them. For each arena A, let us write TA for the arena 1 ⇒ A, i.e. MTA =
{⋆1, ⋆2} ⊎MA. Next we define the following exception-related strategies:

– raizA : Ae → A = {e{e}e!{e} | e ∈ Ae}
– trapA : TA→ (A+ Ae) = {⋆1 ⋆2 s | s ∈ idA} ∪ {⋆1 ⋆2 e!{e}e{e} | e ∈ Ae}
– newe : 1→ Ae = {⋆ e

(∅,{e}) | e ∈ Ae}

Note that, in definitions like the above, we implicitly assume that we close the con-

structed set of plays under even-prefix closure. Thus, in raizA the play starts with O

providing an exception name e, to which P answers by raising the exception e! (thus,

e{e} justifies e!{e}); note that the play never opens in arena A. On the other hand, in

trapA, O starts the play by opening the initial move ⋆1 under TA, to which P responds

7

with a question ⋆2. At this point, O is given two choices: (a) to answer with an initial

move of A, so the play will transform into a copycat between the A components of TA
and A + Ae; (b) to answer with an exceptional move e!, in which case P will ‘trap’

the name e and return it in the Ae component of A + Ae. Finally, in newe P answers

the initial move by playing a fresh exception name and adding it to the store. We will

see below that the above mechanisms give us all the structure we need for modelling

exceptional behaviours.

We proceed to strategy composition. Given arenas A,B,C, we define the prearena

A→ B → C by setting MA→B→C = MA→B ⊎MC , IA→B→C = IA and:

λA→B→C = [λA→B [iB 7→ PQ], λC] ⊢A→B→C= ⊢A→B ∪ {(iB, iC)}∪ ⊢C

Let u be a justified sequence on A → B → C. We define u ↾ BC to be u in which

all A-moves and all exceptional moves justified by A-moves are suppressed. u ↾ AB
is defined analogously, only that we also remove any exceptional move justified by an

initial move of B. u ↾ AC is defined similarly with the caveat that, if there was a pointer

from an initial C-move (resp. an exceptional move) to an initial B-move, which in turn

had a pointer to an A-move, we add a pointer from the C-move (the exceptional move)

to the A-move. Let us write u ↾γ X for γ(u ↾ X) with X ∈ {AB,BC,AC}. Below

we shall often say that a move is an O- or a P-move in X meaning ownership in the

associated prearena (A→ B, B → C or A→ C).

Definition 9. A justified sequence u on A → B → C is an interaction sequence on

A,B,C if it satisfies bracketing and frugality and, for all X ∈ {AB,BC,AC}, we

have (u ↾γ X) ∈ PX and the following conditions hold.

– P (u ↾γ AB) ∩ P (u ↾γ BC) = ∅;
– O(u ↾γ AC) ∩ (P (u ↾γ AB) ∪ P (u ↾γ BC)) = ∅;

– For each u′ ⊑ u ending in mΣm′Σ′

and a ∈ dom(Σ′) if

• m′ is a P-move in AB and a /∈ Av(u′ ↾ AB),
• or m′ is a P-move in BC and a /∈ Av(u′ ↾ BC),
• or m′ is an O-move in AC and a /∈ Av(u′ ↾ AC),

then Σ(a) = Σ′(a).

We write Int(A,B,C) for the set of interaction sequences on A,B,C, and σ‖τ for the

set of interactions between strategies σ : A→ B and τ : B → C:

σ‖τ = { u ∈ Int(A,B,C) | (u ↾γ AB) ∈ σ ∧ (u ↾γ BC) ∈ τ }.

and let σ; τ : A→ C = {u ↾γ AC | u ∈ σ‖τ}.

The following result is deduced by translating our strategies into [7, 10].

Lemma 10. Strategy composition is associative and identity strategies are neutral ele-

ments. Thus, arenas and strategies yield a category of games G.

A first property of G is that it has coproducts, given by + and copairings [σ, τ] :

(A+B)→ C = σ ∪ τ (for A
σ
−→ C

τ
←− B). Richer structure is highlighted below.

8

Remark 11. G can be shown to host a lluf subcategory G′, consisting of a variant of

single-threaded strategies [7], where (1,⊗) yield finite products. Moreover, the oper-

ation T on arenas extends to a strong monad in G′ with T -exponentials, i.e. for all

A,B,C there is a bijection ΛT : G′(A ⊗ B, TC) ∼= G′(A,B ⇒ C) natural in A,C.

