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ABSTRACT

Active contours, or snakes, have been widely used for image seg-
mentation purposes. However, high noise sensitivity and poor per-
formance over weak edges are the most acute issues that hinder the
segmentation accuracy of these curves, particularly in medical im-
ages. In order to overcome these issues, we propose a novel external
force that integrates gradient vector flow (GVF) field forces and bal-
loon forces based on a weighting factor computed according to local
image features. The proposed external force reduces noise sensitiv-
ity, improves performance over weak edges and allows initialization
with a single manually selected point. We evaluate the proposed ex-
ternal force for segmentation of various regions on real MRI and CT
slices. Evaluation results show that the proposed approach leads to
more accurate segmentation than snakes using traditional external
forces.

Index Terms— Active contours, gradient vector flow (GVF),
balloon forces, medical image segmentation.

1. INTRODUCTION

Since first introduced by Kass et al. [1], substantial work on para-
metric active contours, or snakes, has been achieved for their ap-
plication in image segmentation, including medical images [2–5].
The main principle behind snakes is to model the movement of a
dynamic curve towards an object’s boundary under the influence of
internal and external forces. Internal forces control the smoothness
of the curve, while external forces lead the curve to the boundary
until convergence is achieved.

Due to the wide variety of object shapes, there are still many
situations where snakes fail to converge to the desired boundary, es-
pecially when the amount of image clutter and noise is high [6]. In
such cases, segmentation accuracy may be improved by manually
initializing the curve very close to the object’s boundary. Depending
on the region to be segmented, this initialization process may require
the selection of several initial points or snake elements, which may
become a tedious and error-prone process, particularly in medical
images.

Many researchers have proposed solutions to address the issue
of convergence [2,7,8]. The work of Cohen [7] represents one of the
initial solutions, which consists of employing an external force to
guide the snake to the object’s boundary in a similar way a balloon
inflates or deflates. These balloon forces have been proved to im-
prove convergence when the snake is initialized far from the desired
boundary. However, if the strength of the balloon forces is too high,
the snake may not detect weak edges resulting in snake leakages.
Another important solution is the one proposed by Xu et al., which
introduces the gradient vector flow (GVF) field as an external force.

The GVF force increases the capture range of the snake, allowing
it to conform to concave boundaries. This external force, however,
may still fail to accurately converge to the desired boundary if the
levels of noise in the image are high [9].

After the introduction of the GVF force, important work has
been done to further improve the convergence of snakes. In [6],
Zhu et al. propose the gradient and direction vector flow (G&DVF)
external force, which integrates the GVF field and prior directional
information manually provided by the user. In [10], Qin et al. pro-
pose a new external force called component-normalized generalized-
GVF (CN-GGVF), which improves the detection of concave regions
and long and thin indentations. Yao et al. [11] propose the sigmoid
gradient vector flow (SGVF) external force, which is obtained by
convolving the original image with a sigmoid function before com-
puting the GVF field. This external force, which features a reduced
noise sensitivity, is capable of minimizing snake leakages.

Other important solutions that improve convergence of snakes
for medical image segmentation include the work in [4, 5]. In [4],
Wu et al. propose the gradient vector convolution (GVC) field as an
external force, which is calculated by convolving the gradient map
of an image with a defined kernel. This method is, however, limited
to segmenting specific anatomical regions such as the left ventricle
in cardiac MRI. Zhang et al. [5] propose improvements to the GVF
snake by using a combination of balloon and tangential forces. This
method is, however, very sensitive to a set of parameters.

The majority of external forces proposed in [4–6, 10, 11] still
require that the initial snake be placed close to the desired bound-
ary to improve segmentation accuracy, especially in cases where the
amount of image clutter and noise is high, such as in medical images.
This inevitably involves manually selecting several initial snake ele-
ments. Moreover, they may still fail to accurately drive the snake to
the desired boundary around weak edges [12].