Then one can show that there exists a bijection Φ : G(A,B) ∼= G′(A, TB), which es-

tablishes equivalence of G and the Kleisli category on G′ determined by T (G′T). We

write 〈 , 〉 for the left-pairing obtained in G from pairing in G′T , and Λ() for the weak

exponential structure.

The above provides a canonical interpretation of application and λ-abstraction in

G. To interpret the remaining constructs of ExnML in G, we need to define special

morphisms for reference manipulation (cf. [14]) while for exceptions we shall use the

morphisms from Example 8.

getβ : Aβ → JβK = {lΣΣ(l)Σ ∈ PAβ→JβK}

setβ : Aβ ⊗ JβK→ 1 = {(l, v)Σ⋆Σ[l 7→v] ∈ PAβ⊗JβK→1}

newβ : JβK→ Aβ = {vΣ lΣ[l 7→v] ∈ PJβK→Aβ
| l /∈ dom(Σ)}

We interpret any term-in-context u, Γ ⊢M : θ with a strategy Ju, Γ ⊢M : θK : Ju, Γ ⊢
θK, denoted also as JMK : Ju, Γ ⊢ θK. The interpretation is given explicitly below.

Suppose that u = {a1, · · · , an} and Γ = {x1 : θ1, · · · , xk : θk}. We write Ju, Γ K
for the arena JuK ⊗ Jθ1K⊗ · · · ⊗ JθkK, where JuK is the flat arena 〈Mu, Iu, λu,⊢u〉 with

Mu = Iu = [(a1, · · · , an)].

– Ju, Γ ⊢ () : unitK = Ju, Γ K
!
−→ 1 , where ! = {(ā, iΓ)Σ⋆Σ} .

– Ju, Γ ⊢ Ω : unitK = Ju, Γ K
⊥
−→ 1 , where ⊥ = {ǫ} .

– Ju, Γ ⊢ i : intK = Ju, Γ K
!
−→ 1

î
−→ Z , where î = {⋆ i} .

– Ju, Γ ⊢ xj : θjK = Ju, Γ K
πn+j

−−−→ JθjK .

– Ju, Γ ⊢ M1 ⊕ M2 : intK = Ju, Γ K
〈JM1K,JM2K〉
−−−−−−−−→ Z ⊗ Z

σ⊕

−−→ Z , where σ⊕ =
{(i1, i2) (i1 ⊕ i2)} .

– Ju, Γ ⊢ if0M thenN0 elseN1 : θK = Ju, Γ K
〈JMK,id〉
−−−−−→ Z⊗ Ju, Γ K

if0⊗id
−−−→ (1+1)⊗

Ju, Γ K
∼=
−→ Ju, Γ K + Ju, Γ K

[JN0K,JN1K]
−−−−−−−→ JθK , where if0 = {0 ⋆l, i ⋆r | i 6= 0} .

– Ju, Γ ⊢ refβ(M) : ref βK = Ju, Γ K
JMK
−−−→ JβK

newβ
−−−→ Aβ .

– Ju, Γ ⊢!M : βK = Ju, Γ K
JMK
−−−→ Aβ

get
−−→ JβK .

– Ju, Γ ⊢M := N : unitK = Ju, Γ K
〈JMK,JNK〉
−−−−−−−→ Aβ ⊗ JβK

setβ
−−→ 1 .

– Ju, Γ ⊢MN : θ′K = Ju, Γ K
〈JMK,JNK〉
−−−−−−−→ (JθK⇒ Jθ′K)⊗ JθK

ev
−→ Jθ′K .

– Ju, Γ ⊢ λx.M : θ → θ′K = Λ(JMK : Ju, Γ K⊗ JθK→ Jθ′K) .

– Ju, Γ ⊢ exn() : exnK = Ju, Γ K
t
−→ 1

newe−−−→ Ae .

– Ju, Γ ⊢ raiseM : θK = Ju, Γ K
JMK
−−−→ Ae

raizJθK
−−−−→ JθK .

– Ju, Γ ⊢ M handlex =>N : θK = Ju, Γ K
〈id,Φ(JMK)〉
−−−−−−−→ Ju, Γ K ⊗ T JθK

id⊗trapJθK
−−−−−−→

Ju, Γ K⊗ (JθK + Ae)
∼=
−→ (Ju, Γ K⊗ JθK) + (Ju, Γ K⊗ Ae))

[π2,JNK]
−−−−−→ JθK .

9

We can demonstrate that the game model is sound for contextual approximation (Propo-

sition 12) by following the traditional route through Computational Soundness and Ad-

equacy. For the former we show that we work in a modified version of a νǫρ-model [15,

Def. 5.13]. Recall that a play is complete if each question occurring in it justifies an

answer. Given a set of plays X , let us write comp(X) for the set of complete plays inX.

Proposition 12. Let Γ ⊢ M1,M2 : θ be terms of ExnML.comp(JΓ ⊢ M1 : θK) ⊆
comp(JΓ ⊢M2 : θK) implies Γ ⊢M1

<
∼ M2.

4 Full abstraction

We prove full abstraction by showing that all finitary behaviours in the model are de-

finable in ExnML. For the latter we use a factorisation argument which decomposes,

in three steps, a strategy from G into an exception-free strategy and strategies man-

aging handling, raising and creation of exceptions respectively. Then, for the class of

exception-free strategies we show that finitary members can be expressed in the frag-

ment of ExnML corresponding to Ground ML.

We call a strategy σ finitary if the set [σ] = {[s] | s ∈ σ} is finite (i.e. σ is orbit-finite

in the nominal sense). For the first factorisation, we restrict strategies in the following

manner. First, for each even-length play s, we let φ(s) be the justified sequence obtained

from s by deleting all its O-moves of the form e!Σ (any e,Σ), as well as the moves

following these. That is, φ(ǫ) = ǫ and

φ(smΣnT) =

{

φ(s) if mΣ = e!T

φ(s)mΣnT otherwise

We say that a play s ∈ PA is exception-propagating if γ(φ(s)) is defined and, for all

s′e!ΣmT ⊑even s, mT = e!Σ . We write P prop
A for the set of exception-propagating

plays on A. We say that a strategy σ : A is exception-propagating if σ ⊆ P prop
A and, for

all s ∈ σ,

– for all s e!Σ ∈ PA, we have s e!Σe!Σ ∈ σ;

– for all s′ ∈ P prop
A with γ(φ(s)) = γ(φ(s′)), we have s′ ∈ σ.

The former condition says that P always copycats raised exceptions, and the latter en-

sures that P cannot register moves that raise exceptions. We say that an exception-

propagating strategy σ is φ-finitary if the set {[γ(φ(s))] | s ∈ σ} is finite.

Lemma 13. Let σ : A → B be a strategy in G. There is an exception-propagating

strategy σ̂ : Ae ⊗A⊗ ((1⇒ 1)⇒ Ae)→ B such that5

σ = 〈〈!; Jexn()K, id〉, !; Jλf. f() handlex =>xK〉; σ̂.

Moreover, if σ is finitary then σ̂ is φ-finitary.

5 The role of the leftmost Ae in σ̂ is purely technical and fulfils two functions: (a) it supplies the

default return value of f() handlex =>x; (b) it provides a default exception name to be used

in subsequent factorisations removing reference generation (the name will be used as initial

value for external generators of names in Aexn).

10

Proof. Let τ = 〈〈!; Jexn()K, id〉, !; Jλf. f() handlex =>xK〉 and C = Ae ⊗ A ⊗ ((1 ⇒
1)⇒ Ae) → B. We construct σ̂ : C as follows. For each s ∈ σ, build ŝ in two stages.

In the first stage, perform the following move replacements in s, from left to right.

– Replace the initial move iΣ with (h, i, ⋆)Σ , for some fresh h ∈ Ae.

– Replace each P-question qΣ with a sequence qΣ1 qΣ2 qΣ , where q1 a question justified

by the (newly added) initial ⋆, and q2 justified by q1.

– Replace each exceptional move e!T of O, answering some previous qΣ , with e!T e!T eT ,

where the first (resp. second) e! is justified by q (q2), and e is justified by q1. Dia-

grammatically:

i · · · qΣ · · · e!T · · · 7−→ (h, i, ⋆) · · · qΣ1 qΣ2 qΣ · · · e!T e!T eT · · ·

– Replace each P-answer mT (to some previous q′Σ) with hThT · · ·hThTmT , where

m is justified by q, and the the hT ’s answer all open q1 and q2 moves that were

added in the second step above and appear after q′. Note that these qi’s are visible

at the corresponding h because they are, in each such case, the pending question.