In this work, we propose a new external force that combines the
advantages of balloon and GVF forces. Specifically, we employ bal-
loon forces to guide the snake to the object’s boundary even in the
presence of image clutter and noise; while we employ GVF forces
to improve convergence to the object’s boundary even around weak
edges. We control the influence of these two types of forces on the
snake’s movement by using a weighting function based on local im-
age features. The proposed external force minimizes snake leakages
and considerably reduces the number of initial snake elements, mak-
ing suitable for segmentation of medical images with little manual
intervention.

The rest of the paper is organized as follows. Section 2 reviews
the basic concepts of snakes. Our proposed external force is detailed
in Section 3. Experimental results for segmentation of real medical
images are presented in Section 4. Finally, we draw conclusions in
Section 5.



2. BACKGROUND

A snake is a curve C(s) = [x(s), y(s)], s ∈ [0, 1], that evolves to
an object’s boundary by minimizing the following energy function:

ES(C) =
1

2

1∫
0

(α
∣∣C′(s)∣∣2 + β

∣∣C′′(s)∣∣2)ds+

1∫
0

Eext(C(s))ds

(1)
where α and β are weighting parameters that control the snake’s
tension and rigidity, respectively. The first integrand in Eq. (1) is
referred to as the internal energy, which controls the smoothness of
C, while the second integrand is referred to as the external energy,
which attracts C towards the object’s boundary. The external energy
is usually defined as the negative intensity of the image edge map f ,
i.e., Eext(x, y) = −f(x, y), which is usually computed by:

f(x, y) = |∇ [Gσ(x, y) ∗ I(x, y)]|2 (2)

where Gσ denotes a 2D Gaussian filter with standard deviation σ,
∗ denotes a linear convolution, ∇ denotes the gradient operator and
I(x, y) denotes the image. The minimization of ES can be achieved
by evolving the snake dynamically as a function of parameter s and
artificial time t as follows:

C(s, t) =
[
αC

′′
(s, t)− βC

′′′′
(s, t)

]
−∇Eext (3)

where the first term and the second term are called the internal force,
Finternal, and the external force, Fexternal, respectively.

External forces can be divided into dynamic forces and static
forces [2]. Dynamic forces, e.g., balloon forces, depend on the snake
itself and change as the snake deforms. Static forces, e.g., GVF
forces, are computed from the image and do not change as the snake
deforms.

Balloon forces are computed iteratively and may have an infla-
tion or deflation effect on the snake depending on the snake’s initial
position with respect to the desired boundary. These forces are rep-
resented as:

Fballoon = kn(s) (4)

where n(s) is a unit vector normal to the snake at snake element Cn,
and k is the force strength. The sign of k is responsible for inflation
(+) or deflation (-).

GVF forces are derived from the diffusion of the gradient vectors
of the image edge map. Let v(x, y) = [u(x, y), ν(x, y)] denote the
GVF field, which is set to minimize the following energy function:

EGV F (v) =

∫∫
µ|∇v|2 + |∇f |2|v−∇f |2dxdy (5)

The first term in Eq. (5) is used to smooth the vector field v,
which has the main effect of increasing the capture range of the force
field, where µ is a smoothness regularization parameter. The sec-
ond term is the data fidelity term that makes v equal to the gradient
vector of the edge map (∇f ) where (|∇f |) is relatively large, and
thus preserves edge information. The GVF force is then given as
(FGV F = v(x, y)).

3. PROPOSED EXTERNAL FORCE

The proposed external force is a weighted combination of balloon
and GVF forces and aims at exploiting the advantages of each of
these two types of forces. As described in section 2, the computation

of the GVF force requires the computation of the gradient vector of
the edge map, ∇f . In this work, the edge map f(x, y) is computed
by first calculating the eigenvalues and eigenvectors of the 2 × 2
Hessian matrix HMx,y,L, for each pixel at position (x, y). The
elements of HMx,y,L are the coefficients of the three detail sub-
bands of the stationary wavelet transform (SWT) decomposition of
the image at level L, as follows:

HMx,y,L =

[
|Vx,y,L| |Dx,y,L|
|Dx,y,L| |Hx,y,L|

]
(6)

where Vx,y,L, Hx,y,L and Dx,y,L are the coefficients of the verti-
cal, horizontal and diagonal detail sub-bands, respectively, at pixel
position (x, y) and decomposition level L. We use the largest abso-
lute eigenvalue of HMx,y,L, whose eigenvector represents the di-
rection of highest curvature, as the intensity value of the edge infor-
mation at position (x, y), so that f(x, y) = max(|e1x,y|, |e2x,y|),
where e1x,y and e2x,y denote the two eigenvalues associated with
HMx,y,L. We normalize f(x, y) to the range [0, 1].