In the second stage, replace each store Σ in the resulting play with (Σ1, Σ2⊎{h}) (h is

chosen fresh for s). We take σ̂ = {t ∈ P prop
C | ∃s ∈ σ. γ(φ(t)) = γ(φ(ŝ))}. Note first

that σ̂ includes the strategy σ′ = {ŝ | s ∈ σ}, as ŝ ∈ P prop
C for all s ∈ σ, and τ ;σ′ = σ.

Hence, σ = τ ; σ̂. By construction, σ̂ is exception-propagating, and [γ(φ(σ̂))] is finite if

[σ] is finite. Finally, note that the passage from σ′ to σ̂ does not break determinacy, as

the moves deleted by φ are pairs of identical O/P moves. ⊓⊔

The next factorisation eliminates from strategies the capability of raising excep-

tions. We say that an exception-propagating strategy σ is handle/raise-free if, for all

smT e!Σ ∈ σ, we have m = e!.

Lemma 14. Let σ : Ae ⊗ A → B be an exception-propagating strategy. There is a

handle/raise-free σ̂ : Ae⊗A⊗ (Ae ⇒ 1)→ B such that σ = 〈id, !; J⊢ λx.raise xK〉; σ̂.

Moreover, if σ is φ-finitary then so is σ̂.

Proof. Let τ = 〈id, !; J⊢ λx.raise xK〉 and C = Ae ⊗ A ⊗ (Ae ⇒ 1) → B. For each

s ∈ σ we construct ŝ by replacing each initial move (h, i)Σ with (h, i, ⋆)Σ , and each

P-move e!T braking handle/raise-freeness with a sequence eT e!T e!T . Diagrammatically

(m 6= e! and we omit some stores for brevity):

(h, i) · · · q · · ·mΣe!T · · · 7−→ (h, i, ⋆) · · · q · · ·mΣeT e!T e!T · · ·

We let σ̂ = {t ∈ P prop
C | ∃s ∈ σ. γ(φ(t)) = γ(φ(ŝ))} . As above, we have that τ ; σ̂ =

σ. Since σ is exception-propagating, the move m above cannot be of the form e′! (any

e′ ∈ Ae), and therefore σ̂ preserves the exception-propagating conditions. Moreover,

by construction, σ̂ is handle/raise-free, and [γ(φ(σ̂))] is finite if [γ(φ(σ))] is. ⊓⊔

Our final factorisation concerns removing any exception-name generation capability

from our strategies. The technique is similar to the one used in the factorisations above

and amounts to delegating all fresh exception-name creation to an external generator.

Formally, a handle/raise-free strategy is called exception-free if, for all s ∈ σ, P (s) ∩
Ae = ∅.

11

Lemma 15. Let σ : Ae⊗A→ B be a handle/raise-free strategy. There is an exception-

free σ̂ : Ae ⊗ A⊗ (1 ⇒ Ae) → B such that σ = 〈id, !; Jλz.exn()K〉; σ̂. Moreover, if σ
is φ-finitary then so is σ̂.

Let us call ExnML¬e the fragment of ExnML obtained by suppressing the con-

structors handle, raise and exn(). We can show that exception-freeness is captured by

ExnML¬e in the following sense.

Lemma 16. Let σ : Ae ⊗A→ B a φ-finitary exception-free strategy over a denotable

prearena. There is an ExnML¬e term u, Γ ⊢M : θ such that JMK = σ.

Combining the four previous lemmas we obtain the following.

Proposition 17. Let Ae ⊗ A → B be a denotable prearena and σ : A → B a finitary

strategy. There is an ExnML term u, Γ ⊢M : θ such that JMK = σ.

Theorem 18. For all ExnML-terms Γ ⊢M1,M2 : θ, we have comp(JΓ ⊢M1 : θK) ⊆
comp(JΓ ⊢M2 : θK) if, and only if, Γ ⊢M1

<
∼ M2.

5 Idealised exceptions

The design of exception handling in ExnML was guided by common practice. In an

idealised world, private exceptions should not be amenable to handling. This can be

achieved by the alternative handling construct:

u, Γ ⊢M,N ′ : θ u, Γ ⊢ N : exn

u, Γ ⊢M handleN ->N ′ : θ

We call ExnML$ the language which differs from ExnML in featuring the above con-

struct instead of “M handlex =>N”. The new language has additional reduction rules:

Σ, (raise e) handle e ->N −→ Σ,N

Σ,E¬e[raise e] −→ Σ, raise e

Evaluation contexts are now given by:

E ::= [] | EN | (λx.M)E | if0E thenN0 elseN1 | E ⊕N | i⊕ E | refγ(E) | E :=N

| l :=E | !E | E = N | e = E |M handleE ->N | E handle e ->N | raiseE

and, for each e ∈ E , we write E¬e for contexts E derived by the above grammar

applying any of the rules apart from E handle e ->N . Note that the new handler is

easily definable in ExnML by:

M handleN ->N ′ ≡ let z = N in (M handlex => (if0 x = z then raisex elseN ′))

Thus, ExnML$ is a sublanguage of ExnML in terms of expressivity.

Example 19. Recall the terms M1 and M2 from Example 2. They will turn out equiv-

alent in ExnML$, because in either case the private exceptions raised by the terms can

only be propagated. Next we shall develop game-semantic constraints that reflect such

scenarios.

12

6 Games propagating private exceptions

We derive the game model of ExnML$ by restricting the category G with an additional

condition on strategies. We need to depict semantically that terms in ExnML$ are only

able to handle exception names that are ‘known’ to them. In particular, fresh excep-

tions cannot be handled and will break through any evaluation context. Moreover, such

exceptions cannot be remembered and neither can their accompanying stores. We there-

fore define the following notion of available subplay. For any even-length play s over

some prearena A, we define the justified sequence $(s) inductively by $(ǫ) = ǫ and:

$(smΣnT) =

{

$(s) if m = e! and e /∈ Av($(s))

$(s)mΣnT otherwise

We let Av$(s) = Av($(s)). The above definition disregards not only fresh exceptions

raised by O, but also the P-moves succeeding them. This is due to the fact that the terms

(and strategies) we consider simply propagate such exceptions.

Definition 20. We say that a play s ∈ PA is $-propagating if γ($(s)) is defined and,

for all s′e!ΣmT ⊑even s with e /∈ Av$(s), m
T = e!Σ .

We say that a strategy σ : A is $-propagating if σ ⊆ P $prop
A and, for all s ∈ σ,

– for all s e!Σ ∈ PA and e /∈ Av$(s), we have s e!Σe!Σ ∈ σ;

– for all s′ ∈ P $prop
A with γ($(s)) = γ($(s′)), we have s′ ∈ σ.

We write P $prop
A for the set of $-propagating plays of A.

Thus, the former condition stipulates that strategies propagate raised exceptions if

these feature fresh exception names. The latter ensures that strategies do not depend on

these raised exceptions or their stores. We can show that these conditions are composi-

tional. Suppose we compose $-propagating strategies σ : A→ B and τ : B → C. Ex-

ceptional moves suppressed by $ are O-moves, carrying O-names. Thus, by the name-

ownership conditions of strategy-composition, if a move is suppressed in a composite

play in AC, then it is also suppressed in its constituent plays in AB and BC. As a re-

sult, suppressed exceptions are propagated in σ and τ , resulting in propagation by σ; τ .

Similarly, saturation under γ($()) of σ; τ is ensured by componentwise saturation of

σ and τ respectively.

Lemma 21. If σ : A→ B, τ : B → C are $-propagating then so is σ; τ .

Identity strategies are $-propagating by construction. We therefore obtain a lluf cat-

egory G$ of $-propagating strategies. Terms from ExnML$ are given denotations in G$
as before, only that now we use the strategies hdl$A : TA⊗ Ae → A+ 1 =

{(⋆1, e)
{e} ⋆

{e}
2 s | s ∈ idA, e ∈ Ae} ∪ {(⋆1, e)

{e} ⋆
{e}
2 e!{e} ⋆{e} | e ∈ Ae}

instead of trapA, which break $-propagation. With these constructs we obtain a νǫρ-

model [15] with references restricted to ground types. We thus have soundness.