The proposed external force is then defined as follows:

Fexternal = (FBalloon ∗ (1− Ω)) + (FGV F ∗ Ω) (7)

where FGV F and FBalloon denote the GVF force and balloon force,
respectively, and Ω ∈ [0, 1], is a weighting factor given by:

Ω = h̄(1−(ĀD−ε)) (8)

where h̄ ∈ [0, 1] denotes the average value of f(x, y) over a semi-
circular region S centered at each snake element, and ĀD ∈ [0, 1]
is the angular difference between the direction of the balloon force
and the average direction of the GVF force field over a cone-shaped
region T centered at each snake element. ĀD = 0 represents 0
radians, while ĀD = 1 represents π radians. The constant ε =
0.001 is used to prevent power by zero when ĀD = 1. For each
snake element at position (x, y), h̄ is calculated as follows:

h̄(x, y) =
1

N

∑
(i,j)∈S

h(i, j) (9)

where N is the number of edge map pixels located in region S and
h is the edge intensity at position (i, j), as illustrated in Fig. 1.

Fig. 1: Region S for snake element Cn. The snake is represented
in green. The red arrow represents the direction of the balloon force
which is normal to the snake at element Cn. The blue doted line
represents region S of radius r.

For each snake element at position (x, y), ĀD is calculated as
follows:

ĀD(x, y) =
1

M ∗ π
∑

(i,j)∈T

θ(i, j) (10)

whereM is the number of GVF field vectors in region T , θ is the an-
gle between the GVF field vector at point (i, j) and the balloon force



vector for snake elementCn at position (x, y). Region T (x, y, sl, ϕ)
is defined by a cone shape with its vertex in (x, y), as illustrated in
Fig. 2. Note that a cone-shaped region was chosen as opposed to a
semi-circular region, such as region S, for two reasons. First, it al-
lows analyzing the region located far from the snake element, which
provides a better insight of the direction of the GVF field than the
region close to the snake element. Second, it reduces the number of
calculations since there are fewer points in total than a semi-circular
region of equivalent size.

Fig. 2: Region T for snake element Cn. The snake is represented in
green. The red arrow represents the direction of the balloon force,
which is normal to the snake at element Cn. Blue arrows represent
the GVF field vectors within region T .

Note that the weighting function in Eq. (8) assigns different pri-
orities to balloon and GVF forces according to local image features.
These features are the average amount of edge information (h̄) and
average direction of the GVF field (ĀD). It is important to mention
that the simplest possible method to control the influence of balloon
and GVF forces on the snake’s movement is to use a thresholding
approach based on h̄ and ĀD values. However, the use of contin-
uous functions, such as the one in Eq. (8), where no hard decision
is required, usually leads to better results [13]. Fig. 3 shows the
plot of Eq. (8) for various values of ĀD. It can be seen that Ω ap-
proaches 0 for small h̄ values regardless of the ĀD value, i.e., when
the snake is located in a smooth region. In this case, balloon forces
are the main acting external forces driving the snake close to the ob-
ject’s boundary. It can also be seen that Ω approaches 1 in a linear
fashion as h̄ and ĀD increase, i.e., when the snake is located in a
non-smooth region and its normal direction of growth does not coin-
cide with the local average direction of the GVF field. In this case,
GVF forces tend to be the main acting external forces, helping the
snake conform to the object’s boundary.
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ĀD =0.6
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Fig. 3: Value of Ω for different values of h̄ and ĀD.

Therefore, Ω allows the snake to deform in smooth areas even
if its normal direction of growth is opposite to the GVF force. This
is particularly useful to initialize the snake with a very limited num-
ber of snake elements located far from the desired boundary. Fig.
4(a) and 4(b) illustrate this case, where Ω approaches 0. Weight Ω
also minimizes snake leakages around weak edges by averaging the
amount of edge information and the direction of the GVF field over

(a) h̄→ 0, ĀD → 0, Ω→ 0 (b) h̄→ 0, ĀD → 1, Ω→ 0

(c) h̄→ 0 , ĀD � 1, Ω < 1 (d) h̄→ 1, ĀD → 1, Ω→ 1

Fig. 4: Direction of the GVF field within region T for different cases
where the average amount of edge information (h̄) varies within re-
gion S (the snake is represented in green and non-white pixels rep-
resent strong edge information). (a) The direction of the GVF field
is similar to the normal direction of growth of the snake (red). (b)
The direction of the GVF field is opposite to the normal direction of
growth of the snake. (c) The direction of the GVF force field around
weak edges. (d) The direction of the GVF force field around strong
edges.

regions S and T , respectively. This is illustrated in Fig. 4(c), where
the value of Ω slowly approaches 1. Finally, Ω allows the snake to
conform to the desired boundary by assigning a higher weight to the
GVF force when edges are encountered. This is illustrated in Fig.
4(d), where the value of Ω approaches 1.

4. EXPERIMENTAL RESULTS

In this section, we present several experiments on real slices of MRI
and CT sequences to evaluate the performance of the proposed ex-
ternal force compared to snakes using three different external forces:
a) GVF force exclusively [2], b) balloon and image gradient (BGrad)
forces [10], and c) balloon or GVF forces based on thresholding
(BGVFT). In method (c), the external force is either balloon or GVF
based on the value of h̄, which is computed as described in section
3.

In our experiments, images are preprocessed using histogram
equalization to enhance edges. The edge map is computed as de-
scribed in section 3 using the Haar filter with L = 3 levels of de-
composition. We use a value of α = 0 and β = 10 to control the
smoothness of the snake, and a value of µ = 0.2 for the regulariza-
tion parameter to compute the GVF field, as suggested in [2]. For
our proposed external force, we use a radius r = 1 pixels for re-
gion S, an angle ϕ = 45o and sl = 5 pixels for region T . These
values provide the best trade-off between capturing enough informa-
tion about local image features and computational complexity. In all
experiments, the snake is placed inside the desired region by man-
ually selecting a single position. This single position is used as the
center of an initial circular snake with a radius of 10 pixels.



Table 1: Detection accuracy of snakes using various external forces.

Exp. GVF BGrad BGVFT Proposed
approach No.

iterationsDSC JC DSC JC DSC JC DSC JC
1 0.934 0.877 0.902 0.822 0.894 0.809 0.945 0.889 13
2 0.947 0.900 0.919 0.850 0.916 0.845 0.951 0.913 13
3 0.931 0.872 0.886 0.796 0.922 0.855 0.948 0.902 14
4 0.936 0.880 0.903 0.824 0.917 0.847 0.958 0.919 15
5 0.929 0.868 0.903 0.824 0.925 0.861 0.954 0.913 16
6 0.099 0.052 0.852 0.743 0.942 0.890 0.932 0.872 44
7 0.026 0.012 0.630 0.460 0.955 0.915 0.926 0.862 101
8 0.954 0.913 0.884 0.792 0.905 0.826 0.950 0.904 13
9 0.924 0.859 0.919 0.851 0.896 0.812 0.939 0.886 8

10 0.856 0.748 0.852 0.742 0.894 0.808 0.857 0.750 27

Note that when computing the edge map f(x, y) as described
in section 3, the position of edges shifts by a number of pixels from
their actual position in the original image. This shifting effect is a
consequence of the redundant properties of the SWT and depends on
the size of the filter [14, 15]. The amount of shifting ΛL, in pixels
locations, for L levels of decomposition using the Haar filter is given
as follows:

ΛL =

L∑
`=1

∆`−1:` (11)