Lemma 22. For all ExnML$-terms Γ ⊢ M1,M2 : θ, if JΓ ⊢M1 : θK ⊆ JΓ ⊢M2 : θK
then Γ ⊢M1

<
∼ M2.

13

Remark 23. In previous game models of control, the control-manipulating effect of

privately-propagating exceptions was captured by relaxing the bracketing condition [4,

8]. The latter was achieved in the expense of adding an additional pointer structure,

called control (or contingency) pointers, to mark violations of bracketing. Here we took

a different approach by exposing the private-exception mechanism that caters for such

violations (cf. [15, 8]). As a result, our model consists of plays that still satisfy brack-

eting, albeit in this extended setting. As in the case of control pointers, to avoid being

overly intentional, we need to hide access to private exceptions via the propagation

conditions.

While previously term approximation was characterised by inclusion of complete

plays, now we have to restrict the set of plays to take into account $-propagation on the

part of the environment. Given a complete play s on a prearena 1 → A with final store

Σ, we let ŝ ≡ ⋆ s ⋆Σ ∈ P(1⇒A)→1. For each $-propagating strategy σ : 1 → A, we

then define comp$(σ) = {γ($(ŝ)) | s ∈ comp(σ), ŝ ∈ P $prop
(1⇒A)→1}.

Proposition 24. For all ExnML$-terms ⊢M1,M2 : θ, if comp$(JM1K) ⊆ comp$(JM2K)
then ⊢M1

<
∼ M2.

Proof. Suppose the inclusion holds and let C[M1]⇓ for some context C. Then, by

Lemma 22, JC[M1]K = {⋆⋆}, that is, Jλz.M1K; Jf ⊢ C[f()]K = {⋆⋆}. Let us write

M ′
i for λz.Mi (i = 1, 2), N for Jf ⊢ C[f()]K, γ$() for γ($()) and let A = JθK.

Then, JM ′
1K; JNK = {⋆⋆}, the latter due to composing some complete play ⋆ ⋆ s ∈

JM ′
1K with some ⋆s⋆Σ ∈ JNK. Since M ′

1 ≡ λ~x.M1, s must be an interleaving of

complete plays s1, · · · , sk ∈ JM1K. For each i, we have ŝi ∈ P $prop
(1⇒A)→1, because

⋆s⋆Σ ∈ JNK ⊆ P $prop
(1⇒A)→1, and therefore γ$(ŝi) ∈ comp$(JM1K). By hypothesis,

γ$(ŝi) ∈ comp$(JM2K), and so there is s′i ∈ comp(JM2K) such that γ$(ŝi) = γ$(ŝ
′
i).

Let s′ ∈ P1→(1⇒A) be the interleaving of s′1, · · · , s
′
k obtained by simulating the inter-

leaving pattern of s. Note that, for each i, since γ$(ŝi) = γ$(ŝ
′
i), si and s′i share the

same structure apart from P/O pairs of exceptional moves deleted by $, which do not af-

fect simulating the interleaving of s (change of thread can only occur in O-moves). We

thus obtain some ⋆s′⋆Σ
′

∈ P prop
(1⇒A)→1 and, by lifting equality under γ$ from threads to

thread-interleavings, we have γ$(⋆s⋆
Σ) = γ$(⋆s

′⋆Σ). But, since JNK is $-propagating,

⋆s⋆Σ ∈ JNK implies ⋆s′⋆Σ
′

∈ JNK and therefore JM ′
2K; JNK = {⋆⋆} = JC[M2]K. By

Lemma 22, then, C[M2]⇓. ⊓⊔

For completeness, we again work our way through a finitary definability result,

established via factorisations. The first factorisation brings us to handle-free strategies,

from which the factorisations of the previous section can be applied. We say that an

$-propagating strategy σ is $-finitary if the set {[γ($(s))] | s ∈ σ} is finite.

Lemma 25. Let σ : A → B be a $-finitary strategy. There is some n ∈ ω and a

φ-finitary handle-free strategy σ̂ : Ae ⊗A⊗ A
n
exn ⊗ ((1⇒ 1)⇒ Ae)→ B such that

σ = 〈!; Jexn()K, id〉; 〈id, π1; 〈
−−−−−−−−−−−−→
Jx : exn ⊢ ref (x)K, id〉〉; 〈π1, J

−−−−−−→
z : ref exn, h : exn ⊢MK〉; σ̂

with M ≡ λf. (· · · (f();h handle !z1 -> !z1) handle !z2 -> !z2 · · ·) handle !zn -> !zn : exn.