∆L−1:L = 2(L−3) × (dLo0 + 3dHi0 − 4) (12)

where dLo0 and dHi0 denote the size of the low pass and high pass
filters, respectively. For the Haar filter, dLo0 = dHi0 = 2. Therefore,
the position of the final snake is shifted back according to Eq. (11)
in order to correctly position the snake on the desired boundary in
the original image.
The detection accuracy of the evaluated external forces is measured
by the Dice similarity coefficient (DSC) [16] and Jaccard coefficient
(JC) [17] using manually annotated ground truth. The values of DSC
and JC are within the range [0, 1], where 1 indicates identical over-
lap and 0 indicates no overlap between regions inside the boundaries.
Table 1 tabulates the DSC and JC values for different regions of MRI
and CT slices. The number of iterations is equal for all evaluated ex-
ternal forces and is set to the number of iterations required by our
proposed external force to achieve convergence. Experiments 1-3
represent three different regions on an MRI slice of a spinal cord, ex-
periments 4 and 5 represent two regions on an MRI slice of a pelvis,
experiments 6 and 7 represent two regions on an MRI slice of a knee,
experiment 8 represents one region on a CT slice of a skull, and ex-
periments 9 and 10 represent two regions on a CT slice of a spinal
cord.
Results in Table 1 show that our approach achieves the highest accu-
racy for the majority of experiments. It is important to note that in
some cases, the BGVFT snake achieves higher DCS and JC values
than our approach for the same number of iterations (see experi-
ments 6,7,10). In these cases, the selected threshold for the BGVFT
snake effectively switches between GVF and balloon forces. How-
ever, note that the BGVFT does not converge in the tabulated num-
ber of iterations. More iterations may cause snake leakage in the
BGVFT snake, unlike our approach which achieves convergence in
less iterations and detects the boundary with high accuracy by auto-
matically weighting the GVF and balloon forces according to local
image features. Visual results are shown in Fig. 5. The GVF snake,
which is represented in yellow, conforms to the desired boundary in
most of the depicted cases. However, for the region in Fig. 5 (a), this

(a) (b)

(c) (d)

Fig. 5: Final detected boundaries by the GVF snake (yellow), BGrad
snake (red), BGVFT snake (blue) and our approach (green). The
white dot inside each region represents the manually selected initial
position for all evaluated snakes. (a) Experiment 6 - MRI slice of
a knee. (b) Experiment 1 (upper region) and experiment 3 (lower
region) - an MRI slice of a spinal cord. (c) Experiment 8 - a CT slice
of a skull (left eye). (d) Experiment 4 (left region) and experiment 5
(right region)- an MRI slice of a pelvis.

snake completely fails mainly due to the fact that the snake is ini-
tialized far from the boundary using a relatively small initial curve.
Although the capture range of the GVF force is in general large, the
direction of the GVF field around such small initial snakes may not
point towards the desired boundary due to the high level of image
noise and clutter. An initial snake closer to the desired boundary
is necessary in this case to increase detection accuracy. The BGrad
snake, which is represented in red, fails around weak edges caus-
ing snake leakages. This is mainly due to the fact that the balloon
force is greater than the gradient force. As previously stated in [7],
the strength of the balloon force should be manually selected to cor-
rectly detect weak edges. Note that our approach, which is repre-
sented in green, successfully conforms to the desired boundary with
high accuracy for all depicted cases.

5. CONCLUSION

This paper proposed a novel external force for parametric snakes
that combines balloon and GVF forces. The external force uses a
weighting factor to leverage the advantages of these two forces ac-
cording to local image features. In smooth areas with little edge
information, balloon forces guide the snake to the object’s bound-
ary, while in the presence of strong edge information GVF forces
make the snake conform to the boundary. Our proposed approach
is compared to snakes using GVF forces, balloon forces and a com-
bination of GVF and balloon forces based on manual thresholding.
Experimental results on real medical images show that the proposed
external force outperforms the other evaluated external forces, and
minimizes snake leakages, while offering the advantage of initializ-
ing the snake with a single manually selected point inside the desired
region.
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