14

The above factorisation is identical to the corresponding one in the previous sec-

tion, only that instead of simply delegating exception handling to the environment, the

strategy σ̂ also stores all exception names encountered, apart from those in $-removable

moves, in the variables zi.

Proposition 26. Let A → B be a denotable arena. For each $-finitary strategy σ :
A→ B there is an ExnML$ term u, Γ ⊢M : θ such that JMK = σ.

We can now prove completeness, and thus full abstraction.

Theorem 27. For all ExnML$-terms ⊢M1,M2 : θ, we have comp$(M1) ⊆ comp$(M2)
if, and only if, ⊢M1

<
∼ M2.

Proof. We show completeness (right-to-left). Let us write M ′
i for λz.Mi (i = 1, 2).

Suppose s ∈ comp$(JM1K) \ comp$(JM2K). Let A = JθK and define the strategy

ρ : (1 ⇒ A) → 1 by: ρ = {t ∈ P $prop
(1⇒A)→1 | γ($(t)) ⊑even s}. By construction, ρ

is $-propagating and $-finitary. Hence, there is a term f : unit → θ ⊢ N : unit such

that JNK = ρ. Moreover, s ∈ JNK and thus, by Lemma 22, (λf.N)M ′
1⇓. We claim

that ⋆⋆ /∈ JM ′
2K; ρ and therefore (λf.N)M ′

2 6⇓. For suppose ⋆⋆ ∈ JM ′
2K; ρ, because

of composing JM ′
2K with some play t = ⋆s′⋆Σ ∈ ρ. Then, s′ ∈ comp(JM2K) and

γ($(⋆s′⋆Σ)) ⊑ s. Since ⋆Σ is not deleted by $, we have in fact γ($(⋆s′⋆Σ)) = s,

hence s ∈ comp$(JM2K), contradicting the hypothesis. ⊓⊔

Example 28. Let us revisit the terms from Examples 2 and 19. We have comp$(JMiK) =

{⋆Σ0qΣ0

0 ⋆Σ0 ⋆Σ0} for i = 1, 2, because other plays from JMiK would give rise to non-

propagating interactions ŝ. Thus, in ExnML$ we do have ⊢M1
∼= M2.

References

1. S. Abramsky, D. R. Ghica, A. S. Murawski, C.-H. L. Ong, and I. D. B. Stark. Nominal games

and full abstraction for the nu-calculus. In LICS’04.
2. M. J. Gabbay and A. M. Pitts. A new approach to abstract syntax with variable binding.

Formal Aspects of Computing, 13:341–363, 2002.
3. K. Honda and N. Yoshida. Game-theoretic analysis of call-by-value computation. Theoretical

Computer Science, 221(1–2):393–456, 1999.
4. J. Laird. A semantic analysis of control. PhD thesis, University of Edinburgh, 1998.
5. J. Laird. A fully abstract games semantics of local exceptions. In LICS’01.
6. J. Laird. A game semantics of local names and good variables. In FOSSACS’04.
7. J. Laird. A game semantics of names and pointers. Ann. Pure Appl. Logic, 151:151-169, 2008.
8. J. Laird. Combining and relating control effects and their semantics. In COS, 2013.
9. E. Moggi. Notions of computation and monads. Inf. and Comput., 93:55–92, 1991.
10. A. S. Murawski and N. Tzevelekos. Game semantics for good general references. In LICS’11.
11. A. S. Murawski and N. Tzevelekos. Algorithmic games for full ground references. ICALP’12.
12. A. S. Murawski and N. Tzevelekos. Full abstraction for Reduced ML. Ann. Pure Appl. Logic,

164(11):1118–1143, 2013.
13. J. C. Reynolds. The essence of Algol. In J. W. de Bakker and J.C. van Vliet, editors,

Algorithmic Languages, pages 345–372. North Holland, 1981.
14. I. D. B. Stark. Names and Higher-Order Functions. PhD thesis, University of Cambridge,

1995. Technical Report No. 363.
15. N. Tzevelekos. Nominal game semantics. D.Phil. thesis, Oxford University, 2008.
16. N. Tzevelekos. Full abstraction for nominal general references. LMCS, 5(3), 2009.

15

